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Exact Traveling Wave Solutions in Viscoelastic Channel Flow
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Elasto-inertial turbulence (EIT) is a new, two-dimensional chaotic flow state observed in polymer
solutions with possible connections to inertialess elastic turbulence and drag-reduced Newtonian
turbulence. In this Letter, we argue that the origins of EIT are fundamentally different from Newtonian
turbulence by finding a dynamical connection between EIT and an elasto-inertial linear instability recently
found at high Weissenberg numbers [Garg et al, Phys. Rev. Lett. 121, 024502 (2018)]. This link is
established by isolating the first known exact coherent structures in viscoelastic parallel flows—nonlinear
elasto-inertial traveling waves (TWs)—borne at the linear instability and tracking them down to
substantially lower Weissenberg numbers where EIT exists. These TWs have a distinctive “arrowhead"
structure in the polymer stretch field and can be clearly recognized albeit transiently in EIT as well as being
attractors for EIT dynamics if the Weissenberg number is sufficiently large. Our findings suggest that the
dynamical systems picture in which Newtonian turbulence is built around the coexistence of many
(unstable) simple invariant solutions populating phase space carries over to EIT, though these solutions rely

on elasticity to exist.
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The addition of only a few parts per million of long chain
polymer molecules to a Newtonian solvent can fundamen-
tally alter classical (Newtonian) turbulence at high
Reynolds number (Re > 1, [1]) and seed new, visually
striking chaotic motion in viscosity-dominated flows,
which persist even in the inertialess limit (Re <« 1)—the
so-called elastic turbulence [2]. The disruption of near-wall
Newtonian turbulence is well known due to the accom-
panied reduction in skin-friction drag (up to 80%) and is
exploited in oil pumping, for example, in the trans-Alaska
pipeline. For the fluid’s elasticity to manifest, the
Weissenberg number (Wi, the ratio between a polymer
relaxation time scale and a flow time scale) must be large
enough to allow the polymers to stretch as they are sheared,
creating an elastic tension in the streamlines. In drag-
reduced flows, this effect seems to reduce the sweeps of
high-momentum fluid toward the wall, though the exact
mechanisms of polymeric drag reduction and the univer-
sality of its maximum drag reduction (MDR) at 80% [3.4]
remain open research questions.

Recently, experiments and simulations have revealed the
existence of a new turbulent flow state observed at modest
inertia and elasticity [Re = O(1000), Wi = O(10)] [5,6].
This elasto-inertial turbulence (EIT) is dominated by
spanwise-coherent sheets in which the polymer becomes
highly stretched, and attached to the sheets are regions of
intense rotational and extensional flow [6,7]. Recent
numerical simulations have confirmed that EIT is a two-
dimensional (2D) phenomenon [8], while experiments in
pipe flow indicate that MDR may be a feature of EIT and
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not a polymeric perturbation of Newtonian turbulence [9],
as has been assumed [10]. Very recently, numerical
simulations of EIT have revealed the existence of a
recurring coherent structure in the turbulence—an “arrow-
head” of polymer stretch—upon which EIT collapses as the
Weissenberg number is increased [11]. The potential
importance of EIT in drag reduced flows—and also a
possible link to elastic turbulence at Re = 0—raises the
important question as to its origin. One candidate is a newly
discovered elasto-inertial instability [12], found in planar
channel flow and pipe flow, but which exists at much higher
Wi than those at which EIT has been observed. The linearly
unstable eigenfunctions of the instability also bear little
resemblance to the recently found arrowhead state seen in
EIT making any link unclear.

The purpose of this Letter is to establish this link by
demonstrating that the elasto-inertial traveling waves which
originate at the bifurcation point found by Garg et al. [12]
correspond to the arrowhead coherent structures found in
EIT [11]. Specifically, we show that (i) this bifurcation is
substantially subcritical in Wi so states connected with the
instability exist at much lower Wi where EIT exists and
(i1) it is the upper branch of traveling waves which
correspond to the arrowhead solutions not the far weaker
lower branch states which resemble the eigenfunctions.
Beyond the significance of isolating exact nonlinear struc-
tures in viscoelastic channel flows for the first time, our
findings suggest (as conjectured by Garg et al. [12]) that
EIT is built around the nonlinear states which originate
at an elasto-inertial instability in a similar manner to
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Newtonian turbulence, albeit with a completely different
bifurcation structure of underlying elasto-inertial states.

