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Abstract

The theory for the vanishing of Néel order in the spin S = 1/2 square lattice antiferromagnet has been
the focus of attention for many decades. A consensus appears to have emerged in recent numerical studies
on the antiferromagnet with first and second neighbor exchange interactions (the J;-J2 model): a gapless
spin liquid is present for a narrow window of parameters between the vanishing of the Néel order and the
onset of a gapped valence bond solid state. We propose a deconfined critical SU(2) gauge theory for a
transition into a stable Zs spin liquid with massless Dirac spinon excitations; on the other side the critical
point, the SU(2) spin liquid (the ‘r-flux’ phase) is presumed to be unstable to confinement to the Néel
phase. We identify a dangerously irrelevant coupling in the critical SU(2) gauge theory, which contributes
a logarithm-squared renormalization. This critical theory is also not Lorentz invariant, and weakly breaks
the SO(5) symmetry which rotates between the Néel and valence bond solid order parameters. We also
propose a distinct deconfined critical U(1) gauge theory for a transition into the same gapless Za spin
liquid; on the other side of the critical point, the U(1) spin liquid (the ‘staggered flux’ phase) is presumed
to be unstable to confinement to the valence bond solid. This critical theory has no dangerously irrelevant
coupling, dynamic critical exponent z # 1, and no SO(5) symmetry. All of these phases and critical points
are unified in a SU(2) gauge theory with Higgs fields and fermionic spinons which can naturally realize
the observed sequence of phases with increasing Jo/Ji: Néel, gapless Zy spin liquid, and valence bond

solid.
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I. INTRODUCTION

Antiferromagnetism on the square lattice became a topic of intense study soon after the dis-
covery of high temperature superconductivity in the cuprates, and it continues to be a wellspring
of interesting experimental and theoretical physics. It was established early on that the insulating
antiferromagnet with S = 1/2 spins on each site, and only nearest neighbor antiferromagnetic
exchange interactions (J;) has long-range Néel order in its ground state i.e. global SU(2) spin
rotation symmetry was broken with the spin expectation value (S;) = 1;INy where S; is the spin
operator on site 2, 17; = £1 on the two checkerboard sublattices, and Ny is the antiferromagnetic
moment. Much attention has since been lavished on the insulating J;-J> antiferromagnet [1-6],

which also has a second-neighbor antiferromagnetic exchange interaction J;. The key questions
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FIG. 1. Phases of the S = 1/2 J;-J, antiferromagnet on the square lattice, from the numerical results
of Refs. [7-10], all of which agree that the spin liquid is gapless. Each ellipse in the valence bond solid
(VBS) represents a singlet pair of electrons. Lower part of figure adapted from Ref. [11].

are the nature of the quantum phases of the model, and of the quantum phase transitions between
them, as a function of increasing J,/J; after the Néel order vanishes at a critical value of Jy/J;.
These questions are also the focus of our attention here.

An early proposal [5, 6, 12, 13] was that there was a direct transition from the Néel state to
a valence bond solid (VBS) (see Fig. 1) which restores spin rotation symmetry but breaks lattice
symmetries (followed by a first order transition at larger J»/.J; to a ‘columnar’ state which breaks
spin rotation symmetry, and which we do not address in the present paper). A theory of ‘deconfined
criticality’ was developed [14-16] showing that a continuous Néel-VBS transition was possible, even
though it was not allowed in the Landau-Ginzburg-Wilson framework because distinct symmetries
were broken in the two phases. Evidence has since accumulated for the presence of a VBS phase in

the J;-J5 model, but the nature of the Néel-VBS transition in this model has remained a question
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of significant debate. However, in the past year, a consensus appears to have emerged [11] among
the groups investigating this question by different numerical methods [7-10], and is summarized
in Fig. 1: there is a narrow window with a gapless spin liquid phase between the Néel and VBS
states. This gapless phase has been identified [8, 17-20] as a Zs spin liquid [5, 6, 21, 22| with
gapless, fermionic, S = 1/2 spinon excitations with a Dirac-like dispersion [18, 23-26], labeled
Z2Azz13 in Wen’s classification [24].

The starting point of our analysis is the fermionic spinon dual [27-30] of the bosonic spinon
CP! model used earlier [12, 13, 15, 16] to describe the Néel-VBS transition. This fermionic dual
is a relativistic SU(2) gauge theory of 2 flavors of 2-component, massless Dirac fermions carrying
fundamental gauge charges: this formulation is preferred over the bosonic spinons because the
massless Dirac fermions connect naturally to the gapless fermionic spinons in the Z, spin lig-
uid. Recent studies [31-34] have indicated that the 2 fermion flavor SU(2) gauge theory does not
ultimately describe a conformal field theory needed for Néel-VBS criticality, but exhibits a ‘pseu-
docriticality’ associated with a proximate fixed point at complex coupling [27, 35-37]. Ref. [28]
used connections to bosonic spinon theories to argue that the 2 fermion flavor SU(2) gauge the-
ory was ultimately unstable to confinement and symmetry breaking leading to the appearance of
Néel order. We assume this is the case, and we can then describe the transition to the Zs spin
liquid by the condensation of Higgs fields which break the SU(2) gauge symmetry down to Zy:
see Fig. 2. The Néel-Z5 spin liquid transition is a confinement-Higgs transition, and the critical
theory is proposed to be a 2-flavor SU(2) gauge theory with critical Higgs fields [28]. We note that
a similar critical theory was proposed in Ref. [38] for a continuous transition from the Néel state
to a different gapless state with a Z, gauge field (the ‘orthogonal semi-metal’), and this scenario
was supported there by quantum Monte Carlo simulations. Evidently, it is possible that critical
Higgs fields can stabilize a scale-invariant critical point of the 2-flavor SU(2) gauge theory at the
boundary of a Higgs phase where the SU(2) gauge symmetry is broken down to Zs.

As we will see below, an important difference between our critical Higgs SU(2) gauge theory and
that of Ref. [38] is that our theory does not preserve Lorentz invariance. The Lorentz symmetry is
broken by the Yukawa couplings between the Higgs fields and fermions. The Yukawa couplings also
do not preserve the SO(5) flavor symmetry of the SU(2) gauge theory with only fermionic matter;
this symmetry rotates between the Néel and VBS states. Both these features have important
consequences for the Néel-Zs spin liquid critical point, and lead to predictions described below
which can tested by numerical studies.

In earlier work, Ran and Wen [39, 40] had considered the 2-flavor SU(2) gauge theory as the
description of an extended gapless phase on the square lattice—also called the w-flux phase [41].
They proposed a theory for a transition from the m-flux phase to the Z2Az213 spin liquid by the

condensation of a pair of adjoint Higgs fields, which we denote (13172 (the vector symbol implies
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FIG. 2. Mean field phase diagram of our low energy theory obtained by minimization of the Higgs potential
in Eq. (3.26). Dashed (solid red) lines indicate second (first) order transitions in mean field theory. We
assume the SU(2) m-flux gauge theory confines to a Néel state, the U(1) staggered flux gauge theory
confines to a VBS state, except at their deconfined critical boundaries to Wen’s stable, gapless Zo spin
liquid Z2Azz13. The dotted blue line indicates a possible trajectory of the square lattice antiferromagnet
with increasing Jo/J;. However, as we discuss in Section VI, we cannot rule out interchanging the
assignments of the confining states between the SU(2) and U(1) spin liquids, in which case the orientation
of the blue arrow would be reversed. The critical SU(2) gauge theory has a dangerously irrelevant coupling,
but the critical U(1) gauge theory does not. The mean-field analysis was performed with w = v = 1,
v=—1,4=0.75, and v4s = 0.5 in Eq. (3.26). We use the ansatz ®{ = ¢1042, ®§ = c1dqy, and P§ = 264,

so the terms in V(®) proportional to v1,vs are automatically zero.

gauge SU(2) adjoint index). In light of our arguments above on the confining instability of the
m-flux phase to the Néel state, the critical Higgs theory of Ran and Wen [39, 40| can serve as the
deconfined critical theory for the Néel to Z2Az213 spin liquid transition. However, as we shall
see in Section IV, additional ‘dangerously irrelevant’ terms are needed to fully define the critical
theory in a 1/N; expansion, and these contribute a logarithm-squared renormalization.

The mean-field phase diagram of the SU(2) gauge theory with adjoint Higgs fields describing
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the m-flux to Z2Az213 transition turns out to naturally acquire an additional phase, as explained
in Section I11 D—this is the U(1) staggered flux spin liquid [41]. We show that the adjoint Higgs
field

B3 ~ By x B, (1.1)
(see Eq. (3.30)) is precisely that required to go from the SU(2) m-flux phase to the U(1) staggered
flux phase. Specifically, starting from the 7-flux phase, if both 51,2 condense with <<131> X <<f>2> # 0,
we obtain the gapless Zs spin liquid (the simultaneous condensation of ®; and D, does not require
fine tuning because of symmetry constraints that we will describe). On the other hand, Eq. (1.1)
implies that if only the composite field (f)l X 52 condenses, but the individual fields (13172 do not,
then the m-flux phase turns into the U(1) staggered flux phase. Speaking imprecisely, starting from
the parent m-flux phase, the Higgs condensate for the gapless Zs spin liquid is the ‘square root’ of
the Higgs condensate for the staggered flux phase. (Let us also note that Song et al. [29] proposed
that a trivial monopole would drive the the staggered flux state into the m-flux state: so the Higgs
field 53 can be viewed as a ‘dual’ description of the trivial monopole, and induces a transition in
the opposite direction. Four-fermion terms have also been proposed as a route to reducing the
emergent symmetry of the staggered flux state to that of the w-flux state [42].) The phase diagram
of the Higgs fields 5172,3 is computed in Section [11 D and shown in Fig. 2. We propose here that the
transition from the gapless Zs spin liquid to the VBS state is described by the deconfined critical
theory appearing at the onset of the U(1) spin liquid. Other works [25, 29, 30] have discussed the
possible instability of this U(1) spin liquid to either Néel or VBS order via monopole proliferation.
The critical U(1) gauge theory is described briefly in Section V, where we show that it does not
contain the dangerously irrelevant terms found in the critical SU(2) theory.

We will review the derivation of the Ran-Wen theory, and discuss its symmetry properties in
some detail in Section 11 and Appendix A. A continuum SU(2) gauge theory coupled to 3 adjoint
Higgs fields and gapless Majorana fermions will be obtained in Section I11. The critical SU(2) gauge
theory for the onset of the gapless Zs spin liquid phase from the 7w-flux phase will be presented in
Section IV, along with an analysis of its properties in a 1/Ny expansion. The critical U(1) gauge
theory for the onset of the same gapless Z, spin liquid from the staggered flux phase appears in
Section V.

II. GAPLESS Z, SPIN LIQUID

The fermionic spinon theory of Z, spin liquids proceeds by re-expressing the spin operators in

terms of spinons f;o, a =7, at site ¢ = (i, 17,) of the square lattice using

1
S; = 5;&%5%. (2.1)
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FIG. 3. Nearest-neighbor fermionic spinon hopping showing the A (i, + i, even) and B (i + i, odd)

sublattices.

