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Abstract This paper introduces a modified version of the recently proposed data-
driven Loewner framework to compute reduced order models (ROMs) for a class
of semi-explicit differential algebraic equation (DAE) systems, which include the
semi-discretized linearized Navier–Stokes/Oseen equations. The modified version
estimates the polynomial part of the original transfer function from data and incor-
porates this estimate into the Loewner ROM construction. Without this proposed
modification the transfer function of the Loewner ROM is strictly proper, i.e., goes
to zero as the magnitude of the frequency goes to infinity, and therefore may have
a different behavior for large frequencies than the transfer function of the original
system. The modification leads to a Loewner ROM with a transfer function that has
a strictly proper and a polynomial part, just as the original model. This leads to
better approximations for transfer function components in which the coefficients in
the polynomial part are not too small. The construction of the improved Loewner
ROM is described and the improvement is demonstrated on a large-scale system
governed by the semi-discretized Oseen equations.
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1 Introduction

This paper introduces a modified version of the data-driven Loewner framework
to compute reduced order models (ROMs) for a class of semi-explicit differential
algebraic equation (DAE) systems, which includes systems arising from semi-
discretized linearized Navier–Stokes/Oseen equations . The improvement is in the
estimation of the polynomial part of the transfer function from measurements and
in the incorporation of this estimate into the Loewner ROM construction, which in
many cases leads to ROMs with better approximation properties.

Most ROM approaches first compute subspaces that contain the important
dynamics of the system and then generate a ROM by applying a Galerkin or Petrov–
Galerkin projection of the original full order model (FOM) onto these subspaces.
These projection based ROM approaches include balanced truncation, interpolation
based methods, proper orthogonal decomposition, reduced basis methods, and
others. See, e.g., the books [1, 3, 5, 9, 12]. All of these ROM approaches require
explicit access to the system matrices to apply the projection and generate the ROM.
In contrast, the Loewner framework computes a ROM directly from measurements
of the transfer function and does not require explicit knowledge of the system
matrices. Thus, the Loewner framework can be applied even if the mathematical
model of the system is not available, e.g., because proprietary software is used
or measurements are generated directly from the physical system. The Loewner
framework is described, e.g., in the book [3, Chapter 4] and in the recent survey [2].

The Loewner framework computes a ROM directly from transfer function mea-
surements in such a way that the ROM transfer function approximately interpolates
the transfer function of the original FOM at the measurements. However, the
Loewner ROM generated with the original approach has a strictly proper transfer
function. In particular, the ROM transfer function goes to zero as the magnitude of
the frequency goes to infinity. In contrast, the transfer function of the original model
may have a polynomial part which is bounded away from zero, or is even unbounded
as the magnitude of the frequency goes to infinity. In this case, this substantially
different behavior of transfer functions generates substantial differences away from
the measurements, which means that the ROM may not capture important features
of the original problem. As mentioned before, this paper shows how to estimate
the polynomial part from transfer function measurements and how to incorporate
these estimates into the Loewner ROM construction to generate better ROMs. In
principle, there is no difference between the computation of a Loewner ROM for an
ordinary differential equation (ODE) system and for a DAE system. However, for
ODE systems the structure of the ODE system allows one to directly identify the
polynomial part, especially assessing whether it is non-zero. Unfortunately, this is
more involved for DAE systems. For theoretical purposes we derive the analytical
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forms of the strictly proper and polynomial parts of the transfer function for our class
of semi-explicit DAE systems. If available, the analytical form of the polynomial
part of the transfer function could be used. However this requires access to the
system matrices. As an alternative, we propose to estimate the polynomial part of
the transfer function from measurements. We then show how to incorporate this
estimate into the Loewner ROM construction to generate better ROMs. This paper
specifically focuses on the structure of semi-explicit DAE systems arising, e.g., from
semi-discretized Oseen equations and complements [7].

The class of semi-explicit DAE systems is given by

E11
d

dt
v(t) = A11v(t)+ A12p(t)+ B1,0g(t)+ B1,1

d

dt
g(t), t ∈ (0, T ),

(1.1a)

0 = AT
12v(t)+ B2,0g(t), t ∈ (0, T ),

(1.1b)

v(0) = 0, (1.1c)

y(t) = C1v(t)+ C2p(t)+ D0g(t)+ D1
d

dt
g(t) t ∈ (0, T ).

(1.1d)

Here v, p are the states (velocities and pressures in the Oseen system), g are the
inputs, and y are the outputs. The matrix E11 ∈ R

nv×nv is symmetric positive
definite, A11 ∈ R

nv×nv , AT
12 ∈ R

np×nv , np < nv , is a matrix with rank np,
B1,0, B1,1 ∈ R

nv×ng , B2,0 ∈ R
np×ng , C1 ∈ R

ny×nv , C2 ∈ R
ny×np , and D0, D1 ∈

R
ny×ng . See, e.g., the books [6, 10]. Derivatives d

dt
g of the inputs appear in the semi-

discretized equations, e.g., when inputs on the partial differential equation (PDE)
level are given as Dirichlet conditions on the velocities (e.g., the input corresponds
to suction/blowing actuation on the boundary).

Often it will be convenient to define n = nv + np,

x(t) =
(

v(t)

p(t)

)
, E =

(
E11 0
0 0

)
, A =

(
A11 A12

AT
12 0

)
, (1.2a)

B0 =
(

B1,0

B2,0

)
, B1 =

(
B1,1

0

)
, C =

(
C1 C2

)
, (1.2b)

and write (1.1) in the compact notation

E
d

dt
x(t) = Ax(t)+ B0g(t)+ B1

d

dt
g(t), t ∈ (0, T ), (1.3a)

Ex(0) = 0, (1.3b)

y(t) = Cx(t)+ D0g(t)+ D1
d

dt
g(t), t ∈ (0, T ). (1.3c)
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This paper is organized as follows. In the next Sect. 2 we derive the analytical
representations of the strictly proper and polynomial parts of the transfer function.
Section 3 reviews the Loewner approach. Our approach for estimating the polyno-
mial part of the transfer function from data is introduced in Sect. 4. Section 5 applies
the Loewner approach with identification of the polynomial part of the transfer
function to the Oseen equation.

2 Transfer Function

As mentioned before, the Loewner framework constructs a ROM such that its
transfer function approximates the transfer function of the FOM. The transfer
function H(s) of the FOM additively splits into a so-called strictly proper part
Hspr(s), which is a rational function in s with ‖Hspr(s)‖ → 0 as |s| → ∞,
and a polynomial part Hpoly(s). Depending on the transfer function measurements
available it can be difficult to obtain a good approximation of the combined transfer
function

H(s) = C
(
s E− A

)−1
(B0 + s B1)+ D0 + s D1 (2.1)

associated with (1.3), and in these cases a separate approximation of the strictly
proper and of the polynomial part can yield much better results. This section
computes Hspr(s) and Hpoly(s).