Direct numerical simulations (DNS) are performed in a
2D channel under conditions of constant mass flux using
the FENE-P model,

_ P, (=P
ou+u Vu+Vp—ReVu+ Re V-T, (la)
Vou=0, (1b)
9,C+u-VC+T=C-Vu+ (Vu)'-C, (1c)

where the polymeric stress, T, is related to the polymer
conformation tensor, C, via the Peterlin function
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The equations are nondimensionalised by the channel half
height, 4, and bulk velocity U, (average over the channel
depth), so the Reynolds and Weissenberg numbers are
defined as Re: = hU,/v and Wi: = tU,/h with 7 the
polymer relaxation time. The ratio of solvent to total
viscosities, f := v, /v, is fixed at # = 0.9 and the maximum
extension of the polymer chains relative to their equilibrium
length is held at L = 500. The numerical method uses
second-order finite differences in both directions which
ensures the discrete conservation of mass, momentum, and
kinetic energy has been extensively validated and described
in detail in [8].

A Newton-Krylov solver is wrapped around the DNS
code to converge traveling waves (TWs) as exact solutions
of the governing equations. A global diffusion term
V2C/ReSc is added to the right-hand side of (1c) with a
Schmidt number of S¢ = 10° as in [8]. The presence of this
global diffusion dramatically improves convergence prop-
erties in the Newton solver, and we obtain qualitatively
similar results when time stepping the TWs with this term
removed (i.e., Sc = oo0). Computation and continuation of
traveling waves are performed in a box of streamwise
length [, = z at a usual resolution N, = 128, N, = 513
(others were used to check robustness). A uniform grid is
used in the streamwise direction, and hyperbolic-tangent
stretching is used in z. Calculations in longer boxes were
performed with correspondingly higher stereamwise reso-
lution to retain the same grid spacing Ax.

The time evolution of the volume-averaged trace of C in
a long-box (I, = 4r) calculation at (Re, Wi) = (1000, 20)
is reported in Fig. 1, alongside a representative snapshot of
the flow. The attractor in this configuration is chaotic, and
the flow shows features common to earlier computations of
EIT, including the arrangement of strong regions of trC in
thin sheets which orient and stretch in the direction of the
driving flow. Notable in the snapshot is the presence of the
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FIG. 1. Top: time evolution of volume-averaged trace of the
polymer conformation relative to the laminar value,
A= (trC), /(trCyyn)y, in a computation of EIT in a long
domain, /, = 4z, at Re = 1000, Wi = 20. Middle: snapshot of
the flow extracted at r = 250 (see marker in the top panel),
contours show trC/L?, lines are the perturbation stream function
for (u — Uy,,). Bottom: snapshot of transient EIT at Wi = 30,
with all other parameters held fixed. The flow here eventually
settles onto a stable traveling wave (an arrowhead).

large arrowhead structure (about 3/4 along the channel),
which is roughly symmetric about the channel centerline
and consists of a pair of sheets which reach down into the
near wall regions but also curve up to meet at z = 0. As
shown in the lower panel of Fig. 1, the arrowhead becomes
more pronounced with increasing Wi (it is a stable attractor
at Wi = 30). The emergence and stabilization of arrow-
heads with increasing Wi has been examined recently in
[11]; they appear to be fundamental structures underpin-
ning EIT. We now show how arrowheads connect to the
center mode instability discovered in [12].

Linear stability results for the center mode instability are
reported in Fig. 2. These results were obtained by linear-
izing equations (1) around the parallel, laminar base state
and solving for the complex frequency @ = w, +ic of
normal mode perturbations @(x, ) = @(z) exp(ikx — iwt),
where @ = (u,w, ¢y, iy €12, p) 18 a vector of the flow
variables. The majority of computations described in this
Letter are performed in boxes of length [, =27 and [, = #
(note the exception in Fig. 1); hence, we restrict our search
to integer wave numbers only. The resulting temporal
eigenvalue problem was solved by expanding in N, ~
200 Chebyshev polynomials over half the channel,
z € [-1,0], and applying symmetry conditions at z = 0
(u symmetric, w antisymmetric).