We write down a Bogoliubov Hamiltonian for the f;, to obtain a Z, spin liquid. Following Wen’s

notation [24], we introduce the Nambu spinor

N 2.2
) ”

resulting in the Bogoliubov Hamiltonian

H == tluiji;. (2.3)
ij
Here,
Uij = z’ugj +ugT" + ui-’jry +ugT" (2.4)

with 7¢ Pauli matrices acting on the Nambu indices of ;. Invariance under global SU(2), spin
rotation requires that the ufj are all real numbers obeying

0 _ 0 xr x y y z z
Ui = —Uzjy  Ujy = Usz,  Ujy = Uy Ujy = Ugj- (2.5)

This fermionic spinon representation has a SU(2), gauge symmetry, under which

and a corresponding transformation for w;;.

We will provide 3 different ansatzes for the u;; in the Z2Azz13 spin liquid, each suited for
different purposes. The 3 ansatzes are, of course, related to each other by SU(2), gauge transfor-
mations. Wen’s ansatz for the Z2A 2213 spin liquid is given in Appendix A, where the continuum
Lagrangian describing the different spin liquid phases is deduced from symmetry fractionalization

considerations. In the main text, we obtain the continuum theory directly from the lattice model,
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for which the ansatz given in Eq. (2.11) will be most useful. To derive this ansatz, we first de-

scribe the Z2Az213 spin liquid by starting from the familiar staggered flux phase with U(1) gauge

symmetry [41], and perturbing it with d,, pairing. Explicitly, the ansatz is

Ui ird =

Ui i+3 =

Uity =

Uid+y =

Wiiti+g =

Ui i—g+g =

te™® 0
0 —te¢ |’
te’® 0
0 —te i@ |’
—te'® 0
0 te i)’

—te”® ()
0 te ]’

iy + 1y €ven

iz + 1y odd

iy + 1y €ven

iy + 1y odd

0 —(1 — i72)

—(n +1i72)

(71 +i72)

")

0 (1 —i72) ) . (2.7)

The first four terms in (2.7) represent the fermion hopping, which is sketched in Fig. 3, and the

last 2 terms are the d,, pairing. With this ansatz, three distinct spin liquids may be described

depending on the choice of parameters. These spin liquids are shown in Fig. 2, and we list them

below:

e The 7m-flux phase with SU(2) gauge symmetry corresponds to ¢ = 7/4, and no fermion

pairing 12 = 0.

e The ‘staggered flux’ U(1) spin liquid is obtained for general ¢, and no fermion pairing v, » = 0.

The U(1) gauge field corresponds to a nearly spatially uniform modulation in the phases of

the fermion hopping terms.

e The Z2Az2z13 spin liquid is obtained when the d,, pairing y; + 72 is present, and breaks the

U(1) down to Zs.

Note that we have d,, pairing in the Z, spin liquid only, with opposite signs on the two sublattices.

In momentum space, we choose the A and B checkerboard sublattices as the basis sites (shown

T
in Fig. 3), and the Hamiltonian acting on (fA,kT, Bkt fi‘ﬁk’i, f];fk,i) in the gauge of Eq. (2.7)

9



FIG. 4. Plot of the dispersion, g, of the fermionic spinons of the Zs spin liquid Z2Azz13. The eigenvalues
of the spinon Hamiltonian are +eg. All gauge invariant observables are invariant under the square lattice
space group, although the spinon dispersion is not. The plot is of Eq. (2.10) for ¢t = 1.118, ¢ = 0.464,
v1 = 0.5, 72 = 0.

is

0 Cx D O
cg; 0 0 D
H=| * , (2.8)
D 0 0 —C
0 D —Cx 0
where
Cr = —2t(e " cos(k,) — e ?cos(k,)) , Dy =4(y1 —ive)sin(k,)sin(ky) . (2.9)
The eigenvalues of (2.8) are
2 2\1/2
ex = £ ([Re(Cr)]” + [Im(Cy) + | Dk|1?) (2.10)

and these co-incide with those obtained in Wen’s gauge in (A3). Note that the dispersion depends
only on |y; + 972/, and not on = » separately. This is natural in the staggered flux gauge, where
U(1) the gauge transformation acts simply as f;n — fin€'®, and so the d,, pairing acts like a
charge 2 Higgs field: a simple identification of the charge 2 Higgs field is the advantage of the
present gauge. This dispersion is plotted in Fig. (4). The staggered flux phase has Dirac nodal
points at (+7/2, £7/2). Introducing d,, pairing does not gap these nodal points, but moves them
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away from these high symmetry points. Although the dispersion does not have full square lattice

symmetry, all gauge-invariant observables do, and this is verified by the analysis in Appendix A.

A. Majorana gauge

For the remainder of the analysis in the body of the paper we map (2.7) onto the gauge used by
Wang et al. [27] for the m-flux phase, which is convenient for eventual representation in Majorana
fermions and making the gauge and spin rotation symmetries manifest. In this gauge, the ansatz

of the Z2A 2213 spin liquid (which is gauge equivalent to Eq. (2.7)) is

~ ite= 4 0 o
Ui e = 0 1ol , g 1y €ven
B ite¥i 0 ) )
Uiit+d = ( 0 ipemtic ) , iy +1, odd

te2i® 0

0 t2i¢> , 1y + 1, odd
—te

Uiirg = (1) (

_ o e 0 o
Uiiryg = (—1) 0 1 26 , g+ 1y even
Wi v = s i = 0 (1 — i)™ 1y + 1, even
1,2+ +yY 1,2—T+Y (71 + i’yg>€2i¢ 0 9 T Y
_ _ 0 (=71 + iy2)e*® o
Ujjrdrg = Uii—g4g = _ _tig , 1y +1, odd (2.11)
(=7 —ir2)e 0

As in the previous gauge, the m-flux phase is obtained when ¢ = 7/4 while the staggered-flux

phase corresponds to general ¢.

ITII. CONTINUUM THEORY FOR HIGGS TRANSITION FROM SU(2) TO Zs.
A. 7-flux state with SO(5) symmetry

We begin by working out the continuum SU(2) gauge theory with the 2-flavor massless Dirac
fermion from the mean-field ansatz for the m-flux phase, using the Majorana gauge given in
Eq. (2.11).

In this gauge, we replace the Nambu spinor in Eq. (2.2) by the matrix operator

T
&:(ﬁt$> (3.1)
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The spinon SU(2) gauge symmetry of Eq. (2.6) now acts on X; as
SU(2), : & — XU/ . (3.2)
The physical spin symmetry acts on X; on the left:
SU(2)s : Xy — UsAX;. (3.3)
We write the Bogoliubov Hamiltonian Eq. (2.3) as
Hyr = [iag Tr (2]2) + 85 Tr (02 2) + iy Tr (022} 0", )| (3.4)
(i7)

The correspondence with the notation in Eq. (2.3) is
u,;j = ia,;jTO + ;:ija . (35)

The additional 7;; hoppings involve projective realizations of the spin rotation symmetry, and will
not be relevant. The degrees of freedom in this Hamiltonian can be represented by four Majorana
fermions, .
Xi = —= +1 a0 ). 3.6
7 (X0 + ixXa0") (3.6)

The SU(2)-invariant w-flux state comes from the hoppings % = 0 and
Q5 = —Qyj Xitg4 = 2t Ciygi = (—1)11215 . (37)

The low-energy behavior of this mean-field ansatz is described by an SU(2) gauge theory with an
emergent SO(5) symmetry. To work out the dispersion relation of this Hamiltonian, we increase
our unit cell by one lattice site in the x direction and so x acquires an additional sublattice index
m = A, B. Note that this unit cell differs slightly from the one used in the staggered flux gauge.

In momentum space, we then have

H = Z XTkHU(J)Xk )
k (3.8)
H(k) = —2¢ [sin(k,)p + sin(ks)p"] .

p' are Pauli operators acting on the sublattice space, m = A, B. This Hamiltonian is diagonal in
the 0, indices in Eq. (3.6), and the gauge was chosen to have this feature. The Hamiltonian in
Eq. (3.8) has Dirac points at k, = 0,7, k, = 0. Labelling these Dirac points by another index

v = 1,2, and expanding around these two points, we decompose our Majorana operator as

X ~ P Xmwo=1 (35) + (_1)inm,v:2(x) . (3.9)
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With this, the Hamiltonian reduces to

H = 2it Yy X! (070, = p°0y) Xo, (3.10)

v=1,2

with the sublattice and 0, a indices implicit. This gives the continuum Lagrangian

EMF = 2t XW‘L&;LXU (311)

T = jp*, v = ip®, and ¥ = x'7°. Here we have chosen to express Ly in

where 7° = p¥, v
the Minkowski metric (4, —, —); we ultimately move to the Euclidean metric below to perform
calculations.

We now define the 4 x 2 matrix operator

1 . “
Xa,v;,B - E (XO,U(SOLE + ZXa,ang) (312)

and X = X% where the sublattice/Dirac index m is left implicit. This lets us write our La-
grangian as

Lyp =iTr (X4"9,X) , (3.13)

where we set t = 1/2 from now on. In this form, the Hamiltonian describes 8 massless Majorana
fermions (these are 2-component ‘relativistic’ Majorana fermions with an additional sublattice
index). The SU(2) gauge symmetry acts on the right index (5 in Eq. (3.12)) of X, and the
gradient in £, must be replaced by the appropriate covariant gradient when the gauge field is
included. Global spin rotations act of the left index (o in Eq. (3.12)) of X, and global valley
rotations act of the v index. These global rotations combine to yield an emergent, low energy
Sp(4)/Zs = SO(5) global symmetry in the 7-flux phase [27, 39].

In the following subsections, we derive the continuum form of the perturbations given in
Eq. (2.11), which break the 7-flux state down to either the staggered flux state or the Z2Azz13
spin liquid. We do so by rewriting these perturbations in terms of the low-energy modes given
in Eq. (3.9) and keeping only the lowest order gradient terms. These perturbations are coupled
to adjoint Higgs fields, and the transition of the w-flux state to either the staggered flux state
or Z2Az213 spin liquid is obtained by condensing the corresponding Higgs fields. An alternative
derivation of these continuum perturbations based on symmetry fractionalization is provided in

Appendix A, and agrees with the following analysis.

