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Abstract
The Kolsky Bar, also known as the split-Hopkinson pressure bar, has become one of the most commonly used apparatuses
when studying the dynamic behavior of materials. Despite its popularity, limited standards exists with respect to the design,
data collection, and data analysis approach used. A lack of standardization can lead to lab-to-lab variation in reported
dynamic behavior for nominally identical materials. A key step during data reduction is the appropriate selection of the
signal windows used in the one-dimensional wave propagation analysis of recorded strain gauge signals. The presented
work provides an automated analysis approach for selecting signal windows based on the Hough transform. The approach is
agnostic to loading mode (e.g., tension vs. compression), applicable to both pulse-shaped and non-pulse shaped experiments,
robust in the presence of naturally occurring signal oscillations and noise, and has rapid computation time. Two cases are
selected to demonstrate the viability of applying the Hough transform to recorded Kolsky bar signals. In the first case, the
bar wave speeds of maraging steel tension and compression Kolsky bars are determined. The second case demonstrates the
application of the Hough transform technique in the study of the dynamic compression behavior of additively manufactured
Inconel 718. A stress-strain curve generated using the automated HT-based technique is compared to those determined
manually showing the automated approach provides a closely matching result. Window selection automation provides an
important step toward improving consistency of results reported, data processing throughput, and traceability of dynamic
mechanical property data generation.
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Introduction

The Hough transform (HT) was initially created and
patented by Paul Hough [1]. Its development was motivated
by the need to identify curves in binary bubble chamber
images [2]. The HT converts a feature detection problem
(e.g., finding straight lines) from the (x, y) image space
to a peak detection problem in a user defined parameter
space. The original parameter space selected was the slope-
intercept (m, c) space. The (m, c) parameter space has a
noticeable limitation in that it is unable to parameterize
vertical lines (i.e., m → ∞). As Duda and Hart [3]
pointed out, the distance-orientation angle (ρ, θ ) parameter
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space overcomes this limitation while also simplifying
computation.

The identification of straight lines (or line segments)
is the most commonly used application of the HT. One
such example is the identification of Kikuchi bands
[4, 5] in images recorded during electron backscatter
diffraction crystal orientation mapping. Another application
of linear Hough transform is the determination of the fiber
orientation distribution in non-wovens [6, 7]. In the (ρ, θ)

parameter space, the position of points in a binary image
(i.e., those with an intensity of 1) can be defined by their
distance (ρ) and angular orientation (θ) from the image
origin (e.g., bottom left corner), see equation (1).

ρ = x cos(θ) + y sin(θ) (1)

In practice, equation (1) is solved at each point in the
binary image at user defined intervals of θ where θ ∈ (0, π).
Using this approach, each point (Fig. 1(a)) is represented
by a sinusoidal line (Fig. 1(b)) in the (ρ, θ ) space. The
intersection of the collection of sinusoidal lines gives the
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Fig. 1 An overview of HT
straight line detection a) a set of
colored points in (x, y) image
space, b) sinusoidal lines in
(ρ, θ) space whose coloring
corresponds with the point
coloring in a), c) accumulator of
b) defining the ρ and θ of the
co-linear points in a)

distance (ρ) and angular orientation (θ) of the straight line
upon which the points in the original binary image are
positioned. To automate selecting the intersection point of
the sinusoidal lines, an accumulator of the ρ-θ parameter
space is implemented (Fig. 1(c)). The accumulator counts
the number of lines present with a user defined binning
resolution. If only one line is present in the binary image,
as in Fig. 1(a), the maximum value (i.e., peak) of the
accumulator yields the ρ and θ values defining the straight
line connecting points (see Fig. 1(c)). The amplitude of the
peak in the accumulator space is a function of several factors
including the number of points composing the line, the
number of other points in the image and the choice of the bin
size in the accumulator space. If there are multiple lines in
an image a voting process is implemented to appropriately
select the line feature(s) of interest. The voting process
efficiency and robustness can be improved by limiting the
accumulator space considered based on knowledge of the
HT application area. Discussions in subsequent sections
will be limited to the application of the HT to Kolsky bar
data. For a more complete overview of the HT the reader
is encouraged to consult the following review articles, refs
[8–10].