2.1 Transfer Function of an ODE System

First consider (1.3) with an invertible matrix E, i.e., consider an ODE system. Since

(
s E− A

)−1
(B0 + s B1) =

(
s E− A

)−1
(B0 + AE−1B1 + (s E− A) E−1B1)

= (s E− A
)−1

(B0 + AE−1B1)+ E−1B1,

the transfer function (2.1) can be written as

H(s) = C
(
s E− A

)−1
(B0 + AE−1B1)︸ ︷︷ ︸

=Hspr(s)

+CE−1B1 + D0 + s D1︸ ︷︷ ︸
Hpoly(s)

.



Model Reduction of Semi-Explicit DAEs Using the Loewner Framework 189

If E is invertible, the strictly proper part and the polynomial part of the transfer
function can be determined directly from the matrices in (1.3). Specifically, the
polynomial part is at most linear,

Hpoly(s) = P0 + s P1 with P0 = CE−1B1 + D0, P1 = D1,

and the polynomial part is zero if B1, D0, D1 are zero.

2.2 Transfer Function of the Semi-Explicit DAE System

Now consider (1.1). Because the corresponding E in (1.2) is singular, the represen-
tation (2.1) does not directly expose the strictly proper part and the polynomial part
of the transfer function. We proceed as in [8] and transform (1.1) into an ODE
system.

We write

v(t) = v0(t)+ vg(t), (2.2)

where

vg(t) = −E−1
11 A12(AT

12E−1
11 A12)

−1B2,0g(t) (2.3)

is a particular solution of (1.1b) and v0(t) satisfies 0 = AT
12v0(t). Furthermore, we

define the projection

Π = I− A12(AT
12E−1

11 A12)
−1AT

12E−1
11 .

It can be verified that Π2 = Π, ΠE11 = E11Π
T , null(Π) = range(A12) and

range(Π) = null(AT
12E−1

11 ), i.e., Π is an E11-orthogonal projection. For (1.1)
derived from a finite element discretization, Π is a discrete version of the Leray
projector [4]. The properties of Π imply that

AT
12v0(t) = 0 if and only if ΠT v0(t) = v0(t). (2.4)

Inserting (2.2), (2.3) into (1.1) gives

E11
d

dt
v0(t) =A11v0(t)+ A12p(t)+ B3g(t)

+
(

B1,1 + A12(AT
12E−1

11 A12)
−1B2,0

) d

dt
g(t) (2.5a)

0 =AT
12v0(t), (2.5b)
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v0(0) =− vg(0), (2.5c)

y(t) =C1v0(t)+ C2p(t)+
(

D0 − C1E−1
11 A12(AT

12E−1
11 A12)

−1B2,0

)
g(t)

+ D1
d

dt
g(t), (2.5d)

where

B3 := B1,0 − A11E−1
11 A12(AT

12E−1
11 A12)

−1B2,0. (2.6)

Next we express p in terms of v0 and project onto the constraint (2.5b).
Specifically, we multiply (2.5a) by AT

12E−1
11 , then use (2.5b) and finally solve the

resulting equation for p to get

p(t) =− (AT
12E−1

11 A12)
−1AT

12E−1
11 A11v0(t)

− (AT
12E−1

11 A12)
−1AT

12E−1
11 B3 g(t)

− (AT
12E−1

11 A12)
−1
(

AT
12E−1

11 B1,1 + B2,0

) d

dt
g(t). (2.7)

Now we insert (2.7) into (2.5d), apply (2.4), and use ΠA12(AT
12E−1

11 A12)
−1 = 0 to

write (2.5) as

ΠE11Π
T d

dt
v0(t) =ΠA11Π

T v0(t)+ΠB3g(t)+ΠB1,1
d

dt
g(t), t ∈ (0, T ),

(2.8a)

ΠT v0(0) =−ΠT vg(0), (2.8b)

y(t) =C3Π
T v0(t)+ P̃0 g(t)+ P1

d

dt
g(t), t ∈ (0, T ),

(2.8c)

where B3 is given by (2.6) and

C3 :=C1 − C2(AT
12E−1

11 A12)
−1AT

12E−1
11 A11, (2.9a)

P̃0 :=D0 − C1E−1
11 A12(AT

12E−1
11 A12)

−1B2,0

− C2(AT
12E−1

11 A12)
−1AT

12E−1
11 B3, (2.9b)

P1 :=D1 − C2(AT
12E−1

11 A12)
−1(AT

12E−1
11 B1,1 + B2,0

)
. (2.9c)
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The system (2.8) is a dynamical system in the nv − np dimensional subspace
null(Π) and (2.8a,b) has to be solved for ΠT v = v. This can be made more explicit
by decomposing

Π = Θ lΘ
T
r (2.10a)

with Θ l ,Θ r ∈ R
nv×(nv−np) satisfying

ΘT
l Θr = I. (2.10b)

Substituting this decomposition into (2.8) shows that ṽ0 = ΘT
l v0 ∈ R

nv−np must
satisfy

ΘT
r E11Θr

d

dt
ṽ0(t) =ΘT

r A11Θr ṽ0(t)

+ΘT
r B3g(t)+ΘT

r B1,1
d

dt
g(t), t ∈ (0, T ), (2.11a)

ṽ0(0) =−ΘT
l vg(0), (2.11b)

y(t) =C3Θr ṽ0(t)+ P̃0 g(t)+ P1
d

dt
g(t), t ∈ (0, T ). (2.11c)

The systems (1.1) and (2.11) are equivalent. Again we refer to [8] for details.
Specifically, the transfer function of (1.1) is identical to the transfer function of
(2.11). Since the (nv − np) × (nv − np) matrix ΘT

r E11Θ r has full rank, we can
proceed as in Sect. 2.1 to read off the strictly proper part and the polynomial part of
the transfer function from the system representation (2.11),

H(s) = Hspr(s)+Hpoly(s), (2.12a)

where

Hspr(s) =C3Θr

(
s ΘT

r E11Θr −ΘT
r A11Θr

)−1

×
(
ΘT

r B3 +ΘT
r A11Θ r

(
ΘT

r E11Θr

)−1
ΘT

r B1,1

)
, (2.12b)

Hpoly(s) =C3Θr

(
ΘT

r E11Θ r

)−1
ΘT

r B1,1 + P̃0︸ ︷︷ ︸
=P0

+s P1. (2.12c)

Thus the polynomial part of the transfer function of (1.1) is again at most linear, but
the matrices P0 and P1 are more involved.

