Verified Sequential Malloc/Free

Andrew W. Appel
Princeton University
USA
appel@princeton.edu

Abstract

We verify the functional correctness of an array-of-bins (seg-
regated free-lists) single-thread malloc/free system with re-
spect to a correctness specification written in separation
logic. The memory allocator is written in standard C code
compatible with the standard API; the specification is in the
Verifiable C program logic, and the proof is done in the Veri-
fied Software Toolchain within the Coq proof assistant. Our
“resource-aware” specification can guarantee when malloc
will successfully return a block, unlike the standard Posix
specification that allows malloc to return NULL whenever
it wants to. We also prove subsumption (refinement): the
resource-aware specification implies a resource-oblivious
spec.

CCS Concepts: « Software and its engineering — For-
mal software verification; Functionality; Software ver-
ification.

Keywords: memory management, separation logic, formal
verification

ACM Reference Format:

Andrew W. Appel and David A. Naumann. 2020. Verified Sequen-
tial Malloc/Free. In Proceedings of the 2020 ACM SIGPLAN Inter-
national Symposium on Memory Management (ISMM °20), June
16, 2020, London, UK. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3381898.3397211

1 Introduction

There are now functional-correctness verification tools for
C programs [7, 15, 18], in which researchers have proved
the correctness of crypto primitives [5, 38], crypto protocols
[33] network address translation [39], concurrent messaging
systems [24], and operating systems [13, 19]. Many of these
programs rely on standard libraries such as malloc/free—so

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ISMM °20, June 16, 2020, London, UK

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7566-5/20/06...$15.00
https://doi.org/10.1145/3381898.3397211

48

David A. Naumann
Stevens Institute of Technology
USA
naumann(@cs.stevens.edu

we now verify the correctness of malloc/free. This also serves
as a demonstration and assessment of the verification tool.

C’s malloc/free library casts undifferentiated bytes to and
from the data structures that it uses internally; the client of
the library casts to and from its own structs and arrays. In the
process, implicit alignment restrictions must be respected.
For a formal verification, it is not enough that the program
actually respect these restrictions: we want the program logic
(or verification tool) to be sound w.r.t. those restrictions—it
should refuse to verify programs that violate them.

In fact, the alignment restrictions, object-size restrictions,
and integer-overflow properties of C are quite subtle [35].
We want the program logic (and verification tool) to be sound
(proved sound with a machine-checked proof) with respect
to the operational semantics of C (including alignment con-
straints, etc.).

Allocation and freeing should be (amortized) constant-
time. The usual method is Weinstock’s array-of-bins data
structure for quickly finding free blocks of the right size [36].
Large blocks must be treated separately; a modern memory
allocator can manage large blocks directly using the mmap
system call.

To do formal verification, we should use a suitable pro-
gram logic. C programs that use pointer data structures are
most naturally specified and verified in separation logic (SL)
[29].

There must be a formal specification—otherwise we can-
not prove correctness, only weaker properties such as mem-
ory safety. The simplest specification of malloc says that
the function has complete discretion to return NULL, or it can
choose to allocate a block (of at least the right size) and return
a pointer. Defensively written C programs should check the
return value. But suppose you want to verify that a program
actually can complete a task. We provide a resource-aware
specification that keeps track of the malloc “resource,” so that
one can prove that resource-bounded programs will always
get a block from our malloc, never NULL.

Contributions. Our malloc/free implementation is

1. compatible with the standard API;

2. written in standard C;

3. amortized constant time performance (for small blocks)
using an array of bins, and single-system-call perfor-
mance (for large blocks);

4. proved correct with a machine-checked proof,

5. in a foundationally verified program logic and verifier,

https://doi.org/10.1145/3381898.3397211
https://doi.org/10.1145/3381898.3397211
https://doi.org/10.1145/3381898.3397211

ISMM °20, June 16, 2020, London, UK

6. with a resource-aware separation-logic specification
guaranteeing when malloc will allocate a block,

7. and with a “subsumption” proof that the resource-
aware specification implies a resource-oblivious speci-
fication.

Limitations. In this work we do not address concurrent
threads, for which state-of-the art allocators (including sn-
malloc, mimalloc, tcmalloc, jemalloc, and ptmalloc) provide
support by caching per thread (or per cpu) and other tech-
niques [23]. We do not attempt performance enhancements
such as shared metadata and splitting/coalescing, or locality-
enhancing techniques such as sharding (mimalloc). We use
linear spacing of block sizes; some (e.g., dlmalloc, jemalloc)
switch to logarithmic spacing for larger blocks. We do not
consider extensions of the standard API such as pool allo-
cation (arenas in jemalloc, first-class heaps in mimalloc),
profiling, or cooperation with the VM by purging unused
dirty pages (jemalloc, mimalloc). See Section 10 for more
discussion.

Related work. Marti et al. [26] used separation logic in
the Coq proof assistant! to verify a memory allocator in
almost-C; that is, their work had property (4) but not (1, 2, 3,
5, 6, 7). Tuch [32] verified an allocator for the L4 microkernel
that was for a simpler API, written in C, with no array-of-
bins or other high-performance data structure, with machine-
checked proofs in separation logic (and in another style); that
is, with properties (2,4) but not (1, 3, 5, 6, 7). Wickerson et
al. [37] give a proof outline in separation logic for part of
Unix Version 7 malloc/free; (1,2) but not (3,4,5,6,7). Zhang et
al. [40] verified a two-level segregated-fit memory allocator
in the Isabelle/HOL proof assistant; it was not a C program
but a functional model of a program: properties (3,4) but not
(1, 2, 5, 6, 7). Jiang et al. [16] verified the model of a buddy
allocator; properties (3,4) but not (1, 2, 5, 6, 7).

Automatic garbage collection: Wang et al. [34] verified
a generational copying garbage collector written in C: prop-
erties (3,4,5) but not (1, 2, 6, 7) in the sense of a malloc/free
system. Previously, Birkedal et al. [6] had verified a copying
garbage collector in a toy while-loop language (property 4
only); Gammie et al. [11] verified a concurrent garbage col-
lector in a tiny while-loop language but using an accurate
x86-TSO memory model (property 4). McCreight et al. [28]
verified a mark-sweep collector in assembly language using
a single free-list (not segregated objects) and only one size
of cell (property 4). McCreight et al. [27] showed a verified
source-to-source transormation that allows C to be garbage-
collected (properties 2, 4, 5).

Resource-aware malloc/free: Barthe et al. [2] character-
ize resource-awareness only for allocation, not for freeing,
for Java bytecode programs, with an emphasis on analyzing

https://coq.inria.fr

49

Andrew W. Appel and David A. Naumann

client programs and no verification of the allocator itself. Hof-
mann et al. develop several type systems for resource bounds
in functional programs (e.g., [14]), with the aim of certifying
resource bounds on compiled code with certificates based
on a type system [1] or general program logic [4]. The latter
targets an idealized bytecode and restricts the ways memory
can be used, but its tracking of available resources inspired
our resource-aware specifications. None of the works dis-
cussed in this paragraph verify the memory manager itself.