The center mode first becomes unstable at (Re, Wi, k)~
(50,25,2); the associated eigenfunction (also shown in
Fig. 2) consists of trains of tilted vortices of opposite sign
either side of z =0. On the upper branch of the 6 =0
curve, the instability moves to increasingly high wave
numbers and becomes localized at the channel centerline.
Relaxing our restriction to integer wave numbers would
slightly modify the lower branch of the marginal stability
curve at large Wi—for more on the scalings in pipe flow,
see [12].
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FIG. 2. Left: contours of linear growth rate ¢ for most unstable symmetric instability waves in a two-dimensional channel flow of a
FENE-P fluid (L = 500) for streamwise wave numbers k € N. The dashed white line indicates marginal stability ¢ = 0. The overlayed
grid and symbols identify DNS runs in a box of length /, = 2z (blue circle) laminar, (red square) EIT, (green triangle) arrowhead. The
blue lines identify where we have performed arclength continuation of the nonlinear traveling wave born in this instability (at k = 2).
Right: visualization of the instability wave in the x—z plane at points indicated by white circles in the stability diagram. Contours show
the trace of the (perturbation) conformation, lines the stream function. From top to bottom: (Re, Wi, k) = (60, 30, 2), (2000,90,7), and

(130,90,1).

We have conducted a number of complementary DNS
calculations in a box of length /., = 27 at Re = 1000 in
which we attempt to trigger EIT by applying suction and
blowing at the walls (see [6,8]); the results are overlaid on
the stability diagram in Fig. 2. The calculations include a
large region of parameter space where the flow is predicted
to be linearly stable, and EIT is obtained for modest Wi
prior to the emergence and stabilization of a single domain-
filling (k = 1) arrowhead structure (either steady or weakly
periodic in time) as Wi increases. In regions of linear
instability (of the k = 2 eigenmode), the attractor is always
a k=1 arrowhead despite the kK = 1 eigenmode being
linearly stable in all the parameter configurations used in
the DNS calculations. This clearly implies subcriticality as
well as a preference for the flow to adopt the subcritical
k =1 arrowhead solution over the supercritical k = 2
arrowhead solution.

To substantiate the connection of the arrowhead solution
to the center mode bifurcation and show the bifurcation’s
significant subcritical nature, we take the center mode
eigenfunction just beyond the point of marginal stability,
(Re, Wi, k) = (60,30, 2), and apply it as a perturbation to
the laminar flow in a [, = 7z box. Time stepping leads
to saturation onto a stable TW which shares some similarity
to the linearized eigenfunction, although with a conforma-
tion field which is significantly perturbed (note the ampli-
tude in Fig. 3). The TW readily converges in a Newton
solver looking for a steady solution in a Galilean frame

FIG. 3. Arclength continuation in Wi at Re = 60 (blue) and in
Re at Wi = 15 (maroon) in a box of length /, = #. The amplitude
A = (trC)y /{trCyy)y. The solution curve was initialized at
(Re, Wi) = (60, 30) by perturbing a laminar flow with the linear
instability wave at k = 2, which was allowed to saturate onto the
stable upper branch solution. The saddle node at Re = 60 is at
Wi = 8.77; the saddle node at Wi = 15 is at Re = 253.71. The
bifurcation point at (Re, Wi) = (60,26.9) is identified with a
small black circle. Dashed lines indicate unstable states and solid
lines are stable. The upper branches of the Wi and Re continu-
ation curves are unstable between Wi~ 10 and Wi =~ 20 (boun-
daries marked with blue stars) and below ~115 (red star),
respectively. The phase speed of travelling waves is reported
in Fig. 4 and snapshots of the TW at points highlighted on the
curve are shown in Fig. 5.
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moving with phase speed ¢, and then can be arclength
continued around in Wi while holding Re fixed; see Fig. 3.
The amplitude of the traveling wave initially increases
as Wi drops with a saddle node bifurcation reached at
Wi = 8.8 and a (very) low amplitude lower branch connects
back to the bifurcation point at Wi~ 26.9. The upper
branch TW has a Hopf bifurcation at Wi = 20 below which
the attractor is a simple (relative) periodic orbit with period
T = O(100) (T ~ 250 at Wi = 15) and the TW restabilizes
at Wi 10.