If the system matrices E11, . . . in (1.1) are available then the matrices in (2.6) and
(2.9) and the matrices P0 and P1 in (2.12c) can be computed using results already
applied in [8]. We summarize these results next. However, if one does not have
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access to the system matrices E11, . . . one needs to estimate the polynomial parts
P0 and P1 from transfer function measurements, as we will describe in Sect. 4.

2.3 Computational Details

If
(

E11 A12

AT
12 0

)(
X1

Z1

)
=
(

0
B2,0

)
,

(
E11 A12

AT
12 0

)(
X2

Z2

)
=
(

0
C2

)
, (2.13)

then XT
1 = BT

2,0(A
T
12E−1

11 A12)
−1AT

12E−1
11 , ZT

1 = −B2,0(AT
12E−1

11 A12)
−1, and

XT
2 = CT

2 (AT
12E−1

11 A12)
−1AT

12E−1
11 , ZT

2 = −C2(AT
12E−1

11 A12)
−1. Hence, the

matrices in (2.6) and (2.9) can be written as

B3 = B1,0 − A11X1, C3 = C1 − XT
2 A11,

and

P̃0 = D0 − C1X1 − XT
2 B3, P1 = D1 − XT

2 B1,1 + ZT
2 B2,0.

If
(

E11 A12

AT
12 0

)(
X3

Z3

)
=
(

B1,1

0

)
, (2.14)

then P0 in (2.12c) can be written as

P0 = P̃0 + C3X3.

In fact, AT
12X3 = 0 implies X3 = ΠT X3 = ΘrΘ

T
l X3 by (2.4) and (2.10a). Hence,

with X̃3 = ΘT
l X3 the first block in (2.14) reads E11Θr X̃3 + A12Z3 = B1,1.

Since null(ΘT
r ) = null(Π) = range(A12), ΘT

r E11ΘrX̃3 = ΘT
r B1,1. This gives

C3Θ r

(
ΘT

r E11Θr

)−1
ΘT

r B1,1 = C3Θr X̃3 = C3X3.

3 Loewner Framework Applied to the Oseen Equations

We review the Loewner framework applied to (1.3). The presentation is standard
and follows the recent tutorial paper [2] and book [3, Chapter 4]. In the next Sect. 4
we modify it to better account for the presence of a polynomial part in the transfer
function (2.12).
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The Loewner framework (LF) is a data-driven model identification and reduction
technique that was originally introduced in [11] and was continuously developed,
improved and extended to different problems and system classes during the last
decade. It is an interpolation-based method that produces ROMs that (approxi-
mately) interpolate the transfer function corresponding to the underlying FOM at
the given interpolation frequencies. Unlike other interpolation-based methods the
LF computes the ROM from measurements of the transfer function rather than by
projection of the original system.

Let m = ng be the number of inputs and p = ny be the number of outputs, so
that H(s) ∈ C

p×m. We assume that given frequencies

μj , λj ∈ C, j = 1, . . . , N, (3.1a)

left tangential directions

�j ∈ C
p, j = 1, . . . , N, (3.1b)

and right tangential directions

rj ∈ C
m j = 1, . . . , N, (3.1c)

we have transfer function measurements

v∗j := �∗j H(μj ) ∈ C
1×m, wj := H(λj )rj ∈ C

p×1, j = 1, . . . , N.

(3.1d)

We seek a ROM of the form1

Ê
d

dt
x̂(t) = Â̂x(t)+ B̂0g(t)+ B̂1

d

dt
g(t), t ∈ (0, T ), (3.2a)

Ê̂x(0) = 0, (3.2b)

ŷ(t) = Ĉ̂x(t)+ P̂0g(t)+ P̂1
d

dt
g(t), t ∈ (0, T ), (3.2c)

where Ê and Â are of size r × r with small r , B̂0, B̂0 have r rows, and Ĉ has
r columns, such that the corresponding transfer function ̂H is an approximate
tangential interpolant to the original transfer function H, i.e., such that

�∗j ̂H (μj ) ≈ �∗j H(μj ) = v∗j for j = 1, . . . , N,

̂H (λj )rj ≈ H(λj )rj = wj for j = 1, . . . , N.
(3.3)

1The matrices Ê and Â do not have the block 2× 2 structure of E and A in (1.2).
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Because of the left and right tangential interpolation conditions {μj }Nj=1 ⊂ C are

called the left interpolation points, {vj }Nj=1 ⊂ C
m are called the left sample values,

{�j }Nj=1 ⊂ C
p are called the left tangential directions and {λj }Nj=1 ⊂ C are called

the right interpolation points, {wj }Nj=1 ⊂ C
p are called the right sample values,

{rj }Nj=1 ⊂ C
m are called the right tangential directions.

We assume that the left interpolation points and the right interpolation points are
distinct, i.e. that

{μj }Nj=1 ∩ {λj }Nj=1 = ∅.

The measured data are arranged into matrix format as follows2

M = diag(μ1, μ2, . . . , μN) ∈ C
N×N , Λ = diag(λ1, λ2, . . . , λN) ∈ C

N×N ,

L∗ =
[
�1 �2 · · · �N

]
∈ C

p×N, R =
[
r1 r2 · · · rN

]
∈ C

m×N, (3.4)

V∗ =
[
v1 v2 · · · vN

]
∈ C

m×N , W =
[
w1 w2 · · · wN

]
∈ C

p×N .

The Loewner matrix is given by

L =

⎡
⎢⎢⎢⎣

v∗1r1−�∗1w1
μ1−λ1

· · · v∗1rN−�∗1wN

μ1−λN

...
. . .

...
v∗N r1−�∗N w1

μN−λ1
· · · v∗N rN−�∗N wN

μN−λN

⎤
⎥⎥⎥⎦ ∈ C

N×N . (3.5)

Using (3.4) it can be verified that the Loewner matrix (3.5) solves the Sylvester
equation

ML− LΛ = VR− LW.

The shifted Loewner matrix is given by

Ls =

⎡
⎢⎢⎢⎣

vT
1 r1μ1−�∗1w1λ1

μ1−λ1
· · · v∗1rNμ1−�∗1wN λN

μ1−λN

...
. . .

...
v∗N r1μN−�∗N w1λ1

μN−λ1
· · · v∗N rN μN−�∗N wN λN

μN−λN

⎤
⎥⎥⎥⎦ ∈ C

N×N . (3.6)

2Note that the matrices V∗ ∈ C
m×N and W ∈ C

p×N contain transfer function measurements (3.1)
and are not projection matrices.
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Using (3.4) it can be verified that the shifted Loewner matrix (3.6) solves the
Sylvester equation

MLs − LsΛ =MVR− LWΛ.