High-performance (unverified) malloc/free: We discuss
some modern high-performance (unverified) memory allo-
cators, which improve client locality and support multicore
concurrent clients, in Section 10.

Verified C compilers, verified verifiers: Our verifica-
tion is carried out using the Verified Software Toolchain
(VST) [7], which is sound with respect to the C standard and
is foundationally verified: it has a machine-checked proof
of soundness with respect to the C semantics of the Comp-
Cert verified C compiler [22]. Relevant aspects of VST are
described in later sections.

Outline of this paper. Section 2 describes the implemen-
tation. Section 3 introduces what the reader needs to know
about separation logic and gives the resource-oblivious spec-
ification. Section 4 describes the resource-aware specifica-
tion. Section 5 extends the malloc/free interface with addi-
tional functions that can be used to ensure that malloc never
fails. Section 6 explains subsumption between specifications,
which means the code is verified just once though clients can
rely on both the resource-aware and -oblivious specs. Sec-
tion 7 elaborates on what exactly has been proved. Section 8
describes bugs uncovered through verification attempts. Sec-
tion 9 assesses the verification effort, Section 10 considers
future work, and Section 11 concludes.

Code and proofs are available at
https://github.com/PrincetonUniversity/DeepSpecDB
in the memmgr subdirectory.

2 The Algorithm and Data Structure

The implementation we describe in this section is meant to
be clean, simple, efficient, but not innovative.

We use small blocks, in BINS = 50 different size classes,
and big blocks. We pass the big requests directly to the mmap
system call, both for malloc and free. This means we don’t
need to manage a free list of big blocks, and we have no
fragmentation problem for big blocks.

Let the word size W = sizeof{(size_t). In a standard C con-
figuration, the blocks returned from malloc must be aligned
at a multiple of A - W, where typically A = 2.

“The operating system may be able to avoid fragmentation (for mmap’ed
big blocks), by the use of virtual memory remapping.

https://coq.inria.fr
https://github.com/PrincetonUniversity/DeepSpecDB

Verified Sequential Malloc/Free

For size classes 0 < b < BINS — 1 we have block sizes of
((b+1)-A—1)- W. One word is reserved immediately before
each block for its header (to tell free the size of the block).

header
word 0

word 2b | (assuming A = 2)

In a typical C configuration where W = 8 and A = 2,
the small-block sizes are 8 bytes, 24 bytes, 40, ...792 bytes.
Changing the number of BINS, and hence the largest small-
block size, requires a one-word change to the C program and
no change to the proof of correctness.

When blocks are on the free list (of a particular size-class
bin), we link them together using the field at offset 0 (labeled
“word 0” in the diagram above). To initialize or replenish
a free-list of size-class b, we ask mmap for a large region
BIGBLOCK = (2% - W), and divide it into a linked list of
blocks. In the process, to satisfy alignment constraints, one
word is wasted at the beginning of the region, and (b+1)A—1
words are wasted at the end of the region.

Large objects. We do not have a separate free list for large
objects; instead, we outsource each large-object malloc or
free to the mmap system call.

No coalescing. We do not coalesce freed blocks, for these
reasons: Coalescing is costly (potentially adding a word of
overhead to each block for a “footer”) [20, §2.5]. Coalesc-
ing can reduce, but cannot avoid, fragmentation, and thus
could not improve our resource-tracking specification (see
section 4). Some other modern allocators don’t coalesce, per-
haps for these reasons but also because coalescing would
interfere with locality-improving optimizations (such as mi-
malloc’s) and with shared metadata schemes. Splitting would
be straightforward to add and to verify, but would complicate
the resource-tracking specification.

Look Ma, no hands! Many malloc/free systems have ex-
tra safety checks: for example, footer words as well as head-
ers, so that free can detect (in some cases) when there has
been a buffer overrun. We deliberately do not. Our verified
malloc/free is meant to be used with verified-memory-safe
client code (or verified-correct clients, which are memory-
safe as a corollary). Client code that is not fully memory-safe
may trash the data structures (and thus the invariants) of
the malloc/free code, rendering its verification meaningless.

3 Specification in Separation Logic

In this section we present the resource-oblivious specifica-
tion, and in Section 4 we show the resource-aware specifica-
tion.

Separation logic is a Hoare logic with judgments of the
form {precondition}command{postcondition}, particularly

50

ISMM °20, June 16, 2020, London, UK

void malloc(size_t nbytes) {
if (nbytes > bin2size(BINS—1))
return malloc_large(nbytes);
else return malloc_small(nbytes);

}

static void =malloc_small(size_t nbytes) {
int b = size2bin(nbytes);
void «q;
void «p = bin[b];
if ('p) {
p = fill_bin(b);
if (Ip) return NULL;
else bin[b] = p;
}
q = «((void =)p);
bin[b] = g;

return p;

static void «fill_bin(int b) {
size_t s = bin2size(b);
char «p = (char) mmapO(NULL, BIGBLOCK,
PROT_READ|PROT_WRITE,
MAP_PRIVATE[MAP_ANONYMOUS, —1, 0);

if (p==NULL)
return NULL;
else

return list_from_block(s, p, NULL);

static void free_small(void +p, size_t s) {
int b = size2bin(s);
void «q = bin[b];
*((void «)p) = g;
bin[b] = p;
}

void free(void «p) {
if (p!= NULL){
size_t s = (size_t)(((size_t »)p)[-1]);
if (s <= bin2size(BINS—1))
free_small(p,s);
else free_large(p,s);
}
}

Figure 1. Core of the allocator.

The computation bin2size(BINS—1) in malloc ought to be
optimized to an integer constant; gcc does it, but CompCert’s
inliner doesn’t manage it.

ISMM °20, June 16, 2020, London, UK

static void =list_from_block(size_t s, char «p, void «tl) {
int Nblocks = (BIGBLOCK—WASTE) / (s+ WORD);
char «q = p + WASTE;
intj=0;
while (j != Nblocks — 1) {
((size_t)q)[0] =s;
«((void =+)(((size_t *)q)+1)) = g+WORD+(s+WORD);
q +=s+WORD;
j++;
}
((size_t ©)q)[0] ='s;
«((void =)(((size_t x)q)+1)) = tl; /= link of last block +/
return (void+)(p+ WASTE+WORD); /+ link of first block +/

static size_t bin2size(int b) {
return ((b+1)+ALIGN — 1)sWORD;
}

static int size2bin(size_t s) {
if (s > bin2size(BINS—1))
return —1;
else
return (s+(WORD+(ALIGN—1)—1))/(WORD+ALIGN);

Figure 2. Core of the allocator, continued.

suited to programs that manipulate pointer data structures
(and slices of arrays) in which aliases may occur. In conven-
tional Hoare logic, if the assertion p +— x represents the
condition that p points to a place in memory where the value
x is stored, we might want to prove
pxrgeytsp=z{p—zAqmy}

that is, if before the command p points to a value x and g
points to y, then afterwards p points to z and g points to y.
But if p and q are aliased (p = q), then the postcondition fails
to hold (unless y = z).

