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Biomechanical Motion Planning for a Wearable
Robotic Forearm

Vighnesh Vatsal

Abstract—Supernumerary robotic devices in the form of wear-
able arms enhance a user’s reachable workspace and provide them
with additional capabilities. However, the user may experience
considerable force and moment loads on their body due to the
robot’s motion. In this letter, we present a simulation and trajectory
planning framework that aims to minimize the load on a user’s
muscles while operating a Wearable Robotic Forearm (WRF).
Using a high-fidelity model of the human arm, we construct a term
for biomechanical costs that is subsequently added to the overall
cost function for a motion planner. For evaluation, the planner is
initialized with shortest paths linearly interpolated between ten
start and goal state pairs in the configuration space, as well as with
paths optimized for reaction moments using a local search. We
find that the biomechanical planner coupled with locally-optimized
initialization reduces mean human muscle fiber forces by up to
23.47% compared to the linearly interpolated trajectories.

Index Terms—Wearable robotics, human-aware motion

planning, human-centered robotics.

I. INTRODUCTION

UPERNUMERARY robotic (SR) devices are wearable

S augmentations, typically in the form of additional arms [1]
or wrist-mounted fingers [2], that expand a user’s capabilities
beyond those found in nature. As opposed to prostheses and
exoskeletons that aim to recreate or support existing human func-
tion [3], SR devices allow for enhanced reach, and provide the
user with additional modes of interaction with the environment.
However, since a user must support an SR device with their own
body, one of the major challenges in their design is to reduce the
ergonomic load on the human while maintaining functionality.
We have previously developed a Wearable Robotic Forearm
(WRF) for assistance in close-range collaborative tasks using
an iterative user-centered design approach [4]. The force and
moment loads on a user’s shoulder and elbow joints were found
to be within human ergonomic ranges in scenarios involving
fetching and assisted handovers [5]. This analysis, similar to [1],
assumed rigid body models for both the human arm and robot,
and considered the robot’s effect on the user during pre-specified
trajectories. In this letter, we extend the biomechanics analysis
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(a) WRF mounted on a user

(b) Trajectories to be optimized

(c) Upper limb musculoskeletal model [6]

Fig. 1. (a) The Wearable Robotic Forearm (WRF) is a supernumerary device
for assisting the user in close-range collaborative tasks. (b) The goal of this work
is to optimize the WRF’s trajectories (green) to reduce loads on the user’s arm
muscles. (¢) An OpenSim-based biomechanics model is used to determine these
muscle loads, with the human arm kept static at the pose shown in (c).

by incorporating a detailed model of the human arm for deter-
mining muscle fiber forces generated due to the robot’s motion.
We also apply this model to develop a motion planner for finding
robot trajectories that minimize human muscle loads (Fig. 1).

A. Related Work

1) Supernumerary Robotic Devices: The design of SR de-
vices spans a wide range of sizes, functions, and mounting styles.
Larger devices in the form of additional arms for tool-handling
or body support are typically mounted on the user’s back [1] or
hips [7]. Smaller devices with mounting points on the wrists and
upper forearm have been designed for grasp assistance [2] and
neuro-rehabilitation [8].

Lying in between this large spectrum of sizes and func-
tions, the WRF is mounted on a user’s arm through a medical
brace, with the first motor vertically aligned with their elbow
(Fig. 1a). Through a series of surveys conducted earlier as part
of a user-centered design process [4], we found that the most
preferable function for the WRF would be as a collaborative,
assistive agent in professional activities such as manufacturing,
warehouse logistics management, and building construction.
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2) Biomechanics Simulation: OpenSim [9] has been widely
used in the biomechanics community for dynamic simulations of
human motion, with an API accessible through MATLAB [10].
Specifically for wearable robotics, combined human-robot mod-
els in OpenSim have been used for rehabilitation exoskeletons,
to study their effect on the user [11], as well as to parameterically
improve robot designs [12]. This letter addresses the biomechan-
ics of interaction between the human and robot after the design
phase, during usage in close-range tasks.