If the ‘right’ amount of data is given,3 then the ROM computed with the
(classical) Loewner method is (3.2) with

Ê = −L, Â = −Ls, B̂0 = V, B̂1 = 0, Ĉ =W, P̂0 = P̂1 = 0. (3.7)

The ROM (3.2) with (3.7) is in general complex. However, if the data (3.1) contain
also the conjugate complex data ({μj }Nj=1 = {μj }Nj=1, {λj }Nj=1 = {λj }Nj=1, etc.),
then the complex ROM (3.7) can be transformed into a real ROM with the same
transfer function, as shown in [2, p. 360]. The transfer function ̂H corresponding
to (3.7) satisfies the interpolation conditions (3.3) with equality. However, while
it satisfies the interpolation conditions (3.3), the transfer function ̂H by design is
strictly proper, ̂H poly = 0, and therefore the error H − ̂H is large, especially for
large frequency. We will address this deficiency in Sect. 4.

Often more data than necessary are provided and the pencil (Ls ,L) is singular.
In this case we use the singular value decomposition (SVD) to extract the important
information. Specifically, we compute the (short) SVDs of the augmented Loewner
matrices as

[
L Ls

] = Y1S1X∗1,
[
L

Ls

]
= Y2S2X∗2, (3.8)

where S1 = diag(σ
(1)
1 , . . . , σ

(1)
N ) ∈ R

N×N and S2 = diag(σ
(2)
1 , . . . , σ

(2)
N ) ∈ R

N×N

are the matrices with singular values on the diagonal, and Y1, X2 ∈ C
N×N , Y2, X1

∈ C
2N×N are the matrices of singular vectors.

The size r of the ROM can be chosen as follows. Given a tolerance τ > 0 the
truncation order r is the smallest integer such that the normalized singular values
satisfy σ

(1)
j /σ

(1)
1 < τ , σ

(2)
j /σ

(2)
1 < τ , j = r + 1, . . . , N .

The matrices Y, X ∈ C
N×r are obtained by selecting the first r columns of the

matrices Y1 and X2. The reduced Loewner system is constructed by multiplying the
matrices L,Ls , V, W with Y∗ and X to the left and respectively, to the right, as

L̂ = Y∗LX, L̂s = Y∗LsX, V̂ = Y∗V, Ŵ =WX. (3.9)

3What the ‘right’ amount of data is depends on the transfer function. Since we typically have more
data, the case we describe below, we omit specification of the ‘right’ amount of data.
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The ROM computed with the (classical) Loewner method is (3.2) with

Ê = −L̂, Â = −L̂s , B̂0 = V̂, B̂1 = 0, Ĉ = Ŵ, P̂0 = P̂1 = 0. (3.10)

As before, if the data {μj }Nj=1, {λi}Ni=1, {vj }Nj=1, {wj }Ni=1 contain also the conjugate
complex data, then the complex ROM (3.2) with (3.10) can be transformed into a
real ROM with the same transfer function, as shown in [2, p. 360].

The transfer function ̂H corresponding to (3.10) satisfies the approximate
interpolation conditions (3.3). However, by design, the transfer function ̂H is strictly
proper, ̂H poly = 0, and therefore the error H − ̂H is large, especially for large
frequency. We will address this deficiency next.

4 Accounting for the Polynomial Part of the Transfer
Function

As we have seen in Sect. 2.2, the transfer function is composed of a strictly proper
part and a polynomial part. The exact structure of these parts is shown in (2.12). We
write H(s) = Hspr(s)+Hpoly(s) with

Hpoly(s) = P0 + sP1.

Especially for the DAE system (1.1), the exact form (2.12) of P0, P1 ∈ R
p×m is

complicated. Here, as in Sect. 3, m = ng is the number of inputs and p = ny

is the number of outputs, so that H(s) ∈ C
p×m. Even if all system matrices

in (1.1) were available, the computation of P0, P1 ∈ R
p×m from (2.12) is tedious.

More importantly, if only transfer function H(s) measurements are available, it is
impossible to compute P0, P1 ∈ R

p×m from (2.12). In this section we explain
how we can estimate Hpoly and account for it in the Loewner framework. The
key assumption is that information about the transfer function is known at high
frequency bands. More precisely, we assume that H(ı ω) is known for large
positive real numbers ω. Here, denote the imaginary unit with ı = √−1. Since
lim|ω|→∞ |Hspr(ıω)| = 0, the contribution of the strictly proper part Hspr(s) to the
transfer function H(s) becomes negligible for high frequency ranges.

4.1 Estimation from One and Two Data Points

Assume that the transfer function H(s) is known at one point ı η located on the
imaginary axis where η ∈ R and η # 1. Since limη→∞ |Hspr(ı η)| = 0,

H(ı η) = Hspr(ı η)+ P0 + ı ηP1 ≈ P0 + ı ηP1.
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This gives the estimates

P̂0 = Re
(
H(ı η)

)
, P̂1 = η−1 Im

(
H(ı η)

)
. (4.1)

Next, assume that the transfer function H(s) is known for two points ı η and ı θ

on the imaginary axis with η, θ ∈ R and θ > η # 1. We have

H(ı θ)−H(ı η) =
(

Hspr(ı θ)+ P0 + ı θP1

)
−
(

Hspr(ı η)+ P0 + ı ηP1

)

= Hspr(ı θ)−Hspr(ı η)+ (ı θ − ı η)P1 ≈ (ı θ − ı η)P1. (4.2)

Hence, we can estimate P1 in terms of a divided difference value that appears in
the Loewner matrix with λ = ı η and μ = ı θ (that is approximating the derivative
when θ → η), as follows

P̂1 = Re
(H(ı θ)−H(ı η)

ı θ − ı η

)
. (4.3a)

We also have

ı θH(ı θ)− ı ηH(ı η)

=
(
ı θHspr(iθ)+ ı θP0 − θ2P1

)
−
(
ı ηHspr(ı η)+ ı ηP0 − η2P1

)

= ı θHspr(ı θ)− ı ηHspr(ı η)+ (ı θ − ı η)P0 + (η2 − θ2)P1,

which implies

ı θH(ı θ)− ı ηH(ı η)

ı θ − ı η
= ı θHspr(ı θ)− ı ηHspr(ı η)

ı θ − ı η
+ P0 + ı(η+ θ)P1

≈ P0 + ı(η + θ)P1.