In separation logic, an assertion holds on a particular foot-
print of the memory, and the “separating conjunction” A = B
says that A and B hold on disjoint footprints, where the foot-
print of A * B is the union of the footprints of A and B. Then
this judgment is sound:

{pHxxqytsp=z{p—>zxq—y}

In separation logic, the natural rules for alloc and free are
something like,

{emp} p = alloc() {p = _}
{p = _} free(p) {emp}

Here emp is the predicate true, considered as having the
empty footprint.

51

Andrew W. Appel and David A. Naumann

Using SL’s standard frame rule® (and the fact that emp is a
unit for), we can conclude by the following inference steps
that the newly allocated block is disjoint from any block we
could already reason about:

{emp} p = alloc() {p > _}
{emp =g 6} p = alloc() {p —> _*q 6]
{g 6} p=alloc() {p — _*q > 6)

The meaning of p — x, when the type of p is char and x
is a small integer, is that a single byte of memory at address
p contains value x. When p belongs to a structured type
7 (struct, array, union, or int>char), we write p —, x to
indicate that the footprint may be several (sizeof 7) bytes of
memory, and x is an appropriately structured value. Finally,
we write -, to abbreviate that the type is “length-n array
of unsigned byte” Then we can write the specification of a
multibyte alloc:

{emp} p = alloc(n) {p =) _}
{p =) _} free(p, n) {emp}

where an underscore indicates a don’t-care value.

But C’s malloc/free does not require a second argument to
free; that information comes along with the block. To model
that, we use a separation-logic assertion, the “malloc token”.
The assertion mtok(p, n) represents the “capability” to free a
token of length n at address p, i.e., evidence that the block
was obtained from malloc.*

Thus our specs take the form

{emp} p = malloc(n) {mtok(p, n) * p >, _}
{mtok(p, n) * p =) _} free(p) {emp}

When we write modular programs in VST’s separation
logic (called Verifiable C), module A may have extern global
variables (or static global variables) that contain its persis-
tent private data [3]. In correctness proofs of the clients of
module A, we represent this abstract package by some suit-
able separation-logic predicate. For example, consider this
simple intserver module:

unsigned int s;
unsigned int next(void) {return s++;}

The client-side specification of next could be,
{intserver} j = next(); {intserver = 3i. j || i}

and a more refined specification could be,

{intserv(i)} j = next(); {intserver(i + 1) = j |} i}
3From {A}command{B} infer {A * C}command{B * C} for any command and
any predicates A, B, C.
“The reader can also imagine that mtok(p,) represents the header word
p[—1] — n, but we want a sufficiently abstract specification that the rep-

resentation of this capability is up to the malloc/free implementation. The
idea has been independently rediscovered and seems to first appear in [30].

Verified Sequential Malloc/Free

Definition malloc_spec' :=
DECLARE _malloc
WITH n:Z, gv:globals
PRE [_nbytes OF size_t]
PROP (0 <= n <= Ptrofs.max_unsigned — (WA+WORD))
LOCAL (temp _nbytes (Vptrofs (Ptrofs.repr n)); gvars gv)
SEP (mem_mgr gv)
POST [tptr tvoid] EX p:val,
PROP ()
LOCAL (temp ret_temp p)
SEP (mem_mgr gv;
if eq_dec p nullval then emp (x p==NULL ? x)
else (malloc_token' Ews n p * memory_block Ews n p)).

Definition free_spec' :=
DECLARE _free
WITH n:Z, p:val, gv: globals
PRE [_p OF tptr tvoid]
PROP ()
LOCAL (temp _p p; gvars gv)
SEP (mem_mgr gv;
if eq_dec p nullval then emp (x p==NULL ? %)
else (malloc_token' Ews n p » memory_block Ews n p))
POST [Tvoid]
PROP ()
LOCAL ()
SEP (mem_mgr gv).

Figure 3. Resource-oblivious specs of malloc and free.

The server-side definitions of these predicates would be,

intserver = 3i. s —yint i

intserv(i) = s —yint 1

Our memory manager is no different: in proofs about
clients, we represent the private state of the memory man-
ager by a predicate mm. (Section 4 describes a more refined
predicate rmm parameterized on a resource vector.)

Thus, the specifications of malloc/free now look like:

{mm} p = malloc(n) {mm = mtok(p, n) * p =) _}
{mm % mtok(p, n) * p F(n) _} free(p) {mm}

However, C’s malloc function is permitted to return NULL
if it wants to. Thus, the spec of malloc should be adjusted to:

{mm} p = malloc(n)
{mm ((p = NULL A emp) V (mtok(p, n) * p ())}

The spec of free is also adjusted to allow NULL to be freed.

52

ISMM °20, June 16, 2020, London, UK

Verifiable C. is a program logic representable in ascii,
manipulated in the Coq proof assistant within an IDE. Its syn-
tax is more heavyweight than the informal mathematical no-
tation we have been using so far. The function-specifications
in Verifiable C notation are shown in Figure 3.

Verifiable C function specs start with the C-program identi-
fier for the function name, e.g. in Fig. 3 DECLARE _malloc. The
WITH clause quantifies over variables (in this case n and gv)
mentioned in precondition and postcondition. In this case, n
(of type Z, or “mathematical integer”) represents the value
of the C parameter _nbytes, and gv gives access to the link-
time addresses of whatever global variables the mem_mgr
predicate needs to access. Then there is a PREcondition and
posTcondition.

The precondition is broken down into pure propositions
PROP, variable bindings rocaL, and spatial (memory) predi-
cates sp. Malloc’s PrOP precondition says that n must be in
a certain range,’ LOCAL says the function-parameter _nbytes
contains an appropriate type-size_t representation of n, and
SEP says that the client has access to the memory-manager
resource.

The predicate memory_block Ews n p corresponds to what
we are writing as p () _. It includes a “permission share”
Ews for concurrency, beyond the scope of this paper. We pro-
vide alternate specs in which the mtok and memory blocks
are indexed by type, like the notation .

Readers who would like to understand the specifications in
detail are advised to consult the Verifiable C user’s manual.®

4 Resource Tracking

One might like to prove that a client program is resource-
bounded: the program never uses more than N bytes of
memory at a time, so a properly initialized malloc/free sys-
tem will never run out of memory—malloc will never return
NULL.