B. From n-flux to staggered flux

We obtain the continuum version of the perturbations to the staggered flux phase by expanding

the mean field parameters @;; defined in Eq. (2.11) in powers of ¢ = 7/4 + §¢. We subsequently
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FIG. 5. Shown are the leading-order perturbations that away from the SU(2) n-flux state, in the Majorana
gauge given by Eq. 2.11. Note that the unit cell, with sublattice sites A and B, differs from the gauge
illustrated in Fig. 3. (Left) The perturbation that shifts the m-flux state to the staggered flux state,
whit hoppings proportional to 7%. Thickness of the line denotes strength (weaker in the y-direction)
and solid/dashed indicates positive/negative sign. (Right) The d,, pairing that breaks the U(1) gauge

symmetry to Zo, with pairing v17Y — v97% on solid lines and ;7% + v27¥ on dashed lines.

employ Eq. (3.5), which in turn yields additional hopping parameters to the Hamiltonian of the

form

Five = —460(—1) T, Fivg = 200(=1)". (3.14)

Qi+ i+
These terms are illustrated in Fig. 5. If we look at the components of the Majorana fermions
(as defined in Eq. (3.6), with (0,a), a = z,y, z), we see that these new terms introduce hopping
between the 0 <+ z and x <+ y Majorana fermions. For simplicity, we focus on the 0 <+ z hoppings,
as the z <+ y hoppings will be identical. We start with the hoppings in the x-direction, expand our
Majorana operators in terms of low-energy modes, and keep only the lowest-order gradient terms.
As in Eq. (3.12), the two indices on x correspond to (0, x,y, z) and valley, respectively, with the

sublattice index implicit.
SH = =456 3 |3 (20)p” + (=)™ x| (<17 7 [0 () + (<) o)
+ 28 zz[x%ixxi)px + (=" xaai) | (<" (7 = ip?) [P X (wire) + (<) Xealwire)]
+ 25¢i [XE1@)e” + (=1 o) | (1) (0 + ") | p"Xea (wia) + (—1) e (ai—a)]|

~ 206 / Az [X019° 00X 22 — X0.2P" Ou Xz 1]

= 0L = —2i0¢pTr (UZX',uyyy&rX)
(3.15)
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In our final term, we have reintroduced the x <+ y hoppings. For the hoppings in the y-direction,

6H = 26¢Z [ngl(;gi)pw +(=1)™ Xag(xi)} (—1) [pwxz,1(xi+y) — (=1)™ Xz,Q(xi-H;l)}

_ 25¢Z [XOTJ(%')PQ: + (—1)iy XOT,Q(xi)} (—1)iy [pIXz,l(xi—g)) - <_1)iy Xz,2($i—z))} (3.16)

~ —20¢ / d*z [XG.10"0yX=2 = X000 OyXz1

= 6L = —2i6¢ Tr (0" X 70, X))
Note that here and in Eq. (3.15) the Pauli matrix o7 is acted on by the SU(2) gauge symmetry of
the w-flux phase. Gauge invariance requires there exist nearly identical continuum model bilinears
containing instead ¢® and ¢¥ Pauli matrices. It is therefore useful to express the perturbation in
a gauge independent fashion using an adjoint Higgs field ®4, where a = z,y, z is a SU(2) gauge
index:

0L = @ Tr [o* X p¥ (1Yi0, + 4"i0,) X]| . (3.17)

(Our choice of subscript “3” will be clear shortly.) This Higgs field mediates the onset of the

staggered flux phase, and in this present gauge we have the identification
D5 ~ §¢. (3.18)

Condensing the Higgs field with (®%) leads to a transition from the SU(2) m-flux state to the U(1)
staggered flux state. For concreteness, we continue to work in the gauge where ®§ condenses in
the z direction, as implied by Egs. (3.15) and (3.16).

C. From m-flux to Z2A2213
We now evaluate the effects of a non-zero 7, 5 in the m-flux phase, using the Majorana gauge as
given in Eq. (2.11). We first consider turning on the perturbation
Ui iyarg = Uig—arg = NTY — V2T , g + iy even. (3.19)

Recall that in the Majorana basis, terms proportional to 7% (1Y) correspond to hoppings between
the 0 <> z(y) and z <> y(x) Majorana fermions. Focusing on the 7, term, we expand in low-energy

modes
=N 0,1\Li ~1)’ 0,2\l ~1) y, I\ Liti+g) — (— ' y,2 \Tita+g
0H =~ Xoa(x)p® + (=1)" x§a(@a) | |” + (=1)" | | 0" Xy (Tirarg) — (=) Xy2 (Titarg)
RN Y Xoa (@) X1 (25) = X ()P Xy (i) + X012 (@)™ Xy (w2) + XG 2(26) P Xy (w2)

= 0L =y Tr [0VX (19" + 1Y) X]
(3.20)
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The perturbation is identical for the ~, term, but with ¢¥ = —o”.

As in the previous section, the addition of the hopping parameters of Eq. (3.19) can be for-
mulated in a gauge-invariant fashion by coupling the bilinear above to an adjoint Higgs field
®¢ a = z,y,z (the bar on the “1” will be apparent below). In particular, when a term
P Tr [0“)_( (*y* 4+ pyY) X ] is added to the Lagrangian, we reproduce the continuum version

of Eq. (3.19) we just derived when ®¢ condenses as
(@)~ (P])~m- (3.21)
We perform the same analysis for the second term proportional to 7 o:
Uiiratyg = Uii—at+g = NT + VT, iy +1, odd. (3.22)
The continuum derivation of this is essentially identical to as before, yielding
0L =Tr [(no” +720Y) X (7" — puv¥) X1 , (3.23)

prompting use to introduce ®§ Tr [O'GX (™ — p™y¥) X ] The continuum version of Eq. (3.19) is
obtained through the condensation ®§ such that (®3) = 7104z + Y200y

D. Majorana-Higgs Lagrangian

We now combine the results of Sections [T A, I1IB, and [II C to obtain the low energy La-
grangian for the Majorana field X, and 3 real, adjoint Higgs scalars, which we now identify as ®{,
®3, @ (df, are rotations of ®?5 in the 1,2 plane). We do not explicitly write out the coupling
to the SU(2) gauge field in this subsection, which can be included by the usual requirements of
minimal coupling.

The Lagrangian is

L=iTr (X+"9,X)+ @] Tr (¢c°Xp*y"X) + @5 Tr (0° X pi"7¥ X))
+ @ Tr (6" X ¥ (1Yi0, +7"i0,) X) + V(D).
The staggered flux state is obtained when (®3) o (0,0,0¢). The Z2Azz13 state follows from

(®1) o¢ (71 = 72,7 +72,0) and (P2) o< (=71 — 72,71 — 72, 0).
The Higgs potential V' (®) arises from integrating out the high energy spinon degrees of freedom.

(3.24)

We deduce its form by carefully considering the symmetry properties of the theory, which are
described in some detail in Appendix A. Here, we note that the theory should respect time reversal

and the lattice symmetries,

T, : (ix,iy) — (i + 1,iy), T, : (ix,iy) — (ix,iy +1),
Py i (ig, by) = (—ig, 1y), Py (ig,iy) = (ig, —1y),
Rﬂ'/2 . (ixaiy) = (_iyvix)a (325)
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and we summarize the transformations of the Higgs fieds here:

T, |Ty| Py | Py|T | Ry 2
+

3
Y| 4| — | — | —|—|—d8
g — | — |+ |+ ]|+ -

From this, we can deduce that the following gauge-invariant terms are allowed to quartic order in

the Higgs potential

V(®) = 5 (PIDY + PIDT) + 5 DIDL + w gy PIDLDS
+ u (1D + B5D5)° + U (D5D5)% + vy (D{DF)? + vy (D)D) (D5DY)
+ vg [(BIDY)? + (DGDBL)*] + vy (BIDS + DIDT) (DY) . (3.26)

where €, is the antisymmetric unit tensor.

An important feature of V(@) is the cubic term proportional to w. This term implies that if
any two of the Higgs fields are condensed, then so must the third. It also shows that even if we
were only considering the transition from the SU(2) 7-flux phase to the gapless Zs spin liquid by
the condensation of ®f ,, we would be forced to include ®§ in our theory, and hence the additional
possibility of a U(1) staggered flux phase. The symmetry transformations show that ®§ is the
unique adjoint Higgs field that can be made from the tensor product of the Higgs fields needed to
describe the gapless Zy spin liquid, ®¢ and ®§: so the staggered flux phase is a natural partner of
this gapless Zs spin liquid and the 7-flux phase.

We can perform a mean-field minimization of Eq. (3.26), and typical results are shown in Fig. 2.
There are 3 phases as a function of the tuning parameters s and s, which correspond to exactly
those obtained in the lattice mean-field theory described in Section [I. The presence of the w term
implies that there is a first order transition line near the point where the 3 phases meet [43], as
shown in Fig. 2. We summarize and re-express the lattice theory results in terms of the continuum

model parameters below.

1. SU(2) 7 flux phase

Here, there is no Higgs condensate (®¢,) = 0, (®3) = 0, and the system lies in the red region
on the top right of Fig. 2: the SU(2) w-flux phase. The continuum model possesses an SU(2) gauge
symmetry, along with the corresponding gauge bosons. The theory is believed to confine to the

Néel or VBS phase—as discussed in Section [ and VI, we view the Néel phase to be more likely.
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2. U(1) Staggered flux phase

This state as (®§) non-zero, while (®¢,) = 0, resulting in the U(1) staggered flux phase repre-
sented on the top left of Fig. 2. Making contact with the lattice ansatz, we have

(@) o (0,0, — 1/4) £ 0. (3.27)

Again, the theory has a continuous unbroken gauge degree of freedom, now with only a U(1)
symmetry. There is a single gauge boson, which we nevertheless assume triggers confinement. As

argued, the most likely fate of the theory is the VBS state, but we cannot preclude the Néel phase.

3. Zs spin liquid Z2Azz13

The Zj spin liquid Z2A 2213 corresponds to a Higgs condensate satisfying (@ ,) # 0; it is shown
in the lower half of the phase diagram of Fig. 2. The symmetry transformations imply that ®¢ and
®f have the same mass, so only a single tuning parameter, s, is required to make them condense
from the SU(2) m-flux phase. From the symmetry transformations, we also see that the absence of

a broken symmetry requires that the gauge-invariant bilinears obey
(P707) = (2395) >0, , (P]P3) =0. (3.28)

Such saddle points are obtained from the Higgs potential for a range of v; positive and v, negative.

Moreover, such a saddle point is indeed present in the lattice ansatz of the previous section where

(Pra) X (=71 — 72,71 —72,0) , (Pag) < (71 —Y2: 71 + 72,0) . (3.29)

We note that this implies (®1) L (®5) and [(®;)| = |(P2)], where we use a vector shorthand for
the indices a = x,y, z of the Higgs fields. By minimizing the potential V(®) in Eq. (3.26), we see
that this Zs spin liquid also implies the condensation of the remaining Higgs field:

(®5) oc w eape (BF)(PS5) (3.30)

It follows that s can change sign within this phase without any phase transition.