3) Manipulator Motion Planning: The motion planning
problem for robotic arms has been studied extensively, with
sampling-based planners being a common approach [13]. In
motion planning for the WRE, a feasible trajectory may often
be found by linear interpolation in the configuration space
between the start and goal states (Fig. 1b). To improve upon
this initial guess and minimize muscle loads, we use Stochastic
Trajectory Optimization for Motion Planning (STOMP) [14],
a planner that does not require gradients for its cost function.
Sampling-based planners such as RRT* would require additional
computation for finding a feasible initial trajectory. Aside from
linearly interpolated paths, we also investigate the initialization
of STOMP with a computationally inexpensive local search for
generating trajectories that minimize the reaction moment loads
on the human arm.

B. Contributions

The key contributions of this letter include (1) a simulation
pipeline for determining the effects of a wearable robot’s trajec-
tory on the human arm, and (2) a muscle force-based approach
using the above pipeline for planning ergonomically optimal
robot trajectories. This pipeline is evaluated on ten start and goal
state pairs for the robot. The combined OpenSim and STOMP
model, on initialization with locally optimal paths, results in
trajectories with up to 23.47% lower mean total muscle fiber
forces compared to interpolated shortest paths in the robot’s
configuration space.

II. WEARABLE ROBOTIC FOREARM
A. Design and Kinematics

The wearable robotic forearm (WRF) considered in this work
is a light-weight augmentation, constructed using an arm med-
ical brace, 3D-printed ABS and carbon-fiber reinforced plastic,
and waterjet-machined aluminium structural components. It has
five articulated degrees-of-freedom (DoFs) including prismatic
length extension, along with a modified underactuated Yale
OpenHand T42 gripper [15] as the end-effector. It is actuated
using ROBOTIS Dynamixel servo motors (Fig. 2(a)). Weighing
"2 kg, it has a maximum reach of 0.63 m from the base of
the first DoF. The WREF is intended to operate autonomously,
with concurrent research being conducted on robot planning
in collaborative tasks using human intent recognition through
non-verbal communication.

Its kinematics can be described using the Denavit-Hartenberg
(D-H) parameters [« a, d, 8], listed in Table 1. In all trajectories
considered in this work, the wrist joint and gripper are assumed
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(a) WRF design with six actuators

(b) Kinematic structure of the WRF

Fig. 2. The WREF has five degrees-of-freedom (DoFs) including a prismatic
joint, along with a two-fingered gripper.

TABLE 1
D-H PARAMETERS FOR THE WRF

Degree of Freedom a; a;(m)  d;(m) 0;

(1) Horizontal panning | 7/2 0 -0.08 (—m, m)
(2) Vertical pitching w/2 0 0 0, 7/2)
(3) Length extension 0 0 [0.33,045] =«

(4) Wrist rotation w/2 0 0.045 (—m, m)
(5) Wrist pitching w/2 0 0 0, )
(6) End-effector 0 0.135 0 0

to be fixed in the pose shown in Fig. 2a, with joint angles 6, = 0
and 05 = /2.

The start and goal states for the WRF are specified in terms
of a configuration space vector 8 = [0, 05, d3]T, where 0, and
0y are the joint angles for horizontal panning (DoF-1) and
vertical pitching (DoF-2) respectively, and dgs is the length of
the prismatic joint (DoF-3).

A trajectory © = [01,05,...,0N] is a set of N poses, going
from the start state 6, to the goal state 6.

B. Dynamics Model

For a given trajectory ® of the WRF, we can compute the
force Fr and moment Mg applied at the base of the first DoF
(ground link in Fig. 2b) due to the robot’s motion. The WRF
has five links, one between each pair of successive DoFs. As a
simplifying assumption, the links are considered to be cylinders
with masses, lengths, and diameters as listed in Table II.

As a further simplification, the user’s arm and medical brace
are considered to be a single rigid body, neglecting the contact
mechanics. Since most of the structural components are mounted
on the user’s forearm, the corresponding reaction loads Fr and
MR are assumed to be experienced on the radius and ulna bones
near the elbow joint aligned with the WRF’s DoF-1 motor, as
shown in Fig. 3.
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TABLE IT
INERTIAL PARAMETERS FOR THE WRF

Link  Mass (kg) Length (mm) Diameter (mm)

(1) 0.470 150 55

(2) 0.425 300 68

3) 0.457 50 35

4) 0.248 45 25

(5) 0.350 50 35
Fig. 3. The reaction force Fr and moment My are assumed to act on the

human forearm near the elbow joint.