The previous approximation gives the following estimate for P0,

P̂0 = Re
( ı θH(ı θ)− ı ηH(ı η)

ı θ − ı η

)
. (4.3b)
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Example 4.1 Consider the order n = 3 DAE system

[
1 0
0 1

]

︸ ︷︷ ︸
E11

d

dt
v(t) =

[
1 0
0 2

]

︸ ︷︷ ︸
A11

v(t)+
[

1
0

]

︸︷︷︸
A12

p(t)+
[

1 −1
1 1

]

︸ ︷︷ ︸
B1,0

g(t),

0 =
[

1 0
]

︸ ︷︷ ︸
AT

12

v(t)+
[

1 2
]

︸ ︷︷ ︸
B2,0

g(t),

y(t) =
[

2 1
0 1

]

︸ ︷︷ ︸
C1

v(t)+
[

3
1

]

︸︷︷︸
C2

p(t),

which is of the form (1.1), with B1,1 = D0 = D1 = 02×2. For this small example
we can compute the transfer function explicitly, e.g., using the symbolic toolbox in
Matlab applied to (2.1), to get

Hspr(s) = 1

s − 2

[
1 1
1 1

]
, Hpoly(s) =

[
−2 5

0 3

]

︸ ︷︷ ︸
=P0

+s

[
−3 −6
−1 −2

]

︸ ︷︷ ︸
=P1

. (4.5)

First, we estimate P0 and P1 in (4.5) from one measurement pair (ı η, H(ı η))

using (4.1). In this simple example, these errors can be computed analytically
from (4.5) and happen to be nearly identical,

P0 − P̂0 = P0 − Re
(
H(ı η)

) = 2

η2 + 4

[
1 1
1 1

]
= O(η−2),

P1 − P̂1 = P1 − η−1 Im
(
H(ı η)

) = 1

η2 + 4

[
1 1
1 1

]
= O(η−2).

The errors for different η are depicted by the black curves with crosses in Fig. 1.
Next, we estimate the values of P0 and P1 in (4.5) from two measurement pairs

(ı η, H(ı η)) and (ı θ, H(ı θ)) using the estimates (4.3). Specifically, we use the
second frequency θ = 10 η or θ = 100 η. The errors ‖P0 − P̂0‖2 are shown in
the left plot in Fig. 1, while the errors ‖P1 − P̂1‖2 are shown in the right plot. The
red curves with circles correspond to the estimates (4.3) with θ = 10 η and green
curves with diamonds correspond to the estimates (4.3) with θ = 100 η. Again, the
errors behave like O(η−2). Adding a second frequency θ = 10kη, k = 1, 2, reduces
the error approximately by 10−k.
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Fig. 1 Errors ‖P0 − P̂0‖2 (left plot) and ‖P1 − P̂1‖2 (right plot) for P̂0, P̂1 estimated from (4.1)
and (4.3). The black curves with crosses show the error for the estimates obtained from (4.1) for
η ∈ [100, 106]. The red curves with circles and green curves with diamonds show the error for
the estimates obtained from (4.3) for η ∈ [100, 106] and θ = 10 η (red curves with circles) or
θ = 100 η (green curves with diamonds). The errors behave like O(η−2) and adding a second
frequency θ = 10kη, k = 1, 2, reduces the error by approximately by 10−k

4.2 Estimation from 2L Data Points—The General Case

Now assume that we have 2L measurements available with sampling points located
in high frequency bands, i.e., on the imaginary axis with high absolute value. We
will extend the formulas in (4.3) to the general case L ≥ 1 using the definitions of
the Loewner matrices in (3.5) and (3.6).

The set-up is as in Sect. 3. The left interpolation points {ı θi}Li=1 and right
interpolation points {ı ηj }Lj=1 are chosen on the imaginary axis ı R with
min{θi}, min{ηj } # 1. The goal is to estimate the coefficient matrices P0, P1
taking into account all 2L measurements, and not only two of them as in (4.3).

We begin by extending (4.3a) for the estimation of P1. We write the (i, j) entry
of the Loewner matrix L (3.5) with λ = ı η and μ = ı θ . Instead of the generic
notation L for the Loewner matrix, we now use the notation L

hi to indicate that this
Loewner matrix is computed with data located in high frequency bands, and to later
differentiate it from the Loewner matrix L

lo obtained from the remaining data in
low frequency band.

Using the equalities (3.3) and (4.2), it follows that the (i, j) entry of the Loewner
matrix L

hi (3.5) with λ = ı η and μ = ı θ has the expression

L
hi
(i,j) =

v∗i rj − �∗i wj

ı θi − ı ηj

= �∗i H(ı θi)rj − �∗i H(ı ηj )rj

ı θi − ı ηj

= �∗i
(H(ı θi)−H(ı ηj )

ı θi − ı ηj

)
rj

= �∗i
(Hspr(ı θi)−Hspr(ı ηj )+ (ı θi − ı ηj )P1

ı θi − ı ηj

)
rj

= �∗i
(Hspr(ı θi)−Hspr(ı ηj )

ı θi − ı ηj

)
rj

︸ ︷︷ ︸
:=Lhi,spr

(i,j)

+�∗i P1rj = L
hi,spr
(i,j) + �∗i P1rj . (4.6)
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As in (3.4), the directional vectors �i and rj are collected into matrices

(
Lhi)∗ =

[
�1 �2 · · · �L

]
∈ C

p×L, Rhi =
[
r1 r2 · · · rL

]
∈ C

m×L. (4.7)

Combining (4.6) and (4.7) gives the approximation formula

L
hi = L

hi,spr + LhiP1Rhi ≈ LhiP1Rhi, (4.8)

again obtained by neglecting the contribution of the strictly proper part of the
transfer function at high frequencies.