E. Visons

The Zs spin liquid is obtained from the theory in Eq. (3.24) + SU(2) gauge fields (which is
Eq. (4.2) below) by condensing ®{,. This spin liquid has gapless fermionic spinon excitations,

whose low energy dispersion can also be determined from the continuum theory. However, as in
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all Zs spin liquids, there must also be vison excitations, which are mutual semions with respect
to the spinons. In the theory in Eq. (4.2), the vison is a finite energy excitation associated with
vortex-like saddle point in which the Higgs fields ®¢, undergo a topologically non-trivial SO(3)
rotation, associated with 1 (SO(3))= Zs, around the core of the vortex: see Ref. [44] for an explicit
solution in a theory without the fermionic spinons. Given that the vison appears in a lattice
model with a background spinon density of one spinon per site, we expect the vison transforms
projectively under translational symmetries with 7,7, = —T,T,, where T, is translation by one
lattice spacing in the « direction [23, 45-48]. For the case of gapped spinons, this fact now has a
modern interpretation in the theory of symmetry fractionalization in topological phases [49-53].
We expect that a similar result applies in the present gapless spinon case, but this has not been
explicitly established. For the case of gapped spinons, the vison projective transformation can be
derived from a parent U(1) gauge theory (which is Higgsed down to Z,) in which the monopoles
carry Berry phases [45, 46, 48]. Such monopole Berry phases are in-turn related to a SO(5) Wess-
Zumino-Witten term in an effective theory the Néel and VBS order parameters [54, 55]. Notably,
this SO(5) WZW term is also linked to an anomaly of the Majorana theory in Eq. (4.2) [27]. It
would therefore be interesting to establish 7,7, = —T,T, for gapped visons in the presence of
gapless spinons starting directly from Eq. (4.2) and condensing the Higgs fields: we leave such an

analysis for future work.

IV. RENORMALIZED PERTURBATION EXPANSION FOR THE CRITICAL SU(2)
GAUGE THEORY

This section will present an analysis of the transition obtained by tuning the Higgs ‘mass’ s in
Eq. (3.26) across a quantum critical point at s = s, for s > 0 in Fig. 2, between the SU(2) and Z,
spin liquids. We have (@, ;) = 0 for s > s, yielding the 7-flux spin liquid. For s < s., we have
(@f,) # 0 yielding the Z, spin liquid Z2A2213. As we noted below Eq. (3.29), (®5) will also be
non-zero once both (®f,) are non-zero. However, as (®3) is quadratic in (®,) (see Eq. (3.30)), it
is not a primary order parameter for the transition. So we can entirely neglect ®4 in the analysis
of the criticality in the present section.

It is also convenient to write the theory in terms of 2 flavors of complex Dirac fermions which
also carry a fundamental SU(2) gauge charge, 1,,; Here a is the SU(2) gauge index, v = 1,2 is
the valley index, and the Dirac/sublattice index is suppressed. The global SU(2) spin symmetry is
not manifest in this formalism, unlike in the earlier Majorana formalism. Since the Lagrangian in
Eq. 3.24 does not contain terms that act on the physical SU(2) spin, our Lagrangian nevertheless
has a simple form in terms of these Dirac fermions, although a more careful analysis will be required

to calculate the behavior of the Néel order parameter, which does involve the physical SU(2) spin.
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Explicitly, the relationship between the Dirac and Majorana fermions is
wa7v = /L.O-Z7/BX17U;B ° (4‘1)

Applying this change of variables to Eq. (3.24), and including the SU(2) gauge field Af., we obtain
the Lagrangian for ¢ and the @7, Higgs fields

L=Ly+ Lo+ Loy
Ly=1Y b (0, —iALe®) by .
Lo K
= (00 — 20 ALRG)? + (9,05 — 2enc Ay D5)°] + g (D501 + D33) (4.2)
!
+ u (BID] + DIDY)? + vy (D1DG)? + vy (D1DY) (DLDY)
Loy = X (D Py oY + O Pp+Yo"y)

We will henceforth work in Euclidean signature, with (7#)® = 1 for all x. This Lagrangian includes
an important new term not present in Eq. (3.24): a bare spatial gradient term for the Higgs field
proportional to the coupling K (we will define N shortly). This coupling is allowed by symmetry,
and will turn out to be ‘dangerously irrelevant’ i.e. under renormalization, K flows to zero, but
it cannot be set to zero at the outset because of some singular effects that we will describe below.
In contrast, the quartic couplings u, v; 2 are geniunely irrelevant at the critical point, and will not
be considered further.

The theory L is invariant under SU(2) gauge, SU(2) spin rotation, time-reversal, and space
group transformations, as it must be, because these are symmetries of the underlying Hamiltonian
and its parton representation. However, the Yukawa coupling A\ breaks both the emergent Lorentz
and SO(5) symmetries of the fermion kinetic term. As we will show below, A is not an irrelevant
perturbation, and so the absence of these emergent symmetries will be apparent in the critical
correlation functions.

We will analyze the critical properties of Eq. (4.2) by the 1/N expansion used in earlier treat-
ments of Dirac fermions coupled to scalar fields by Yukawa couplings which break relativistic
invariance [56]. For this purpose, we will endow the fermions with an additional flavor index (not
shown explicitly) which ranges over Ny values. Combined with the v index, there are a total of
2Ny flavors and 2 colors of 2-component Dirac fermions. The physical case of interest to us is
Ny =1.

As in Ref. [56], we will compute the renormalization constants of the theory £ in a 1/Ny
expansion. The most important of these will be the renormalization of the Fermi velocity, which
has been implicitly set to unity above: this is non-zero because of the lack of the Lorentz invariance

in the Yukawa coupling. The renormalization of the Fermi velocity in turn defines a dynamic critical
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k+p k+p

FIG. 6. The leading order effective propagators for the Higgs (left) and gauge field (right) are generated

by the one-loop contributions from N fermions.

exponent z: we will compute z to order 1/Ny and find it to be a universal number at this order.
Next, we shall examine the renormalization of the field scales. As in the Ref. [56], a convenient
choice, as we explain below, is to renormalize the boson field scale ® so that the Yukawa coupling
A = 1; we will assume A = 1 below. As usual, the renormalization of the fermion field, Z,, is
determined from the fermion self energy, which then determines a fermion anomalous dimension
ny. Here we will find an unusual phenomenon, which is one of our main results: the value of 7,
is not universal at order 1/Ny, but has a logarithmic dependence upon the irrelevant coupling
K. Finally, we will also compute the renormalization of the fermion bilinears associated with the
Néel and VBS order parameters: these are not equal to each other because the SO(5) symmetry

is explicitly broken.

A. Boson propagators

The first step in the large Ny expansion is to integrate out the large number of fermions 1,
which allows us to determine the propagators of the bosons: the Higgs fields and the gauge fields.
To leading order in 1/Ny, we have to evaluate the diagrams in Fig. 6, and this leads to an effective

quadratic action of the following form

%’; = /k 1(3 + KK + Ty (k) D% (k) D% (—k) + %(s + Kk + D)5 (k) D5 (k)

2
#2085, - Bl ) asaz().

We work in the Euclidean time signature, and k is a 3-momentum.

We first calculate the one-loop corrections to the Higgs propagators. The correction to the &4
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propagator is shown in the first diagram in Fig. 6, and is

Ty (k)dap = A2 Tr/ (;1;1)93 [y o] L%} [Py o] {%}

8 / &®p po(po + ko) = pa(Pa + ka) + py(py + ky) (4.3)
v @) PA(k+p)? |

>\25ab (kg + kZ)
4 VR

We have omitted a constant term, which will be tuned to zero at the critical point.

The correction to the ®, propagator is identical to the ®; correction, with k, <+ k,.

ryky = o Kok, (4.4)
4 V2
The reader should now notice some key features. Asin Ref. [56], the overall scaling in momentum
is I'1 o ~ |k|. So, this fermion-induced contribution to the ® propagators is more important at low
momenta than the k? terms which would be present in the bare theory. In general, the bare boson
k? terms are irrelevant, and this is why we choose to set the field scale of ® with the renormalization
condition A = 1. However, unlike Ref. [56], we will see below in some detail that we cannot entirely
ignore the bare k* term. The expression for I'; (I'y) is not an increasing function of &, (k,) when it
is larger than the other momentum components, and this will lead to infrared singularities at first
order in 1/Ny. Specifically, the integral over the propagator 1/I'y (1/I's) has an infrared divergence
in the ko,k, (ko,k.) plane. Consequently, we do need to include the dangerously irrelevant Kk2
(Kk2) term in the bare action for ® (®5), as we have anticipated in Eqgs. (4.2) and (4.3).
The O(Ny) propagator for the gauge field is obtained from

casers ey | S 2] 4]
(K*016" — K'E") + O(K?) .

: (4.5)

TR

This is relativistically invariant, as expected.

B. Fermion self-energy

We first calculate the one-loop corrections to the fermion self-energy, which will determine
the anomalous dimension of the fermion operators as well as the dynamical critical exponent z.
Although the anomalous dimension of the fermion is not a gauge-invariant observable, it will be

needed to calculate the critical behavior of the gauge-invariant SO(5) order parameter. The three
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FIG. 7. The two leading order contributions to the fermion self-energy, arising from Higgs (left) and

gauge boson (right) couplings. To leading order in 1/Ny, both the Higgs and gauge boson propagators

are generated by the fermions.

contributions to the fermion self-energy, as shown in Fig. 7, come from the two Higgs bosons and
the gauge field, ¥ = 31 4+ Xg + X 4.

Y1 (k) ’ / d'p 7””_ PrE ] ! (4.6)

"N, ) @l |t k2T i) + K

Yo(k) ’ /(dgp vy_ prF ] ! (4.7)

—_ Yy
Ny ) @oEl o+ k2] Talp) + K12

s [ [ prE | (-2
EA(’“)‘Nf/ e k)T Tap (48)

We have introduced ¢ as a gauge-fixing parameter to obtain the gauge boson propagator.

Focusing on the Higgs corrections (Egs. (4.6) and (4.7)), we analyze the behavior at small
external momenta k;. Note that the self-energy integrals are fully regulated by the presence of K
and a non-zero external momenta. Since ¥, (X,) is invariant under k, <> ko (k; <> ko), and the
two transform into each other under a 90 degree spatial rotation, there are two distinct types of
contributions for small external momenta. The first is proportional to k,y* for 3, and k,~¥ for
¥5. The second type includes all other possible choices of momenta, such as kq°.

As we shall justify below and in Appendix B, we can focus on the regime [p,| > |pol, |p,| for

graphs with a ®; propagator. In this limit, we can approximate the ®; propagator as

4|p.|
Py + P2+ 4K |p,

£ (4.9)

At K = 0, this propagator has an infrared divergence when integrated over the pg, plane - so K is
needed an infrared regulator. With this, we extract the y* correction to the self-energy from the

®, propagator by considering the kg = k, = 0 limit:

12 /A d3p (o + k) D2
(

Y0 (ke) = ’
Ny J  (2m) (po + ko)® + D3+ P2 R+ p2 + 4K |p,|°

(4.10)

We have indicated a cutoff A to regulate the theory at large momenta, and this is needed in
conformal gauge theories in 2-+1 dimensions. However, with our inclusion of the irrelevant K to

control the infrared singularity, we find that the integrand vanishes faster at large momenta. It is
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not difficult to see that for K # 0 Eq. (4.10) is finite as A — oo, and we will take this limit in the
present section. The theory with a finite A will be examined in Appendix B in a renormalization
group computation.

We will now show that Eq. (4.10) has a leading k, In?(k,) contribution. One factor of In(k,) is
the usual one: it follows from the fact that at K = 0 the integrand divided by k, is a homogeneous
function of momenta of dimension —3. The other comes from the infrared divergence regulated by
K noted below Eq. (4.9).

