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Tuning the topology of p-wave superconductivity in an analytically solvable two-band model
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We introduce and solve a two-band model of spinless fermions with p,-wave pairing on a square lattice. The
model reduces to the well-known extended Harper-Hofstadter model with half-flux quanta per plaquette and
weakly coupled Kitaev chains in two respective limits. We show that its phase diagram contains a topologically
nontrivial weak pairing phase as well as a trivial strong pairing phase as the ratio of the pairing amplitude and
hopping is tuned. Introducing periodic driving to the model, we observe a cascade of Floquet phases with well
defined quasienergy gaps and featuring chiral Majorana edge modes at the zero or 7 gap or both. Dynamical
topological invariants are obtained to characterize each phase and to explain the emergence of edge modes in the
anomalous phase where all the quasienergy bands have zero Chern number. The analytical solution is achieved
by exploiting a generalized mirror symmetry of the model, so that the effective Hamiltonian is decomposed into
that of spin-1/2 in magnetic field, and the loop unitary operator becomes spin rotations. We further show the
dynamical invariants manifest as the Hopf linking numbers.
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I. INTRODUCTION

Classification of the electronic wave functions accord-
ing to their topological characteristics offers fresh insights
about band insulators and superconductors described by
Bogoliubov-de Gennes (BdG) mean-field Hamiltonians [1,2].
In two dimensions (2D), integer quantum Hall insulators and
spinless p, £ ip, superconductors are two well-known ex-
amples of topological phases of matter characterized by an
integer (Z) invariant, e.g., the Chern number. A topologically
nontrivial bulk gives rise to edge modes within the energy gap
localized at the sample boundary. More specifically, the total
number of chiral edge states (the net chirality) for a given gap
equals to the total Chern number of all the bands below the
gap. These edge states are protected against imperfections,
e.g., disorder, as long as certain underlying symmetries of the
systems are preserved. For example, the p, + ip, supercon-
ductor has particle-hole symmetry and belongs to class D in
the Altland-Zirnbauer symmetry classes [3-5]. Its simplest,
single-band model has two phases, the strong pairing phase
which is topological trivial with Chern number 0, and the
topological nontrivial weak pairing phase which has Chern
number 1 [6]. The edge excitations in the weak pairing phase
are chiral Majorana fermions, i.e., their creation operators y,
satisty )/kT = y_k, where k is the momentum along the edge
direction. And at each vortex core, there is localized Majorana
zero mode, yg = Y, which obeys non-Abelian statistics [7,8].

In this paper, we consider a two-band model of spinless
px-wave superconductor in 2D. On one hand, our model re-
duces to the extended Harper-Hofstadter model [9,10] at &
flux for vanishing superconducting order parameter, A — 0.
On the other hand, it reduces to the one-dimensional Ki-
taev chain [11] if the hoppings along the y and diagonal
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direction are turned off. Overall, it incorporates the compe-
tition between the band topology, inherited from the familiar
integer quantum Hall effect, and p-wave superconductivity.
Our main motivation is to explore its rich phases as the
parameters of the model are varied and when the model is
time-periodically driven. For the static system, we find a weak
pairing phase with Chern number 2 that is similar to (but
different from) the p, + ip, state despite the pairing symmetry
is py-wave, and a strong pairing phase that is topologically
trivial and can be viewed as stacked Kitaev chains. Previously,
there have been several works on the coupled-wire construc-
tions of 2D topological superconductors [12—14]. Our model
here differs in the hopping patterns as well as the pairing
symmetry. For the driven (Floquet) system, however, we dis-
cover a myriad of new Floquet phases that feature zero and &
chiral Majorana edge modes. These phases are characterized
not only by the Chern numbers of the bands, but also the three-
winding numbers of the unitary evolution operators. Thus, this
two-band (the number of bands at positive energies) model
enriches our understanding of topological superconductivity
in 2D in and out of equilibrium, beyond the well known
one-band model of p, + ip, superconductivity.