Provided that L ≥ max{p,m} (recall that here m is the number of inputs and p

is the number of outputs), one can write the estimated linear polynomial coefficient
matrix as follows

P̂1 = Re
((

Lhi)†
L

hi(Rhi)†), (4.9a)

where X† ∈ C
v×u is the Moore-Penrose pseudo-inverse of X ∈ C

u×v .
Similarly to the procedure used for estimating P1, one can extend the formula

in (4.3b) for estimating P0 from the shifted Loewner matrix L
hi
s computed from L

sampling points located in high frequency bands as follows

P̂0 = Re
((

Lhi)†
L

hi
s

(
Rhi)†). (4.9b)

4.3 The Proposed Procedure

Assume that we have samples of the transfer function evaluated at high frequencies
(to capture the polynomial part) as well as at low frequencies (to capture the strictly
proper part). Algorithm 1 below adapts the Loewner framework for DAE systems by
preserving the polynomial structure of the underlying transfer function. The ROM
constructed with Algorithm 1 has the form

Ê
d

dt
x̂(t) = Â x̂(t)+ B̂0 g(t), t ∈ (0, T ), (4.10a)

Ê̂x(0) = 0, (4.10b)

ŷ(t) = Ĉ x̂(t)+ P̂0 g(t)+ P̂1
d

dt
g(t), t ∈ (0, T ). (4.10c)

The derivative d
dt

g(t) is not an explicit input into the dynamics (4.10a), i.e., B̂1 = 0,
but its influence on the output is modeled by the feed-through term P̂1

d
dt

g(t) in
the output equation (4.10c). While some structural details of the ROM (4.10) are
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different from the original FOM (1.3), the transfer function

Ĥ(s) = Ĥspr(s)+ Ĥpoly(s) (4.11a)

of the ROM (4.10), now has a strictly proper part and a polynomial part,

Ĥspr(s) = Ĉ
(
s Ê− Â

)−1B̂0, Ĥpoly(s) = P̂0 + s P̂1. (4.11b)

Numerical experiments indicate that each of these match the ones of the FOM (2.12)
well, provided enough transfer measurements are available.

Instead of the generic λj , μj ∈ C used in Sect. 3 we now specify λj = ı ηj and
μj = ı θj in Algorithm 1 with ηj , θj ∈ R.

Algorithm 1 Modified Loewner method with identification of polynomial terms in
transfer function

Input: A data set composed of 2(N + L) sample points, 2(N + L) tangential directions, and
2(N + L) measured values of the transfer function as introduced in (3.1).

Output: Loewner ROM specified by Ê, Â, B̂, Ĉ, P̂0, P̂1.
1: Split the data into 2N data corresponding to the low frequency range and into 2L data

corresponding to the high frequency range.
2: Use the 2L data corresponding to the high frequency range to estimate P̂0, P̂1 using (4.9).
3: Adjust the 2N transfer function measurements corresponding to the low frequency range, by

subtracting the estimated polynomial part Ĥpoly(ω) = P̂0 + ı ω P̂1 for ω ∈ {θi | 1 ≤ i ≤
N} ∪ {ηj | 1 ≤ j ≤ N} from the original measurement values, i.e., compute

left : (
ı θj , �j , vi − Ĥpoly(ı θj )

∗�j

)
, j = 1, . . . , N,

right : (ı ηj , rj , wj − Ĥpoly(ı ηj )rj

)
, j = 1, . . . , N.

(4.39)

4: Use the 2N data (4.39) to construct data matrices Vlo ∈ C
N×m, Wlo ∈ C

p×N as in (3.4), and
Loewner matrices Llo,Ls

lo ∈ C
N×N as in (3.5) and (3.6).

5: Compute the SVD of the augmented Loewner matrices obtained with L
lo,Ls

lo and project as

in (3.9) to construct Ê = −L̂lo = −Y∗LloX, Â = −L̂lo
s = −Y∗Llo

s X, B̂0 = V̂
lo =

Y∗Vlo, Ĉ = Ŵ
lo =WloX.

5 Numerical Example—Oseen Equations

In this section we apply the Loewner framework to the Oseen equations. The
example specifications are from [8].
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Fig. 2 The channel geometry and coarse grid

5.1 Problem Specification

For completeness we first review the main problem specifications. Let Ω ⊂ R
2 be

the backward facing step geometry shown in Fig. 2. The boundary is decomposed
into segments Γn, Γd, Γg, where Γn = {8} × (0, 1) is the outflow boundary, inputs
are applied on Γg = {0}× (1/2, 1)∪{1}× (0, 1/2), and the velocities are set to zero
on Γd = ∂Ω \ (Γg ∪ Γn).

We consider the Oseen equations

∂

∂t
v(x, t) + (a(x)·∇)v(x, t) − νΔv(x, t) + ∇p(x, t) = 0 in Ω × (0, T ),

∇·v(x, t) = 0 in Ω × (0, T ),

(−p(x, t)I + ν∇v(x, t))n(x) = 0 on Γn × (0, T ),

v(x, t) = 0 on Γd × (0, T ),

v(x, t) = gΓ (x, t) on Γg × (0, T ),

v(x, 0) = 0 in Ω,

where ν = 1/50 is the dynamic viscosity and where n(x) is the unit outward normal
to Ω at x. Here v, p are the velocity and pressure of the fluid respectively, and gΓ

denotes the boundary input. The advection field a is computed as in [8, Sec. 7.2]
by solving the steady-state Stokes equation with velocity 8(x2 − 1/2)(1 − x2) on
the inflow boundary segment Γin = {0} × (1/2, 1) and and zero velocity boundary
conditions on ∂Ω \ (Γn ∪ Γin).

Our boundary inputs are given as in [8] by

gΓ (x, t) =
ng∑

k=1

gk(t)γ k(x) (5.1)
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with ng = 6 boundary control functions γ j : R2 → R
2 given as follows. The first

three functions are defined on the inflow boundary segment {0} × (1/2, 1) and are
given by

γ k(x) =
(

sin(2jπ(x2 − 1/2))

0

)
, k = 1, 2, 3;

the remaining three are defined on the backstep boundary segment {1} × (0, 1/2)

and are of the form

γ 3+k(x) =
(

sin(2jπx2)

0

)
, k = 1, 2, 3.

We use a P1 − P2 Taylor-Hood discretization to arrive at the semi-discrete
equations (1.1a–c). (Note that the B1,1 term has accidentally been dropped in [8,
Sec. 7.2].) We use a mesh that is obtained from a uniform refinement of the coarse
mesh shown in Fig. 2.

We consider the second output from [8, Sec. 7.2], which is the integral of the
stress force on the boundary segment Γobs = (1, 8)× {0},

y(t) =
∫

Γobs

(− p(x, t)I + ν∇v(x, t)
)
n(x)ds, (5.2)

approximated using the weak form (see [8] for details). This leads to (1.1d) with
C1 ∈ R

2×nv , C2 ∈ R
2×np , D0 ∈ R

2×ng , and D1 = 0. Note that the output matrices
represent derivatives of the finite element approximations of velocity v and pressure
p and therefore scale with the mesh size h; the finite element approximation of the
output y(t) itself does not.

In summary, the semi-discretized DAE model is of dimension n = nv + np with
m = ng = 6 inputs and p = ny = 2 outputs.