Extracting the coefficient of the k, In*(k,) contribution requires a number of approximations.
To understand the values of p that dominate the integral in Eq. (4.10), it is useful to perform the

integral over py and py:

k) = 1 [ bl kIl KPR, (4.11)

- Ny J 8n? (pe + k2)? — 4K |p,|*

By examining the form of the integrals in Egs. (4.10) and (4.11), one can verify that the dominant

term at small k£, and K is proportional to k, lnz(K k), and arises from the integration regime

[Kpal*]"? < [P+ 12" < Ipe] < % (4.12)

The scale K appears both as an ultraviolet cutoff and in defining the infrared bound. For future
calculations, this integration regime will prove to be the relevant one in isolating similar log?® con-
tributions in other diagrams, although in principle one must still carry out an explicit calculation
like in Eq. (4.11) to verify that no other integration regimes give comparable contributions. We
provide these calculations in Appendix C in addition to numerical evaluations of the one-loop inte-
grals which confirm the validity of our approximations, and simply evaluate the one-loop integrals
in the Eq. (4.12) limit in the main text.

We can extract the coefficient of this log® term by performing the integral in this regime,

’yrzl(k)zﬁ/w% 1P| /”Z dpydpo 1
’ Ny ~1/K 27 (pr + ka) (K |ps|3)1/2 4m? P%—i-pf/

~5 / e Il L) (4.13)

- Ny Joiyk 21 (pe + kg) 47
12 k, ,

~ 2 Kk,
N 872 [In(Kk.)]

Another discussion of the origin of the k, In?(k,) is presented in Appendix B using a renormalization
group analysis.

We now calculate the form of the second type of corrections using the limits in Eq. (4.12),
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evaluating the ®; contribution to the self-energy with external momentum k, for concreteness.

12k, (Y5 dp, 1 [Pl dp, d 1
7021(/{0)% O/ p py pO

Ny oy 20 [pal Jucpopye (20)* 6+ 7 (4.14)

12k0 1/K dp$ 1 1 12 k’o 9 :
~—— — — In(1/(Klp,|)) = ——— [In (Kk '

Nf /—1/[( 2 |pz|47r 11( /( ‘p D) Nf87T2 [n( 0)}

Combining the corrections from both Higgs propagators, we obtain the full expression for the

self-energy for small external momenta at log? order,

Y(k) ~ —

— (ko In*(Kko)y° + ko In* (K ky)y" + ky In*(Kky)7Y] (4.15)
!

In principle, the dependence on external momenta inside the logarithms could be more complicated
for general k, i.e. Y(k)7° ~ ko In?(K f(ko, ks, k,)), but since we have verified that f(ko,0,0) = ko,
then corrections to this are subleading.

These divergent corrections are absorbed into the renormalization of the fermion field, ¢ =
\/Z—¢1/JR, with

Zy=1- In?(Kpu), (4.16)

TN
where we have renormalized the theory at some momentum scale p. This counterterm only cures
the divergence at log? order, since the renormalized self-energy at some other momentum scale k
will scale as

In*(Kp) — In*(Kk) = In(p/k) In(K?kp) . (4.17)
This, along with the RG analysis in Appendix B, indicates that the subleading single-logarithm
corrections will generically give non-universal behavior. However, these log? corrections to the
self-energy are Lorentz invariant, and do not affect the renormalization of the dynamical criti-
cal exponent, z. Therefore, the subleading single-logarithm correction to the velocity anistropy
will lead to a universal correction to the dynamical critical exponent. To extract the subleading
correction to z using A and the external momenta as a regulator, we start with the expression

ox , 0¥ , _12/ d&*p 2(p, +k,)° ]

Oky | Ok, Ny ) @ (pt k)t AKpRp|l 442

(4.18)

To leading order in k, we set k = 0 inside the integrand and simply use it as an IR cutoff, which

gives
orx , 0% 6
— — T~ ——In(Kk). .
8]{?0 81@7 Nf7T2 Tl( ) (4 19)

This result can be obtained analytically by approximating the integration region k < |p,| < 1/K,

and can be verified by a numerical evaluation of Eq. 4.18. This implies a renormalization of the

Fermi velocity, vp = Z,vp R

Z,=1+ In (K 1) (4.20)

7T2Nf
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The logarithmic derivative with respect to 1/K determines the renormalization of the dynamical

critical exponent,

6

=14+ ——.
z +7T2Nf

(4.21)

The one-loop calculation defined in Eq. (4.18) is actually well-defined when K = 0 and can be
regulated via more standard approaches, such as dimensional regularization, as shown in Appendix

D. The same value of z is also obtained in a renormalization group computation in Appendix B.

C. SO(5) order parameter

In the absence of the Higgs fields, our theory possesses an emergent SO(5) symmetry corre-
sponding to rotations between Néel and VBS order parameters. This SO(5) symmetry is broken
by the critical Higgs fields, and as a result, the scaling behavior of Néel and VBS order parameters
will differ. In terms of Dirac fermions, the fermion bilinears corresponding to the two-component
VBS order parameter - determined by the action of the square lattice symmetries on the bilinears

- may be written as

Vi=yThy, T ={u", u*}. (4.22)
The three-component Néel order parameter has a less concise expression in terms of Dirac fermions
- this is due to the fact that the Dirac fermion representation obfuscates the action of the phys-
ical SU(2) spin rotation symmetry. In terms of the Majorana field X, the order parameter is

Tr ()_( woX ), a=x,y,z Inorder to calculate corrections to the Néel order parameter, we focus

on the ¢* component, which happens to be simply expressible in terms of a Dirac fermion bilinear:

N7 = ub. (4.23)

Because the Higgs couplings preserve the physical SU(2) spin rotation symmetry, the other com-
ponents must have the same corrections, and this has been confirmed by an explicit calculation
in terms of the Majorana fermions. To compute the corrections to the scaling dimensions of these
composite operators, we couple the fermion bilinear n’ = ¥u’ to a source field J;, and compute
the O(N ; 1) vertex corrections in Fig. 8. Aside from the corrections coming from the renormal-
ization of the fermion self-energy, the (’)(N n 1) corrections that we will be interested in come from

one-loop corrections of the Higgs fields with external momenta k; 5

,[LZUGILLiO'a[LZ d3p . ? _ Hl ? _ ]%2 . 1

N / @ (p— k)2 (p— k2)? ) Ti(p) + Kp2
protpotyt [ dPp o, P Pk, 1

Ny / (27)37 (p—F1)? (p— k’2)27 To(p) + Kpj

(4.24)
+
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FIG. 8. The (’)(Nf_l) vertex corrections which contribute to the renormalization of the SO(5) order
parameter. The order parameter receives corrections at one-loop order from the Higgs fields (left) and the
gauge boson (center), although only the former gives a log? correction. An additional two-loop O(N n h

contribution (right) is possible - we show in Appendix F that it does not contain any log? divergences.

where the first and second terms arise from interactions with ®¢ and @9, respectively. The gauge
field correction does not break SO(5) symmetry and does not contribute to the renormalization
at log? order, so we will focus on the Higgs corrections. Additionally, there is a possible two-loop
diagram shown in Fig. 8 that contributes at O(N 3 1), but we show explicitly in Appendix F' that
these corrections also do not contribute to the renormalization at log? order. At zero external
momenta, the log® Higgs corrections to the VBS order parameter (u' = p® , u?) drops out entirely,
leaving only Higgs corrections coming from the fermion renormalization.

We focus on vertex corrections to the Néel order parameter (u° = u). As is the case in the
fermion self-energy, the spatial anisotropy in the Higgs propagators gives rise to log? divergences
in their corrections to the SO(5) vertex. We isolate log® divergences in the Higgs correction
to the SO(5) order parameter by including an external momenta 2k, to the order parameter,
which is distributed symmetrically between the two fermion fields. We calculate this for the &,
propagator—approximating the Higgs propagator as 4[p.|/(p§ + p; + 4K Ip2|”) as in the previous

section and taking the limit in Eq. (4.12), the one-loop correction is

pro pd ol u? / d3p pi — ki + i+ 4|p.|
Ny (27)% [(pa + k) + P2 + D3] [(De — F2)? + D2 + D3] P2 + P2 + 4K |p,|*
L1 /1/ dp, (02 = k)Ipa / Pl dpydpy 1 (4.25)
Ny Jouyk 21 (po + ko) (00 — k2)? Jigppopyz 472 DG+ D2

I (1/(Kpa])) ~ — =10 (k)

1249 /”K dp,  (p? — k2)|p.| _
L 2Nf7'l'2

T Nf /K 8 (px + kx>2(pz — km)

The &, propagator gives an identical correction. Since the external momenta only play the role

of an IR cutoff to leading order, we generalize this result to an arbitrary external momentum and
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obtain the composite operator renormalizations [57]

Zyps = 1
(4.26)

3
Inea =14 In?*(Kpu).

e
We can state these results in terms of the perturbative corrections to the two-point correlator of
the order parameters, ()T (k)T (—k)), i.e. the corresponding susceptibilities xvps and Yneel;

these combine the consequences of the composite operator renormalizations in Eq. (4.26), and Zy,
in Eq. (4.16), to yield

v ~ 41 () = b1 [t )|

7 2
;BS ) g (4.27)
sa(k) ~ — [k { ) =—|k| |1~ In?(K|k|)| .
sealh) ~ =] (52 ) = =lbl 1= 2w
After a Fourier transform to real space, these correlators are
1 6
xves(r) ~ — [1— 5 In*(|r|/K)
| Nym

(4.28)

1 12
XNeel(T) ~ W [ - N2 IHQ(M/K)} :

The renormalization group analysis in Appendix B shows how the above results may be renormal-

ized to large r; we find
1 6
ons(r) ~ oo (— (/1))

]

(4.29)

1 12
XNéel (1) ~ WGXP (— N2 1n2(|r\/K)) :

where the exponents of the prefactors, a and b, are non-universal numbers.

Leading logarithm-squared corrections have appeared earlier in a few other problems in quantum
many-body theory. They appear in the theory of weakly disordered two-dimensional metals with
Coulomb interactions [58-60]. More recently, log® terms have also been found in computations of
the density of states of clean bilayer graphene with Coulomb interactions [61, 62]. Renormalization
group analyses of these cases [59, 62] also yield an exponentiation similar to that in Eq. (4.29).

As an aside, we note that the one-loop vertex corrections to the bilinear 1), whose symmetry
properties identify it as the scalar spin chirality [63], have the same magnitude and opposite sign
as the Néel order parameter. Because of this, the log® divergence is in fact cancelled by the
fermion self-energy. As shown in Appendix F, the two-loop corrections coming from the Higgs
fields vanish, meaning that correlations of the scalar spin chirality should have power law decay
at O(N ; 1). Since this power law decay is slower than the Néel and VBS correlations, this may

indicate proximity to a chiral spin liquid.

28



V. TRANSITION FROM U(1) STAGGERED FLUX TO GAPLESS Z, SPIN LIQUID

This section discusses the critical U(1) gauge theory for the transition between the U(1) stag-
gered flux spin liquid and the gapless Z, spin liquid Z2Az213 in Fig. 2. A similar theory has been
considered earlier [25] for the Néel-Z, spin liquid transition.