Hypothetically, we could express this in separation logic
with a parameter to the mm predicate. That is, rmm(N) rep-
resents a resource-aware malloc/free system that has N bytes
available to allocate; the Hoare triples specifying malloc and
free would look like this:

{N>2n>0 A rmm(N)}
p = malloc(n);
{rmm(N — n) * mtok(p, n) * p () _}

{rmm(N) * mtok(p, n) * p () _}
free(p);
{rmm(N + n)}

>The upper bound must surely be at most the maximum unsigned int.
Also, it cannot exceed the largest block that can be obtained from mmap—
which is not specified in the Posix standard, so our spec for mmap uses
max_unsigned. Whatever that size is, we must deduct WA+WORD to allow
for header and for alignment waste (or else we could add a bounds check in
the code and return NULL in this corner case—which would waste cycles).
Shttps://github.com/PrincetonUniversity/VST/raw/master/doc/VC.pdf

https://github.com/PrincetonUniversity/VST/raw/master/doc/VC.pdf

ISMM °20, June 16, 2020, London, UK

Unfortunately, there is the well-known problem of frag-
mentation. The client might allocate k small blocks of size
n; suppose they are allocated consecutively in memory. The
client might then free half of them, the “odd-numbered” ones;
then allocate k/2 blocks of size 2n. The larger blocks cannot
reuse any of the recently freed space.

In a system that cannot move allocated blocks, fragmen-
tation cannot be avoided. C programs in general cannot
tolerate the movement of already allocated blocks.

Robson [31] proved that any memory allocator that uses
2¢ different block sizes may require, in the worst case, mem-
ory that is a times as large as the maximum simultaneous
allocated data (times a constant factor). Therefore if we have
a simple rmm(N) predicate, with our 2¢ ~ 50 bins (a = 6)
the best possible coalescing algorithm would consume pro-
portional to aN words of storage. We do no coalescing at
all, so our current implementation would not necessarily
achieve even that bound.

That is, even with coalescing, fragmentation cannot be
avoided, and we could not (efficiently) use a scalar N param-
eter as proposed above.

To avoid a larger-than-constant-factor waste of memory,
we ask the user to do more refined resource tracking. Let V
be a resource vector: for 0 < i < BINS, the slot V(i) tracks
the number of available (mallocable) blocks whose size is
between bin2Size(i — 1) and bin2Size(i).

For block size n, let S(n) be the bin number, such that
bin2Size(S(n) — 1) < n < bin2Size(S(n)). Then the specs
using the vector-resource predicate rmm are,

{S(n)=1i A V(i)>0 A rmm(V)}
p = malloc(n);
{rmm(V[i := V(i) — 1]) = mtok(p, n) * p =) _}

{S(n) =i A rmm(V) = mtok(p, n) * p =y _}
free(p);
{rmm(V[i := V(i) + 1])}
The notation V[i := ...]) denotes update of a mapping.

In practice, even if the V resource is used up, malloc might
still be able to return a block. An alternate specification can
explain that. In Section 6 we show how to relate several
different specifications for the same code, while verifying
the code only once.

5 Filling the Resource Vector

The resource vector V allows one to prove that a program
(client of malloc/free) stays within its resource bound, and
therefore malloc never returns NULL. In turn, this may sim-
plify reasoning about the client, since there is no need for
error-checking malloc calls—which is not so hard in itself,
the hard part is reasoning about cleaning the abnormal exit.
Furthermore, we would like to prove that some programs
can keep running indefinitely.

53

Andrew W. Appel and David A. Naumann

But in the standard case, malloc/free starts with no re-
sources at all, and obtains them by calling mmap from time
to time, which may return “no.” We therefore augment the
API with a new function,

void pre_fill(size_t n, void =p);
with the specification,

0<n<NAS()=>bA malloc_compat B p
ANk =(B-W-(A-1))/(W + bin2size(b))
{rmm(V) * p gy _} pre_fill(n, p) {rmm(V + [b — k])}

That is, the client program calls pre_fill with a suitably
aligned (“malloc compatible”) big block (of size B) at address
p, and asks that it be divided into k small blocks (of size n)
that are added to the free list.

Clients are expected to obtain such big-blocks either from
their own BSS segment, or from calls to mmap at the begin-
ning of their own execution. Such a client, therefore, would
start by calling mmap the appropriate number of times; if
those calls succeed, then there will be no allocation failures
during the rest of program execution.

The spec of pre_fill is not very abstract! It requires clients
to know concrete values such as B, A, bin2size(b), and so on.
We have also provided a wrapper (try_pre_fill) that simply
takes n and k, calculates the right number of calls to mmap,
performs those calls, and calls pre_fill on each result. That
function has a simpler and more portable specification, and
is proved correct solely based on the specifications (not the
implementations) of pre_fill and mmap.

0 < n < maxSmallChunk 0 < k < maxInt
S(n)=">b

{rmm(V)} r = try_pre_fill(n, k); {rmm(V + [b — r]}

This specification says that r blocks of size n have been added
to the resource vector. If r < k that is because a call to mmap
failed; the client program can therefore take appropriate
action before entering the (complicated) main body of its
computation. It can happen that r exceeds k, by rounding
up to a big block.

6 Funspec Subsumption
We now have two different specs for malloc, the resource-
aware one using rmm:
{Sn)=i A V(@E >0 A rmm(V)}
p = malloc(n);
{rmm(V[i := V(i) — 1]) * mtok(p, n) * p >y _}

and the original one using mm:

{mm} p = malloc(n)
{mm * ((p = NULL A emp) V (mtok(p, n) * p () _))}

Clients that do not need resource accounting are more con-
veniently verified against the mm specification, and those
that want stronger guarantees can be verified against rmm.

Verified Sequential Malloc/Free

The same implementation of malloc can satisfy either spec.
But we don’t want to do two verifications of the same code!
In fact we use a third, stronger spec to verify malloc, which
uses rmm but accounts for both successful and unsuccesful
calls. Fortunately, we can prove that the mm and rmm specs
described earlier are implied by the stronger spec (and simi-
larly for free). In the Verifiable C program logic, this relation
is called subsumption (funspec_sub) [3]. We proved the C
code (of malloc and free, and supporting functions) correct,
line by line, with respect to the strong specs. We proved
funspec_sub theorems for the alternative specs, so clients can
be verified using whichever are convenient.

Our software distribution includes sample clients of both
kinds, with end-to-end linking proofs that tie everything
together.

7 Formal Guarantees w.r.t. C Standard

Malloc/free systems test the dark corners of the C language
definition: casting, alignment, max object size,’ just-past-the-
end-of-an-array pointers, signed integer overflow, and so
on. Harmless-looking violations of these rules can confuse
compilers into generating unintended code [35]. Correctness
verification of a malloc/free system must be in a verifier that
correctly enforces all of these rules, otherwise it’s not worth
the trouble.

The Verified Software Toolchain includes a tool for apply-
ing the Verifiable C program logic. (Technically, Verifiable
C is a higher-order impredicative ghostly concurrent sepa-
ration logic, but our malloc/free is neither object-oriented
nor concurrent so in this verification we have not used the
higher-order impredicative concurrent features.) In addition,
VST has a machine-checked proof of soundness of Verifiable
C with respect to the operational semantics of CompCert
C light, which is a source-language specification for cor-
rectness of the CompCert verified optimizing C compiler.
CompCert C light is a careful and accurate formalization of
C11?