In addition to line detection, the HT can be extended to
identify other predefined objects in binary images such as,
circular arcs [11], parabolas and ellipses [12–14], as well as
arbitrary image shapes [15, 16]. Duda and Hart were the first
to present the detection of circles [3], the circular Hough
transform (CHT), using a modification of the linear Hough
transform (LHT). The CHT finds circles characterized by
a center point (x0, y0) and radius r . Shown in Fig. 2, is a
set of colored points positioned on the circumference of the
same black dashed circle. The CHT maps the colored points
onto a 3-D cone shaped manifold (see Fig. 2); equation (2)
presents the potential circles that form the manifolds.
To determine the circle on which the colored points of
interest exist, votes are accumulated in the 3-D parameter
space (x0, y0, r). Equation (2) presents the potential circles
that form the 3-D accumulator space. For each radius
considered, there is a corresponding accumulator space.
The voting procedure searches the accumulator space to
determine the x0, y0, r value that yields the greatest peak
and thus the circle that the colored points are positioned
on. The voting procedure is illustrated in Fig. 2(b). Within
Fig. 2, it is apparent that the radius of 1 results in the
greatest number of intersections of the manifolds. The
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Fig. 2 Detection of a circle center using the circular Hough transform a) a set of colored points positioned on the same black dashed circle b) 3-D
cone manifolds generated during the voting process. The white point indicates the position of the greatest number of manifold intersections which
defines the center (x0, y0) of the detected circle

white point placed where the greatest number of manifold
intersections occurs defines the (x0, y0) circle center. For
any accumulator whose radius value is above or below 1,
the number of manifold intersections would be lower. The
CHT can also detect arcs in images which is analogous to
the automated circle detection approach [17, 18].

r2 = (x − x0)
2 + (y − y0)

2 (2)

The Kolsky bar [19] is the most widely used experimental
apparatus for studying the high-strain-rate (ε̇ > 102s−1)

mechanical behavior of materials. The Kolsky bar can be
configured to perform compression [19], tension [20, 21],
shear [22], and torsion [23] experiments. The simplest and
most commonly used version of the Kolsky bar is the
compression configuration. The design of the specimen for
a compressive Kolsky test is a critical component of the
experiment. A robust specimen design procedure should
satisfy three conditions: a) Inertia and friction effects should
be absent to assure uniform deformation of the specimen;
b) the specimen should achieve stress equilibrium; c)
uniaxial stress condition should be achieved [24]. Gray
[25] suggested the frictional and inertial effects could be
decreased by reducing the areal mismatch between the bar
and the specimen. Davies and Hunter [26] also suggested
thickness to diameter ratio of the specimen to be between
0.5 and 1 based on the corrections for longitudinal and radial
inertia effects.

There are many possible designs of the Kolsky bar
apparatus that meet the specimen and apparatus geometry
guidelines required for one-dimensional wave propagation
assumptions to be valid [27]. These geometric requirements

include length-to-diameter ratio of more than 20, perfectly
aligned bars and low friction to allow bars to move
freely. In addition, the incident and transmission bar
lengths should be at least twice the striker length to
avoid incident and reflected waves overlapping. These
requirements do not require the apparatus to meet a
specific size which enables the same one-dimensional
wave propagation theory to be applied to micro-Kolsky
bars [28] with diameters on the order of 1.59 mm with
a total length of 47.6 mm, to systems with diameters
of 100mm (e.g., [29]), or those that are tens of meters
in length [30]. In addition to variations in the physical
size of the Kolsky bar apparatus, experiment execution
differences between laboratories include the use of pulse
shaping, bar material, dispersion correction implementation,
sampling rate, loading duration, and data acquisition
bandwidth. Ultimately, the individualized nature of Kolsky
bar testing can result in lab-to-lab variability in reported
stress-strain behavior of nominally identical materials. One
pathway to reduced variability in reported material behavior
is to homogenize approaches implemented during data
analysis, specifically methodologies used when selecting
the incident, reflected and transmitted signal windows. As
has been pointed out previously by Chen and Song [27],
correct selection of the signal windows is critical to ensuring
accurate results are reported.