Both phases have the Higgs field (®%) # 0. So let us fix ®§ = §,.P, with ¢ a non-zero constant,
which will turn into a coupling constant in the low energy theory below. In this situation, the
SU(2) gauge symmetry is broken down to U(1), and we need only consider a U(1) gauge theory
with the U(1) gauge field A, = A7, Also important is the consequence of the w term in the Higgs
potential Eq. (3.26):

V(®)=...4+w®d (P{D) — OYDT) + ... . (5.1)

Choosing a gauge with w® < 0, and diagonalizing the quadratic form of the Higgs potential for
CI>91”2’ , we deduce that we need only focus on a single low energy complex Higgs field near the critical
point

1
H= 5 (D7 + B +i(D} - 03)) . (5.2)

It can now be checked that H transforms as a charge 2 Higgs field under the unbroken U(1) gauge
symmetry. Other linear combinations of @fg can be ignored for the critical theory.

We can now obtain the critical theory for the fermions ¢, the complex Higgs field H, and the
U(1) gauge field A, from Eq. (3.24):

ﬁsf = £¢ + »CH + ,qu.w
Ly=1Y 0" Dyby + ®bp?o™ (1 Dy + 4 D,y) .
L
R M+ ulH|
Ny

Ly = X (HY (057" +ip™y") o~ + H') (157" — ip™y") o)
We define the covariant derivative D, = 8, — iA,0° and operators o = (6% £ ic¥)/2. Note that
® is a marginal coupling constant here, not a fluctuating field. A crucial feature of L is that it

does not contain the K gradient terms: these terms are now truly irrelevant. This can be seen in

the large Ny expansion: upon integrating the fermions, we obtain, in place of Eq. (4.3),

% = /k (s 1 al®) +1a(k) ; Fz(k)) H (k) + FATU‘“) (5,” - k;’j) Au(k) Ay (=k) . (5.4)

where I'; 5(k) are specified in Egs. (4.3, 4.4) for ® = 0. In general, the sum I'; (k) 4+ I'y(k) has the
rotational symmetry of the square lattice, and its inverse does not contain the infrared singularities
we encountered earlier. Consequently, there is no logarithmic violation of scaling by a dangerously

irrelevant K here, and the 1/Ny expansion of Ly should proceed along more conventional lines.
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The 1/Ny expansion of the theory £, was presented in Refs. [63, 64]: they found a stable
Lorentz invariant fixed point with & = 0 at the fixed point. In our case, for Ly we expect a
critical theory with dynamic scaling with an exponent z # 1, SO(5) symmetry broken by Ly,
and a spatial anisotropy in the fermion velocities at the Dirac nodes determined by the fixed point
value of ®. Note that even for & = 0 we do not expect Lorentz invariance with z = 1, because
the relevant Yukawa couplings in Ly, are not Lorentz invariant, and consequently I'y (k) + I'y(k)

is not Lorentz invariant.

VI. CONCLUSIONS

Building upon the results of recent numerical studies [7-10], we have proposed resolutions of
long-standing controversies connected to theories of the cuprates: the phases of the frustrated
square lattice spin S = 1/2 antiferromagnets, and the nature of deconfined criticality in such
models. Deconfined criticality expresses the low energy physics in terms of fractionalized degrees
of freedom and emergent gauge fields, which can enter various confining states with possible broken
symmetries on either or both sides of the critical point. Although there are several well-established
examples, the transition between Néel and VBS states in square lattice antiferromagnets [5, 6, 12,
13] has been of particular interest. One formulation of this deconfined critical point is a version of
QCDj3, quantum chromodynamics in 241 dimensions: a SU(2) gauge theory with 2 flavors of 2-
component massless Dirac fermions, each carrying a fundamental color charge. This theory is dual
to a SO(5) non-linear sigma model with a Wess-Zumino-Witten term [27, 54, 55]. There is now
significant numerical evidence that such a conformal field theory (CFT) does not exist, although
there is likely a nearby ‘complex’ CFT [31-37]. This leaves open the fate of a physical model with a
Hermitian Hamiltonian, such as the J;-J; antiferromagnet on the square lattice, between the Néel
and VBS states. Here we have presented a theory in which the putative QCD3 CFT is resolved
into an intermediate stable gapless phase with Zs topological order and gapless Dirac fermions
[23, 24, 26]. The intermediate Zs spin liquid is flanked by two proposed deconfined critical points,
neither of which is a CFT, or even invariant under Lorentz tranformations. The absence of Lorentz
symmetry permits several novel phenomena, including the appearance of dangerously irrelevant
couplings and logarithm-squared renormalizations, which can be tested in numerical studies. All
of these phases and critical points are described by extending QCDj3 with 3 real adjoint Higgs
fields. The couplings of these Higgs fields are tightly constrained by the transformations of QCDj3
under the symmetries of the underlying square lattice antiferromagnet, and an analysis of these
symmetries occupy a significant portion of this paper.

Our main results can be summarized in the context of the mean-field phase diagram in Fig. 2
obtained from the SU(2) gauge theory with 3 adjoint Higgs field ®f,; in Eq. (3.24). This mean
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field theory yields 3 spin liquids, with deconfined SU(2), U(1), and Z, gauge fields. We assume
that the spin liquids with continuous gauge symmetries confine, except at possible deconfined
critical transitions to the Z, spin liquid. This phase diagram maps onto the Ji-Jo model along
the trajectory of the dotted blue line, and our proposed deconfined critical theories are at the
boundaries between the mean field SU(2) and Z, spin liquids, and the U(1) and Z, spin liquids.
The numerical evidence for the confinement of the SU(2) m-flux spin liquid was reviewed in
Section I. This confining state should have either Néel or VBS order [27], and Ref. [28] argued by
comparing to bosonic spinon theories that it should be the Néel state. The structure of the critical
theory from such a confining state to the gapless Zs spin liquid was presented in Section IV, and
we found some unusual log? corrections to both the Néel and VBS critical correlators. From the
geometry of the mean field phase diagrams in Fig. 2, and the numerical studies on the square
lattice antiferromagnet noted in Fig. 1, it is then natural to propose that the U(1) staggered flux
spin liquid confines to the VBS state. The critical U(1) gauge theory for the boundary between
the U(1) and Z, spin liquid was presented in Section V, and this has no log? terms. We also note
that the log? correlators in Eqs. (4.28) and (4.29) show a faster decay of the Néel order than the
VBS order, which might be evidence that the SU(2) critical theory is proximate to the VBS state

rather than the Néel state, which would reverse the direction of the arrow in Fig. 2.

Irrespective of the assignment of the Néel or VBS confining states to the SU(2) or U(1) spin
liquids in Fig. 2, we expect any direct phase boundary between the Néel and VBS states to be a

first order transition. This follows from the numerical studies [31, 32, 34] noted in Section I.

Our critical SU(2) gauge theory for the S = 1/2 square lattice antiferromagnet has massless
2-component Dirac fermions with 2 flavors and 2 colors, and real critical Higgs fields with 2 flavors
and 3 colors, and is shown in Eq. (4.2). This derives from a theory for the m-flux to gapless Zs
spin liquid transition proposed by Ran and Wen [39, 40], and includes an additional ‘dangerously
irrelevant’ coupling K, which is the coefficient of a spatial gradient term in the Higgs fields. We
analyzed this theory along the lines of the 1/Ny expansion of Ref. [56] (the case of interest to us
here is Ny = 1). We found that the theory with K = 0 has infrared divergencies that arise from
the highly anisotropic spatial structure of the Higgs correlations, which is in turn a consequence
of the non-Lorentz invariant Yukawa couplings between the Higgs fields and the fermions. So even
though the coupling K is formally irrelevant, it must be included to understand the long-distance
and long-time behavior of the theory i.e. the coupling K is dangerously irrelevant. We found
that the coupling K leads to leading logarithm-squared corrections to various correlators, such
as those in Eqs. (4.27) and (4.28) for the correlations of the Néel and VBS order parameters;
Appendix B showed how these corrections are exponentiated in a renormalization group analysis,
lead to Eq. (4.29). We also note that the logarithm-squared term was absent in the contributions

to the dynamic critical exponent, z, and we computed a non-Lorentz-invariant value for z in
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Eq. (4.21).

The critical U(1) gauge theory for the S = 1/2 square lattice antiferromagnet was discussed in
Section V. It has massless 2-component Dirac fermions with 4 flavors and +1 U(1) gauge charges,
and a single complex critical Higgs fields with +£2 U(1) gauge charge. We found that K was not
dangerously irrelevant in this theory. The critical theory is not Lorentz invariant, and so has
dynamic critical exponent z # 1. The critical theory also does not have the SO(5) symmetry
between the Néel and VBS order parameters. A full analysis of this theory requires a study of the
role of anisotropies in the Dirac fermion velocities (associated with the coupling ® in Eq. (5.3)),
and we leave this for future work.

It would be useful to examine numerical studies of the square lattice antiferromagnet for loga-
rithmic violations of scaling, Lorentz invariance, and SO(5) symmetry, and compare to our predic-
tions. In particular, we note the violations of scaling observed in Ref. [65], although for a different
square lattice antiferromagnet.

Finally, we note that gapless Zs spin liquid studied is an attractive candidate for the ancilla
model of doped antiferromagnets [66-68], as it can realize a stable state in the second ancilla layer
for the pseudogap state.

As we were completing this paper, we became aware of some related work:

(i) Superconductivity has been observed [69, 70] in the doped .J;-J; model; doping the gapless Zs
spin liquid is a known to be a natural route to d-wave superconductivity [18, 25].

(i) Yang et al. [71] have detected a gapless spin liquid phase next to the Néel phase on the
Shastry-Sutherland model, which is obtained from the J;-J; model by removing 3/4 of the J,
bonds.
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Appendix A: Projective symmetry analysis

This appendix will present a detailed analysis of the projective symmetry group (PSG) of the
Z2A 2213 spin liquid, and its neighboring phases. Here, we will employ the gauge used by Wen
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[24]. Wen described the Z2Az213 spin liquid by the Bogoliubov Hamiltonian in Eq. (2.3) with the

ansatz

x
Uii+s = X T —n7¥
x
Uisirg = XT + 0T
. x
Uiiti+g = — N T
T
Uii—i+y = N1 T (Al)

In terms of the spinons f;,, this can be written as

H=— Z [2x(cos(k;) + cos(ky)) — i2n(cos(ky) — cos(ky)) + 4y sin(k,) sin(ky)] f-xy frr + H.c.

k
(A2)
So in this gauge, the Z2Azz13 spin liquid has both d,2_,» + is and d,, pairing and no hopping,

and the fermion dispersion relation is
2 = [2x(cos(k,) + cos(ky)) 4 4, sin(k,) sin(k,)]* + [2n(cos(k,) — cos(k,))]? (A3)
In the ansatz in Eq. (A1), the 3 spin liquids are
e The 7-flux phase with SU(2) gauge symmetry corresponds to x =n # 0, 73 = 0.
e The ‘staggered flux” U(1) spin liquid is obtained for x # 0, v; = 0, n # 0 with y # 7.
e The Z2A 2213 spin liquid is obtained when the d,, pairing 7; breaks the U(1) down to Zs.

