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Abstract

Background

The spread of coronavirus in the United States with nearly five and half million confirmed

cases and over 170,000 deaths has strained public health and health care systems. While

many have focused on clinical outcomes, less attention has been paid to vulnerability and

risk of infection. In this study, we developed a planning tool that examines factors that affect

vulnerability to COVID-19.

Methods

Across 46 variables, we defined five broad categories: 1) access to medical services, 2)

underlying health conditions, 3) environmental exposures, 4) vulnerability to natural disas-

ters, and 5) sociodemographic, behavioral, and lifestyle factors. The developed tool was val-

idated by comparing the estimated overall vulnerability with the real-time reported

normalized confirmed cases of COVID-19.

Analysis

A principal component analysis was undertaken to reduce the dimensions. In order to iden-

tify vulnerable census tracts, we conducted rank-based exceedance and K-means cluster

analyses.

Results

All of the 5 vulnerability categories, as well as the overall vulnerability, showed significant

(P-values <<0.05) and relatively strong correlations (0.203<ρ<0.57) with the normalized

confirmed cases of COVID-19 at the census tract level. Our study showed a total of 722,357

(~17% of the County population) people, including 171,403 between the ages of 45–65

(~4% of County’s population), and 76,719 seniors (~2% of County population), are at a

higher risk based on the aforementioned categories. The exceedance and K-means cluster

analysis demonstrated that census tracts in the northeastern, eastern, southeastern and

northwestern regions of the County are at highest risk.
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Conclusion

Policymakers can use this planning tool to identify neighborhoods at high risk for becoming

hot spots; efficiently match community resources with needs, and ensure that the most vul-

nerable have access to equipment, personnel, and medical interventions.

Introduction

The outbreak of the novel Coronavirus was first reported in Wuhan, China but has since

spread to almost every country in the world. The highest number of cases and deaths, as of this

writing, has been reported in the U. S. [1]. Within the 50 states, there is an apparent disparity

in the number and causes of infections and their spread within each state. However, what is

common to all cases reported thus far, is the rates of mortality and hospitalizations that appear

to be highest among relatively older populations and populations with underlying medical

conditions that facilitate morbidity due to COVID-19 [2–8].

Much research has focused on clinical outcomes, epidemiological modeling, and transmis-

sion dynamics of the novel coronavirus (see for example, [9–12]), but less focus has been

placed on risk and vulnerability to contracting the disease. Emerging studies have begun to

report on the impacts of social vulnerability on COVID-19 from an incidence and outcome

standpoint [2–7, 13]. However, the spatial resolution of most studies to date has been at the

global or country level, and less attention has been paid to finer spatial resolutions such as the

census tract scale within a county. A finer spatial resolution is important from a vulnerability

and risk standpoint as demonstrated in a recent study that showed that the poorest neighbor-

hoods in Houston, Texas, might be at a higher risk of hospitalization from COVID-19 [14]

based on an analysis of the Centers for Disease Control (CDC) underlying risk factors for

severe COVID-19 cases [4] that include: asthma, Chronic Obstructive Pulmonary Disease

(COPD), heart disease, hypertension, diabetes, and a history of heart attacks or strokes.

While the aforementioned underlying medical conditions are important risk factors, they

weigh in on the risk of hospitalization but not necessarily on the risk of contracting the disease.

As such, underlying medical conditions and sociodemographic variables may not fully repre-

sent the magnitude of the risk and the challenge in managing and mitigating disease in affected

populations from pandemics such as COVID-19. Environmental pollutants such as air quality

[15], CO2 emissions [13], and ambient conditions such as temperature and humidity [5, 16]

showed correlations with COVID-19 morbidity. Furthermore, environmental exposures due

to proximity to contaminated areas such as Superfund sites, hazardous waste sites, landfills,

and leaky petroleum tanks has long-term adverse effects on public health, immune systems,

and vulnerability to certain diseases [17–21]. Public health is further exacerbated by natural

disasters, such as hurricanes and severe storms [22–24] that expose populations to pathogens

and pollutants in floodwater and their flooded homes and potentially contribute to weakened

immune systems. Behavioral and lifestyle factors could also affect the vulnerability of a popula-

tion to an infectious disease such as COVID-19. Obesity, in recent COVID-19 data, has been

shown to be prevalent in hospitalized patients [7], and smoking has been associated with dis-

ease progression [25]. Finally, it should be noted that because the risk is unevenly distributed,

shortages in hospital beds, personal protective equipment (PPE), and medications have

emerged in some but not all communities [26–28], thereby widening disparities and exposing

systemic shortcomings [29]. Limited access to medical services, especially with less than fully-

functional transportation systems combined with lack of insurance coverage, could worsen the

impact of COVID-19 for people with less favorable sociodemographic metrics and people in
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rural regions. Thus, a more holistic view of the vulnerability of communities to COVID-19

that considers all of the aforementioned variables is needed to guide decision-makers in identi-

fying the areas and populations in their jurisdictions that require specific resources, response,

and mitigation actions.

While there are numerous indices with different applications, none, by themselves, can pro-

vide a comprehensive description of the influential factors in the COVID-19 pandemic.

Among the existing indices, the Social Vulnerability Index (SVI) developed by the Geospatial

Research, Analysis, and Services Program (GRASP) at the Centers for Disease Control and

Prevention (CDC) and Agency for Toxic Substances and Disease Registry [30] is the most

commonly used one and has been used to explain the variability in COVID-19 spread [6].

While SVI considers socioeconomic status, household composition/disability, minority status/

language, and housing/transportation, it does not take environmental exposure, underlying

medical conditions, behavioral, and lifestyle factors, and vulnerability to natural hazards into

account. Moreover, access to medical services, which is a key factor in a pandemic, is not

included in SVI. The same comments are valid for other similar indices such as Concentrated

Disadvantage Measures [31], and the Social Deprivation Index [32]; these indices have not

been developed with a pandemic such as COVID-19 in mind, but rather for identifying dispar-

ities in population with regards to specific determinants. In this study, we develop a rigorous

planning tool at the census tract level that examines influential determinants of vulnerability

to COVID-19 in 5 broad categories (with 46 variables) that include: 1) access to medical ser-

vices, 2) underlying medical conditions, 3) environmental exposures, 4) vulnerability to natu-

ral disasters and 5) sociodemographic, behavioral, and lifestyle factors. To the best of the

knowledge of the authors, none of the existing studies provide a holistic perspective on

COVID-19 vulnerability. The goals for developing the planning tool are to better understand

medical access gaps and identify parts of the county where more protective measures and

response actions need to be put in place.

Such a planning tool is critical in order to mitigate the impact of COVID-19 and prepare

for future pandemics. Using this tool, policymakers can identify neighborhoods with a higher

potential for becoming the next hot spots, efficiently match community resources with com-

munity needs, and ensure that equipment, personnel, medications, and support are available

to everyone, particularly the most vulnerable and those in greatest need. This strategy is essen-

tial to address historical trends that have preferentially delivered resources to those with means

resulting in gaps in quality [33–35]. The planning framework developed in the study is readily

transferable to other counties in the US and can be expanded to the state level for decision-

making on a short-term or long-term basis towards improving the overall health of communi-

ties in each state.

Methods

Study region

Harris County, located in the southeastern part of Texas (Fig 1), is the third-most populous

county in the U.S., with more than 4.7 million residents [36]. While ranked number 2 in the

nation in terms of Gross Domestic Product (GDP) growth, the County exhibits geospatial

socioeconomic disparities among its population. While Harris County was experiencing fewer

cases, and lower rates of transmission relative to the rest of the U.S., starting around mid-June

2020, the pandemic resurged, and the number of COVID-19 cases has increased substantially.