The objective of the current study is to demonstrate
an automated selection process of the incident, reflected,
and transmitted signal windows that is agnostic to metallic
bar material, bar geometry (i.e., length and diameter), and
pulse shape. The automated selection process is founded
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on the early developments of the HT. The HT method is
selected due to it having a number of desirable features:
1) each data point is treated independently and thus
parallel processing can be implemented resulting in nearly
instantaneous calculation times; 2) data independence also
enables the technique to recognize incomplete or deformed
shapes which enable the technique to be applied to data
sets captured at different sampling rates, as well as both
pulse-shaped and non-pulse shaped experiments; 3) the
HT is robust to the addition of noise, a common feature
in experimental data. The automation of high-strain-rate
experiment data analysis provides an important step forward
in improving consistency of results reported, throughput,
and traceability of mechanical property data generation.

Methodology

Description of the SHPB

As mentioned previously, there are many valid designs
of the Kolsky bar that meet the requirements of one-
dimensional wave propagation assumptions. The following
discussion is limited to the compression Kolsky bar as
it is the most common configuration. Regardless of its
design, the apparatus typically consists of three long
cylindrical bars, the striker bar (or tube), incident bar and
the transmission bar, see Fig. 3. The incident pulse in
compression Kolsky bar experiments is initiated when the
striker bar impacts the incident bar. The striker bar is
typically made from the same material and is the same
diameter as the incident and transmitted bars. However
there have been studies which use specialized (i.e., non-
cylindrical) striker bars (e.g., [31]). The striker bar separates

from the incident bar once the initial compressive wave
has reflected as a tensile wave and reaches the striker bar
incident bar interface (see the x-t diagram in Fig. 3). As a
result, the pulse’s spatial length is twice the striker’s spatial
length. The pulse amplitude is proportional to the striker’s
impact velocity which typically is controlled by adjusting
the gas gun pressure used to launch the striker bar [32].

When the compressive pulse reaches the specimen, due
to acoustic impedance, part of the wave is reflected towards
the striker bar incident bar interface, and part of it is
transmitted into the specimen. An additional reflection
and transmission occurs as the propagating pulse reaches
the specimen transmission bar interface. Strain gauges are
mounted to the surface of the incident and transmission bar
surfaces to record: 1) the incident pulse (εI ) generated by
the striker bar 2) the reflected pulse (εR) from the incident
bar/specimen interface, and 3) the transmitted pulse (εT )
in the transmission bar. Assuming one-dimensional wave
propagation, these pulses can be used to determine the
nominal engineering stress, strain, and strain-rate of the
specimen using the following relationships.

σs(t) = EbarAbar

Aspec

εT (t), (3)

ε̇(t) = cbar

Lspec

(−2εR(t)), (4)

εs =
∫ t

0
ε̇(τ )dτ (5)

In equations (3)-(5), Ebar is the elastic modulus of the bar
material, Abar and Aspec represent the cross-sectional area
of the bar and specimen, respectively; Lspec is the specimen
thickness, and cbar is the wave speed in the incident and
transmitted bars. The above relationships are valid once a
balance (i.e., equilibrium) is achieved between the forces

Fig. 3 Setup of the SHPB experiment with a Lagrangian x-t diagram of the wave propagation process
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on either side of the specimen. The forces at the incident
bar/specimen Pinc and specimen transmission bar Ptrans

interfaces are,

Pinc = AbarEbar (εI + εR) (6)

Ptrans = AbarEbarεT (7)

In equations (3)-(7), the εI , εR and εT pulse windows
used must be selected from the recorded data set. The
selection of these windows typically requires human input,
as experiment-to-experiment variation of their positioning
occurs due to the Kolsky bar being an open-feedback-loop
apparatus. Window selection is an integral step during the
reduction of strain gauge data to the specimen’s stress-strain
behavior. The primary contribution of the current work is
the automation of accurate window selection.

Application of the Hough Transform

The following outlines two HT-based methodologies that
can be used to fully automate Kolsky bar analysis. The
first is based on the linear Hough transform (LHT) and
the second uses the CHT. Kolsky bar data has a common
structure consisting of incident, reflected, and transmitted
pulses regardless of the material tested, bar geometry and
loading mode (e.g., tension vs. compression).