For our purposes, and in general, a complex Higgs field is needed to break U(1) down to Zs. We
have characterized the d,, pairing above by a real parameter 7, and we need to generalize this to
a complex parameter. From the analysis in Section II, we deduce that this is obtained by taking

a complex d,, order parameter which has opposite phases on the two sublattices i.e.

Uj jrdott = 0 —(n =) 1, + 1, even
1,2 +T+Yy T . ) T
! — (71 + 172) 0 !
0 —(m +iv9) . .
U it+3+9 — , 2z + 1, odd
B —(71 — i72) 0 !
Uj ity = 0 (1 =) i, + 1, even
o (71 +i72) 0 7 Y
0 +1 . .
Ui 41§ — , (n+ ) , 1y + 1, 0dd. (A4)
(71 - Wz) 0
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1. Lattice PSGs

We first recall the spin liquid classification scheme of Ref. 24. If u;; is the mean field ansatz for

a spin liquid symmetric under the group action G, it transforms as
PG : Usj — Wg(i)uG(i)yg(j)W(j) (A5)

where W (1) is a gauge transform. In addition to the symmetries, these gauge transformations
characterize the spin liquid, yielding the projective symmetry group (PSG) [24].
Using the notation from Ref. 24, the spin liquid Z2A 2213 is defined by the PSG

Wi (2) = 79, W (2) (—)"'w“ywz, Wy (2) = i7",
Wiy (i) = 7°, W,y (1) = (=1)=Tir?, W, (i) = it? (A6)

while the PSG of U1Cn01ln (the staggered flux phase) is

(62)
(6y)

where g3(0) = €. From these PSGs we can extract the symmetry fractionalization through the

i, pr(i) = (_)izg3(‘9x)i7xa pry(i)
Wiy (2) iT

° Wpy(i) (_)iyg3(9y)> Wi (%)

93(‘9pxy)i7—xa
(

=03
=03 —)iﬁiygza(et)» (A7)

group relations given in the appendix of Ref. 28 (Eq. (B8)). These are provided in Table I. Note

that instead of Py, : (iz,14,) — (iy, 1), we consider the 90° rotation R;/, = P, P,. Similarly, P, is

related to the other symmetries through R, /QPyR;/IQ.

2. Identification of staggered flux in continuum model

The staggered flux state (U1Cn01n) can be obtained by coupling a Higgs field to the bilinear
Of = tr(o" X p? (v*i0, + "i0,) X)) (A8)
giving something like
L = tr(X4"i9,X) + ®4tr(c* X M X). (A9)

The U(1) spin liquid UICnOln is then obtained upon condensing one component of ®3. This
was determined by considering the symmetry fractionalization of the U(1) spin liquid obtained by
condensing the z-component of ®5: (®%) # 0. Based on the symmetry transformations outlined in

Table 11, this condensate has a corresponding continuum PSG

V;oc = 93(¢x)i0wa V;?:c = g3(¢px>a ‘/r = g3(¢r)i0—xa
V;fy = g3(¢y)i0xa ‘/py = g3(¢py)> W = g3(¢t>7 (AlO)
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Group relations Z2Azz13 U1Cn01n lattice U1Cn01n cont

1 T;lTITyTle 1 e—2i(02—0y)7*  _ o—2i(da—dy)o”
2 py—ngC P,T;! -1 e—2i0pyT* o2ibpyo*
3 P'T,P,T, ~1 e~ 20pyT* 2i0py’
4 P} —1 2i0py 7 o—2ibpy0*
5 Py'R./sPyR.)» 1 — e 2ifpyT* _2ibpyo”
6 Ry, 1 1 1
7 R;}QTx R, /oT, 1 i @Opay+Opy]—[0+0,) 7% (200 —du—0y)o*
8 R;}QTI R, /sz_l —1 @OpeytOpy]—[0240y])7*  Li(20r—de—y)o*
9 TﬁlR;/gTRﬂ/Q 1 e—2i0:7* e—2id10”
10 77'P/'TP, 1 1 1
1 7T, 1 — e 2T — 2o
12 T_lTy_l'TTy 1 _e2ibe77 _e—2ibi0”
13 72 -1 e2i0:0* e2ipto”

TABLE I. Symmetry fractionalization. In keeping with the conventions of Ref. 28, the gauge is chosen
such that group relation 7 is fixed to equal —1 for the Zy spin liquid.

where g3(¢) = €7 is an arbitrary gauge transformation. Importantly, in the U(1) spin liquid, the
phases ¢ can take any value. When these phases are rewritten in terms of the U(1) phases from
Eq. (A7), 8¢, according to

™

T
(¢xa ¢y7 prya ¢ta (br) = (930 + Z ’ ey - Z ) —Gy, Qt, epxy + epy) (All)

the symmetry fractionalizations given in columns 4 and 5 of Table | are identical. It is possible
that two distinct spin liquids (as defined by having distinct PSGs) could nevertheless have identical
symmetry fractionalization. This seems unlikely in this situation and is, moreover, proven false by

the explicit derivation of the continuum action from the lattice model.
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Operators T P Py T Ty Ryp

Of tr(c*Xp*v*X) - - - - 4+ -
03 tr(0"X ™" X) e
0f tr(oXpY(Y*idy +id:)X) + + + — — -

TABLE II.

3. Identification of Z2A 2213 in continuum model

The spin liquid Z2A 2213 is proximate to U1Cn01n in that the PSG of Eq. (A6) may be obtained
through gauge transformations and judicious choices of the angles 6 in Eq. (A7). It is, however,
simpler to determine the U(1) transformations (i.e. the angles ¢,) that map the symmetry frac-
tionalization of U1Cn01n to the symmetry fractionalization of Z2A2213. That is, we find that the

assignment

T T T T T
(Gas Bys Bys Dy Br) = (e 0= T 2y £ 1T @+ 1) 0+ (24, + 1)5) Y/
(A12)

transforms the 5th column of Table I into a set of +1s that match the third column. Inserting
these ¢,s into the PSG defined in Eq. (A10) and selecting n, =0, p =y, py,t,r and § = 7/4, we
obtain the Z, continuum PSG[72]

Vie = —io?, Ve = Lio” V, = _ (0% —a¥)

Vi = —io”, Vpy = —t0”%, Vi =i0”. (A13)

We can now ask what form of operator needs to couple to a new Higgs field in order to realize
this PSG and hence the Zs spin liquid Z2Azz13. Firstly, it’s clear that the ¢” or ¢¥ components
of the Higgs field must condense—condensing in the ¢* channel, ~ ((i)z>tr(az)_( MX ), would not
break the U(1) symmetry. However, in considering condensates in z or y, we see that the gauge
transformations corresponding to the translations 7}, and T, are different and, further, the rotation
R/ exchanges 0® and 0¥, meaning that both must be present in a symmetric spin liquid.

Based on the symmetry relations documented in Ref. 28, we find that the operators O s,
Of = tr(c*Xp* 7" X), 05 = tr(c*Xp" X)), (A14)

induce the PSG of Eq. (A13) provided they couple to Higgs fields that condense in perpendicular

directions. The symmetry transformation properties of Of , are given in Table II. That is, given a
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Lagrangian:
L= tr(X~4"i0,X) + Otr(c* X ' v X) + D3tr(c* X p"? X)) + 5t (0 X p? (710, + 1¥i0,) X)),
(A15)
the PSG in Eq. (A13) is obtained when (®1) = («,0,0), (®3) = (0,,0), and (®3) = (0,0, 5), for

a, B € R. This agrees with conclusions reached in Section 11 D.

Appendix B: Renormalization group analysis of the SU(2) gauge theory

In this appendix, we describe the origin of the log” terms in the critical SU(2) gauge theory in a
renormalization group (RG) framework. Integrating the RG equations will lead to an exponentiated
prediction for the correlators.

We start with the expression in Eq. (4.10), keep the full Higgs propagator as in Eq. (4.6), and
perform a standard momentum shell RG in the window A — dA < (p3 + p? + pfj)l/ 2<A

12 /A d’p (P + k2 | B1)

0¥ (ky) = — :
1(ks) Ny Jazan 21)2 (pe + ka)? + p§ + p2 pg + p2 + 4K |p|p?

Expanding to linear order in k,, using spherical co-ordinates with
(Po, Dy, Px) = A(sin 6 cos ¢, sin O sin ¢, cos b)) , (B2)

and setting p = cos f, we obtain

(B3)

Under normal circumstances, the p integral would be a finite numerical constant, and the co-
efficient of dA/A would the usual RG log which would then contribute (in this case) to the exponent
1. However, that is not the case here, because of the logarithmic divergence of the p integral near

i = 1. Evaluating the p integral , we obtain

3k, dA 1
VY (ky) = ————|In| —) —4 KA)| . B4
Rk =~y [ (75 ) — 4+ o) (B4
In a similar manner, we obtain for the frequency dependence of the self energy
12 A & (po + ko) |
7% (ko) = ——/ : B5
7o) Ny Ja—an (2m)% (po + ko)? + p3 + p; p§ + Py + 4K |p|p3 (59)
In spherical co-ordinates this simplifies to
6ko dA [! 1
781 (ko) = ———— [ du(l — (1 —p?
Eih) = s 5 [ = =)
3ko dA 1
=— — |In{— ) -2 KA)| . B
v [ () -2 oun =9
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The expression for 67Y%; (k,) is the same as 07"%; (ko), after mapping ko = k.
We can also examine the vertex correction for the SO(5) order parameter in a similar manner.
From Eq. (4.25) at zero external momentum, we note that the vertex correction needs the integral

5V = L/A d*p 1 4lp|
Ny Ja—an (2m)3 p2 + p2 + p§ pg + 2 + 4K |p|p?

1 dA/l 4
C2Ngm2 A, 'ul—,u2+4KAu2

_ N;r?% [m (ﬁ) + O(KA)] | (B7)

We now proceed as usual to obtain the RG equations from the momentum shell results under

the rescaling

7 = rexp <— /0 e dz'z(e')) (B8)

Importantly, we note the flow of the irrelevant coupling K under this transformation
dK
K. B9
¥, (B9)

For the fermion field we define

= exp (/0‘ L + 2(¢") +n¢(€’)> (B10)

2

The field 7 is not gauge-invariant, and neither is its anomalous dimension 7n,. However, the
leading log? term we shall find shortly is gauge invariant. In the presence of the log? term, we
will also see that the usual logarithm terms have a non-universal co-efficient. So we ignore the
gauge field contributions here (the gauge field induced renormalizations have been computed in
Refs. [39, 40]), because they only contribute logarithm terms which become part of overall terms

which are non-universal.
Matching Eqgs. (B4,B6) to Eqgs. (B8,B10) we obtain

10 )

6
=1
z(0) + N

Assuming a bare value K(0) = K, integrating Eq. (B9) to obtain K(f) = Kye ¥, and then
integrating Eq. (B11) we obtain

(B11)

/Oe n(0)dl = # V—; — (In(KoA) + 3) E] (B12)
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We can now obtain the momentum dependence of physical observables by evaluating them at a
scale £ = ¢* = In(A/|p|). Note that the co-efficient of ¢* involves the bare value of Ky, and hence
the co-efficient of the logarithm term is non-universal, as claimed earlier. The leading term is
log?, and its co-efficient is universal and agrees with that in Eq. (4.16); similarly, Eq. (B7) agrees
with Eq. (4.26). Inserting the integral Eq. (B12) into Eq. (B10), we obtain results of the form in
Eq. (4.29).