Since the CompCert compiler is proved correct (in Coq)
with respect to CompCert C (and CompCert C light), one
has the guarantee that for any C program proved correct
by VST w.r.t. a function specification ¢, all behaviors of the
compiled assembly respect ¢.

7C restricts on the maximum size of a single object, and has additional rules
meant to ensure that no object crosses the boundary OxfIfIffff to 0x00000000
(e.g., on a 32-bit machine). C’s alignment rules are particularly tricky, in
order to accommodate legacy architectures on which 64-bit integers could
be aligned at 32-bit boundaries.

8There are some differences. In particular, CompCert C ascribes defined
behavior to sequence point violations and signed integer overflow, and
defines parameter evaluation as left-to-right. In these cases, Verifiable C
is still sound w.r.t. C11: Verifiable C programs have neither read nor write
side effects in expressions, so sequence points and parameter evaluation
order are irrelevant; and Verifiable C enforces the absence of signed integer
overflow, as a proof obligation for the user.

54

ISMM °20, June 16, 2020, London, UK

Definition mmap0_spec :=
DECLARE _mmap0
WITH n:Z
PRE [1 (+_addr=) OF (tptr tvoid),
2 (+_lenx) OF tuint,
3 («_protx) OF tint,
4 (+_flags+) OF tint,
5 («_fildes+) OF tint,
6 (+_off+) OF tlong]
PROP (0 <= n <= Ptrofs.max_unsigned)
LOCAL (temp 1 nullval;
temp 2 (Vptrofs (Ptrofs.repr n));

temp 3 (Vint (Int.repr 3)); (+ PROT_READ|/PROT_WRITE «)

(+ temp 4 is MAP_PRIVATE[MAP_ANONYMOUS «)
temp 5 (Vint (Int.repr (—1)));
temp 6 (Vlong (Int64.repr 0)))
SEP ()
POST [tptr tvoid] EX p: val,
PROP (if eq_dec p nullval (+ p==NULL ? %)
then True else malloc_compatible n p)
LOCAL (temp ret_temp p)
SEP (if eq_dec p nullval (x p==NULL ? %)
then emp else memory_block Tsh n p).

Figure 4. Specification of mmap0. As the Posix specification
of mmap requires unspecified behavior by the client (testing
return value for -1 or pointer), we write a wrapper with a
different error-return indicator; and we specify here only the
subset of the mmap functionality that we need.

Our malloc/free system, like any VST-verified program,
can also be compiled with gcc or clang. In such cases, one
still gets strong guarantees of the correctness of the source
code.

8 Bugs

The Verified Software Toolchain has a soundness guarantee:
if you use Verifiable C to prove that your program satisifes
some functional specification, then the program is safe (no
undefined behavior) and correct (inputs and outputs match
the functional spec). In contrast, an unsound static analyzer
can never guarantee the safety of your program—it can only
point out places that might be bugs. Unsound static analyzers
are sometimes disparagingly called bug finders.

Still, finding bugs is useful enough, and in the process of
doing the formal verification we found bugs in our code and
a flaw in the Posix standard.

e Function list_from_block builds a linked list of small
chunks by iterating over a large block, with variable
q pointing to the next small chunk. The loop condi-
tion q+s+WORD < p+BIGBLOCK was used in an early
version of our code. But the integer sum p+BIGBLOCK

ISMM °20, June 16, 2020, London, UK

can overflow if the address p is very large. This would
cause misbehavior by the allocator and is very unlikely
to be found by testing. The logic’s “type check” require-
ments, which ensure defined C behavior, could not be
proved for this code.
An attempt to solve the preceding issue used this
loop condition: q < p+(BIGBLOCK—(s+WORD)). But this
still could overflow. Again, the undefined behavior be-
comes evident in a proof attempt but would probably
not be found by testing. Of course runtime checks can
be used to detect overflow, but the performance cost
is undesirable.
Our first implementation of try_pre_fill had a signed-
integer-overflow bug. This was caught during the proof,
and might not have been caught during testing.
e Again in list_from_block, the following code sets a link
field to point to the link field of the following block:

+((void =«)(((size_t x)q)+1)) = g+WORD+(s+WORD);

In early versions of the code, the last +WORD was miss-
ing, and was found during verification attempt. Our
slapdash unit tests did not reveal the bug; thorough
testing would have found it.
We write functional specifications of the system calls
we use (mmap and munmap), closely following the Posix
documentation. Accordingly, we spec’d mmap to re-
turn —1 on failure, and a pointer on success. But the
Verifiable C program logic refuses to verify any code
that tests p==—1, because that’s unspecified in C11.°
Thus, Posix mmap’s APIis not very portable. We worked
around this problem by writing a shim, mmapo0, that
returns NULL on failure—which is sufficient for our
use of mmap.'’
Even if we did not need this shim, the implementa-
tion of mmap itself is not verified—we just assume a
specification for it. One could address this gap in three
ways:
1. Tolerate the assumption that the OS correctly imple-
ments the system call.
2. The user can avoid using mmap at all, by using our
(verified) pre_fill function, using memory from the
BSS segment.

That is, §6.3.2.3 of the C11 standard allows comparison of pointers with
NULL (that is, 0 cast to a pointer type); but comparing a pointer for equality
with (void*)-1 is implementation-defined (by 6.3.2.3.6). The only specifica-
tion of the behavior is the footnote, “The mapping functions for converting
... an integer to a pointer are intended to be consistent with the addressing
structure of the execution environment.” Recent research [17] has sug-
gested how the semantics of C integer-pointer casts could be formalized; if
CompCert and then VST were to adopt this approach, we could adequately
formalize the return value of mmap.

1Qur current tools cannot verify the correctness of this simple shim in C, for
the reasons explained, but we could perhaps verify its assembly-language
implementation.

55

Andrew W. Appel and David A. Naumann

3. One could verify the operating system’s implemen-
tation of mmap, and verify the system-call interface
between the client program and the OS. Mansky et
al. [25] show how to do this for IO system-calls, and
their technique would extend to mmap.

VST proofs operate on the macro-expanded C code.
The proof may be portable, but the proof script will
need to be rerun for each configuration. Because the
values of some Posix flags for mmap differ between
Linux and macOS, our proof script was not portable.
The mmap0 workaround described above solved this
problem too, as we do not need specific values for the
flags (Figure 4).
Before we built a verified malloc/free library, we used
VST to verify several programs that are clients of the li-
brary: B-trees, hash tables, binary search trees, queues,
etc. To do that, we wrote separation-logic specs for
malloc and free. The spec for free assumed a non-NULL
argument, whereas the Posix standard (and our cur-
rent version) allows free(NULL). This illustrates a core
observation from the DeepSpec project: until you have
exercised a specification from both sides, you’ve prob-
ably got it wrong ([12], deepspec.org). That is, that
specs should be evaluated through use by clients, not
just used to verify implementations. However, this par-
ticular mismatch was not discovered through use of
VST but rather through attempting to write specs in
accord with Posix.
Prior to our work, the specs of malloc and free provided
by VST featured the malloc token but were missing a
separated conjunct for the memory manager’s invari-
ant on internal structure, written mm in this paper.
Initial versions of the specs used the malloc token as
explained earlier, but failed to include the memory
wasted due to alignment and unusable space at the
end of big blocks. Once again: specs are not well justi-
fied until they have been both implemented and used
by clients.