An iterative Newton-Euler algorithm [16] is applied to com-
pute Fr and Mg, with zero external forces and moments at the
end-effector as a boundary condition. Refer to [5] for a detailed
dynamics model of a previous WRF prototype, with an identical
approach used in this work.

_ Ineach trajectory, the speeds of the DoFs are held constant at

01 = 1.5rad/s, 09 = 1.0rad/s, d3 = 0.1 m/s. These values were
found to be the upper limits for comfortable operation of the
WREF during human studies in [5]. For simplicity, the velocities
are considered to start and stop instantaneously at the initial and
goal states. Keeping velocities constant reduces the trajectory
optimization problem to search only within the robot’s configu-
ration space. The resulting loads, Fr and Mg computed using
the dynamics model, are considered to be external loads acting
on the human musculoskeletal system, with the biomechanics
model described in the following section used for determining
muscle fiber forces.

III. HUMAN BIOMECHANICS MODEL

We aim to generate trajectories for the WRF that minimize
loads on a user. To achieve this, it is first necessary to determine
the effects of the WRF’s motion on the user at the level of
individual muscle fibers.

As described earlier, the WRF applies reaction forces F'g and
moments Mg on the user’s forearm along each trajectory ©.
We assume that the user’s intention is to hold their arm in a fixed
pose while the robot moves. As a result, arm muscle fibers are
activated, reacting to the external loads and holding the human’s
pose static during a robot trajectory.

We adapted an OpenSim-based human upper limb muscu-
loskeletal model from [6] to estimate the active forces in these
muscle fibers (Fig. 1c). It contains fifty Hill-type muscle-tendon
actuators [17] with their dynamic properties as described in [18].
This model includes seven articular DoFs for the human shoul-
der, elbow, and wrist joints.
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Robot External Desired
trajectory loads human
Fr, MR kinematics
Muscle Compyeee OpenSim
Muscle
forces model
Control
Fig. 4. Schematic of biomechanics simulation.
TABLE III
DESIRED HUMAN ARM KINEMATICS
Degree of Freedom Joint Angle (rad)  (deg)
(1) Shoulder Plane Elevation 1.0 57.3°
(2) Shoulder Elevation 1.2 68.8°
(3) Shoulder Rotation 03 17.2°
(4) Elbow Flexion 0.7 40.1°
(5) Elbow Pronation/Supination 0.0 0.0°

For a given robot trajectory, the computed external loads
Fr and Mgy are applied to the human radius and ulna bones
(Fig 3). We follow a procedure similar to [12], using the
MATLAB-OpenSim interface for conducting the biomechanics
simulations, as shown in Fig. 4.

In the OpenSim model, external loads are considered to act
on the user’s joints, necessitating appropriate muscle reactions
to track a desired human kinematic trajectory. The human joints
of interest in this case are the three DoFs at the shoulder, and
two at the elbow, while the muscles controlling wrist flexion and
deviation are considered to be unaffected by the WRF’s motion.
For all robot trajectories in this letter, the muscle efforts aim to
keep the human arm static in the pose shown in Fig. 1c, chosen
to prevent human-robot collisions by design. The desired static
joint angles for the shoulder and elbow are listed in Table III,
with zero desired velocities and accelerations.

These kinematics are tracked using Computed Muscle Control
(CMCO) [19], a simulation technique that combines static opti-
mization with feedforward control and proportional-derivative
(PD) feedback control to determine the necessary muscle ex-
citations. The forward dynamics model from [18] is used to
determine the active muscle fiber lengths and active fiber forces
based on these excitations.

To illustrate this simulation process, consider a trajectory @" ,
going from 67 = [—1.42,0.77,0.43] to On = [1.0,1.57,0.40]
with N = 25. This trajectory represents the WREF lifting an
object placed below and to the right of the user, and bringing it
to their left hand, as shown in Fig. 1b. The intermediate poses
6;,i€[2, N—1], are linearly interpolated between 67 and
0. Fr and My computed for ®" using the WRF’s dynamics
model.