Linear Hough Transform

Figure 4 provides an overview of the process used to identify
the pulse windows using the LHT. An oscillation heavy
signal is shown in Fig. 4(a) and is selected to demonstrate

Fig. 4 Overview of the LHT applied to Kolsky bar data. a) A recorded Kolsky bar signal containing oscillations and noise. b) An amplitude and
time normalized Kolsky bar signal with interpolated data points added in the vertical direction. c) The ρ, θ parameter Hough space of the Kolsky
bar signal with the location of four peaks of interest indicated by colored arrows. d) The Kolsky bar signal with the rising and falling slopes of
the incident and reflected signals determined from the accumulator space. Colors of the identified slopes correspond with the arrows identifying
peaks in c)
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the robustness of the HT both to noise and the natural
signal oscillations recorded by the surface mounted strain
gauges caused by three-dimensional wave propagation. The
incident bar signal is used to demonstrate the technique as it
is the more complex application of the HT due to having two
pulse windows of interest, the incident and reflected pulses,
while the transmission bar only has one window of interest,
the transmitted pulse. To identify the window bounds of the
incident and reflected pulses a total for two rising slopes
and two falling slopes need to be identified in the Kolsky
bar signal. The HT is intended for applications where
sampling occurs over a square grid. Thus, the recorded
Kolsky bar data discretization in the vertical direction must
to be increased to match the time sampling rate of the
experiment. The purpose of this step is to improve the
robustness of the subsequent voting process. Without taking
this step, short rise time features may be sampled by too few
points to be identified during voting. The additional points
are not considered after the voting process (i.e., they are
not included in any of the one-dimensional wave analysis
calculations used to obtain material behavior).

The first step of applying the HT to Kolsky bar data
is to fit an interpolating spline to the recorded data set
and interpolate data points so the Kolsky bar signal is
“sampled” over even spacing in amplitude and time, see
Fig. 4(a) axes. Next the signal is normalized in time and
amplitude, see Fig. 4(b). After normalizing, each point
is sampled in the ρ, θ space generating a large number
of sinusoidal lines that form the accumulator space, see
Fig. 4(c). In the accumulator space there are a number
of peaks present with varying amplitudes. To remove the
effects of noise, a threshold is set to remove small amplitude
peaks corresponding to short line segments caused by noise
or natural signal oscillations.

After thresholding, a total of five predominant peaks
remain in the accumulator space. Among these, the peak
with the greatest amplitude, located at ρ ≈ 0.4 and θ ≈
90, is attributed to the zero-slope quiescent periods in the
signal. As will be discussed later, this peak is omitted from
the voting procedure as it does not provide meaningful
information for identifying the position of the incident or
reflected signals. Peaks having negative radius and θ ∈
(π/2, π) corresponding to rising slopes, and those with
positive radius and θ ∈ (0, π/2) correspond to falling
slopes. Herein a positive radius is defined as having a
positive vertical coordinate and a negative radius is defined
as having a negative vertical coordinate. With the origin of
the normalized data positioned at the bottom left corner,
the increasing absolute ρ amplitude for peaks provides the
ordering of the slopes in time for the signal shown in
Fig. 4(c). The accumulator space shown can be interpreted
as indicating four lines with non-zero slope, ordered such
that there is a rising slope (red arrow), then a falling slope

(blue arrow), followed by a falling slope (green arrow)
and then a rising slope (purple arrow). The ρ, θ values
corresponding to the four peaks shown in the accumulator
space are then unnormalized. The lines predicted by the HT
are then overlayed with the recorded data set, see Fig. 4(d).

Voting Process - Accumulator Space Reduction

The Hough transform accumulator process can be repre-
sented as equation (8). In this equation, I (x, y) is equal to
one for the data points in the normalized amplitude-time
plane and equals zero for other points. δ() is the Dirac δ-
function and H(ρ, θ) acts as the accumulator; therefore, the
dominant lines in the signal possess larger H values (i.e.,
votes). After computing the H values for all possible lines
in the digitized normalized space, there is a voting step to
choose the best fit for all rising and falling lines.