9 Verification Effort

The engineer(s) doing a VST verification proceeds as follows:

1. Write a functional model in Coq for the abstract com-

putation. For the malloc/free system, this step is quite
simple and we can almost neglect it.

. Write representation relations showing how the func-

tional model relates to data structures in the C pro-
gram’s memory; prove useful lemmas about these rep-
resentation relations. (This is the “abstractions” line
of Figure 5.)

. Write function specifications for each C function, whether

part of the API or internal to a module. (This is the
“Spec” column of Figure 5.)

deepspec.org

Verified Sequential Malloc/Free

Function C Spec Verif | notes
abstractions 29 1222 | a
mmap0 1 22 n/a|b
munmap 1 13 n/a|b.
malloc (rmm) 20 50 | c.
malloc (mm) 13 39 | d.
free (rmm) 9 17 42 | c.
free (mm) 13 29 | d
pre_fill 5 12 99
try_pre_fill 20 12 124
bin2size 3 8 12
size2bin 6 8 12
list_from_block | 14 11 394
fill_bin 9 11 60
malloc_small 15 18 343
malloc_large 10 13 86
free_small 6 15 135
free_large 3 15 86
Overall 108 49 2733 | e.

Figure 5. Lines of code: implementation (C), specification
(Spec), verification (Verif).
e Nonblank, noncomment lines of C or Coq code.
a. Definitions of mtok, rmm, mm, and various supporting lem-
mas.
b. Since we axiomatize these system calls, there is no C code
or proof.
c. Includes the rmm-based spec, and function-body proof.
d. Includes the mm-based spec, and only the funspec_sub proof.
e. “Spec” does not include internal funspecs, only the rmm-
based specs of malloc, free, and pre_fill.

4. Prove that each C function body satisfies its function-
spec, one function-body at a time. This is a forward
Hoare-logic proof, written down interactively as a
proof script using the VST-Floyd tactics. The tactics
automate symbolic execution, but the proof engineer
must provide loop invariants, and direct other reason-
ing of the proof system. (This is the “Verif” column of
Figure 5.)

Overall it is a laborious but feasible process. This verifica-
tion technique can be used for small-to-medium software
where extremely high assurance is worth paying for; it is
not feasible (yet) for a million lines of code.

Figure 5 shows the size of the C code (88 lines), its specifi-
cation in separation logic (49 lines), and the proof script in
Coq (2733 lines). VST proofs are typically rather verbose (an
order of magnitude more lines of proof than lines of code),
but in this case the proof is particularly lengthy (compared
to the C code). We believe the reason for this is that a mal-
loc/free program is particularly abusive of the C type system:
casting undifferentiated memory into linked data structures,
returning pointers that are one past the header word, making
sure that those pointers are double-word aligned, and so on.

56

ISMM °20, June 16, 2020, London, UK

All this abuse is legal in C11, but needs formal justification.
In contrast, the proofs of more “well behaved” C code are a
bit more automated by VST’s proof tactics [7].

Checking all the proofs (including sample clients) takes
under 5min real time, running Coq on a commodity laptop
(macOS 2.8 GHz Quad-Core Intel Core i7).

10 Future Work

There are several high-performance implementations of mal-
loc/free; could one of them be verified correct? We take
mimalloc [21] as an example.

Like most modern allocators, mimalloc supports multi-
threaded applications, and uses thread-local free lists to avoid
the need to synchronize on every malloc or free. To transfer
a batch of free-list entries from one thread to another, it syn-
chronizes using atomic compare and swap, in a combination
of relaxed mode (for failure) and release-acquire mode (for
success).

Our VST toolchain supports both semaphores and SC-
mode atomics [8, 24]. To verify these synchronizations, we
have the choice of three approaches:

1. Convert the atomic CAS to SC mode, which will slightly
degrade performance (though not in any of mimalloc’s
fast paths), and use VST’s existing logic. This would
be straightforward.

2. Axiomatize in VST the separation-logic rules for re-
laxed and release-acquire modes developed by Dang
et al. [9], and use them to prove the mimalloc synchro-
nizations without modification.

3. Import the model of Dang et al. from Iris into VST, and
use them to prove correctness of the separation-logic
rules for relaxed and release-acquire modes, then foun-
dationally prove the synchronizations without modifi-
cation.

Like many allocators, mimalloc uses shared metadata: that
is, instead of a header word at address p—sizeof(size_t), there
are no header words: all the objects on a page have the same
size; the page number is found by masking out the low-order
bits of p, then that is looked up in a table to learn the object
size. To verify this in VST, we must address two issues:

1. Can we reason about pointer-integer casts? In Comp-
Cert’s semantics for C (which we use also in our VST
formal-reasoning toolchain), the answer is no. Kang et
al. [17] show an extension of a CompCert-like mem-
ory model that permits such reasoning. One way for-
ward would be to apply this technique in CompCert
itself, then extend VST with the corresponding reason-
ing theorems. A less foundational (but still adequate)
approach would be to leave CompCert alone, but ex-
tend VST with axioms instead of theorems, relying on
Kang’s result as demonstration of the consistency of
these axioms.

ISMM °20, June 16, 2020, London, UK

2. Can the same “malloc token” interface mtok(p, n) rep-
resent something other than a header word at address
p—sizeof(size_t)? Yes! Since mtok is abstract (to the
client), we can use the expressive power of Verifi-
able C’s separation logic (once extended with pointer-
integer casts) to give an alternate representation for
mtok, based on shared-metadata calculations. Wicker-
son et al. [37] do something similar with rely-guarantee
reasoning; we could use Verifiable C’s ghost state to
accomplish the same thing.

Unlike many allocators, mimalloc has novel techniques to
improve the memory locality of the client program. Instead
of one free-list per size class, memory is divided into 64-KB
shards, each with its own free list. A thread’s successive mal-
locs are allocated from within the same shard, which means
that related objects will be in the same shard. Furthermore,
newly freed objects are not pushed on the head of the same
free list that is used for malloc, as that would degrade the
locality pattern. All of this should be quite straightforward
to reason about in separation logic.

In freshly created shards, mimalloc creates a fully popu-
lated free-list in advance, rather than incrementally consum-
ing the region. Our allocator does the same, and for the same
reason: it removes one comparison from the fast path of
malloc. (mimalloc does it for other reasons as well, regarding
address-order of allocation.)

Finally, mimalloc is small: the core library is less than 3500
LOC. This is well within the scale of what is feasible to verify.