Fig 2 shows the number of confirmed cases of COVID-19 in Harris County compared to New

York County, for example. As shown in Fig 2, both the total number of confirmed cases [1]

and the slope of the spread during the initial phase of the spread are significantly higher in
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New York compared to Harris County. However, over time, the spread curve was flattened in

New York while a second surge wave of the pandemic occurred in Harris County. This is

important to note because it potentially offers the County the opportunity for using the devel-

oped tool for improved long-term planning to respond to community health needs and dispar-

ities in response to COVID-19 and other pandemics or natural disasters.

Data acquisition and processing

The total number of confirmed COVID-19 cases at the county level was downloaded from the

Johns Hopkins Center for Civic Impact’s Coronavirus resource center [1]. For Harris County

and Nueces County, the total number of confirmed COVID-19 cases at the zip code levels

were compiled from the Harris County Public Health database [37] and the City of Corpus

Christi COVID-19 dashboard [38]. The zip code-level cases were converted to tract-level using

the “Spatial Join” tool in ArcMap and then were normalized by dividing the number of cases

Fig 1. Map of Harris County in Texas and its 786 census tracts (2018). The industrial areas are defined according to the State of Texas classification of parcels.

https://doi.org/10.1371/journal.pone.0241166.g001
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to the population of each tract. All census data (2018) at the census tract level were compiled

from the National Historical Geographic Information System (NHGIS) database [39]. Total

population, the number of households, median income and income per capita (adjusted to

2018 U.S. dollars), percent of the population below the poverty line, with cash public assistance

or food stamps/SNAP (Supplemental Nutrition Assistance Program), living alone, with health

insurance coverage, with a disability, education, and age distribution for each tract in Harris

County were accessed. Using the detailed variables in the census data, education in this study

was defined as the percent of the population with high school diplomas or higher degrees. Due

to the importance of age in the vulnerability to COVID-19, both median age and the percent

of the population in decadal age intervals were calculated. The percent of the population below

the poverty line was chosen as the main economic variable, and the household density was cal-

culated by dividing the total number of households by the area of each census tract.

Two measures of vulnerability to flooding were defined, using data from Hurricane Harvey

that had severe impacts on Harris County in 2017: i) the ratio of the number of households

that filed damage claims based on Federal Emergency Management Agency (FEMA) data [40]

to the total number of houses in each tract, and ii) the ratio of the wetted areas (with water

depth greater than zero) during Hurricane Harvey in a census tract to the total area of the tract

(the specific methodology for this approach is described in [41]).

Locations and types of medical facilities including nursing facilities, federally qualified

health centers, hospitals, rural health clinics, urgent care centers, and Harris County Health

System facilities were obtained from the Health Resources and Services Administration

(HRSA) query data explorer tool [42], Harris County Health System [43], and the Homeland

Fig 2. Number of confirmed cases of COVID-19 over time since March 1, 2020 in New York County and Harris

County.

https://doi.org/10.1371/journal.pone.0241166.g002
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Infrastructure Foundation-Level Data (HIFLD) database [44]. The Microsoft Bing Maps Plat-

form APIs [45] was used to estimate the drive time from the centroid of each tract to all of the

available medical facilities nearby. ArcMap was used to extract the coordinates of both origins

(centroids) and destinations (medical facilities), and the minimum travel time in minutes was

then recorded for each tract in Microsoft Excel.

The underlying conditions that might affect the vulnerability to COVID-19 (arthritis,

asthma, high blood pressure (HBP), cancer (except skin cancer), high cholesterol, chronic kid-

ney and heart diseases, COPD, diabetes, poor physical and mental health, and stroke); as well

as increased-risk behaviors/conditions (binge drinking, smoking, no leisure time physical

activity, obesity, sleep less than 7 hours), and preventive indicators (annual doctor and dentist

checkups, medication for high blood pressure (HBP), cholesterol screening, and routine physi-

cal exams) were all acquired from the 500 cities mapper database [46] (Table 1), which draws

from the Centers for Disease Control and Prevention’s (CDC) Behavioral Risk Factor Surveil-

lance System. It should be noted that data from [46] were only available at 584 out of 786

(73.8%) census tracts in Harris County. Census tracts without data are clearly identified in all

figures.

As noted before, ambient conditions such as temperature and humidity could affect the

spread of COVID-19; however, in this study, an ambient gradient in Harris County was

neglected as the spatial change over the County is expected to be minimal. Three indicators of

air quality: ozone, nitrogen dioxide (NO2), and particulate matter smaller than 2.5 microme-

ters (PM2.5), were downloaded from the Texas Air Monitoring Information System (TAMIS)

database [47]. For ozone, the 8-hour average concentrations were calculated using IBM SPSS

(version 26) for all of the available monitoring stations (40) and compared with the 70 ppb

standard established by the United States Environmental Protection Agency (EPA). The num-

ber of exceedances of the EPA standard for each monitoring station over the period of 2000–

2019 was then calculated. “Interpolation” tools in ArcMap were used to convert the median

measured concentration for each station to a continuous raster to overcome the spatial sparsity

in measurements. The generated raster was then used to calculate the concentration of ozone

for each census tract using the “Zonal Statistics” tool in ArcMap. One particular station (695:

Table 1. Variables within each category (the choice of variables was based on the PCA analysis, previous studies, and data availability).

Category Name Variables

1 Access to Medical Services Household density, drive time to a medical facility, access to HBP medications1, physical checkup1, dental

checkup1, cholesterol screening1, insurance coverage1, routine physical exams 1,2

2 Underlying Medical Conditions Arthritis, Asthma, HBP, Cancer (except skin cancer), high cholesterol, chronic kidney disease, COPD, chronic

heart disease, diabetes, poor mental condition, poor physical condition, stroke, at least one disability, median age,

age above 50, age above 60, age above 70, age above 80

3 Environmental Exposures Distance to a hazardous site, number of hazardous pollution events and LPST3, number of dry cleaners,

petroleum storage tanks, and IHWCA sites4, ozone concentration, NO2 concentration, PM2.5 concentration

4 Vulnerability to Natural Disasters FEMA Harvey claims ratio, Harvey inundation ratio

5 Sociodemographic, Behavioral, and

Lifestyle Factors

Binge drinking, current smoker, no physical activity, obesity5, low sleep quality, education beyond high school

diploma1, below the poverty line, living alone,

1 The exceedance was calculated in the opposite direction.
2 Routine physical exams include: Mammography (ages 50–74), Pap Smear use (ages 21–65), Fecal Occult blood test, Sigmoidoscopy, or Colonoscopy (ages 50–75),

older men and women (+65) up to date on core clinical preventive services.
3 Leaky petroleum storage tank (underground tank).
4 Industrial and Hazardous Waste Corrective Action defined by the Texas Commission on Environmental Quality.
5 Obesity has emerged as a critical factor in hospitalization from COVID-19. In the context of this analysis, it was separated from other medical conditions in Category

2.

https://doi.org/10.1371/journal.pone.0241166.t001
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UH Moody Tower) was removed from the ozone calculation due to its extremely low temporal

resolution compared to the other stations. Similar approaches were taken for NO2 (hourly

measurements for 21 stations with 100 ppm standard) and PM2.5 (averaged daily data for 12

stations with a 35 μg/m3 standard).

Environmental releases from various sources to air, water, soils in Harris County were

obtained from the United States Coast Guard National Response Center database [48]. The total

number of emissions, pollution spills, or contaminant discharge events that occurred during the

period between 2000 and 2020 for each zip code was extracted from the database by combining

different years, filtering the actual events for Harris County, and removing redundant data points.