H(ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
I (x, y)δ(ρ − x cos θ − y sin θ)dxdy (8)

To improve calculation times and prevent the selection
of the peak corresponding to the quiescent periods of the
recorded data set, only specific locations in the Hough
space need to be searched for the rising and falling slopes
of the incident and reflected pulses. As it can be seen in
Fig. 5, in the typical normalized signal of the Kolsky bar
experiment, the first rise and fall of the signal are located
at the top and bottom of the accumulator space respectively,
and have an absolute radius value less than half; see
boxed regions labeled 1 and 2. Therefore, equations (9),
(10) present the sets (c1, c2) that contain the peaks related
to the first rise and fall. The maximum values of these
sets correspond to the selected rising and falling lines.
The intersections of these lines with the time-axis of the
recorded signal determines the boundary points of the
respective pulse windows. The subsequent windows that
contain the reflected and transmitted pulses should have
the same width as the incident signal. Consequently, once
the first window is determined using the HT, the remaining
windows can be selected by finding their leading edge and
setting their width to match the incident signal window. The
LHT is particularly useful when applied to signals that have
uniform rising and falling slopes.

c1 =
{
H(ρ, θ)

∣∣∣|ρ| < 0.5, ρ < 0, 180 − c < θ < 180
}

(9)

c2 =
{
H(ρ, θ)

∣∣∣|ρ| < 0.5, ρ > 0, 0 < θ < c
}

(10)

Circular Hough Transform

In cases where pulse shaping is used, the initial portion
of the signal rise can be shallow enough that alternative
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Fig. 5 The locations of the
rising and falling lines in the
accumulator space

approaches must be implemented to capture the beginning
and end of signal windows correctly.

An example of this case is shown in Fig. 6. To account
for these curvatures in the analysis and include them in the
identified pulse windows, the CHT can be employed to find
the arc that best follows those curvatures. The accumulator
of the CHT is provided in equation (11). In order for this
formulation to provide accurate predictions, two constraints
are imposed. These constraints are necessary due to the
short arc lengths present at the pulse’s leading and trailing
edges which results in relatively small amplitude peaks
in the accumulator space. The first constraint requires the
predicted circle to be tangent to the rising (or falling) slope

Fig. 6 Boxed regions indicating the missed ascending and descending
signal curvatures when applying the LHT to pulse shaped experiments

found by the LHT and the adjacent quiescent portion of
the signal. This first constraint requires the peak found
in the accumulator space to be positioned correctly. For
the incident and transmitted pulses it requires the fitting
circle to be above the quiescent region of the signal. This
constraint is graphically presented for the rising edge of
the in Fig. 7. For the reflected signal, it requires the circle
to be below the quiescent region of the signal. Additional
constraints are to inform the central angle of the arc used
to the voting space to be similar to the angle of the rising
(or falling) slope, and to limit the allowable circle radius
to be less than 0.2. Theoretically, the maximum allowable
radius is close to 1, due to the normalized voltage-time

Fig. 7 Constraints of the detected arcs
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Fig. 8 a) The accumulator space of the tensile calibration experiment b) The rising and falling slopes detected in the tensile calibration experiment

space used. However, the choice to use a cut-off radius is
founded on the CHT being used for arc detection opposed
to the detection of a complete circle. The curvature of an
arc is inversely proportional to its radius. Therefore, as the
arc radii increases, its curvature decreases. This decrease
in curvature results in inflated voting in the accumulator
space for large radii arcs as their curvature more closely
matches zero-curvature of the quiescent region. The signal
rise and signal fall are treated independently as they can
have different curvature characteristics. Once the circles
with the best fit are determined, the position where they
meet the tangent line of the quiescent portion of the signal
is selected as a boundary point for the signal window. As

with the LHT, once the temporal width of the incident signal
is determined, it is used as the width for the reflected and
transmitted signals. For the data shown, this assumption is
valid since the signals shown here are pulse shaped and
show limited dispersion. If pulse shaping is not used, a
dispersion correction such as that proposed by Follansbee
and Frantz [33], Li and Lambros [34], or Francis et al. [35],
should be used to account for pulse length changes as the
wave propagates.