The CMC simulation divides this trajectory into 20 time steps
for which the kinematic errors are determined after every iter-
ation. The PD feedback control gains for tracking each human
joint are set to K, =400 and K, = 40, in order to achieve
critically-damped error dynamics [19] with K,, = 2\/171,. The
resulting muscle excitations are interpolated, in this case to 335
steps, and used to determine the active human muscle fiber forces
£}, i, 7 € [1,50] along the trajectory.
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Joint angle tracking error in CMC simulations
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Fig. 5. Illustrative CMC results for the trajectory ®": (a) tracking errors in
human joint angles are below 0.25 rd, (b) active muscle forces in four fibers.

Fig. 5 illustrates the results of this CMC simulation for ®7.
The joint angle errors for tracking the static pose are below 0.25
radians (14.3°) in the five human kinematic DoFs of interest.
Fig. 5b shows the estimated active fiber forces in the first four
shoulder muscles as listed in [6]: three muscles forming the
deltoid group, and the supraspinatus.

We consider the first 32 muscles listed in [6], corresponding to
the human shoulder and elbow joints to be relevant, and assume
that the WRF’s motion has no effect on the wrist and hand
muscles. The fiber forces generated in these muscles form the
basis of trajectory optimization and planning described in the
next section.

IV. TRAJECTORY OPTIMIZATION

The planning framework uses the biomechanics model de-
scribed above to generate ergonomic WRF trajectories. While
the overall goal is to plan trajectories that minimize the muscle
fiber forces in the user’s arm, in the interest of faster convergence,
the cost function for the planner also includes other factors
that positively correlate with this muscle force, e.g. reaction
force and moment norms, and smoothness of the trajectory. We
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also describe an approach for improving the initialization of the
planner.

A. STOMP With CMC

The backbone for planning WREF trajectories in this letter is
STOMP, chosen since it allows for the specification of a cus-
tomized state-dependent cost function without the requirement
of gradients for the costs [14]. The optimization objective is
formulated as follows:

Q(©®) =w, ®'RO + w! q(®©)
O = arg ming Q(O) (H

Starting with an initial trajectory @9, the optimal trajectory
©* minimizes the total cost Q(®)—a weighted sum of squared
accelerations @ R®, and state-dependent costs ¢(®). The
first term contains R = AT A, derived from a second-order
finite differencing matrix A, and incentivizes smoothness of the
resulting trajectories.

The STOMP algorithm generates K noisy trajectories around
the initial guess ©°, and weighs them based on the cost Q(O k)
to estimate a stochastic gradient update, repeating this process
over successive iterations.

The state-dependent trajectory cost function contains five
individual terms, q(®) = [gn , 47 , dm » Qaf > Qam)” > defined as
follows:

1) Human Muscle Cost qp,: For each noisy trajectory © g,
a CMC simulation is performed as described in Section III to
obtain the muscle fiber forces generated in the user’s right arm
due to the WRF’s motion along O g .

M

an = Z Fr.;(Ok) (2)

Jj=1

The total fiber force F}, ; for muscle j is the Ly norm of the
force vector f},_; (Fig. 5b) interpolated for that muscle along © g .
qn 1s computed for the first M/ = 32 muscles in the OpenSim
model, with the wrist and hand muscles excluded.

2) Reaction Load Costs qy and q,,: The costs gy and g,
account for the total reaction force Fr, and reaction moment
Mg experienced by the user. The norms of Fg and Mg are
summed for each pose 0;, i € [1, N] along a noisy trajectory
® K-

N N
a5 =Y IIFR(O)] , ¢m = [IMr(@:) 3
i=1 i=1

3) Load Deviation Costs qqr and qqy,: In addition to direct
costs gy and g, for the reaction loads, q4r and qqg,, penalize
positive deviations from the initial trajectory ®°, and reward
negative deviations. This allows for a more aggressive optimiza-
tion towards a low-cost path, as shown in Fig. 12.

The deviations are computed based on the relative difference
in force and moment norms at each pose between a candidate tra-
jectory ® g and the initial trajectory ®°. The relative difference
in force, AF; at step i, is defined as:

[F(6:)] - |[Fr(69)]]
IF=(67)]

AF; = “
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Fig. 6. (a) Reaction force norms ||[Fg||, vary much less than (b) moment
norms || MRg ||, along the linearly interpolated trajectories between the ten start
and goal state pairs.

Effect of Local Search on STOMP
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Fig.7. Onaverage, local search (red) leads to an improvement in the STOMP
cost function over linearly interpolated initial trajectories (black).