The “Spatial Join” tool in ArcMap was used to convert the total number of events in each zip

code to a summed total number of events for each census tract. The resulting value was added to

the number of leaking petroleum storage tanks (underground and aboveground tanks) reported

by the Texas Commission on Environmental Quality (TCEQ) [49] in the tract. A hazardous sites

shapefile was developed by merging two databases: the EPA Superfund Enterprise Management

System database [50], and the Texas Commission on Environmental Quality (TCEQ) GIS data-

base [49]. From the latter source, the locations of municipal solid waste sites/landfills were

acquired. The “Near” tool in Arcmap was used to calculate the distance between the centroid of

each census tract to the nearest aforementioned hazardous sites. A second environmental variable

was defined as the sum of the total number of dry cleaners, petroleum storage tanks (all under-

ground and aboveground tanks), and sites that are part of an Industrial and Hazardous Waste

Corrective Action (IHWCA) program located within each census tract; data for those was

obtained from [49]. Both Shapiro-Wilk and Kolmogorov-Smirnov tests conducted in IBM SPSS

showed that none of the datasets were normally distributed.

Defining categories

A Principal Component Analysis (PCA) with orthogonal rotation (Varimax with Kaiser Nor-

malization) was conducted in IBM SPSS as the first step to reduce the dimensions. Due to the

limitation in data availability, as noted before, the PCA was performed for data from 584 tracts

with all available data. Eigenvalues from random values were generated and compared with

the values in this study using a parallel analysis engine [51]. This comparison was made to

determine the number of components that should be retained in the analysis; components

with eigenvalues greater than the randomized method were kept. The first five components

that could explain ~ 80% of the variability in the 46 variables showed eigenvalues larger than

the ones generated by the engine. S1 Table in S1 File shows the most dominant variables in

each component (category).

The choice of variables for the study (Table 1) was based on the results of the PCA in addi-

tion to findings reported in previous studies, and data availability. Category 1 includes access

to medical services, including medical facilities, medications, and insurance coverage, routine

checkups, and physical exams, as well as household density as a surrogate for interaction

among individuals within each tract (e.g., how crowded grocery stores could be in the tract).

Category 2 includes chronic diseases, medical conditions, disability that could potentially

affect the vulnerability to COVID-19, and age distribution. For environmental exposure, pollu-

tion events from various sources, the 3-air quality indicators, and the presence of hazardous

sites were included. Flooding from Hurricane Harvey was the only metric in Category 4,

although this could be expanded in future work to include heat, drought, wildfires, and other

natural disasters. Finally and for Category 5, a combination of social, economic, behavioral,

and lifestyle factors that could potentially threaten the health of individuals during the

COVID-19 pandemic was considered.
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Statistical analyses

Vulnerability analysis. The step-by-step methodology applied in this study is depicted in

Fig 3. Two classification approaches were used in the study with the goal of identifying the

most vulnerable populations to COVID-19; a rank-based exceedance method developed in

Microsoft Excel, and a standard K-Means Cluster Analysis (K = 3) using IBM SPSS. Validation

of any developed models for the vulnerability was not possible due to lack of data at the desired

spatial resolution and the fact that the pandemic is still developing. Thus, the second model

(K-means) was used as a benchmark for the first model for comparison purposes.

In the rank-based exceedance method, for each variable, sorting the data in Microsoft Excel

developed the rank of each census tract relative to other tracts within Harris County. The

exceedance rate (percentile) was calculated as follows:

Exceedance ¼ 1 �
m

n � 1
ð1Þ

Fig 3. Flowchart showing the various steps in defining the five categories and calculating the vulnerabilities.

https://doi.org/10.1371/journal.pone.0241166.g003
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Where m is the rank, and n is the total number of tracts (786 in Harris County). The calcu-

lated exceedance for a given tract represents the percent of tracts that have a better condition

than the selected one. To ensure that the direction of exceedance is the same among all vari-

ables, (1 –exceedance) was used for variables with positive nature such as insurance coverage,

education, access to medication, and preventive tests. For each category, the average value of

exceedance for all of the variables within that category was calculated and reported. In addition

to classifying the tracts for each of the aforementioned categories, an overall vulnerability was

defined by averaging the exceedance rates of the five defined categories. The percentile associ-

ated with each averaged value (for each category and for the overall vulnerability) was calcu-

lated and exported to ArcMap to generate decision-support level maps.

In the K-means cluster analysis (K-means is an unsupervised machine learning algorithm),

three classes were defined for each category. As a result, the output classes were ordered as

high (severe), average, and low depending on the order of the final cluster centers. The

ANOVA test was conducted on the clusters to ensure that the values of the different variables

were significantly different between clusters. Similar to the exceedance method, an overall vul-

nerability for each census tract was determined by averaging the five output class numbers

(i.e., 1, 2, and 3) associated with the five categories. For illustration purposes, the percentile

rank for each of the tracts was calculated and exported to ArcMap.

Although it is possible to assign weights to the categories and calculate a weighted average,

equal importance for the categories was assumed in this study. Assigning weights is beyond

the scope of this paper as there is not enough evidence to support such assignments as of this

writing. Spearsman’s Correlation Analysis was performed to find correlations, if any, among

the exceedance rates of vulnerabilities and normalized number of COVID-19 cases at the cen-

sus tract level. Box plots were used to demonstrate the distribution of COVID-19 cases among

the defined quantiles of Overall vulnerability using both K-means cluster analysis and exceed-

ance methods.

Results and discussion

Geospatial distribution of determinants in the 5 categories

S2 Table in S1 File provides a summary of statistics for all of the 46 variables used in the study.

Among the 46 variables, maps are only presented for those that were not based on publicly

available data. Fig 4 shows the locations of medical facilities (all types as described in Methods)

within and around Harris County as well as the drive time to the nearest facility for each cen-

sus tract. The drive time varies from seconds to 25.23 minutes in the no traffic condition, with

a median of 4.74 minutes (S2 Table in S1 File). As can be seen from Fig 4, people who live in

areas located farther away from the center of the County, especially in the western and north-

eastern parts, have a longer drive time to a medical care facility. This longer drive time

becomes even more critical if an individual does not have a personal car and needs to use the

less than a fully functional transportation system. The travel time is even longer to facilities

managed by the Harris Health system (typically used by individuals with no insurance or doc-

umentation). From a planning standpoint, Fig 4 below, when combined with vulnerabilities,

can be used to drive decisions related to the establishment of field hospitals during periods of

widespread transmission. Importantly, the data can be used to develop a more holistic

response plan directing persons with various severity or symptoms of the disease to different

types of medical intervention facilities.

The distance to and location of hazardous sites (Superfund sites, landfills, and industrial

hazards) are shown in Fig 5. The distance ranges from 79 to 9,386 m with a median of 2,105 m.

The hazardous sites are spread over the entire County but are more concentrated closer to the
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industrial areas (see Fig 1), water bodies (Houston Ship Channel (HSC), and Galveston Bay

(GB)). The tracts in less developed areas have the longest distance to a hazardous site indicat-

ing a higher potential vulnerability to pollution in the more developed parts of Harris County.

S1-S3 Figs in S1 File show the median concentration of ozone, NO2, and PM2.5 for each

tract in addition to the number of times during 2000–2019 that a monitoring station exceeded

the EPA standard. It should be noted that the number of stations and, consequently, the geos-

patial coverage was significantly lower for NO2 and PM2.5 when compared to ozone. Stations

with the highest number of exceedances of EPA standards for all three measures are located

near industrial areas (see Fig 1). While the central parts of the County showed the highest con-

centration of NO2 and PM2.5, ozone concentrations were highest closer to the industrial areas.

