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1. Introduction 

With the continued development of transition metal catalysis, 
seemingly impossible transformations have become 
commonplace. The incredible depth and breadth of methods for 
the activation of carbon-hydrogen (C-H) bonds has made the 
process a routine fixture in complex molecule synthesis.1,2,3,4 The 
analogous process of carbon-carbon (C-C) bond activation and 
functionalization promises the means to fundamentally alter the 
structural framework of organic molecules.5,6  Although lagging 
relative to C-H activation, recent efforts have greatly expanded 
methods for C-C activation,7 which generally rely on activated 
substrates8,9 and/or directing groups10,11,12,13 to achieve selective 
reactivity.14 

One area of significant effort has been the decarbonylation of 
ketones.15,16,17 In particular, Sun, Shi, and coworkers reported the 
extrusion of CO from diaryl and arylalkyl ketones bearing a 
pyridyl directing group (Scheme 1).18 Using a [(CO)2Rh(acac)]2 

catalyst, a series of 2-(2-pyridyl)benzophenones were converted 
into the corresponding biaryl species. In our efforts to expand upon 
our previously reported carboacylation and ketone exchange 
chemistry with quinolinyl ketones,19  we developed 
complementary pyridyl-directed decarbonylation conditions. Our 
conditions enable an expansion of the substrate scope relative to 
that reported by Sun and Shi, including a more benign solvent, a 
wider scope of regiochemistry, and new functional groups such as 
amines and thioethers. In addition, we present the decarbonylation 
of multiple heteroaromatic ketones containing quinoline, indole, 
furan, and pyridine substitution that highlight the broad utility of 
the transformation. 

 

 

Scheme 1. Sun and Shi’s method for rhodium-catalyzed 
benzophenone decarbonylation. 

2. Results and Discussion 

Using conditions analogous to those previously utilized by our 
group for the intramolecular carboacylation of quinolinyl ketones, 
pyridyl-substituted benzophenones efficiently undergo 
decarbonylation in the presence of 5 mol% [Rh(C2H2)Cl]2 in 
toluene at 140 °C to produce the corresponding 2-pyridyl-
substituted biaryl compounds in high yields. The results in Table 
1 demonstrate the generality of the transformation, which includes 
a variety of electron rich (entries 2-3) and electron deficient 
(entries 5-6) functional groups. Comparable efficiency is observed 
substrates containing para, meta, or ortho substitution (entries 3, 7, 
and 12). Of note, the inclusion of amines (entry 1) and thioethers 
(entry 4) have not been previously reported in decarbonylation 
reactions of this nature. 

In a similar fashion, decarbonylation proceeds efficiently with 
compounds containing substitution on the aromatic ring anchoring 
the pyridine directing group. Again, both electron donating and 
electron withdrawing substituents readily tolerating the reaction 
conditions (Table 2). The influence of the directing group is clearly 
demonstrated in the formation of product 4f. While the ketone 
ortho to the 2-pyridyl substituent undergoes efficient 
decarbonylation, the para acyl group remains unchanged. 
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Table 1. Scope of functional group compatibility for 

decarbonylation reaction. 

 

Entry Product R Yield (%) 

1 2a p-NMe2 94 

2 2b p-OMe 94 

3 2c p-F 88 

4 2d p-SMe 86 

5 2e p-CN 88 

6 2f p-CF3 97 

7 2g m-OMe 98 

8 2h m-F 91 

9 2i m-Me 89 

10 2j m-CF3 94 

11 2k 3,5-(CF3)2 90 

12 2l o-OMe 88 

13 2m o-CH3 79 

14 2n o-Cl 93 
a

 Standard conditions: 0.2 mmol ketone, 0.01 mmol 
[Rh(C2H4)2Cl]2 in 1.5 mL toluene at 140 °C for 16 hours. 

 

Table 2. Scope of functional group compatibility for 
decarbonylation reaction. 