Despite its apparent complexity relative to the single-band
model, we show that this model can be solved analytically
for both the static and driven (periodically kicked) cases. This
is achieved by exploiting a generalized “mirror” symmetry,
which leads to the decomposition of the 4x4 BdG Hamil-
tonian H into the direct sum of two 2x2 Hamiltonians in
the mirror subspace labeled by &+, H = H,. & H_. In other
words, the problem reduces to that of a spin in a momentum-
dependent magnetic field described by a Hamiltonian of the
form —B. (k) - 0. The decomposition not only greatly simpli-
fies the algebra, but also provides an intuitive picture for all the
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topological properties, including the Chern number and wind-
ing number. It also leads to the definition of mirror-graded
Chern numbers. Furthermore, we show that the nontrivial dy-
namical topology of the driven model manifests as Hopf links
in the (K, ¢) space. These appealing analytical and topological
properties form the second motivation to introduce our model.
Once Kitaev chain is realized in experiments, coupling them
together and control the transverse hopping with the help of a
synthetic magnetic field will naturally lead to our model. We
stress that our main goal here is not to propose a model that
can be readily realized in experiments. Rather, the toy model
is introduced to understand to what extent the topological
properties can be, in principle, tuned for a spinless p-wave
superconductor in 2D while keeping the problem analytically
tractable.

The paper is organized as follows. In Sec. II, we introduce
the model, analyze the BdG Hamiltonian in momentum space,
and discuss its decomposition in the eigenspace of the mirror
symmetry. In Sec. III, we solve the static model to obtain its
phase diagram and discuss the topological invariants of each
phase (e.g., mirror-graded Chern numbers, the total Chern
number) and the corresponding chiral Majorana edge states.
We solve the periodically kicked model in Sec. IV and dis-
cuss the Floquet phases, their dynamical invariants, and edge
modes in the zero and 7 gap. An alternative interpretation of
the dynamical invariant is presented from the perspective of
Hopf links. Section V discusses the implications of our results.

II. MODEL

Consider spinless fermions on a square lattice in two
dimensions described by the following tight-binding Hamil-
tonian:

H, = — Z [JXC:HC, +J, PR T +5Cr

r

+Jd@l(n+ )27r¢ T ot ACr+Jd€l(n 2)271(15 : )H_ycr

+ Acf,;cf + He]. 1)

Here, r = nx + my labels the lattice sites with n, m being inte-
gers, ch creates a fermion at site r, and we have set the lattice
spacing to be unity. The lattice configuration is schematically
shown in Fig. 1(a). The parameters J;, J,, and J; denote the
hopping along the x, the y, and the lattice diagonal direction,
respectively. There is a magnetic field along the z direction
that gives rise to a magnetic flux ¢ per unit cell. In cold
atom set ups using optical lattices, this can be achieved using
artificial magnetic field [15]. In the Landau gauge, the vector
potential A, = 0 and A, = n¢h/e, where ¢ is the magnetic
flux per plaquette of the square lattice measured in unit of
flux quantum % /e. We will focus on ¢ = 1/2, i.e., the case of
7 flux. The unit cell then consists of two adjacent plaquette
aligned along the x direction. The magnetic Brillouin zone is
k. € [0, w] and k, € [0, 27]. Finally, A is the p,-wave Cooper
pairing amplitude. We do not determine A self-consistently.
Rather we treat it as a tunable parameter controlled by, for
example, proximity effect with a nearby p,-wave supercon-
ductor. For fixed m (a row of the lattice), the pairing bears the
same form as the Kitaev chain [11]. In fact, the Hamiltonian
(1) can be viewed as Kitaev chains extending in the x direction
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FIG. 1. (a) Schematics of the two-dimensional lattice and the
model Hamiltonian (1). For half flux quantum per plaquette (¢ =
1/2), each unit cell (the dotted box) contains two lattice sites (blue
and orange circles). The hopping strengths along the x, y and diag-
onal directions are Jy, Jy, and J;, with their phases given in Eq. (1).
A is the p, wave pairing along the x direction. (b) Energy spectra of
the static Hamiltonian (1) as A is varied. The topological transition
between the weak pairing phase and strong pairing phase occurs at
A = J, where the gap closes. [(c) and (e)] Energy spectra of the static
model in stripe geometry with y-open boundary. The number of unit
cells along the y direction used in the numerics is L, = 20. Note
that each edge mode in (c) is twofold degenerate. The red/green dots
label the boundary states at the lower/upper boundaries. [(d) and (f)]
Energy spectra of the static model in stripe geometry with x-open
boundary. The number of unit cells along the x direction is L, = 20.
The magenta/black dots label boundary states at the left/right bound-
aries. The blue dots label the bulk bands. For (c) and (d), A = 0.5J,;
for (e) and (f), A = 1.5J,. Other parameters are o« = 0.2, A = 1.
Energy is in units of J,.

and coupled by J, and J; hopping. We have assumed the
chemical potential © = 0. And we will measure energy in
units of J,.