The higher levels of NO2 in central parts of Harris County could be attributed to emissions

from mobile sources that are more abundant in downtown Houston [52]. The observed pat-

tern for ozone is a result of industrial activities, the ozone-NO2 relationship, and the wind

Fig 4. Map showing the distance from the centroid of census tracts to the nearest medical facility.

https://doi.org/10.1371/journal.pone.0241166.g004
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pattern in Houston [53, 54]. In the case of PM2.5, the higher concentrations in Harris County

have been associated with regional aerosols, biomass burning, and gasoline combustion [55]

that are higher in the central part of the County. The median concentrations for ozone, NO2,

and PM2.5 were 21.24 ppb, 8.32 ppm, and 9.98 μg/m3, respectively, for the period of 2000–

2019. What is interesting to note is the fact that the three variables have different spatial distri-

butions thereby indicating potentially more important involvement in COVID-19 based on

recent research showing increased vulnerability due to PM2.5 pollution in COVID-19 patients

[56] and CDC’s indication that “people with moderate to severe asthma may be at higher risk

of getting very sick from COVID-19.”

Contaminant discharge events (S4 Fig in S1 File) and the second environmental variable

representing dry cleaners, petroleum storage tanks, and IHWCA sites (S5 Fig in S1 File) were

substantially higher in industrial areas close to the HSC and GB: La Porte, Baytown, Deer

Park, and Channelview, with the number of events as high as 1,449 (2000-present). The

Fig 5. Map showing the distance from the centroid of census tracts to the nearest hazardous site.

https://doi.org/10.1371/journal.pone.0241166.g005
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median was 12 events across all census tracts. Fig 6 shows the percentile of flooding across

Harris County based on the filed claims to FEMA. Areas closer to the bayous/streams and

flood control dams showed a higher vulnerability. A similar distribution was observed using

the geospatial inundation modeling approach (S6 Fig in S1 File). Finally, S7 Fig in S1 File

shows the distribution of educated persons in Harris County, defined as the ratio of age 25

years and over with a high school diploma or higher degree to the total population for each

census tract.

Vulnerability in census tracts

The developed illustrative maps, data and tabulated findings in this work can be directly used

by decision-makers to make quantitative comparisons that fit their needs. The results are illus-

trated here using generalized descriptive language based on the geospatial visualization in

order to identify the overall areas of the County with the most vulnerable population. It is

noted that using the same methodology and set of variables, except for Category 4 that could

be customized based on location, similar tables and maps could be created for any location of

interest. For instance, Category 4 could be defined as being vulnerable to drought, wildfire,

tornados, earthquakes, and so on. Such vulnerability originates from the fact that i) in the

aftermath of each of these natural hazards, the individuals who were impacted may have severe

socio-economic-health issues, and ii) a compound event where any of these hazards overlap

with the pandemic could substantially amplify the effect of each of the hazards.

Fig 7 represents the average exceedance for variables within Category 1 through Category 5

(values are reported in percentiles for the purpose of comparison among tracts), respectively,

and Fig 8 shows the overall vulnerability for all variables in the five categories. The developed

tool can be used to examine each tract individually and compare their vulnerability with other

tracts. The final cluster centers for different variables for each category (K-means method) are

represented in the S3 Table in S1 File. S8-S12 Figs in S1 File show the class of each tract (i.e.,

high/severe, average, and low) for Category 1 through Category 5, respectively. The results in

all categories were similar to the exceedance methods, validating the choice of methodology.

The overall vulnerability generated by the K-means methods led to a very similar map (S13 Fig

in S1 File) to the exceedance approach (Fig 8).

Fig 9A shows the normalized total number of confirmed COVID-19 cases as of August 16,

2020, in Harris County at the census tract level. It should be noted that the original dataset at

the zip code level was converted to census tract level using ArcMap. Since the conversion was

completed using an area-based weighted average, the maximum number of normalized cases

is different from the original dataset; 453 and 212 confirmed COVID-19 cases per 10,000 per-

sons for the converted and original datasets, respectively. By comparing Figs 9 and 7, a lot of

similarities in the geospatial distribution of vulnerability (Fig 7) and morbidity (Fig 9) can be

observed. Spearman’s Correlation analysis showed a significant and relatively strong correla-

tion (P-value = 2.6E-51, ρ = 0.570) between the normalized number of cases and the overall

vulnerability exceedance rate. While all categories showed significant correlations with the

normalized cases, Cat 5 followed by Cat 1 showed the most strong relationships with a correla-

tion coefficient of 0.616 (P-value = 7.2E-62) and 0.566 (P-value = 2.3E-50), respectively. The

correlation coefficients for Cat 2, Cat 3, and Cat 4 were 0.39 (P-value = 1.6E-22), 0.344 (P-

value = 3.4E-23), and 0.203 (P-value = 9.3E-09), respectively. Fig 9B depicts the distribution of

normalized cases among tracts with different levels (quantiles) of overall vulnerabilities. The

general increasing trend in the box plots shown in Fig 9B supported by visual similarities and,

most importantly, by statistical tests validates the performance and reliability of the developed

tool. To further validate the developed tool, the vulnerability to natural disasters was estimated
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for Nueces County, TX, during Hurricane Harvey using the FEMA data. A significant and rel-

atively strong correlation (P-value = 0.017, ρ = 0.471) was observed between the number of

COVID-19 confirmed cases (as of August 16, 2020, S14A Fig in S1 File), and the total number

of Harvey claims at the zip code level (S14B Fig in S1 File).

Overall, the vulnerabilities associated with each category exhibited varying geospatial distri-

butions with some commonality (i.e., some census tracts had elevated vulnerabilities in each

category). Category 1, 2, and 5 vulnerabilities shown in Fig 7 (access to medical services,

underlying medical conditions, and sociodemographic, respectively) indicated a similar find-

ing; the most severe vulnerability can be observed in areas with the least favorable conditions

represented by the three categories (lowest income, lower education levels, less insurance cov-

erage, unhealthy diet and lifestyles, and more underlying medical conditions). Category 3

(environmental exposures) showed a spatially declining gradient from east to west with some

hotspots around downtown Houston. This gradient could be explained by the presence of the

Fig 6. Flooding vulnerability based on the number of households that filed damage claims to the Federal Emergency Management Agency after Hurricane

Harvey.

https://doi.org/10.1371/journal.pone.0241166.g006
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majority of industrial activities in the eastern part of Harris County, and worse air quality near

downtown Houston. Category 4 (vulnerability to natural disasters) showed the highest risk in

the vicinity of major bayous/streams in the County, as discussed before.

Looking at Fig 8, it could be concluded that the most vulnerable persons to COVID-19 in

Harris County, are living in the eastern part of the County, specifically areas next to the HSC

and GB, and areas identified as opportunity zones [57]. The residents in these neighborhoods

are individuals belonging to disadvantaged or historically marginalized groups, are exposed to

several chemicals (with industrial sources), and subject to flooding both from rainfall and

storm surge (such as what was experienced during Hurricane Ike in 2008). The relationship

between race and ethnicity and physiological vulnerability to COVID-19 is beyond the scope

of this paper since the medical data are insufficient at this time to complete such an analysis.

However, due to disparities in the distribution of wealth, welfare, and services in the US, Afri-

can-American and Hispanic populations are more likely to have lower levels of health, educa-

tion, and income. The relative ratios of African-American and Hispanic populations across

Harris County are shown in S15, S16 Figs in S1 File, respectively. By looking at Figs 8, 9A, and

S15, S16 Figs in S1 File, it could be concluded that the majority of tracts with the highest ratio

of African-American and Hispanic population are located in areas with the highest overall vul-

nerability and normalized COVID-19 cases. Individuals living in the western and southeastern

fringe of the County are least vulnerable. However, it is noted that the underlying medical con-

dition data were not available for those tracts. It is also noted that individuals in those areas, if

infected, especially in the western fringe, will have significantly limited access to medical ser-

vices compared to the other parts of the County.