Estimated verification effort for 3500 LOC.. L4.verified
[19] is an operating-system microkernel, written in 7500 lines
of C and verified in Isabelle/HOL (another 1000 lines is not
verified). The verification was 200K lines of proof script, tak-
ing 25 person-years (of which much was tool development,
training, and learning). The authors estimate that (with tools
and techniques already developed) a similar project would
take 10 person-years.

CertiKOS [13] is a multicore hypervisor kernel, written
in 6500 lines of C and verified in Coq using the Certified
Abstraction Layers method. The verification is 282K lines of
Coq specs and proof scripts, and took about 3.5 person-years
(of which, the extension to concurrency comprised 95 KLOC
Coq and 2 person-years).

A visiting master’s student at Princeton verified an imple-
mentation of B+-trees with a comprehensive set of opera-
tions. After two weeks learning VST (and a previous knowl-
ege of Coq), verification of 570 (nonblank, noncomment)
lines of C code took about 4 person-months, with about 9500
(nonblank, noncomment) lines of proof scripts.

Our own malloc/free verification (reported in this paper)
of 108 lines of C took approximately 2 person-months, not
including the time to learn Coq and VST—it was (mostly)
done by the second author, who had never previously used
VST. Further down the learning curve, verification effort

57

Andrew W. Appel and David A. Naumann

should be substantially reduced. Furthermore, verification
effort was higher for reasoning about code that abuses the C
type system (but not illegally) to do the address arithmetic
for dividing large pages into smaller blocks of calculated size
with headers. Separation-logic reasoning about segregating
these into shards should be more straightforward. For a
system like mimalloc, we estimate about 36 person-months
of effort would be required.

11 Conclusion

We have verified an implementation in C of a malloc/free
system using the standard array-of-bins representation for
efficiency. The proof is machine checked and establishes
correctness of the assembly code produced by the verified
CompCert compiler: our verification tool is proved sound
with respect to the CompCert’s formalization of C11 which
includes address alignment, bounded arithmetic, etc. Our
code is verified with respect to precise specifications of mal-
loc and free that track the size of free lists. These specs are
then proved to subsume simpler specs that formalize the
standard API and should be used to verify most clients. We
also augment that API with a verified function that pre-fills a
free list, and provide alternate resource-aware specs of mal-
loc/free that make it possible to prove malloc never returns
null provided the client stays within the bounds it has pre-
filled. Subsumption connects these specs with the precise
ones.

Unless the client uses pre-fill with memory from its own
process space (BSS segment), the malloc/free system relies on
the mmap system call to obtain large blocks. Our verification
is with respect to a formal spec that conforms with the Posix
standard, but we know of no verified implementation of
mmap.

The current implementation is single-threaded but the
specs are already formulated in terms of separation logic
“shares”, enabling client threads to share ownership of allo-
cated blocks, and making the specifications naturally concur-
rency-compatible. Verifiable C supports proofs about con-
current shared-memory programs with locks (and has some
support for the C11 atomics). In future work we plan make
the malloc/free system thread safe.

A more challenging goal is to verify a more highly en-
gineered malloc/free system. A promising target is mimal-
loc [21], which achieves very high performance for a wide
range of work loads through free list sharding. Its imple-
mentation is relatively compact, in part owing to uniform
representation of objects at all sizes. Important system code
like this should be verified, foundationally, and we have
shown that it is within reach.

Acknowledgments

This work was supported in part by National Science Foun-
dation Grants CCF-1521602 and CNS-1718713. The paper

Verified Sequential Malloc/Free

has been improved thanks to extensive constructive feed-
back from anonymous reviewers and our shepherd Maoni
Stephens.

References

(1]
(2]

(10]

(11]

[12]

(13]

(14]

David Aspinall and Adriana B. Compagnoni. 2003. Heap-Bounded
Assembly Language. J. Autom. Reasoning 31, 3-4 (2003), 261-302.
Gilles Barthe, Mariela Pavlova, and Gerardo Schneider. 2005. Precise
analysis of memory consumption using program logics. In Third IEEE
International Conference on Software Engineering and Formal Methods
(SEFM’05). IEEE, 86-95.

Lennart Beringer and Andrew W. Appel. 2019. Abstraction and Sub-
sumption in Modular Verification of C Programs. In Formal Meth-
ods - The Next 30 Years - Third World Congress, FM 2019, Proceedings
(LNCS), Maurice H. ter Beek, Annabelle Mclver, and José N. Oliveira
(Eds.), Vol. 11800. Springer, 573-590. https://doi.org/10.1007/978-3-
030-30942-8_34

Lennart Beringer, Martin Hofmann, Alberto Momigliano, and Olha
Shkaravska. 2004. Automatic Certification of Heap Consumption. In
LPAR’04: Logic for Programming, Artificial Intelligence, and Reasoning,
11th International Conference, Proceedings (LNCS), Franz Baader and
Andrei Voronkov (Eds.), Vol. 3452. Springer, 347-362. https://doi.org/
10.1007/978-3-540-32275-7_23

Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W.
Appel. 2015. Verified Correctness and Security of OpenSSL HMAC. In
24th USENIX Security Symposium. USENIX Assocation, 207-221.
Lars Birkedal, Noah Torp-Smith, and John C Reynolds. 2004. Local
reasoning about a copying garbage collector. In Proceedings of the
31st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. 220-231.

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and
Andrew W. Appel. 2018. VST-Floyd: A Separation Logic Tool to Verify
Correctness of C Programs. J. Autom. Reason. 61, 1-4 (June 2018),
367-422. https://doi.org/10.1007/s10817-018-9457-5

Santiago Cuellar, Nick Giannarakis, Jean-Marie Madiot, William Man-
sky, Lennart Beringer, Qinxiang Cao, and Andrew W. Appel. 2020.
Compiler Correctness for Concurrency: from concurrent separation logic
to shared-memory assembly language. Technical Report TR-014-19.
Princeton University Computer Science. https://www.cs.princeton.
edu/research/techreps/TR-014-19

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek
Dreyer. 2019. RustBelt meets relaxed memory. Proceedings of the ACM
on Programming Languages 4, POPL (2019), 1-29.

Yi Feng and Emery D. Berger. 2005. A Locality-Improving Dynamic
Memory Allocator. In 2005 Workshop on Memory System Performance.
68-77. https://doi.org/10.1145/1111583.1111594

Peter Gammie, Antony L Hosking, and Kai Engelhardt. 2015. Relax-
ing safely: verified on-the-fly garbage collection for x86-TSO. ACM
SIGPLAN Notices 50, 6 (2015), 99-109.