In the limit of A = 0, the model reduces to the Harper-
Hofstadter model at flux 7 with diagonal hopping J,; [16,17],
which induces a gap at energy £ = 0. The two-band model
exhibits quantum Hall effect. For small finite A, we will show
below that the system is a topological superconductor similar
to the p, + ip, chiral superconductor. For large A, the system
is topologically trivial. Thus model (1) describes the compe-
tition between these two phases separated by a topological
transition. We will first focus on the static case in Sec. III,
where J, etc. are constant parameters. Later in Sec. IV, we
will consider J, as function of time ¢, for example,

Jy = Jy(t) = LT Y " 8(t — £T),
L
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while all other parameters are held constant. In other words,
the system is periodically kicked with time period T [18].
This is an example of Floquet, or periodically driven, systems
for which H(t) = H(t + T) [19,20].

The Hamiltonian appears simpler in momentum space.
Since the H; is cyclic in y, Fourier transform along the y
direction gives the following effective 1D Hamiltonian (with
energy in units of J;) for given quasimomentum k,:

H(k,) = — Z [Jnchkac,,,ky + ACZ_HJ{}.C;_I{V + H.c.]

n

+ D el cnr, — 1/2), 2)

where we have introduced
Jp =1+ 2acos 2rp(n+1/2) + k]
and
M = 2Acos2mpn + k).

Here, the ratio A = J,/J; is the x — y hopping anisotropy, o =
Jy/J, and A = A/J,. For 7 flux, label the two sites within
the unit cell as A and B. More explicitly, even n corresponds
to the A sites for which

uA = 2Acosk,, JA=1-2¢a sink,.
For n odd, or B sites,
n? = —2rcosky,, J® =1+ 2asink,.

We then perform another Fourier transform along the x axis,
+ 1 0
T . lk,(2j T
Ciy = —= e™e
JA Z A ke’
VN T

T =

1 o .
ik (2j41) 1
C. — e ‘ c
J.B Z B.ky*
~N I

where j labels the unit cell, and N is the total number of
unit cells, and k, € [0, 7]. Introduce Nambu spinor Wy =
(¢cAk> CBA c/z’fk, c;ﬁk)T, then the original Hamiltonian be-
comes

1
— ¥
H, = > Ek W, Hpag (k) Vg

The Bogoliubov-de Gennes (BdG) Hamiltonian can be ex-
pressed in compact form

Hpyg(k) = —2A coskyo.T, — 2 cos k.0, T,
+ 4o sink, sin k,o, + 2A sin kyoxt,.  (3)

Here the Pauli matrices 7; (0;) are defined within the
particle-hole (AB sublattice) space. Products such as o, 7, are
understood as direct product oy ® 7, where ® is omitted for
brevity. A main appeal of our model H; is that in k space, it
has a nice form Hggg(k), which facilitates analytical analysis.
It is clear that our main motivation here is to construct a simple
model that contains the interplay of band topology and p-wave
superconductivity and can reduce to well-known models in
certain limits.

The BAG Hamiltonian is invariant under the transformation
O = oy7, which switches particle to hole and simultaneously

sublattice A to B,
[Hpac(k), O] = 0.

We will refer to O as a generalized “mirror” symmetry [21], or
mirror symmetry for short. The O symmetry includes a mirror
reflection about the center of a bond along the x-direction that
swaps the A and B sublattice sites. This symmetry will play an
important role in the topological characterization below. Let V
be the unitary transformation that diagonalizes O, VIOV =
—1,. In the eigenbasis of O, the Hamiltonian is decomposed
into the direct sum [22]

V'Hpag(k)V = H_(k) ® H. (k),
where
H. (k) = 2(£A cosk, — A sink,)o, + 2 cos k.0,
=+ 4o sin k, sin ky o0y, “

are 2x?2 matrices, i.e., k-dependent spin 1/2 Hamiltonians.
Here the subscript & labels the subspace where O is diago-
nalized and has eigenvalue +1, respectively. The systematic
simplification from H; to H enables us to solve for its eigen-
spectra and obtain its topological invariants.

II1. PHASE DIAGRAM OF THE STATIC MODEL

To find the spectra of the static BAG Hamiltonian, we can
express it in a 2x?2 block form,

_(D+F -G
HBdG—( iG —D+F)’ ()

where
D = -2\ cosky,o, — 2 cos ko,
F = 4asink, sink,o,,
G = 2Asink,o,.