Depending on the sign of AF;, a corresponding deviation
metric ds ; can be obtained as follows:

6()~1AFi) _ 1,
e(leFi) _ 1,

AF; <0

dy; =
5 AF; >0

&)
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Fig. 8. Violin plots (box plots with kernel density estimates) of mean total
muscle fiber force data for all ten trajectories.
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Fig. 9. Comparison of total muscle fiber force g, for trajectory R-1 from
Table V.
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Fig. 10.  Vertical pitching angle (DoF-2) for trajectories corresponding to R-1
from Table V.
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Fig. 11.  End-effector positions in 3D for trajectories corresponding to R-1
from Table V.
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Fig. 12.  Adding each component to the STOMP cost function results in
an improvement in performance. (Solid lines: mean normalized costs; shaded
regions: standard errors).

where A; < Ao, resulting in a higher positive penalty for large
increases in the reaction force norm. A similar procedure is
applied to compute the deviation metric d,, ; for the reaction
moment norm:

Mg (6;)] — | Mr(6?)]|

AM,; — ©6)
[Mr(69)]]
(MAM) 1 AM; <0
dpi =4 = (7)
’ eP2BM) _ 1 AM,; >0

Using these metrics, the total deviation costs for a trajectory
are defined as follows:

N N
Qar = Y dfi s Qam = Y dm ()
i=1 i=1

There is a trade-off between the range of exploration for
the noisy trajectories and the rate of convergence. We set the
number of noisy trajectories sampled in each iteration, K = §,
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TABLE IV
PERCENTAGE REDUCTIONS IN MEAN ¢}, FOR ALL METHODS COMPARED TO
LINEARLY INTERPOLATED INITIAL TRAJECTORIES

Trai Percentage reduction for method: (%)
rajectory
STOMP on Initial | Local Search | STOMP on LS

(1) SH-1 11.37 2.95 14.26
(2) SH-2 13.66 1.14 14.41
(3) A2PH 1.35 0.31 1.68
(4) R-1 9.36 7.74 11.03
(5) R-2 7.90 6.29 9.15
(6) R-3 7.08 5.19 8.90
(7) R-4 1.06 9.22 10.97
(8) R-5 3.05 0.63 6.60
9) R-6 15.44 16.88 23.47
(10) R-7 10.28 3.64 18.08

and find that STOMP converges at around 25 iterations for each
of the ten pairs of start and goal states considered in this work.
However, even with a relatively small number of iterations,
the task of finding a trajectory with low muscle fiber forces
is computationally expensive, owing to the CMC simulations
which require over an hour per iteration on a desktop workstation
(Intel Core 17-9700, 32 GB RAM).

B. Local Search for Initialization

Within the constraint of computational costs for CMC, we
improve the convergence of STOMP by generating better trajec-
tories for its initialization while keeping the number of iterations
fixed at 25.

Starting with the linearly interpolated shortest paths in con-
figuration space between the start and goal states, we find a
trajectory that minimizes the norm of the reaction moment Mg.
This strategy emerged from an observation of the trends for
reaction forces and moments, Fg and Mg. Across the linearly
interpolated trajectories between all ten pairs of start and goal
states considered in this letter, relatively little variation was seen
in [|[Fr|| (between 19 and 21 N) compared to the variation in
Mg || (between 2 and "9 Nm), as shown in Fig. 6.

The moment-minimizing trajectory ®% ., consisting of poses
07, is determined by local minimization in a greedy manner
along successive steps from the start state to the goal state:

0 = arg min,, ||MR(011)H2 ©

An interior-point algorithm [20] is used to compute 87, with
the gradient and Hessian of || Mg || with respect to @ computed
symbolically. The lower and upper bounds for feasible configu-
rations are determined by the speeds of each DoF, 91, 92, and dg,
considered to be constant as described in the dynamics model.
For instance, the horizontal panning joint angle 6, is bounded
by [0 — 0, At, 01 + 0, At], where At is the maximum trajectory
time AT (taken to be 3 s) divided by the number of steps N.
The algorithm is initialized with the trajectory @°, consisting
of linearly interpolated poses between 89 and 6%, .