The structure of the (unstable) TW at the subcritical pair
(Re, Wi) = (60, 15) is shown in Fig. 5 for both the upper
and lower branches. On the upper branch, resemblance to
the linear stability wave is largely lost and the trC field has
adopted the arrowhead form: a single curved sheet of
highly stretched polymer runs across the channel centerline
(compare with the structure in the [, =4z domain of
Fig. 1) and the flow field is mirror symmetric about z = 0.
The lower branch state does not resemble the arrowhead
and is somewhat closer to the linear eigenfunction,
although there is a pair of weak sheets of polymer stretch
clearly visible.

To probe the connection of the arrowhead emerging from
the center mode bifurcation to EIT, we also take the TW at
Wi = 15 and continue up in Re; see the maroon curve in
Fig. 3. The TW is unstable up to Re ~ 115—whether the
periodic orbit exists subcritically beyond this point has not
yet been investigated. At this Wi, the saddle node sits at
Re =~ 254 where, again, the state takes the shape of an
arrowhead in polymer stretch; see Fig. 5. The sheets on
either side of the centerline have moved inward relative to
their position at Re = 60, though this movement is not
monotonic with increasing Re.

We also report the phase speed, ¢, of the nonlinear
traveling waves in Fig. 4 over the range of Wi and Re
values over which arclength continuation has been per-
formed. Across the parameter space, c, is always faster
than the bulk velocity. Toward the bifurcation point
(Re, Wi) = (60,26.9), the speed tends to that of the center
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FIG. 4. Phase speed of the TWs reported in Fig. 3. Left: fixed
Re = 60, continuation in Wi. Right: fixed Wi = 15, continuation
in Re. The symbols match those in Fig. 3 and correspond to the
states reported in Fig. 5.

mode instability, ¢, ~ 1.48, which is very close to the
centerline velocity U, = 1.5.

Further work is required to establish the self-sustaining
mechanism that produces the arrowhead, though the
parameter values for which it is observed indicate that
elasto-inertial wave propagation along tensioned stream-
lines may play a role (see the linear mechanisms discussed
in [13,14]); this may also help to establish the z locations of
the parallel sheets of polymer stretch that make up the
“edges” of the arrowhead. Other recent studies have argued
for the importance of structures connected to Newtonian
Tollmien-Schlichting (TS) waves [15] in EIT, but have not
been able to explicitly continue these TWs around in the
parameter space. These studies have been performed at
much higher Reynolds numbers and higher values of the
solvent viscosity than those considered here. Continuation
of both the arrowhead and TS TWs in longer boxes will
help establish where these dynamics overlap.

In summary, we have isolated the first exact coherent
structures in viscoelastic channel flow by performing
arclength continuation from the recently discovered
high-Wi instability reported in [12]. Our computations
have demonstrated that the bifurcation is strongly subcriti-
cal in both Wi and Re. The upper branch solutions take the
form of large arrowhead structures in the polymer stress
field—structures which are observed intermittently in
computations of EIT in large boxes and which have been
observed to be stable attractors at very high Wi. Beyond
indicating that the origins of EIT are purely elastic in nature
and so disconnected from Newtonian dynamics, more
importantly, these exact coherent structures provide a
crucial beachhead to identify the self-sustaining processes
which underpin EIT and also possible connections to elastic
turbulence.

FIG. 5. Traveling waves corresponding to points identified in
Fig. 3. Contours show trC/L? lines are the perturbation
(u — Uy, stream function. The aspect ratio matches the snapshot
of the long domain (I, = 4x) calculation reported in Fig. 1.
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