Its square takes a very simple form,
0 o
Hgqg = 4[a + ”<ay 5)} ©)

a = cos’ ky + A% cos® ky + 4o sin? k, sin? ky + A%sin® ky,

b = 21A cosky sink,.

where

Consequently, the eigenvalues E of Hpyg are simply +E.
with Ex = 24/a % b or explicitly,

E,= 2\/0052 ke + (Acosk, F A sin k,)? 4 4a2 sin® k, sin® ky.
@)

Alternatively, we can start directly from the spin 1/2 Hamil-
tonians H. (k) in Eq. (4) and arrive at Eq. (7) immediately.
According to Eq. (7), at positive energies there are two over-
lapping bands E. (Kk), corresponding to H. respectively. The
other bands at negative energies are just the particle-hole
reflection of those at E > 0. The positive and negative bands
are separated by a gap as shown in Fig. 1(b).

The bulk gap closes when A = A. The gap closing occurs
at two k points, k; = (7 /2,0) and k, = (;r /2, 7). This marks
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TABLE I. Summary of the topological invariants, defined in the
main text, of the static model in the weak pairing (WP) phase and
strong pairing (SP) phase. Also shown are the characterization of
their edge modes.

Cy C_ C Edge modes
A < A (WP) 1 1 2 Chiral Majorana
A > A (SP) 0 0 0 Edge dependent

a quantum phase transition point that separates two gapped
phases, a weak pairing (WP) phase at A < A and strong pair-
ing (SP) phase for A > X. These two phases are topologically
distinct. Even though the two bands are overlapping in energy,
thanks to the O symmetry and the decomposition Eq. (4), we
can define the Chern number C.. in each mirror subspace, e.g.,
for the lower band —FE (k) of H, respectively [23]. The total
Chern number is then

C=C,+C_.

We find C = 2 for weak pairing phase, while C = 0 for the
strong pairing phase. Define the mirror-graded Chern number,

C, —C_
—

For the weak pairing phase, we find C; = C_ = 1, while
for the strong pairing phase, C; = C_ = 0. In both cases,
C,, = 0. The transition from the weak pairing phase to the
strong pairing phase is a topological phase transition where
the total Chern number changes by —2. This is summarized in
Table I below. The situation here differs from another model
we studied earlier, where the strong pairing phase has C = 2
and C,, = 1 [22]. A nonzero value of C,, means the presence
of counter-propagating (sometimes referred to as helical) Ma-
jorana edge modes protected by mirror symmetry.

The distinction between the WP and SP phase is reflected
in their edge states as illustrated in Fig. 1. The weak pairing
phase is a topological superconductor characterized by Cy+ =
1. It is analogous to the p, + ip, state, albeit with C = 2.
According to the bulk-edge correspondence, there are two
chiral Majorana edge modes on the system boundary, see
Figs. 1(c) and 1(d). Note that in Fig. 1(c), each edge mode (in
color red or green) is two-fold degenerate, in consistency with
C = 2. In contrast, the strong pairing phase is topologically
trivial. It can still have edge states, but their existence depend
on the details, e.g., the orientation of edge, and therefore is
not topologically protected. More specifically, edge states are
absent at the upper and lower edges as shown in Fig. 1(e), but
they appear at the left and right edges as shown in Fig. 1(f).

The edge-dependent boundary modes in the strong pairing
phase can be further understood by viewing the 2D lattice
system as coupled Kitaev chains. In the limit of J, = J; =0,
each chain along the x direction is a p,-wave superconductor
described by Kitaev’s model with u = 0, which hosts Ma-
jorana zero modes at the chain boundary, say at x = 0 and
x = L. Small but finite J, and J; couple these zero modes to
lift their degeneracy. As a result, for an x-open boundary, the
in-gap edge modes acquire dispersion in the y direction but
remain well separated from the bulk band, in agreement with
the numerical results in Fig. 1(e). Note that in this case there

Cn =

is no net current flow along the edge. For y-open boundaries,
each chain is fully gapped and weak inter-chain coupling do
not introduce any in-gap modes. Thus the strong pairing phase
as stacked Kitaev chains is a weak topological phase, but not
a genuine 2D topological superconductor. Its edge-dependent
boundary modes are reminiscent of the 1D topology. For the
weak pairing phase at A < A, one no longer can treat the
interchain coupling as small, and the system is intrinsically
two-dimensional.