5.2 Numerical Experiments

We report numerical experiments for a discretization with nv = 12,504 velocity
degrees of freedom and np = 1,669 pressure degrees of freedom. Other discretiza-
tion sizes gave similar results.
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The polynomial coefficient matrices are explicitly computed using the approach
in Sect. 2.3 and given by (four digits are shown)

P0 =
[
−7.088 −1.124·10−4 −2.363 −7.731 −4.172·10−1 −2.724

4.845·101 −2.940·10−4 1.615·101 4.927·101 8.727·10−3 1.656·101

]
,

P1 =
[
−5.484·10−17 −2.242·10−22 −1.828·10−17

7.814 1.997·10−5 2.605

−5.576·10−17 −4.468·10−19 −1.866·10−17

7.889 3.275·10−2 2.632

]
.

Next we compute the Loewner ROM using the classical Loewner approach (3.7)
and the modified Loewner approach. For the modified Loewner approach we first
modify the transfer function measurements using the true polynomial part P̂0 = P0,
P̂1 = P1 computed using the approach in Sect. 2.3. Thus the modified Loewner uses
Algorithm 1, with Steps 1 and 2 replaced by the computation of P̂0 = P0, P̂1 = P1
using the approach in Sect. 2.3. We assume that we have 2N = 200 measurements
logarithmically spaced in the low frequency range [10−2, 101] ı. The left �j and
right rj tangential vectors are chosen randomly.

The singular value decay of the Loewner matrices (3.8) computed using mea-
surements in the low frequency range is shown in Fig. 3. The ROM size r is
chosen as the largest integer such that σr/σ1 > τ = 10−10 and is r = 24 for
the classical Loewner ROM. In the modified Loewner approach we compute the
Loewner matrices from the shifted transfer function measurements (Steps 3+4 in
Algorithm 1). The singular value decay of these Loewner matrices is similar the one
shown in Fig. 3 and are not plotted. The ROM size r is again chosen as the largest
integer such that σr/σ1 > τ = 10−10 and is r = 23 for the modified Loewner

20 40 60 80 100 120 140 160 180 200

10-15

10-10

10-5

100

Fig. 3 Singular value decay of the Loewner matrices (3.8) computed using measurements in the
low frequency range and tolerance τ = 10−10 used to determine the ROM size. The normalized
singular values for the two Loewner matrices (3.8) are visually identical
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Fig. 4 Left plots: absolute values of frequency responses of the original system (yellow dotted
lines) of the reduced system computed with the classical Loewner approach (blue dashed line), and
of the reduced system computed with the modified Loewner approach with true P̂0 = P0, P̂1 = P1
(red solid line) for various components of the 2 × 6 transfer function. Loewner ROMs computed
using 2N = 200 measurements logarithmically spaced in the low frequency range [10−2, 101] ı.
Right plots: corresponding relative errors

ROM. The left plots in Fig. 4 show the absolute values of frequency responses of
the original system (yellow dotted lines) of the reduced system computed with the
classical Loewner approach (blue dashed line), and of the reduced system computed
with the modified Loewner approach (red solid line) for various components of the
2×6 transfer function at 300 logarithmically spaced frequencies ω ı in [10−2, 106] ı.
The right plots in Fig. 4 show the corresponding relative errors. We have picked
three transfer function components which well represent the overall behavior of the
Loewner approach.

The modified Loewner approach generally leads to ROMs with transfer functions
that better approximate the true transfer function. The approximation of the
transfer function for large frequencies ω is always substantially better when the
modified Loewner approach is used. For the transfer function component H(iω)12
corresponding to input 2 and output 1 the modified Loewner approach leads to a
slightly larger error for frequencies roughly between 101 and 102. This is due to the
fact that we only use measurements in [10−2, 101] ı. If instead we use 2N = 200
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Fig. 5 Left plots: absolute values of frequency responses of the original system (yellow dotted
lines) of the reduced system computed with the classical Loewner approach (blue dashed line), and
of reduced system computed with the modified Loewner approach with true P̂0 = P0, P̂1 = P1
(red solid line) for the (1, 2) component of the transfer function. Loewner ROMs computed using
2N = 200 measurements logarithmically spaced in the low frequency range [10−2, 102] ı. Right
plots: corresponding relative errors

Table 1 Estimation error for
P̂0, P̂1 computed using (4.9a)
and (4.9b) with 2L = 20
measurements
logarithmically spaced in the
high frequency range
[10f , 10f+2] ı for
f = 3, . . . , 7

Freq. range ‖P0 − P̂0‖2 ‖P1 − P̂1‖2[
103, 105

]
6.0161·10−2 2.7859·10−4

[
104, 106

]
2.5535·10−4 1.1163·10−6

[
105, 107

]
3.0575·10−6 1.3111·10−8

[
106, 108

]
2.8019·10−8 1.2303·10−10

[
107, 109

]
5.8920·10−10 2.6729·10−12

The observed estimation error for P̂0 and for
P̂1 behaves like O(10−2f ) and in this example
the P1 estimation error is two orders of magni-
tude smaller than the P0 estimation error

measurements logarithmically spaced in the low frequency range [10−2, 102] ı,
we get the frequency response in Fig. 5. Approximations for the other transfer
function components are also improved when the modified Loewner approach is
used, but not plotted because of space limitations. However, note that the classical
and modified Loewer ROMs computed using these data are of larger sizes r = 31
and r = 33. (The ROM size r is again chosen as the largest integer such that
σr/σ1 > τ = 10−10.)

Next we estimate the polynomial part using (4.9a) and (4.9b). Assume that we
have 2L = 20 measurements logarithmically spaced in the high frequency range
[10f , 10f+2] ı. The left �j and right rj tangential vectors are chosen randomly.
Table 1 shows the estimation error for varying frequency ranges. The observed
estimation error for both P̂0, P̂1 behaves like O(10−2f ).