Fig 7. The average exceedance for variables in the 5 categories. Averaged exceedance values are reported in percentiles for the purpose of comparison among tracts.

https://doi.org/10.1371/journal.pone.0241166.g007
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Vulnerable population estimates in Harris County

For each category, the total population and the distribution of population in two age intervals,

45–65 (the age group with the highest number of reported COVID-19 cases), and +65 (the age

group with the highest mortality rate), over different percentiles (from low to high with regards

to the severity of conditions within each category) is shown in Table 2. Using the vulnerability

findings presented above for Harris County (Fig 7, and yellow highlighted values in Table 2); a

total of 59,307; 98,702; 78,723; 105,431; and 59,624 seniors (+65 years), who are at most risk of

COVID-19 mortality, are living in areas with the highest vulnerability in Category 1 through 5,

respectively. Considering the fact that Harris County is prone to flooding and the hurricane

season is in progress from May through the end of November, a potential hurricane combined

with the COVID-19 pandemic could lead to a compound natural disaster event affecting sig-

nificant numbers of senior citizens as shown in Table 2. Decision-makers, to prepare for the

Fig 8. Overall vulnerability based on determinants in all 5 categories. Areas with hatched lines represent census tracts with missing data on chronic disease risk

factors, health outcomes, and clinical preventive services [46].

https://doi.org/10.1371/journal.pone.0241166.g008
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worst-case pandemic scenario and occurrence of a hurricane, in particular, could use the num-

bers in Category 1 and 4 for planning response and recovery measures that take into account

flooding and increased vulnerability to COVID-19. For overall vulnerability (Fig 8 and cyan

highlights in Table 2), a total of 722,357 persons (~17% of the population of the County)

including 171,403 with ages between 45–65 (~4% of the total population of Harris County),

and 76,719 seniors (~2% of the population of the County and 10.6% of total identified vulnera-

ble population), are at a higher overall risk. As of August 16, 2020, 92,944 confirmed COVID-

19 cases were reported in Harris County [37], which is 12.7% of the estimated vulnerable peo-

ple identified in this study. Among those, ~14,600 (15.7% of total confirmed cases) are seniors

compared to the 10.6% estimated by the model. The disagreement between the model esti-

mates and reported numbers by Harris County [37] could be due to the testing rates. Accord-

ing to [58], Texas is among the states with the lowest testing rates (15.46%), with a higher

testing rate among the seniors. It is expected that as time passes, the number of cases increases

Fig 9. A) Geospatial variability in the normalized COVID-19 confirmed cases in Harris County as of August 16, 2020, at the census tract level. The data was converted

from a zip code level database, and B) distribution of normalized cases among tracts with different levels (quantiles) of overall vulnerabilities.

https://doi.org/10.1371/journal.pone.0241166.g009
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in the County both because of expanding the testing rates and due to further spread of the

pandemic.

Limitations and future work

The limitation in data availability should be considered when interpreting these results. First,

data was lacking for some of the variables for a number of census tracts in Harris County; the

CDC’s 500 Cities dataset [46] for example is limited to the City of Houston and does not

include the rest of the County. The analysis findings might vary if a Houston-specific dataset is

used. However, the downside is that the approach would not incorporate important county-

level considerations. Second, the use of the COVID-19 dataset up to current dates in terms of

manuscript preparation (August 16, 2020 in this study) and not having the full benefit of the

comprehensive infection dataset prior to the availability of vaccinations or effective treatments

could affect the results and, consequently, interpretations of the findings. Future work could

include new variables such as occupational exposure to COVID-19, and taking into account

populations that have the ability to work from home and those that do not. This may be a key

component of vulnerability, especially in the context of Stay Home Orders issued by various

States.

Conclusions

In this novel project, we develop a planning tool that can help identify populations at higher

risk of infection, morbidity, and mortality from COVID-19 at the census tract level. These

findings can guide the allocation of scarce resources, and thus, are relevant to policymakers at

all levels of government. Effectively using the results from the planning tool to inform actions

could mean the difference between suppressing the virus and allowing it to re-emerge. In

Table 2. Distribution of the total population, and those of ages between 45 and 65, and above 65 years within different determinant category percentiles of vulnera-

bility in Harris County.

Percentile 0% - 20% 20% - 40% 40% - 60% 60% - 80% 80% - 100%

Category 1 Total Population 760,572 929,535 946,254 892,448 846,173

45–65 years 212,214 236,982 232,755 210,859 173,524

> 65 years 113,479 103,052 96,236 80,253 59,307

Category 2 Total Population 1,107,588 923,925 922,086 786,298 635,085

45–65 years 234,744 222,531 230,052 204,197 174,810

> 65 years 71,517 86,353 98,296 97,459 98,702

Category 3 Total Population 1,016,883 914,746 830,344 795,215 817,794

45–65 years 269,504 224,015 202,769 182,543 187,503

> 65 years 108,117 95,234 90,642 79,611 78,723

Category 4 Total Population 745,835 831,232 970,245 928,682 898,988

45–65 years 163,690 199,625 235,323 230,867 236,829

> 65 years 68,795 86,866 95,116 96,119 105,431

Category 5 Total Population 1,057,398 867,297 909,292 824,148 716,847

45–65 years 292,819 220,506 212,651 188,267 152,091

> 65 years 123,228 101,213 93,823 74,439 59,624

Overall Vulnerability Total Population 998,996 927,584 906,212 819,833 722,357

45–65 years 249,385 241,270 213,158 191,118 171,403

> 65 years 97,587 108,035 88,496 81,490 76,719

See Fig 7 for Categories 1 through 5 and Fig 8 for Overall Vulnerability geospatial distributions.

https://doi.org/10.1371/journal.pone.0241166.t002
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comparison, it is noted that studies that map the geospatial spread of coronavirus from

Wuhan to neighboring communities are starting to emerge [59, 60], and similar efforts need

to be launched in the U.S. The application of geospatial methods to case data enables signifi-

cantly more rigor in understanding the confluence of various factors that jointly increase vul-

nerabilities and reduce resilience to COVID-19 spread, impact, re-emergence in new hot spots

or on a seasonal basis. While geospatial indices exist [30, 32], they are not tailored to the

unique features of this virus. Lastly, the findings from this study enable public health depart-

ments to efficiently and equitably allocate resources, including preventive, therapeutic, and

rehabilitative measures. For example, our results can guide where testing and vaccine distribu-

tion sites should be located, which communities would benefit most from policies that man-

date physical distancing and masks, which hospitals need additional support because they are

at risk for exceeding their capacities, and where contact tracers should target their efforts.

Reports of long wait times for testing and uncertainty about where to invest resources [61] sug-

gest that policy makers lack the data they need to make these decisions.

Supporting information

S1 File.

(DOCX)

Author Contributions

Conceptualization: Amin Kiaghadi, Hanadi S. Rifai.

Data curation: Amin Kiaghadi.

Formal analysis: Amin Kiaghadi.

Funding acquisition: Hanadi S. Rifai.

Investigation: Amin Kiaghadi, Hanadi S. Rifai.

Methodology: Amin Kiaghadi, Hanadi S. Rifai, Winston Liaw.

Project administration: Hanadi S. Rifai.

Resources: Hanadi S. Rifai.

Supervision: Hanadi S. Rifai.

Validation: Amin Kiaghadi.

Visualization: Amin Kiaghadi.

Writing – original draft: Amin Kiaghadi, Hanadi S. Rifai.

Writing – review & editing: Amin Kiaghadi, Hanadi S. Rifai, Winston Liaw.