IV. THE PERIODICALLY DRIVEN MODEL

Now we generalize the static model Eq. (1) to see if peri-
odic driving [24-31] can induce new topological phases that
differ from the weak and strong pairing phase above. To this
end, we make the replacement

Jy = Jy(t) = [T Y " 8(t — LT)
£

in H;, such that Hy(t) = H(t + T). In this periodically kicked
model, J,, J;, and A are all held constant, while the hopping J,
is turned on when time ¢ is multiples of the kicking period T,
t = €T with £ an integer. For this particular kicking protocol,
the time-averaged hopping strength within each driving period
is Jy. Here for simplicity we focus on the case of kicking
only the J, term while keeping J; constant. For more general
kicking protocols, e.g., kicking both the J, and J; terms, our
numerics indicates that while the parameter regions of topo-
logical phases have changed, the key qualitative features of
Floquet topological phases and their dynamical characteriza-
tion remain roughly the same. At each time instant, the system
is described by Hpqg (K, ), or equivalently its decomposition
H. (k, t), obtained from Eq. (3) by replacement

A= At)=AT Y 8t —LT).
14

Define the time evolution operator as usual,
Uk,t)= 'Te_iﬂ; Hgqg (k,t')dt’

where T denotes time ordering. In particular, U(k, T) is
known as the Floquet operator. Its eigenvalues ¢/®®7 yield
the quasienergy band structure {w,(k)}, where n is the band
index and the quasienergy w, is defined modulo 27 /T. Due
to the O symmetry, to find the eigenvalues of U(k, T), it is
sufficient to consider the Floquet operator in the + subspace

of O,
Us(k, T)=T e o Hzleadr

=e$2iTA cos kyo, e*iT(72A sin k0,42 cos kyo, T4a sin k, sin kyoy) .

The 2x2 unitary matrix consists of two successive spin rota-
tions, Uy = e~ 2% ¢~ x1(1%) where

X1 = T\/4 cos? k, + 16a2 sin? k, sin® ky + 4A2 sin? ky,
X2 = £2T A cosk,,

n, = 2T cosk./x1, ()
n, = 4T a sink, sink,/ 1, 9
n, = 2T Asink,/x;. (10)
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Here we have suppressed the subscript &+ in x, and n, for
brevity. Combining the two rotations, after straightforward
algebra, we find the effective Hamiltonian 7% of the period-
ically kicked system. It has the form of spin 1/2 in fictitious
magnetic field B,

Uik, T) = eii‘}ﬁT = e*i(Bi-o)T.

The magnitude of B is nothing but the quasienergy, w1 = By
(the negative branch of the quasienergy spectrum is simply
—w4 due to particle-hole symmetry), and it is given by equa-
tion

cos(w+T) = cos(x1)cos(x2) — ngsin(x1)sin(x2).  (11)
Explicitly, the vector B, is given by

B.T [sin x(ny cos xo — ny sin x2)%

~ sin(wsT)
+ sin 1 (ny sin X, + n, cos x2)9
+ (n; sin x; cos x2 + sin x» cos x1)Z]. (12)

Now that each quasienergy band w4 (k) is mapped to a spin
1/2 problem, its Chern number can be obtained for example
by plotting B, (k) for k inside the Brillouin zone.

Note that the effective magnetic field B, is well behaved
as wiT — O but diverges as wyT — m. Physically, the di-
vergence of the B field occurs when the 7 gap closes for
the bulk quasienergy bands. After going through this critical
point, the number of chiral edge modes at the = gap changes.
Furthermore, we note that in the fast driving limit of 7 — 0,
we recover the static model discussed in the previous section.
To see this, we expand the sines and cosines in Eq. (11) to the
order of T2 to obtain

0T = \/xf + X5 + xxen:,

which agrees with the quasienergy spectrum of the static
model given by Eq. (7).

The various phases of the periodically driven system can
be revealed by graphing the bulk quasienergy spectrum as
function of the parameters of the model. For example, Fig. 2
shows the quasienergy as the pairing amplitude A is varied
for fixed driving period 7. Compared to the static cases with
only two distinct phases, periodic kicking induces a series of
Floquet phases, each of which has a gap at quasienergy 0,
or w /T, or both. The differences between these phases are
reflected in their edge states. The extra gap at quasienergy
/T (known as the m gap) gives rise to the possibility of
new types of chiral Majorana modes that are intrinsically
dynamical in nature [32,33]. We will refer to the edge modes
inside the m gap (zero gap) as w modes (zero modes). For
small A, there are a pair of chiral Majorana modes traveling
along each edge within the zero gap only, similar to the weak
pairing phase of the static model, see Fig. 2(a). By increasing
A, the quasienergy bands touch each other at the w gap at
A = 0.6J,. This marks a topological transition into a phase
which has a pair of chiral Majorana modes at the zero gap as
well as the m gap, as depicted in Fig. 2(b). As noted earlier,
B. becomes ill-defined when the = gap closes, w T = 7,
accompanied by dramatic changes in the 7 -edge modes. With
further increase of A, another gap closing occurs at A = J,