Although the STOMP cost function Q(©) already contains a
term for |[Mg ||, explicitly optimizing for it in the local search
before starting the STOMP iterations led to an improvement
over initial trajectories obtained through linear interpolation.
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TABLE V
MEAN TOTAL MUSCLE FIBER FORCES FOR TEN START AND GOAL STATE PAIRS
. Mean Total Muscle Fiber Force (N

Trajectory Start State 61 Goal State Opn Tl STOMP on Tocal S(T())MP on

Path Initial Path Search Local Search
(1) Reaching for object (SH-1) [0.00, 1.57, 0.33] [-1.42, 0.77, 0.43] | 6105.84 5411.82 5925.77 5235.18
(2) Handing over object (SH-2) [-1.42, 0.77, 0.43] [0.00, 1.57, 0.33] 7298.53 6301.19 7215.32 6246.42
(3) Assisted two-person handover (A2PH) | [-1.33, 0.89, 0.41] [2.41, 0.03, 0.45] 6052.42 5970.94 6033.73 5950.68
(4) Random-1 (R-1) [3.08, 1.08, 0.43] [0.32, 1.52, 0.40] 6425.37 6357.45 5832.79 5720.25
(5) Random-2 (R-2) [1.00, 1.57, 0.41] [-3.00, 0.95, 0.43] | 6521.30 5910.62 6016.74 5802.18
(6) Random-3 (R-3) [1.85, 1.43, 0.38] [-2.62, 0.62, 0.41] | 6554.13 6036.47 6141.92 5954.56
(7) Random-4 (R-4) [2.34, 1.08, 0.42] [-1.61, 0.82, 0.39] | 6721.73 6245.51 6372.70 6123.26
(8) Random-5 (R-5) [2.55, 0.08, 0.44] [-1.35, 1.55, 0.42] | 6626.21 6464.93 6668.06 6227.89
(9) Random-6 (R-6) [1.23, 0.06, 0.39] [-1.06, 1.56, 0.38] | 6227.89 5266.09 5176.58 4765.93
(10) Random-7 (R-7) [1.98, 1.42, 0.34] [-2.15, 1.52, 0.44] | 6770.48 6074.39 6524.06 5546.47

Fig. 7 shows the means and standard errors for the cost functions,
normalized by the cost of the first iteration, for each of the ten
start and goal state pairs, resulting from STOMP performed on
the linearly interpolated configuration space trajectories, and
on the results from the local search. As discussed in the next
section, this approach consistently generated trajectories with
reduced muscle fiber forces compared to the other methods.

V. RESULTS

In this section, we compare WREF trajectories computed using
all the methods described above, for ten start and goal state pairs.

The biomechanical STOMP-based optimization is performed
twice for each pair, first using an initial guess for the trajectory,
and then using the result from the local search. The initial guess
for a valid trajectory is the linear interpolation between the start
and goal states in configuration space. The local search-based
approach finds a trajectory around this initial guess that mini-
mizes the reaction moment norm |[Mg]|.

The results for mean total muscle fiber forces from CMC
simulations on the outputs from each of these four approaches
are listed in Table V. Trajectories (1) and (2) correspond to two
stages of the task shown in Fig. 1 b: a self-handover (SH-1 &
2), and (3) represents an assisted two-person handover (A2PH)
as described in [5]. All others are randomly generated in the
WRF’s configuration space (R-1 to R-7) with a path length of at
least 0.8 m.

As listed in Table V, STOMP performed on the local search
output consistently results in WRF trajectories with lower mean
total muscle fiber force loads on the human arm compared to the
other approaches. The degree of improvement for each of the
methods compared to the linearly interpolated trajectories varies
with the start and goal state pairs (Table IV). The local search
outputs improve upon the initial linearly interpolated paths, but
do not consistently outperform STOMP on the initial trajectory.
The local search tends to outperform STOMP on the linear
interpolation in cases where the noisy trajectories generated by
STOMP are unable to explore the configuration space widely
enough. As shown in Fig. 8§, STOMP with either initialization
has a lower variance than the local search output alone, and
skews towards lower mean total muscle fiber forces. The median
improvements for STOMP on local search, compared to the
initial interpolated paths is by 11.00%, compared to STOMP
on the initial by 2.61%, and compared to local search alone by
5.26%. Among all trajectories, the maximum improvement over

the initial trajectory is for STOMP on local search (23.47% for
R-6).