References

1. Johns Hopkins Center for Civic Impact. Coronavirus resource center. 2020 [cited 21 Apr 2020]. Avail-

able: https://coronavirus.jhu.edu/

2. Adams ML, Katz DL, Grandpre J. Population based estimates of comorbidities affecting risk for compli-

cations from COVID-19 in the US. medRxiv. 2020; 2020.03.30.20043919. https://doi.org/10.1101/2020.

03.30.20043919

3. Chin T, Kahn R, Li R, Chen JT, Krieger N, Buckee CO, et al. U.S. county-level characteristics to inform

equitable COVID-19 response. medRxiv. 2020; 2020.04.08.20058248. https://doi.org/10.1101/2020.

04.08.20058248 PMID: 32511610

PLOS ONE Assessing COVID-19 risk and vulnerability in communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0241166 October 29, 2020 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0241166.s001
https://coronavirus.jhu.edu/
https://doi.org/10.1101/2020.03.30.20043919
https://doi.org/10.1101/2020.03.30.20043919
https://doi.org/10.1101/2020.04.08.20058248
https://doi.org/10.1101/2020.04.08.20058248
http://www.ncbi.nlm.nih.gov/pubmed/32511610
https://doi.org/10.1371/journal.pone.0241166


4. Garg S, Kim L, Whitaker M, O’Halloran A, Cummings C, Holstein R, et al. Hospitalization Rates and

Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019—

COVID-NET, 14 States, March 1–30, 2020. MMWR Morb Mortal Wkly Rep. 2020; 69: 458–464. https://

doi.org/10.15585/mmwr.mm6915e3 PMID: 32298251

5. Hossain MA. Is the spread of COVID-19 across countries influenced by environmental, economic and

social factors? medRxiv. 2020; 2020.04.08.20058164. https://doi.org/10.1101/2020.04.08.20058164

6. Nayak A, Islam SJ, Mehta A, Ko Y-A, Patel SA, Goyal A, et al. Impact of Social Vulnerability on COVID-

19 Incidence and Outcomes in the United States. medRxiv. 2020; 2020.04.10.20060962. https://doi.

org/10.1101/2020.04.10.20060962 PMID: 32511437

7. Petrilli CM, Jones SA, Yang J, Rajagopalan H, O Donnell LF, Chernyak Y, et al. Factors associated with

hospitalization and critical illness among 4,103 patients with COVID-19 disease in New York City.

medRxiv. 2020; 2020.04.08.20057794. https://doi.org/10.1101/2020.04.08.20057794

8. Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential Effects of Coronaviruses on the Cardio-

vascular System: A Review. JAMA Cardiol. 2020. https://doi.org/10.1001/jamacardio.2020.1286 PMID:

32219363

9. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical Characteristics of Covid-19

in New York City. N Engl J Med. 2020. https://doi.org/10.1056/NEJMc2010419 PMID: 32302078

10. Lewnard JA, Liu VX, Jackson ML, Schmidt MA, Jewell BL, Flores JP, et al. Incidence, clinical outcomes,

and transmission dynamics of hospitalized 2019 coronavirus disease among 9,596,321 individuals

residing in California and Washington, United States: a prospective cohort study. medRxiv. 2020;

2020.04.12.20062943. https://doi.org/10.1101/2020.04.12.20062943

11. Parohan M, Yaghoubi S, Seraj A, Javanbakht MH, Sarraf P, Djalali M. Risk factors for mortality of adult

inpatients with Coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis of retro-

spective studies. medRxiv. 2020; 2020.04.09.20056291. https://doi.org/10.1101/2020.04.09.20056291

12. Ranjan R. Estimating the Final Epidemic Size for COVID-19 Outbreak using Improved Epidemiological

Models. medRxiv. 2020; 2020.04.12.20061002. https://doi.org/10.1101/2020.04.12.20061002

13. Tahmasebi P, Shokri-Kuehni SMS, Sahimi M, Shokri N. How do environmental, economic and health

factors influence regional vulnerability to COVID-19? medRxiv. 2020; 2020.04.09.20059659. https://

doi.org/10.1101/2020.04.09.20059659

14. Stephanie Lamm. These areas of Harris County are at highest risk from coronavirus. Houston Chroni-

cle. 20 Mar 2020. Available: https://www.houstonchronicle.com/news/houston-texas/houston/article/

Virus-could-hit-Harris-unevenly-15147054.php

15. Conticini E, Frediani B, Caro D. Can atmospheric pollution be considered a co-factor in extremely high

level of SARS-CoV-2 lethality in Northern Italy? Environ Pollut. 2020; 114465. https://doi.org/10.1016/j.

envpol.2020.114465 PMID: 32268945

16. Wang J, Tang K, Feng K, Lv W. High Temperature and High Humidity Reduce the Transmission of

COVID-19. 2020.

17. Currie J, Zivin JG, Mullins J, Neidell M. What Do We Know About Short- and Long-Term Effects of

Early-Life Exposure to Pollution? Annu Rev Resour Econ. 2014; 6: 217–247. https://doi.org/10.1146/

annurev-resource-100913-012610

18. Erickson TB, Brooks J, Nilles EJ, Pham PN, Vinck P. Environmental health effects attributed to toxic

and infectious agents following hurricanes, cyclones, flash floods and major hydrometeorological

events. J Toxicol Environ Heal Part B. 2019; 22: 157–171. https://doi.org/10.1080/10937404.2019.

1654422 PMID: 31437111

19. Landrigan PJ, Wright RO, Cordero JF, Eaton DL, Goldstein BD, Hennig B, et al. The NIEHS superfund

research program: 25 years of translational research for public health. Environ Health Perspect. 2015;

123: 909–918. https://doi.org/10.1289/ehp.1409247 PMID: 25978799

20. Webber B, Stone R. Incidence of Non-Hodgkin Lymphoma and residential proximity to Superfund sites

in Kentucky. J Environ Health. 2017; 80: 22–29.

21. Bennett JE, Tamura-Wicks H, Parks RM, Burnett RT, Pope CA, Bechle MJ, et al. Particulate matter air

pollution and national and county life expectancy loss in the USA: A spatiotemporal analysis. PLoS

Med. 2019; 16: e1002856. https://doi.org/10.1371/journal.pmed.1002856 PMID: 31335874

22. Kiaghadi A S. Rifai H. Chemical, and microbial quality of floodwaters in Houston following Hurricane

Harvey. Environ Sci &Technology. 2019; 53: 4832–4840. https://doi.org/10.1021/acs.est.9b00792

23. Marcantonio RA, Field S, Regan PM. Toxic trajectories under future climate conditions. PLoS One.

2019; 14: e0226958. Available: https://doi.org/10.1371/journal.pone.0226958 PMID: 31869830

24. Islam MS, Bonner JS, Fuller CS, Kirkey W. Impacts of an extreme weather-related Episodic event on

the Hudson River and estuary. Environ Eng Sci. 2016; 33: 270–282. https://doi.org/10.1089/ees.2015.