A %

FIG. 2. Floquet phases of the periodically kicked model.
(a) show the quasienergy spectrum w, as A is varied with fixed
A=1,0=0.2, and T = 1. The gaps are marked with the corre-
sponding winding numbers W;" and W, defined in the main text.
(b), (¢), and (d) show the quasienergies for strip geometry (with open
y-boundary) at A = 0.3J,, 0.8/, and 1.1J,. In the static case, the
first two values of A correspond to the weak pairing phase, while
A = 1.1J, corresponds to the strong pairing phase. The red/green
colors label the edge states near y = 1 and y = L, edges; L, = 60.
The blue dots label the bulk bands.

where the zero modes disappear. The system then enters into
a Floquet phase characterized by = modes only, as shown in
Fig. 2(c). This Floquet phase with = modes differs from the
static strong pairing phase at the same A value. Yet another
phase takes over for larger A, e.g., A ~ 2.5J,, which features
chiral Majorana edge modes at the zero gap.

The intermediate phase for A between 0.6J; and J, is
a dynamical anomalous phase [31]. Even though the Chern
numbers of the quasienergy bands are zero, both zero and
m modes are present. This example shows that Chern num-
bers alone are insufficient to capture the dynamical origin of
the edge modes, as is the case in many Floquet phases. To
correctly describe the bulk-edge correspondence in driven sys-
tems, we need to introduce dynamical topological invariants
[32,33]. In our 2D model, the dynamical invariant is the three-
winding number directly constructed from the time-evolution
operator. The key concept here is the so-called loop unitary
operator, also known as the return map [32]. The unitary
evolution U (¢) of a periodically driven system can be decom-
posed into a unitary loop U (¢) satisfying U(0) = U(T) =1
and the time evolution of a constant effective Hamiltonian 7
[34]. Explicitly, we can define 57 = ilog, U(T)/T as well as
the return map

U.(t1) = U(t)e' . (13)

Here the subscript € labels the quasienergy gap, and log,
denotes the logarithm with branch cut lying within gap €
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[31]. It is apparent from Eq. (13) that the topology of U (¢)
is carried by both # and U.(t). This point manifests the key
difference between Floquet and static systems. It turns out that
the number of chiral edge states at a chosen quasienergy gap €
is directly related to the phase-band closings [35] (also known
as dynamical singularities) of the time-evolution operator in
the entire driving period. As discussed above, the spectra of
€, give the quasienergy band structure, and each band carries
a Chern number. The loop unitary U, defines a mapping from
the space of (k, ¢), which is a three torus T3,t0a space of uni-
tary matrices U (N). The corresponding topological invariant
is the integer-valued winding number [31,33]

We

=% 2/ dkcdkydt e""PTr
TT T3

x (078,00 3,0 )T "8,0)], (14

where ¢ € [0, T], repeated indices w,v, p € {k, k,,t} are
summed over, and ¢**” is the Levi-Civita symbol. Geometri-
cally, the three-winding number W, measures the total charge
of the dynamical singularities of U, [35]. The stable singular-
ities of U, take the form of Weyl points, i.e. isolated points in
the space of (ky, ky, 1) where the eigenphases of U, referred
to as phase bands, touch each other, similar to those in a
Weyl semimetal [35,36]. For an anomalous Floquet phase
with finite W, the dynamical singularities can not be smoothly
deformed away to become a trivial phase with W, = 0. One
can further prove the following relation between the dynami-
cal invariant W, and the Chern numbers of the Floquet bands
between gap €, and €; [31]:

> Co=We, — W, (15)

€1<€,<€

The number of chiral edge states within a given gap € is given
by the invariant W, [31]. For phases that feature two gaps
at quasienergy zero and m /T, respectively, the topological
invariants (Wy, W) completely characterize the Floquet phase
[32]. For our problem, due to the O symmetry, U, U and 27
can all be decomposed into the direct sum of 2x2 matrices in
the eigenspace of O. For example, the calculation of W= only
involves U (2) matrices. Then we can define W, = WX + W~
fore =0, m.