H(x0, y0, r0) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0
I (x, y)δ((x−x0)

2+(y−y0)
2−r2

0 )dxdydr

(11)

Table 1 Comparison of bar wave speed predictions determined manually and using the LHT and CHT

Compression Incident Bar Wave Speed (m/s) Tension Incident Bar Wave Speed (m/s)

Exp. No. Manual LHT CHT Manual LHT CHT

1 4946 4917 4921 4932 4996 5047

2 4930 4860 4806 4979 4938 5087

3 4906 4907 4908 4901 4907 4668

4 4917 4848 4900 5002 4927 5049

5 4995 4945 4854 4950 4874 4857

6 4925 4954 4900 4928 4907 5245

7 4961 4969 4851 4982 4920 5086

8 4926 4890 4954 4988 4929 5089

ine Avg. (m/s) 4938.2 4904.3 4886.7 4957.8 4924.7 5016.0

ine Std. Dev. (m/s) 28.5 45.9 46.8 35.3 34.8 175.7

% Difference from – 0.68 1.04 – 0.67 1.17

Human Selection
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Results and Discussion

Two case studies are presented to demonstrate the auto-
mated data processing capabilities of the aforementioned
HT-based signal window selection. In the first case study,
the bar wave speed of a tension Kolsky bar and the bar
wave speed of a compression Kolsky bar are determined.
Both bars investigated are made from 350C maraging steel.
The second case study demonstrates the ability to reduce
raw compression Kolsky bar data to obtain the dynamic
stress-strain behavior of additively manufactured Inconel
718.

AutomatedWave Speed Calibration

The bar wave speed of a Kolsky bar apparatus must be
known prior to conducting experiments. While textbook
values of the bar material properties can be used to predict

the bar wave speed, a direct measurement of the bars is
preferable as an accurate understanding of the bar wave
speed is required to calculate the specimen’s nominal
engineering stress-strain history. A direct measurement of
the bar wave speed can be obtained by conducting an
experiment without a specimen present and tracking the
time necessary for the incident wave to reflect off the bar
free surface and pass back over the mounted strain gauges.

A bar wave speed calibration experiment was conducted
on the incident bar of a tension Kolsky bar (3658mm
long, 19.05mm diameter), and on the incident bar of
a compression Kolsky bar (2498 mm long, 19.05mm
diameter). At the mid-length of the each incident bar a
full Wheatstone bridge is mounted to the bar to observe
the propagating pulses. Figure 8 presents the accumulator
space, recorded signal and predicted rising and falling
slopes of the incident and reflected waves of a nominal
wave speed calibration experiment conducted on the tension

Fig. 9 a) The accumulator space of the incident signal. b) The detected lines in the signal c) Force-balance at the sides of the specimen d)
Stress-strain behavior of the IN-718 specimen
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incident bar. The accumulator space shown is generated
using the approach outlined in “Linear Hough Transform”
and “Voting Process - Accumulator Space Reduction”.

After determining the intersections of the rising and
falling slopes with the quiescent regions of the signal, the
total wave propagation distance is used to determine the
longitudinal bar wave speed. A total of eight nominally
identical calibration experiments were conducted on each
Kolsky bar. Table 1 presents the wave speeds found
manually, and using the LHT and CHT approaches are
presented in “Linear Hough Transform and “Circular

Hough Transform”, respectively. The textbook longitudinal
wave speed for 350C maraging steel is, cbar =√

200GPa/8080kg/m3 = 4969m/s. The manual selection
of the incident and reflected windows results in wave speed
values that are close matches to the textbook value. Overall,
the LHT and CHT predict average wave speeds that are in
agreement to those found manually (i.e., within ≈ 1%).
The positive agreement found between manually selected
windows and the automated selection of windows indicates
the promise of data automation applied to the Kolsky bar
begin able to match that of experienced users. Examining

Fig. 10 a) Detected arcs and
their location. b) A comparison
of the pulse windows determined
using the LHT (red dashed) and
the CHT (blue solid) for the
incident signal. c) A comparison
of the LHT and CHT for the
transmitted signal nalysis for d)
Force-balance at the sides of the
specimen as determined by the
CHT e) Stress-strain behavior of
the IN-718 specimen
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the CHT predictions it is clear for the tension incident bar
the standard deviation of predicted wave speeds is larger
than for other data sets. Occasionally, the CHT will select a
circle of best fit that is inaccurate, typically in the presence
of noise. This is a known challenge with the CHT, with
recent areas of investigation aimed at improving detection
accuracy (e.g., [36–38]).