In our last experiments we compute the Loewner ROM using the classical
Loewner approach (3.7) and the modified Loewner approach, Algorithm 1. Thus, in
contrast to the experiments shown in Figs. 4 and 5 we now estimate the polynomial
part. Again we assume that we have 2N = 200 measurements logarithmically
spaced in the low frequency range [10−2, 101] ı. In addition we assume that we
have 2L = 20 measurements logarithmically spaced in the high frequency range



Model Reduction of Semi-Explicit DAEs Using the Loewner Framework 207

Input 2, Output 1

10-2 100 102 104 106

10-6

10-4

10-2

100
Original model
Loewner - r = 24
Loewner new - r = 23

10-2 100 102 104 106
10-6

10-4

10-2

100

102

104 Loewner
Loewner new

Input 3, Output 1

10-2 100 102 104 106
10-2

100

102 Original model
Loewner - r = 24
Loewner new - r = 23

10-2 100 102 104 106
10-10
10-8
10-6
10-4
10-2
100
102
104 Loewner

Loewner new

Input 5, Output 2

10-2 100 102 104 106
10-2

100

102

104 Original model
Loewner - r = 24
Loewner new - r = 23

10-2 100 102 104 106
10-10

10-8

10-6

10-4

10-2

100 Loewner
Loewner new

Fig. 6 Left plots: absolute values of frequency responses of the original system (yellow dotted
lines) of the reduced system computed with the classical Loewner approach (blue dashed line),
and of the reduced system computed with the modified Loewner approach with estimated P̂0, P̂1
(red solid line) for various components of the 2 × 6 transfer function. Right plots: corresponding
relative errors

[104, 106] ı to compute estimates P̂0 and P̂1. In all cases the left �j and right rj

tangential vectors are chosen randomly.
The left plots in Fig. 6 show the absolute values of frequency responses of the

original system (yellow dotted lines) of the reduced system computed with the
classical Loewner approach (blue dashed line), and of reduced system computed
with the modified Loewner approach (red solid line) for various components of the
2×6 transfer function at 300 logarithmically spaced frequencies ω ı in [10−2, 106] ı.
The right plots in Fig. 6 show the corresponding relative errors.

In most cases the modified Loewner approach improves the approximation
properties of the ROM transfer function. For large frequencies ω # 1, the
estimation error ω |(̂P1)jk − (P1)jk| starts to dominate the overall error in transfer
function approximation. The beginning of this can be seen in Fig. 6 for Input 3 and
Output 1, where the error between FOM transfer function and modified Loewner
ROM transfer function begins to grow linearly in ω for ω > 105. As indicted
by Table 1 the errors ‖P0 − P̂0‖2, ‖P1 − P̂1‖2 when 2L measurements at higher
frequencies are available to compute P̂0, P̂1. Thus while a linear growth in error
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between FOM and ROM transfer function is unavoidable when P1 is present, the
impact can be delayed by using measurements at higher frequencies.

The behavior of modified Loewner ROM for the transfer function component
corresponding to Input 2 and Output 1 is worse than that of the classical Loewner
ROM. Note that this component of the transfer function is substantially smaller
than all other components. Moreover, this component of the transfer function has a
constant polynomial part, i.e.,

H(ı ω)1,2 = Hspr(ı ω)1,2 + (P0)1,2, (P0)1,2 ≈ 10−4, (P1)1,2 = 0,

but is estimated by Ĥ(ı ω)1,2 = Ĥspr(ı ω)1,2 + (̂P0)1,2 + ı ω (̂P1)1,2. The errors in
the transfer functions for the modified Loewner and the classical Loewner are nearly
identical in the range [10−2, 101] ı where measurements were taken, but both ROM
transfer functions have the wrong asymptotics for large frequencies. The difficulty
for the modified Loewner approach is that both (P0)1,2 and (P1)1,2 are small (in fact
(P1)1,2 = 0).

The modified Loewner ROM can be improved somewhat by thresholding. If
there is an error estimate τ0 and τ1 available such that |(P0)j,k − (̂P0)j,k| ≤ τ0 and
|(P1)j,k− (̂P1)j,k| ≤ τ1, then for small polynomials components with |(̂P0)j,k| ≤ τ0

or |(̂P1)j,k | ≤ τ1, respectively, the estimation error may be as large as the estimated
quantity itself. Hence for components with |(̂P0)j,k| ≤ τ0 we set (̂P0)j,k = 0,
and for components with |(̂P1)j,k| ≤ τ1 we set (̂P1)j,k = 0. Unfortunately,
currently there is no rigorous error estimate τ0 and τ1 available. Motivated by
Table 1 we set τ0 = τ1 = 10−f when the polynomial part is estimated from
measurements in the high frequency range [10f , 10f+2] ı. Specifically, since we
have 2L = 20 measurements logarithmically spaced in the high frequency range
[104, 106] ı to compute estimates P̂0 and P̂1 we set τ0 = τ1 = 10−4. With
this thresholding (̂P1)1,k = 0, k = 1, . . . 6, and (̂P1)2,2 = 0. The absolute
values of frequency responses for the (1,2) component of the transfer function and
corresponding relative errors are shown in Fig. 7. The error in transfer function

Input 2, Output 1
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Original model
Loewner - r = 24
Loewner new - r = 23
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100
Loewner
Loewner new

Fig. 7 Left plots: Absolute values of frequency responses of the original system (yellow dotted
lines) of the reduced system computed with the classical Loewner approach (blue dashed line),
and of the reduced system computed with the modified Loewner approach with estimated P̂0, P̂1
and thresholding (red solid line) for the (1,2) component of the transfer function. Right plots:
corresponding relative errors
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for the modified Loewner and the classical Loewner are again nearly identical in
the range [10−2, 101] ı where measurements were taken. For large frequencies the
observed relative error in the transfer function for the modified Loewner approach
is approximately |(P0)1,2 − (̂P0)1,2|/|(P0)1,2|, whereas the relative error in the
transfer function for the classical Loewner is always asymptotically equal to one.
The fundamental issue is that small polynomial components |(P0)j,k|  1 and
especially |(P1)j,k |  1 need to be estimated with even smaller absolute errors.
This is difficult and requires more measurements at higher frequencies.

6 Conclusions

This paper has provided a detailed description of the analytical form of the
transfer function for a class of semi-explicit DAE systems, which includes the
semi-discretized Oseen equations, and it has introduced a modified version of
the data-driven Loewner framework to compute reduced order models (ROMs)
for these DAE systems The algorithmic improvement is in the estimation of the
polynomial part of the transfer function from measurements and in the incorporation
of this estimate into the Loewner ROM construction, which in many cases lead
to ROMs with better approximation properties. The modified Loewner approach
uses measurements of the transfer function at high frequencies to estimate the
polynomial part, and then applies the standard Loewner approach to measurement
contributions from the strictly proper part of the transfer function. In particular, the
split of the transfer function into a strictly proper and a polynomial part is explicit in
the construction of the Loewner ROM to ensure that the resulting ROM transfer
function has the same structure. Numerical experiments on the semi-discretized
Oseen equations indicate that the modified Loewner approach generates ROMs that
better approximate the transfer function if a linear polynomial part is present. In
cases, where the polynomial part is linear with a small linear term, the modified
Loewner approach can introduce a spurious polynomial part, which then leads to
large errors for large frequencies. This can be somewhat avoided by thresholding,
but the estimation of small components in the polynomial parts, especially in
the linear part remains a difficulty. For the modified Loewner approach precise
theoretical error estimates and improvement bounds are not yet available, and are
part of future work.
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