Looking at a specific start and goal state pair, we illustrate
the effects of each of the trajectory generation approaches.
Consider the start state 81 = [3.08,1.08,0.43] and goal state
6N = [0.32,1.52,0.40], with N = 25 (Trajectory (4) R-1, from
Table V). The STOMP cost component gy, the total muscle
fiber force along a trajectory, is shown in Fig. 9 for all four
approaches, interpolated to 300 steps. The STOMP optimal
trajectory initialized on the linearly interpolated configuration
space results in a lower mean total muscle load, but does not
explore far enough to reduce it significantly (from ~6.42 kN to
76.36 kN). The local search is able to quickly find a trajectory
that pitches lower in the Z-direction than the initial (Fig. 10),
reducing the WRF’s moment arm about the user’s elbow. The
enhancement in extent of exploration due to local search can
also be seen in Fig. 11. For this start and goal state pair, the
local search even outperforms STOMP on the initial guess, with
a result of 75.83 kN. Further STOMP iterations performed on
the local search result reduce the load to “5.72 kN. Although
the optimal result in this case may take longer to execute on the
WREF, relative trajectory times are not considered to be a factor
at this stage, with the upper limit on completion being 3 seconds.
Within this constraint, biomechanically superior trajectories are
preferred over quicker ones.

A. STOMP Cost Function Ablation

We performed an ablation study to determine the effect that
each component of the state-dependent cost q(®) has on the
overall performance of STOMP. For all ten start and goal state
pairs, the total cost (@) was computed for STOMP performed
using subsets of the terms in (@), initialized on linearly
interpolated trajectories ®° for 25 iterations. To compare the
effects of the components, the total costs were normalized,
dividing them by Q(©9?) to provide the relative improvements
in performance shown in Fig. 12.

At first, only the effects of the direct reaction load costs, gy
and ¢,,, were considered. This resulted in a small relative im-
provement over Q(@0%), with a mean reduction of "6%. Adding
the load deviation costs g4r and qq,, improved this performance
to a "16% mean reduction. Finally, adding the cost term ¢;, from
the muscle fiber forces computed through CMC resulted in a
“61% mean relative reduction over Q(©°?).
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Including all of the components in the cost function helped
generate trajectories with reduced biomechanical loads, even
with a relatively small number of iterations.

VI. CONCLUSION

This letter presents a muscle simulation model for determin-
ing the load of a supernumerary wearable robot’s motion on the
user, and then proposes a STOMP-based optimization planner to
find trajectories that minimize human muscle loads. We compare
different initialization paths for the planner, including linear
interpolation and locally-optimal paths, and consistently find
that our method generates trajectories that reduce human muscle
loads.

While these are promising results, our analysis relied on sev-
eral assumptions: the speeds of the motors were held constant;
the human pose was kept static as the robot moved; and it
was assumed that there would be no collisions between the
human and robot at any stage. These assumptions simplified
the dynamics analysis, and reduced the computational cost of
the simulations. In reality, we can expect the human to move
in response to the robot’s movement, sometimes aiding and
sometimes hindering the robot’s plan. While human movement
would not change the mathematics of our model, and could
theoretically be included into the CMC simulation, it would
significantly increase computational cost.

As is, the STOMP and CMC simulations were far from real-
time, requiring several hours to compute on typical hardware
associated with robotic arms. Approximate methods could aid
in deploying our method on a real-time physical system. These
could include training a neural network regression model on
a large dataset of simulated muscle forces generated in the
human arm by external loading due to robot motion. Other
approaches could be to reduce the size of the biomechanics
model by identifying synergies between muscle groups, and to
reduce the scope of the optimization problem through methods
such as principal component extraction [21].

Another limitation of this work is that numerical simulations
do not capture all the details involved in the user experience of
wearing an SR device, which includes factors such as jerks on the
wearer’s body from the motors, and shear on the human skin at
the interface with the mounting platform. Experimental human
factors studies with our approach are needed for determining
real ergonomic improvement.

Despite these limitations, the framework presented in this let-
ter can assist in the design, biomechanical analysis, and motion
planning for SR devices, allowing them to be effective agents in
human-robot collaboration tasks.
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