Test Case 2: Automated Compression Kolsky Bar
Experiment Analysis

A dynamic compression experiment was conducted on a
cylindrical additively manufactured Inconel 718 specimen,
3mm in length with 6mm diameter using a Kolsky bar
consisting of a 203mm striker bar, 2489mm incident bar,
and 1981mm transmitted bar all with 19mm diameters.
Pulse-shaping was implemented using two copper discs
9.5mm in diameter 0.5mm thick. The motivation to include
pulse shaping in the experiment is to prevent the use of the
striker bar length to infer pulse duration.

The LHT transform was performed on the normalized
signals from the Kolsky bar experiment. The accumulator
space for the incident bar (i.e., the incident and reflected
signals) is shown in Fig. 9(a), and the corresponding signals
with LHT predicted slopes are provided in Fig. 9(b). Note,
the sign of the compression Kolsky bar signal has been
inverted for consistency of data presentation. Applying the
LHT to the pulse-shaped signal leads to a few notable
issues. It can be seen that the curvature at the beginning
and end of signals is not properly included, particularly in
the case of falling line 2 on the reflected pulse. However,
the accurate prediction of the rise of the incident pulse
enables automated data analysis to be executed if the wave
speed from a calibration experiment is used to determine
the reflected and transmitted pulse windows. Using these
pulse windows the presence of a force balance is confirmed
having occurred during the experiment, see Fig. 9(c).
Knowing that a force balance is present, the resulting stress-
strain behavior is calculated using equations (3)-(5). In
Fig. 9, the stress-strain curve does not start at the origin. The
cause of this is the LHT clipping the initial rise and thus the
initial specimen behavior is not properly accounted for in
the predicted stress-strain behavior.

To account for each signal’s leading and trailing edge
curvatures, the CHT was performed. Figure 10(a) shows
the circles that determined to best match the curvature of
the leading and trailing edge of the incident pulse. For
comparison, the normalized Kolsky bar signal is shown
in Fig. 10(b) and (c), for the incident and transmitted
bar signals respectively, with overlaid lines indicated the
analysis windows determined using the LHT (red dashed)
and the CHT (blue). It is clear the CHT widens the pulse
windows sufficiently to capture any leading and trailing

Fig. 11 Comparison of the LHT, CHT and human processed Kolsky
bar data from the same experiment. A close match between the
automated HT-based data analysis approach and experienced user
processed data is evident

edge curvature. The force balance using the CHT pulse
windows is shown in Fig. 10(d) and the reduced stress-strain
curve is presented in Fig. 10(e). Comparing the stress-strain
curves of Figs. 9(e) and 10(e) it is apparent that the CHT
more appropriately captures the entirety of the specimen
deformation behavior, particularly at the earliest stages of
deformation.

For the data set shown, the automated analysis using
the LHT and CHT take 66 and 89 seconds to complete,
respectively. The stress-strain curves using the LHT and
CHT are compared to the stress strain curve obtained for
the same data set processed manually by and experience
user in Fig. 11. The CHT data and the experienced user
data are nearly identical, giving evidence that the proposed
CHT method is a viable methodology for automated data
analysis.

Conclusions

The Hough transform has been widely adopted in the image
processing community to automate the identification of
linear and curved features of interest from binary images.
The presented work leverages the HT to conduct fully
automated data analysis of Kolsky bar signals. Two case
studies were presented, demonstrating the window selection
technique can be used during bar wave speed calibration,
and can be used to determine the incident, reflected and
transmitted pulse windows used when calculating dynamic
material behavior. A number of constraints are presented
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which reduce the size of the Hough space searched, and
restrict the position and radius of circles used to best fit
leading and trailing curvatures of pulses. The automated
data analysis approach presented could help to reduce lab-
to-lab variability in reported material behavior by unifying
the approach used to select pulse windows during analysis,
and serves as a possible step forward in standardizing
techniques used during Kolsky bar data processing.
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