Armed with the knowledge of W, let us revisit the phase
diagram in Fig. 2 from the viewpoint of dynamical invari-
ants. For 0 < A < 0.6J,, W;° = 1 and W = 0, which is in
agreement of having a pair of chiral Majorana edge mode
in the zero gap. For 0.6J, < A < J,, WOi =land WF=1.
Correspondingly, edge modes are visible in both gaps, and the
Chern numbers vanish in accordance to Eq. (15). And finally
for Jy < A < 1.5J,, W;F = 0, WX = 1, so only = modes are
present. The total Chern number (sum of contributions from
both mirror subspaces) for the quasienergy bands below the
zero gap are 2, 0, and —2, respectively, for the three phases
above. We can clearly see that even when the Chern number
of the bands are zero, edge states can still emerge. Such
anomalous behavior is of dynamical origin and has no static
counterparts.

Figure 3 further illustrates the rich phases of the system for
various kicking period T. For small 7, i.e., at high driving
frequency, the system behaves like a static system in the

(@)t

ky/m

FIG. 3. The quasienergy spectrum (a) of the periodically kicked
model as function of the driving period 7 with fixed A = 1, @ = 0.2,
and A = 0.5J;. The major gaps are labeled with the corresponding
winding numbers W, or W.". (b) [(c)] shows the edge state spectrum
for strip geometry at T = 1.3 (T = 2.8), confirming the bulk-edge
correspondence. The number of unit cells along the y direction is
L, = 60.

weak pairing phase with a pair of chiral Majorana modes
within the zero gap. With increasing 7', the m-quasienergy gap
closes around 7 = 1 and then reopens. This ushers in a phase
with a pair of chiral Majorana edge modes in the = gap, in
addition to the edge modes within the zero gap, as depicted
in Fig. 3(b). Its dynamical invariants are WOi =W=* =1, the
same as the intermediate anomalous phase discussed in the
preceding paragraph. Further increasing 7" leads the system to
a gapless phase with no well defined quasienergy gaps. Even
further increase in T, however, gives rise to a gapped phase
around 7 = 2.8 with W;" = 2 and W = 1. There are in total
three pairs of chiral Majorana modes along each edge, two
of which are degenerate within the zero gap, as depicted in
Fig. 3(c).

The dynamical topology of the periodically kicked p-wave
superconductor encoded in the time evolution operator U,(¢)
can be further understood from another geometric point of
view [37,38]. Consider some arbitrary, topologically trivial
initial state, for example |yo(k, t = 0)) = (1,0)7. The time-
evolved state generated by U, is a spinor,

[WE(k, 1)) = UF(k, 1)|Yo(k, t = 0)). (16)

It defines a mapping from the three torus T° to the state space
of spinors, the Bloch sphere S?. From homotopy point of view,
this mapping is characterized by the linking invariant defined
as follows [34,37-39]

1 4
£ = 2 ) ddkydt "y 9,y 0,9 3, e, (17)
with the partial derivative with respect to k,, k, and t and £#"*
the Levi-Civita symbol. In Eq. (17), we have suppressed the
superscript £ of i to avoid clutter. Note that the definition
of above linking invariant is possible because the evolution is
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time periodic, U.(t = 0) = U.(t = T) = I, and the 4x4 BdG
Hamiltonian can be decomposed into two 2x2 Hamiltonians,
H.. For our Floquet system, we can ignore the nontrivial
cycles of the torus, which does not play a role here, and treat
T? as three sphere S3 [40—42]. The homotopy mapping above
then reduces to the famed Hopf mapping in mathematics, and
the homotopy invariant defined in Eq. (17) is nothing but the
Hopf invariant 3(S?) = Z

Under the action of the loop unitary U,, for a chosen
momentum-time value (ky, ky, ¢), the initial state is trans-
formed to a specific point on the Bloch sphere. Conversely,
if we fix one specific point on the Bloch sphere, the preimage
of the Hopf mapping will take the form of a closed trajectory
in the 3D momentum-time space (if there is any). If we chose
two distinct points on the Bloch sphere (the target states), their
preimage trajectories, as two closed loops, will produce a link-
ing pattern in the momentum-time space. The Hopf invariant
is nothing but the linking number of the two curves, which is
also intimately related to the geometric phase [43,44]. We note
that this equation along with Eq. (15) is reminiscent of the
CWEF theorem in classical differential geometry for twisted
space curves [43,44] whose topology is modeled by a thin
ribbon. One can further show that the linking number of the
preimages of any two points on the Bloch sphere is exactly the
three-winding number defined earlier in Eq. (14) [38],

£E = w, (18)

This equivalence provides an intuitive geometric picture of the
dynamical topology of our kicked system. It also suggests a
promising way for experimental detection of the dynamical
topology by measuring the Hopf links, which were recently
observed in quench dynamics using momentum-time resolved
Bloch-state tomography [45—47].