 

Entry Product R Yield (%) 

1 4a 4-Me 89 

2 4b 4-CF3 92 

3 4c 5-OMe 91 

4 4d 5-CF3 94 

5 4e 5-CN 83 

6 4f 5-C(O)CH3 86 
a

 Standard conditions: 0.2 mmol ketone, 0.01 mmol 
[Rh(C2H4)2Cl]2 in 1.5 mL toluene at 140 °C for 16 hours. 

 

The significant advances presented by this new method are 
illustrated in Scheme 2, which includes products generated from 
the successful decarbonylation of heteroaromatic and ferrocenyl 
species. While previous methods have included furan- and 

thiophene-containing substrates included here,16a,18a this is the first 
report of the extension of the decarbonylation process to form 
ferrocenyl compound 5e and more importantly, to nitrogen-
containing heterocycles. While the majority of the ketone 
substrates are produced through the palladium-catalyzed oxidative 
coupling of 2-phenylpyridine and a benzaldehyde,20 this method 
fails for most nitrogen containing species. Instead, the heterocyclic 
ketone starting materials are prepared from 2-bromophenyl-2-
pyridine via lithium-halogen exchange, nucleophilic addition to an 
aldehyde, and oxidation.21 Once formed, decarbonylation of these 
heterocyclic ketones, including those with pyridine, indole, and 
quinoline substitution, generally proceeds quite efficiently. 
Notably, the slightly reduced yields relative to the products in 
Tables 1 and 2 are attributed to the formation of small amounts of 
a second isomeric product, quite possibly an atropisomer. In the 
case of the 4-substituted quinoline 5i, the isomeric products were 
a challenge to separate, leading to only 46% of the clean isomer. 
Efforts are underway to conclusively identify the second isomer 
and to investigate methods to control the formation of each 
species. 
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Scheme 2. Scope of heteroaromatic ketones in the 
decarbonylation reaction. 

 

The catalytic process is hypothesized to be similar to that 
previously proposed by Sun and Shi (Scheme 3).18 The pyridine 
directing group is required for reactivity, suggesting that rhodium 
coordination precedes a sequence of oxidative addition, 
decarbonylation, and reductive elimination. Notably, the site of 
initial C-C bond activation is unclear: initial activation may occur 
on the aryl-ketone bond proximal to the pyridine to generate 
intermediate A (Path A), or it may occur on the bond distal to the 
pyridine directing group to generate B (Path B). Either 
intermediate is anticipated to undergo decarbonylation to generate 
rhodium aryl species C, which undergoes reductive elimination, 
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 3 
and loss of CO to form the product and regenerate the rhodium 
catalyst. Further investigation of this mechanism, and particularly 
the site of C-C activation, is underway. 
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Scheme 3. Proposed mechanistic pathway.  

 

As described previously, this chemistry stemmed from work on 
8-quinolinyl ketones. In direct contrast to the behavior of pyridine-
substituted chemistry described here, quinolinyl ketones can 
undergo addition chemistry following C-C activation without 
decarbonylation17,19. The difference in reactivity is attributed to the 
chelate that is formed upon oxidative addition. With quinolinyl 
ketones, rhodium insertion into the C-C bond results in 5-
membered Rh(III) metalacycle D with an internal carbonyl 
(Scheme 4). This species does not undergo decarbonylation, as that 
would form an unfavorable 4-membered chelate. In contrast, the 
5-membered-exocyclic carbonyl (Scheme 3, A) or the 6-
membered-endocyclic carbonyl B can each undergo carbonyl 
migration to generate 5-membered metalacycle C. To date, the 
propensity of the pyridyl-directed ketones to undergo rapid 
decarbonylation has limited the possibility of any intermolecular 
chemistry. 
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Scheme 4. Rationale for lack of decarbonylation with 
quinolinyl ketones. 

 

In conclusion, our group has developed a highly efficient and 
general method for ketone decarbonylation that builds upon and 
broadens the substrate scope of previous methods. These 
conditions provide reliable decarbonylation of a wide variety of 
substrates, including numerous heterocyclic ketones, offering new 
methods for the construction of congested multi-heterocyclic 
aromatic species. 
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