0564

PLOS ONE Assessing COVID-19 risk and vulnerability in communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0241166 October 29, 2020 19 / 21

https://doi.org/10.15585/mmwr.mm6915e3
https://doi.org/10.15585/mmwr.mm6915e3
http://www.ncbi.nlm.nih.gov/pubmed/32298251
https://doi.org/10.1101/2020.04.08.20058164
https://doi.org/10.1101/2020.04.10.20060962
https://doi.org/10.1101/2020.04.10.20060962
http://www.ncbi.nlm.nih.gov/pubmed/32511437
https://doi.org/10.1101/2020.04.08.20057794
https://doi.org/10.1001/jamacardio.2020.1286
http://www.ncbi.nlm.nih.gov/pubmed/32219363
https://doi.org/10.1056/NEJMc2010419
http://www.ncbi.nlm.nih.gov/pubmed/32302078
https://doi.org/10.1101/2020.04.12.20062943
https://doi.org/10.1101/2020.04.09.20056291
https://doi.org/10.1101/2020.04.12.20061002
https://doi.org/10.1101/2020.04.09.20059659
https://doi.org/10.1101/2020.04.09.20059659
https://www.houstonchronicle.com/news/houston-texas/houston/article/Virus-could-hit-Harris-unevenly-15147054.php
https://www.houstonchronicle.com/news/houston-texas/houston/article/Virus-could-hit-Harris-unevenly-15147054.php
https://doi.org/10.1016/j.envpol.2020.114465
https://doi.org/10.1016/j.envpol.2020.114465
http://www.ncbi.nlm.nih.gov/pubmed/32268945
https://doi.org/10.1146/annurev-resource-100913-012610
https://doi.org/10.1146/annurev-resource-100913-012610
https://doi.org/10.1080/10937404.2019.1654422
https://doi.org/10.1080/10937404.2019.1654422
http://www.ncbi.nlm.nih.gov/pubmed/31437111
https://doi.org/10.1289/ehp.1409247
http://www.ncbi.nlm.nih.gov/pubmed/25978799
https://doi.org/10.1371/journal.pmed.1002856
http://www.ncbi.nlm.nih.gov/pubmed/31335874
https://doi.org/10.1021/acs.est.9b00792
https://doi.org/10.1371/journal.pone.0226958
http://www.ncbi.nlm.nih.gov/pubmed/31869830
https://doi.org/10.1089/ees.2015.0564
https://doi.org/10.1089/ees.2015.0564
https://doi.org/10.1371/journal.pone.0241166


25. Patanavanich R, Glantz SA. Smoking is Associated with COVID-19 Progression: A Meta-Analysis.

medRxiv. 2020; 2020.04.13.20063669. https://doi.org/10.1101/2020.04.13.20063669 PMID: 32511645

26. CDC COVID-19 Response Team. Geographic Differences in COVID-19 Cases, Deaths, and Incidence

—United States, February 12–April 7, 2020. MWR Morb Mortal Wkly Rep. 2020; 69: 465–471. http://dx.

doi.org/10.15585/mmwr.mm6915e4

27. Nogee D, Tomassoni A. Concise Communication: Covid-19 and the N95 Respirator Shortage: Closing

the Gap. Infect Control Hosp Epidemiol. 2020/04/13. 2020; 1–4. https://doi.org/10.1017/ice.2020.124

PMID: 32279694

28. Carenzo L, Costantini E, Greco M, Barra FL, Rendiniello V, Mainetti M, et al. Hospital surge capacity in

a tertiary emergency referral centre during the COVID-19 outbreak in Italy. Anaesthesia. 2020;n/a.

https://doi.org/10.1111/anae.15072 PMID: 32246838

29. Eligon John, Burch ADS, Dionne Searcey, RAO Jr.. Black Americans Face Alarming Rates of Coronavi-

rus Infection in Some States. The New York Times. 7 Apr 2020. https://www.nytimes.com/2020/04/07/

us/coronavirus-race.html

30. Flanagan B, Gregory E, Hallisey E, Heitgerd J, Lewis B. A Social Vulnerability Index for Disaster Man-

agement. J Homel Secur Emerg Manag. 2011; 8: 22. https://doi.org/10.2202/1547-7355.1792

31. Wang F, Arnold MT. Localized income inequality, concentrated disadvantage and homicide. Appl

Geogr. 2008; 28: 259–270. https://doi.org/10.1016/j.apgeog.2008.07.004

32. Butler DC, Petterson S, Phillips RL, Bazemore AW. Measures of Social Deprivation That Predict Health

Care Access and Need within a Rational Area of Primary Care Service Delivery. Health Serv Res.

2013; 48: 539–559. https://doi.org/10.1111/j.1475-6773.2012.01449.x PMID: 22816561

33. Nelson A. Unequal treatment: Confronting racial and ethnic disparities in health care. J Natl Med Assoc.

2002; 94: 666–668. Available: http://search.proquest.com.ezproxy.lib.uh.edu/docview/214066442?

accountid=7107 PMID: 12152921

34. Institute of Medicine. Crossing the Quality Chasm: A New Health System for the 21st Century. Wash-

ington, DC: The National Academies Press; 2001. https://doi.org/10.17226/10027 PMID: 25057539

35. Chetty R, Stepner M, Abraham S, Lin S, Scuderi B, Turner N, et al. The association between income

and life expectancy in the United States, 2001–2014. JAMA—J Am Med Assoc. 2016. https://doi.org/

10.1001/jama.2016.4226 PMID: 27063997

36. U.S. Census. New Census Bureau Estimates Show Counties in South and West Lead Nation in Popula-

tion Growth. In: United States Census Bureau [Internet]. 2019 [cited 20 Apr 2020]. Available: https://

www.census.gov/newsroom/press-releases/2019/estimates-county-metro.html

37. HCPH. Harris County/Houston COVID-19 Cases. In: Harris County Public Health [Internet]. 2020 [cited

17 Aug 2020]. Available: https://publichealth.harriscountytx.gov/Resources/2019-Novel-Coronavirus

38. COCC. City of Corpus Christi COVID-19 dashboard. In: City of Corpus Christi [Internet]. 2020 [cited 17

Aug 2020]. Available: https://corpus.maps.arcgis.com/apps/opsdashboard/index.html#/

fe742480193d4fff98f7af38c5104cfc

39. Manson S, Schroeder J, Van Riper D, Ruggles S. IPUMS national historical geographic information sys-

tem: Version 14.0 [Database]. 2019 [cited 10 Feb 2020] p. Minneapolis, MN. Available: http://doi.org/

10.18128/D050.V14.0

40. U.S. Federal Emergency Management Administration (FEMA). FEMA—Harvey damage assessments

and claims. 2018. https://doi.org/10.4211/hs.73c4f3dcff884a6da2c0982df769987c

41. Abdulla B, Kiaghadi A, Rifai HS, Birgisson B. Characterization of vulnerability of road networks to fluvial

flooding using SIS network diffusion model. J Infrastruct Preserv Resil. 2020; 1: 6. https://doi.org/10.

1186/s43065-020-00004-z

42. HRSA. Health Resources and Services Administration (HRSA) query data explorer tool. 2020 [cited 13

Apr 2020]. Available: https://data.hrsa.gov/tools/data-explorer

43. Harris County Health System. Harris health system locations. 2020 [cited 13 Apr 2020]. Available:

https://www.harrishealth.org/locations/hhs

44. The Department of Homeland Security. Homeland Infrastructure Foundation-Level Data (HIFLD)—

Urgent Care Facilities. 2018 [cited 12 Apr 2020]. Available: https://hifld-geoplatform.opendata.arcgis.

com/datasets/urgent-care-facilities

45. Microsoft. Microsoft Bing Maps Platform APIs. 2020 [cited 14 Apr 2020]. Available: https://www.

bingmapsportal.com/

46. HealthLanscape. The 500 Cities Mapper. 2020. Available: https://www.healthlandscape.org/500Cities/

47. Texas Commission on Environmental Quality. Texas Air Monitoring Information System (TAMIS) data-

base. 2020 [cited 8 Apr 2020]. Available: https://www17.tceq.texas.gov/tamis/index.cfm