The Hopf link characterization of our periodically kicked
model is summarized in Fig. 4. Let us focus on the mirror
subspace + (same result applies to the — subspace). An
initial state at the north pole on the Bloch sphere will be
“scattered” to points on the Bloch sphere under the evolution
with the loop unitary. At A = 0.3, the kicked system host
edge modes only within the zero gap. Correspondingly, the
preimage trajectories of the two distinct target states evolved
by U are completely disjointed in the momentum-time space
as depicted in Fig. 4(a), and their linking number is £ = 0.
In contrast, the preimages of U, form links with linking
number E(J{ =1 as depicted in Fig. 4(b). At A =0.8, the
kicked system host both 0-modes and 7-modes. The system is
in the dynamical anomalous phase. The preimage trajectories
of both U} and U, are linked together, with linking number
£§ = L} =1, as shown in Figs. 4(c) and 4(d), in consistency
with their bulk winding number W,” = W& = 1. We stress
that the time-evolved spinor wave function is gauge depen-
dent [recall Hgqg(k) depends on the gauge choice], but the
linking number is gauge invariant. For our gauge choice, it is
most convenient to plot the preimages of time-evolved states
in the extended Brillouin zone scheme, for example within
the interval k, € [0, 2] as done in Fig. 4. In this way, the
linking number can be easily counted. We note that different
choices of the target states will result in different trajectories
in the 3D (k,, ky, t) space. However, the linking number of the

FIG. 4. Hopf links in the 3D momentum-time space as a charac-
terization of bulk dynamical topology. (a) and (b) show the preimages
of two chosen target states (red and blue arrows on the Bloch sphere,
see the inset) under the evolution of U} and U,', respectively, for
A =0.3J,. The Hopf linking number £ =0, £F =1. (c) and
(d) show the results for A = 0.8J,. Here the linking number Lﬁ =1,
ll(f = 1. Note that k, is plotted from O to 2w. The middle inset
gives the initial state |y,) = (1,0)7 (black arrow) and two target
states |Ypue) = ﬁ(Z, DT and [Yreq) = %(—2, )T (blue and red
arrows) on the Bloch sphere. Other parameters are A = 1, « = 0.2
and T = 1.

trajectories, which is a topological invariant and equals to the
corresponding three-winding number, will remain the same.

V. DISCUSSIONS

It is well known that periodic driving offers a powerful
technique to engineer the band topology of topological in-
sulators. For example, in our previous work, we found a
series of Floquet phases for the periodically kicked Harper-
Hofstadter at & flux (but with no pairing), where the edge
modes curiously take the simple form of cosine function in its
dispersion [48]. We have also investigated periodically driven
p-wave superconductors that consist of coupled Kitaev chains
(but in the absence of magnetic flux or diagonal hopping),
where chiral Majorana edge modes were found in the zero
gap for a specially designed four-step driving [36]. Compared
to these earlier studies, the model introduced here is more
general and complex. But paradoxically, analytical solutions
are possible by a consistent decomposition based on sym-
metry. The decomposition also greatly aids the visualization
and computation of the Chern numbers and the three-winding
numbers. Furthermore, it yields fresh insights by relating the
dynamical topology to Hopf links. The topological invariants
computed for each of the various Floquet phases accurately
predict the edge modes in the quasienergy gap. In principle,
our model can be realized via coupled Kitaev chains in solid-
state systems, where the 1D (effective) p-wave topological
superconductor has been demonstrated using semiconducting
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nanowires with spin-orbit coupling in proximity to an s-wave
superconducting reservoir [49-51]. The Peierls phase in the
hopping terms can be controlled by a perpendicular magnetic
field. Alternatively, our model can also be potentially realized
in ultracold dipolar Fermi gases, where the dipolar interaction
gives rise to p,-wave pairing if the dipoles are tilted toward
the x direction so there is no need for proximity effect [36].
In addition, compared to solid-state setups, synthetic gauge
fields are highly tunable in cold-atom systems. The main
lesson learned from this theoretical toy model is that chiral
Majorana edge modes, either static or dynamical (for example
the w modes), is quite general and not confined to the p, £ ipy
state. In particular, the w-Majorana fermions on the edge are

protected by dynamical invariants. This broadens the experi-
mental options for manipulating chiral Majorana fermions for
quantum gates or topological quantum computing [22,52]. We
hope the technical approach presented here is useful for theo-
retical analysis of multiple-band superconductors that possess
additional symmetries, and for visualization of the topological
characteristics of other Floquet systems.
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