Appendix C: Isolation of logarithm-squared divergences in one-loop corrections

We state in the main text that logarithm-squared divergences in the critical SU(2) gauge theory
arise in the one-loop diagrams in a certain parameter regime, given by Eq. (4.12). This is shown
in the main text for the simplest one-loop calculation, which is the ®; (®,) contribution to the
fermion self-energy with external momenta k, (k,). Here, we provide more general calculations for
other cases.

We first analyze the ®; contribution to the fermion self-energy with external momenta ky. This

is equivalent to the k, external momenta, as well as the ®, contribution with external momenta

ko, k.

8 (k) > — / &’p Po + ko 2|

Ny J (2m)% (po + ko)? + P2 + P2 2 + p2 + 4K |p, |
12 / dp, 2| (03 — 4K [p.|” — k3)
Ny J 82

5T fo B2 ] 8K pa (62 — K2) — (02 + K32
—p2 +4K|p, |’ — K2
tan_l yo= + |p | 0 (Cl)
VAR, 8K pa (02 — k) — (p2 + k)2
—p? + 4K |p,|° + k2

VA0 + 8K, (02 — k3) — (2 + k3)?

B E/dpx pol (P2
Nf 2 2]{?0 4K|pm|3 .
We see that the dominant term is proportional to kg log2(K ko), arising in the same limit as in

Eq. 4.12. This log? dependence comes from the inverse tangents, since 2tan~'(z) = ilog (%)

Assuming K |1093|3 < p2, the expression in the denominator of the inverse tangent argument is

~ ip%, so our integrand = itan~! (i(1 + 4K|p,|)). If we further assume Klp,| < 1, we get an

integrand that scales like kq/p, In(Kp,), and hence the full expression scales as ko log?(Kky).
These log® contributions are verified by numerically evaluating Eq. 4.10 and Eq. C1 and ana-

lyzing the behavior at small k, as shown in Fig. 9.

39



0.030{ ° JB(approy) p
*  fa (approx) *
°  fa (exact) £
0.025 1 .
° [ ]
=
= 0.0201 .
= o®
<=
=
= 0.015 A
8
k
0
0.010 1
0.005 A
0.000 T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025 0.030
1/1In(k)

FIG. 9. Denoting the integrands of the two types of self-energy contributions in Eq. (4.10) and Eq. (C1)
with K = 1 as f4(k.) and fg(ko), we plot a numerical evaluation of 872 f;(k)/(k1n®(k)) vs 1/(In(k)). The
form of this expression is designed to isolate the log? contribution at small momenta, and agreement with
our analytic predictions should give a straight line with a slope of 1. The approximation of the Higgs
propagator as Eq. 4.9 allows for greater numerical precision, as the dimensionality of the integral can
be reduced by performing portions of the integral analytically. These numerical evaluations give good

agreement with analytic predictions as well as calculations using the full form of the Higgs propagator.

For the Higgs vertex correction to the SO(5) order parameter, we can also isolate a log? diver-

gence. Calculating the ®; correction to the vertex, we regulate the integral by including an external
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momenta 2k, evenly distributed between the two outgoing fermions. The vertex correction is

pro'Tio u? d3p p?g - ki + pz + pg 4]ps|
Ny / (2m)% [(pa + ka)? + P2 + 18] [(r — ko) + 12 + D3] 9 + P2 + 4K |p,|*
proTio?y [ rdrdp, p2 — k2412 4{p,|
N / 2m)2 [(pe + ko)? + 72| (e — k)? + 1212 4+ 4K |p, |
/,LZO'aFZ WK / dp, [Pz |
A2 iy, [(pe — 22)2 — 4K |pa|*] [(Pe + k)2 — 4K |py|?]
2 2 C2
[ -

' AKpal* (2 =92 [ 4K ]
+ . 4 km 2 . 31 + T T 1
(p ) _|p | n ((pz 4 km)Q 41K n (pr _ km)Q |

i aK P\ 2 =p2) [ AK|p] ]
. . — k:v 2 . 31 x T 1
(v )| lpel"n ((pm — k)2 Tk "t (px + kz)?

We can obtain a log® from the second logarithm in the brackets in the limit given by Eq. (4.12).

Appendix D: Alternate computation of z in the SU(2) gauge theory

In the main text we emphasize that although irrelevant terms in the Higgs propagator turn out
to strongly influence the renormalization of the critical theory, these effects cancel in the dynamical
critical exponent, and its value can be computed through more standard methods. In this section,
we compute z via dimensional regularization after explicitly setting the irrelevant Higgs terms to
zero, and show that is gives the same answer for z as in the main text. For the calculation of z,

we are interested in the counterterms generated by

N0y 82 6 d3p v pi—p2
2 - -2 (D1)
Ny J (27)3 [p'Ti(p)  p'Ta(p)

7 8k;0 k=0
This integrand is well-behaved for p? # 0,00, and one can see that the second term in brackets

vanishes, since the I's propagator is invariant under p, <> po.

The integrals over pg, p, can be performed exactly in radial coordinates, which gives

3 / °° 1 6 > dp,
LA / iy D2
7T2Nf —0o0 |px| 7TQJVf 0 Pz ( )
Continuing the p, integral to 1 — € dimensions and imposing a UV cutoff A, yields
6 A dpo 6 6 (1 L
_ ‘ _ A—c — 1 ( ) o D3
N, /0 e T TN TN, ( () o (b3)

Which gives the same answer for z as when the irrelevant Higgs terms were used to regulate the

divergences in the self-energy.
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Appendix E: Higgs field renormalization in the SU(2) gauge theory

For completeness, we compute the log® corrections in the critical SU(2) gauge theory to the
Yukawa couplings at one-loop level, since these determine the renormalization of the Higgs fields.
The calculations are nearly identical to those of the SO(5) order parameter.

The correction to the ®; Yukawa coupling is given by the integral

(W) (o) o) [ dPp , p—K  p—H 1

Ny / @3 (= k)2 (p—hka)? | Ti(p) + Kp?
(poo®)(pro")(pia®) [ dPp , p—W p—H 1

Ny /(27T)37 p— k)2 (p—ha)? [a(p) + Kp?

(E1)
+

Evaluating the first term in the limit in Eq. 4.12, we set the external momenta to zero and use it

as an IR cutoff k, which gives to log* order

(o) (p*o?) (o)

In?(Kk). E2

This coefficient is identical to the SO(5) correction, as the two integrals are the same to leading
order in k. The contribution is the same for the second term in Eq. (E1), giving the final Yukawa

correction
peo”

TN, In*(Kk). (E3)

The correction to the ®5 Yukawa term is identical, as the two are related by a spatial rotation.

We now renormalize the @ 5, fields so that the Yukawa coupling remains invariant, as in Ref. [56].
Hence, the Higgs fields are renormalized at log® order, ®; = VZgs®; g, with corrections from Zy
and (E3)

In*(Kp) +

Ze =1
® +7T2Nf 7T2Nf

In?(Kp) =1+ In*(K p) (E4)

™ 2 f
Appendix F: Evaluation of two-loop SO(5) order parameter corrections

In this appendix, we evaluate the O(N 7 1) two-loop correction to the SO(5) order parameter,
shown in the main text and displayed here in Fig. 10 with internal momenta labeled. The diagram
shown is one of four possible contributions - additional diagrams can be generated by either ex-
changing ®! «+ ®2 or crossing the propagators of the Higgs bosons, but all give the same correction
for zero external momenta. The main conclusion of this appendix is that this contribution is well-
behaved upon setting the dangerously irrelevant operators to zero and only contributes standard
logarithm divergences, which we argue in the main text and in Appendix B give non-universal

corrections to the order parameter scaling. Intuitively, this may be thought of as related to the
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FIG. 10. The O(N, 1) two-loop correction to the SO(5) order parameter. We set all external momenta
to zero. Shown is one of four possible diagrams - the other three can be obtained by either exchanging
®; < Do, crossing the lines of the Higgs propagators, or both. All give the same contribution at zero

external momenta.

fact that these two-loop diagrams require both types of Higgs ®; 2, as they vanish trivially when
both Higgs propagators are of the same type. As the log? divergences are connected to the rota-
tional symmetry breaking in the O(Ny) effective action for the Higgs propagators, it is natural -
although still a non-trivial fact - that these two-loop diagrams which respect rotational symmetry
only contribute single logarithm divergences.

This two-loop correction vanishes for the VBS order parameter, so we focus on the Néel order
parameter, where the source vertex contributes a factor of pu?c®. We first evaluate the fermion
loop integral,

(=1)Ny Trabdcﬂy/f”z/ o £7x Prd o7

(27T)3p23 (p ﬂ(L q) | P

_ eovyoy [P Pup+ @Q)upo

= AN Tr "y ]/ (2m)® pt(p +q)? )

d? vDo
N R R Y i

37’

The integral over p yields

d*p pu(p+q)up 11 499
vlo _ 7 |35, — §9Vq, — 6", + Ao F2
/(27T)3 pp+q9)?*  128|q] K n bt T (F2)

and contracting with the tensors in Eq. (F1) gives the final contribution of the fermion loop

iNf q0

Do F3
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We combine this with the remaining loop integral, setting the coefficient K of the irrelevant

operators to zero, to give

A / dgq Dy (_ﬁ)vy 164
2Ny 2m)3lal " @ " (ad+a2)(ag + ) (F1)
_ 16pYo” / d3q ¢ 1
Ny ) (@2m)al (6§ + @) +a5)
Focusing on the integrand, we can compute this by converting to radial coordinates,
/ dzdfrdr 22 1
(2m)3 22+ 72 (22 + 12 cos?0)(22 + r2sin® )
1 |z|r
= — [ dzd F5
272 =ar (22 +12)(22%2 4 r?) (F5)
In2 1
= — z—.
472 |2

Hence, this two-loop contribution only contributes a standard logarithm divergence, and is sub-
leading in comparison to the one-loop Higgs corrections.

We also analyze the two-loop corrections to the 1) bilinear, whose symmetry properties corre-
spond to the scalar spin chirality. This is motivated by the fact that log* terms in the O(1/Ny)
one-loop corrections exactly cancel the log? self-energy terms. Hence, if two-loop corrections only
contributed standard logarithm divergences, then the scalar spin chirality would have a power
law decay at O(1/Ny). In fact, the two-loop corrections involving two Higgs propagators vanish
exactly. If the Higgs propagators are different, as was the case for the Néel corrections, then the
trace over p in the fermion loop vanishes. If the Higgs propagators are the same, then the trace

over y vanishes, since

X VT 0

Ty Y v pu(p + @)vpe = Tr[V* 7" +¥7]pu(p + @)ups =0 (F6)
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