PLOS ONE Assessing COVID-19 risk and vulnerability in communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0241166 October 29, 2020 20 / 21

https://doi.org/10.1101/2020.04.13.20063669
http://www.ncbi.nlm.nih.gov/pubmed/32511645
http://dx.doi.org/10.15585/mmwr.mm6915e4
http://dx.doi.org/10.15585/mmwr.mm6915e4
https://doi.org/10.1017/ice.2020.124
http://www.ncbi.nlm.nih.gov/pubmed/32279694
https://doi.org/10.1111/anae.15072
http://www.ncbi.nlm.nih.gov/pubmed/32246838
https://www.nytimes.com/2020/04/07/us/coronavirus-race.html
https://www.nytimes.com/2020/04/07/us/coronavirus-race.html
https://doi.org/10.2202/1547-7355.1792
https://doi.org/10.1016/j.apgeog.2008.07.004
https://doi.org/10.1111/j.1475-6773.2012.01449.x
http://www.ncbi.nlm.nih.gov/pubmed/22816561
http://search.proquest.com.ezproxy.lib.uh.edu/docview/214066442?accountid=7107
http://search.proquest.com.ezproxy.lib.uh.edu/docview/214066442?accountid=7107
http://www.ncbi.nlm.nih.gov/pubmed/12152921
https://doi.org/10.17226/10027
http://www.ncbi.nlm.nih.gov/pubmed/25057539
https://doi.org/10.1001/jama.2016.4226
https://doi.org/10.1001/jama.2016.4226
http://www.ncbi.nlm.nih.gov/pubmed/27063997
https://www.census.gov/newsroom/press-releases/2019/estimates-county-metro.html
https://www.census.gov/newsroom/press-releases/2019/estimates-county-metro.html
https://publichealth.harriscountytx.gov/Resources/2019-Novel-Coronavirus
https://corpus.maps.arcgis.com/apps/opsdashboard/index.html#/fe742480193d4fff98f7af38c5104cfc
https://corpus.maps.arcgis.com/apps/opsdashboard/index.html#/fe742480193d4fff98f7af38c5104cfc
http://doi.org/10.18128/D050.V14.0
http://doi.org/10.18128/D050.V14.0
https://doi.org/10.4211/hs.73c4f3dcff884a6da2c0982df769987c
https://doi.org/10.1186/s43065-020-00004-z
https://doi.org/10.1186/s43065-020-00004-z
https://data.hrsa.gov/tools/data-explorer
https://www.harrishealth.org/locations/hhs
https://hifld-geoplatform.opendata.arcgis.com/datasets/urgent-care-facilities
https://hifld-geoplatform.opendata.arcgis.com/datasets/urgent-care-facilities
https://www.bingmapsportal.com/
https://www.bingmapsportal.com/
https://www.healthlandscape.org/500Cities/
https://www17.tceq.texas.gov/tamis/index.cfm
https://doi.org/10.1371/journal.pone.0241166


48. United States Coast Guard. National Response Center. 2020 [cited 12 Apr 2020]. Available: https://nrc.

uscg.mil/

49. Texas Commission on Environmental Quality. TCEQ GIS data. 2020. Available: https://www.tceq.

texas.gov/gis/download-tceq-gis-data

50. U.S. Environmental Protection Agency. Superfund: national priorities list (NPL). In: EPA [Internet]. 2019

[cited 2 Jan 2020]. Available: https://www.epa.gov/superfund/superfund-national-priorities-list-npl

51. Patil VH, Singh SN, Mishra S, Donavan DT. Parallel analysis engine to aid determining number of fac-

tors to retain [Computer software]. Available from http://smishra.faculty.ku.edu/parallelengine.htm.

2007.

52. Souri AH, Choi Y, Jeon W, Li X, Pan S, Diao L, et al. Constraining NOx emissions using satellite NO2

measurements during 2013 DISCOVER-AQ Texas campaign. Atmos Environ. 2016; 131: 371–381.

https://doi.org/10.1016/j.atmosenv.2016.02.020

53. Souri AH, Choi Y, Li X, Kotsakis A, Jiang X. A 15-year climatology of wind pattern impacts on surface

ozone in Houston, Texas. Atmos Res. 2016;174–175: 124–134. https://doi.org/10.1016/j.atmosres.

2016.02.007

54. Sillman S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environ-

ments. Atmos Environ. 1999; 33: 1821–1845. https://doi.org/10.1016/S1352-2310(98)00345-8

55. Sadeghi B, Choi Y, Yoon S, Flynn J, Kotsakis A, Lee S. The characterization of fine particulate matter

downwind of Houston: Using integrated factor analysis to identify anthropogenic and natural sources.

Environ Pollut. 2020; 262: 114345. https://doi.org/10.1016/j.envpol.2020.114345 PMID: 32443194

56. Wu X, Nethery RC, Sabath BM, Braun D, Dominici F. Exposure to air pollution and COVID-19 mortality

in the United States. medRxiv. 2020; 2020.04.05.20054502. https://doi.org/10.1101/2020.04.05.

20054502 PMID: 32511651

57. Opportunity Zones. In: City of Hosuton [Internet]. 2020 [cited 20 Apr 2020]. Available: https://www.

houstontx.gov/opportunityzones/index.html

58. Johns Hopkins University. COVID-19 Dashboard by the Center for Systems Science and Engineering

(CSSE) at Johns Hopkins University (JHU). 2020 [cited 16 Aug 2020]. Available: https://coronavirus.

jhu.edu/map.html

59. Yang W, Deng M, Li C, Huang J. Spatio-Temporal Patterns of the 2019-nCoV Epidemic at the County

Level in Hubei Province, China. International Journal of Environmental Research and Public Health.

2020. https://doi.org/10.3390/ijerph17072563 PMID: 32276501

60. Weiming T, Huipeng L, Gifty M, Zaisheng W, Weibin C, Dan W, et al. The changing patter of COVID-19

in China: A tempo-geographic analysis of the SARS-CoV-2 epidemic. Clin Infect Dis. 2020; ciaa423.

https://doi.org/10.1093/cid/ciaa423 PMID: 32296826

61. Benjamin Wermund. Texas lawmakers warn White House of “catastrophic cascading consequences.”

Houston Chronicle. 23 Jun 2020. Available: https://www.houstonchronicle.com/politics/texas/article/As-

feds-ready-to-pull-support-for-testing-sites-15360900.php

PLOS ONE Assessing COVID-19 risk and vulnerability in communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0241166 October 29, 2020 21 / 21

https://nrc.uscg.mil/
https://nrc.uscg.mil/
https://www.tceq.texas.gov/gis/download-tceq-gis-data
https://www.tceq.texas.gov/gis/download-tceq-gis-data
https://www.epa.gov/superfund/superfund-national-priorities-list-npl
http://smishra.faculty.ku.edu/parallelengine.htm
https://doi.org/10.1016/j.atmosenv.2016.02.020
https://doi.org/10.1016/j.atmosres.2016.02.007
https://doi.org/10.1016/j.atmosres.2016.02.007
https://doi.org/10.1016/S1352-2310(98)00345-8
https://doi.org/10.1016/j.envpol.2020.114345
http://www.ncbi.nlm.nih.gov/pubmed/32443194
https://doi.org/10.1101/2020.04.05.20054502
https://doi.org/10.1101/2020.04.05.20054502
http://www.ncbi.nlm.nih.gov/pubmed/32511651
https://www.houstontx.gov/opportunityzones/index.html
https://www.houstontx.gov/opportunityzones/index.html
https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
https://doi.org/10.3390/ijerph17072563
http://www.ncbi.nlm.nih.gov/pubmed/32276501
https://doi.org/10.1093/cid/ciaa423
http://www.ncbi.nlm.nih.gov/pubmed/32296826
https://www.houstonchronicle.com/politics/texas/article/As-feds-ready-to-pull-support-for-testing-sites-15360900.php
https://www.houstonchronicle.com/politics/texas/article/As-feds-ready-to-pull-support-for-testing-sites-15360900.php
https://doi.org/10.1371/journal.pone.0241166