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,
Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu
Guo. 2015. Deep Specifications and Certified Abstraction Layers. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2015, Sriram K. Rajamani
and David Walker (Eds.). ACM, 595-608. https://doi.org/10.1145/
2676726.2676975

Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim, Jérémie Koenig,
Xiongnan (Newman) Wu, Vilhelm Sjoberg, and David Costanzo. 2019.
Building certified concurrent OS kernels. Commun. ACM 62, 10 (2019),
89-99. https://doi.org/10.1145/3356903

Martin Hofmann and Steffen Jost. 2003. Static prediction of heap space
usage for first-order functional programs. In POPL *03: 30th ACM Symp.
on Principles of Programming Languages. 185-197.

58

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

ISMM °20, June 16, 2020, London, UK

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem
Penninckx, and Frank Piessens. 2011. VeriFast: A powerful, sound,
predictable, fast verifier for C and Java. In NASA Formal Methods
Symposium. Springer, 41-55.

Ke Jiang, David Sanan, Yongwang Zhao, Shuanglong Kan, and Yang
Liu. 2019. A Formally Verified Buddy Memory Allocation Model. In
2019 24th International Conference on Engineering of Complex Computer
Systems (ICECCS). IEEE, 144-153.

Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov,
Steve Zdancewic, and Viktor Vafeiadis. 2015. A Formal C Memory
Model Supporting Integer-Pointer Casts. In PLDI'15: 36th annual ACM
SIGPLAN conference on Programming Languages Design and Implemen-
tation. 326-335.

Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. 2015. Frama-C: A software analysis perspective.
Formal Aspects of Computing 27, 3 (01 May 2015), 573-609. https:
//doi.org/10.1007/s00165-014-0326-7

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, et al. 2009. seL4: Formal verification of
an OS kernel. In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. ACM, 207-220.

Donald E. Knuth. 1973. The Art of Computer Programming, Vol. I:
Fundamental Algorithms (second edition). Addison Wesley, Reading,
MA.

Daan Leijen, Benjamin Zorn, and Leonardo de Moura. 2019. Mimalloc:
Free List Sharding in Action. In Asian Symposium on Programming
Languages and Systems. Springer, 244-265.

Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM 52, 7 (2009), 107-115.

Paul Liétar, Theodore Butler, Sylvan Clebsch, Sophia Drossopoulou,
Juliana Franco, Matthew J. Parkinson, Alex Shamis, Christoph M. Win-
tersteiger, and David Chisnall. 2019. snmalloc: a message passing
allocator. In Proceedings of the 2019 ACM SIGPLAN International Sym-
posium on Memory Management (ISMM). 122-135.

William Mansky, Andrew W. Appel, and Aleksey Nogin. 2017. A
Verified Messaging System. In Proceedings of the 2017 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages
& Applications (OOPSLA ’17). ACM.

William Mansky, Wolf Honoré, and Andrew W. Appel. 2020. Connect-
ing Higher-Order Separation Logic to a First-Order Outside World. In
ESOP’20: European Symposium on Programming.

Nicolas Marti, Reynald Affeldt, and Akinori Yonezawa. 2006. Formal
Verification of the Heap Manager of an Operating System using Sep-
aration Logic. In SPACE 06: Third workshop on Semantics, Program
Analysis, and Computing Environments for Memory Management.
Andrew McCreight, Tim Chevalier, and Andrew Tolmach. 2010. A
certified framework for compiling and executing garbage-collected
languages. In ICFP’10: 15th ACM SIGPLAN International Conference on
Functional programming. 273-284.

Andrew McCreight, Zhong Shao, Chunxiao Lin, and Long Li. 2007. A
general framework for certifying garbage collectors and their mutators.
In PLDI’07: 28th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 468—479.

Peter O’Hearn, John Reynolds, and Hongseok Yang. 2001. Local Rea-
soning about Programs that Alter Data Structures. In CSL’01: Annual
Conference of the European Association for Computer Science Logic. 1-19.
LNCS 2142.

Matthew]. Parkinson and Gavin M. Bierman. 2005. Separation
logic and abstraction. In 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2005). 247-258. https:
//doi.org/10.1145/1040305.1040326

J. M. Robson. 1971. An Estimate of the Store Size Necessary for Dy-
namic Storage Allocation. J. Association for Computing Machinery 18,

https://doi.org/10.1007/978-3-030-30942-8_34
https://doi.org/10.1007/978-3-030-30942-8_34
https://doi.org/10.1007/978-3-540-32275-7_23
https://doi.org/10.1007/978-3-540-32275-7_23
https://doi.org/10.1007/s10817-018-9457-5
https://www.cs.princeton.edu/research/techreps/TR-014-19
https://www.cs.princeton.edu/research/techreps/TR-014-19
https://doi.org/10.1145/1111583.1111594
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/3356903
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1145/1040305.1040326
https://doi.org/10.1145/1040305.1040326

=

—

ISMM °20, June 16, 2020, London, UK

3 (July 1971), 416-423.

Harvey Tuch. 2009. Formal verification of C systems code. Journal of
Automated Reasoning 42, 2-4 (2009), 125-187.

Gijs Vanspauwen and Bart Jacobs. 2017. Verifying cryptographic
protocol implementations that use industrial cryptographic APIs. CW
Reports (2017).

Shengyi Wang, Qinxiang Cao, Anshuman Mohan, and Aquinas Hobor.
2019. Certifying Graph-Manipulating C Programs via Localizations
within Data Structures. In Proceedings of the ACM on Programming
Languages (OOPSLA).

Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, and Armando Solar-
Lezama. 2013. Towards optimization-safe systems: analyzing the im-
pact of undefined behavior. In Proceedings 24th ACM Symposium on
Operating Systems Principles. ACM, 260-275.

Charles B. Weinstock. 1976. Dynamic storage allocation techniques.
Ph.D. Dissertation. Carnegie Mellon University.

Andrew W. Appel and David A. Naumann

[37] John Wickerson, Mike Dodds, and Matthew J. Parkinson. 2010. Ex-

plicit Stabilisation for Modular Rely-Guarantee Reasoning. In European
Symposium on Programming (ESOP). 610-629.

Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer,
Adam Petcher, and Andrew W. Appel. 2017. Verified Correctness and
Security of mbedTLS HMAC-DRBG. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (CCS’17).
ACM.

Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina Argyraki,
and George Candea. 2017. A Formally Verified NAT. In SIGCOMM’17:
Proceedings of the conference of the ACM Special Interest Group on Data
Communication. 141-154.

Yu Zhang, Yongwang Zhao, David Sanan, Lei Qiao, and Jinkun Zhang.
2019. A Verified Specification of TLSF Memory Management Allocator
Using State Monads. In Dependable Software Engineering. Theories,
Tools, and Applications, Nan Guan, Joost-Pieter Katoen, and Jun Sun
(Eds.). Springer International Publishing, 122-138.

	Abstract
	1 Introduction
	2 The Algorithm and Data Structure
	3 Specification in Separation Logic
	4 Resource Tracking
	5 Filling the Resource Vector
	6 Funspec Subsumption
	7 Formal Guarantees w.r.t. C Standard
	8 Bugs
	9 Verification Effort
	10 Future Work
	11 Conclusion
	Acknowledgments
	References

