Phonon Hall viscosity from phonon-spinon interactions
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Motivated by experimental observations, Samajdar et al. [Nature Physics 15, 1290 (2019)] have
proposed that the insulating Néel state in the parent compounds of the cuprates is proximate to a
quantum phase transition to a state in which Néel order coexists with semion topological order. We
study the manner in which proximity to this transition can make the phonons chiral, by inducing a
significant phonon Hall viscosity. We describe the spinon-phonon coupling in a lattice spinon model
coupled to a strain field, and also using a general continuum theory constrained only by symmetry.
We find a nonanalytic Hall viscosity across the transition, with a divergent second derivative at zero

temperature.

I. INTRODUCTION

Quantum spin liquids (QSLs) are exotic phases of mat-
ter arising from highly correlated spins with frustrated in-
teractions, in which zero-point fluctuations are so strong
that spin ordering is prevented even down to zero tem-
perature [1, 2]. QSLs often host a wide variety of col-
lective phenomena, including topological degeneracy and
long-range entanglement [3-6] that make them ideal for
theoretical study. Most remarkably, QSLs are charac-
terized by nonlocal fractionalized excitations [7], such as
charge-neutral “spinons” coupled to emergent gauge fields
[8]. The spinons can be either gapped or gapless and may
be bosons or fermions, depending on the scenario [9, 10].

While there have been extensive experimental efforts
towards detection of QSLs, unambiguous evidence re-
mains elusive [11]. The measurement of topological prop-
erties of QSLs is difficult since unlike conventional quasi-
particles, spinons are invisible to local probes. One cur-
rent line of thinking therefore aims to study QSLs by
looking for signatures of fractionalization through the in-
teractions of spinons with other degrees of freedom in the
system.

In this article, we will study the coupling of spinons
to lattice excitations. Specifically, we will be interested
in a response coefficient called the Hall viscosity [12, 13].
Similar to the Hall conductance, the phonon Hall viscos-
ity can appear for phonons coupled to a gapped electronic
system that breaks time-reversal symmetry. The Hall vis-
cosity tensor n;;1; characterizes the system’s viscoelastic
response to a strain deformation as

OH '
<3€> = Nijri€kt + Mijri€rs (1)
ij

where €;; = (0;u;+0;u;)/2 is the symmetrized strain ten-
sor, and the time derivative is represented by the dot. In
the presence of Cy symmetry in 2D, there is only one in-
dependent component of the Hall viscosity tensor, nzqzy
[14]. Contrary to a viscosity that is dissipative, the Hall
viscosity is antisymmetric with respect to the pairs of

indices (i7) and (kl) and hence, nondissipative [15].

The Hall viscosity was first studied in the context of
the quantum Hall effect, in which it was shown to be
proportional to the square of the electron filling density
for integer quantum Hall fluids [13, 16-25]. In these sys-
tems, the Hall viscosity can be calculated as the response
of an appropriate continuum field theory to a variation of
the underlying geometry or spatial metric, g;;. This Hall
viscosity, which acts as a Chern-Simons-like term for the
frame field, was termed the gravitational Hall viscosity
in Ref. 20. Instead, our focus will be on the response of
systems of phonons and the resulting phonon Hall vis-
cosity.

Theoretically, the phonon Hall viscosity has been
studied for electronic systems and topological insulators
[19, 20, 26-28]. For lattice systems, such as discrete tight-
binding models, there are a priori many different ways
to model the viscoelastic response, including coupling to
a lattice frame field [26] or using momentum polarization
methods [29, 30]. We will adopt a more physical “geo-
metric bond stretching” approach, realizing the strain as
a modification to the tight-binding overlap integrals orig-
inating from the lattice sites being displaced from their
equilibrium positions. This coincides with the approach
of viewing the phonon Hall viscosity as the adiabatic re-
sponse of a system to acoustic phonons [20], analogous
to the Hall conductance. Using the Kubo formula, the
Hall viscosity can also be recognized as a type of Berry
curvature of the ground-state wavefunction.

While a measurement of the Hall viscosity would pro-
vide valuable information for identifying phases with
topological order, it has been difficult to do so in practice.
Nevertheless, it is possible to experimentally detect the
phonon Hall viscosity through other physical quantities
that share the broken symmetries. For example, one such
quantity is the phonon thermal Hall conductivity, which
can be nonzero only with broken time-reversal and (in-
plane) mirror symmetries. In fact, recent experiments by
Grissonnanche et al. [31] and Boulanger et al. [32] suggest
that chiral phonons are responsible for the large thermal
Hall conductivities measured in the insulating phase of



several cuprate superconductors. A nonzero phonon Hall
viscosity could be a mechanism for intrinsic phonon chi-
rality in these systems. The phonon Hall viscosity leads
to both intrinsic and extrinsic contributions to the ther-
mal Hall conductivity: the intrinsic contribution is dis-
cussed in Section VI, while the extrinsic contribution is
discussed in Ref. 33.

We will study the phonon Hall viscosity induced by lat-
tice strain couplings to a chiral spin liquid on the square
lattice. In particular, we are interested in a spin-liquid
ansatz in which the orbital coupling of the applied mag-
netic field drives the conventional confining Néel insu-
lator to a state with semion topological order 34, 35].
Recent optical experiments by de la Torre et al. [36] in-
dicate the presence of mirror-plane-symmetry breaking
which is compatible with this scenario. In our article,
we will analyze the behavior of the Hall viscosity in both
the lattice tight-binding model and the continuum Dirac
field theory. We find that the above mentioned quantum
phase transition (QPT) in the spinon sector is reflected
by a divergence in the second derivative of the phonon
Hall viscosity.

The rest of the article is organized as follows. We
begin in Sec. II by reviewing the general definition of
the phonon Hall viscosity and linear response theory.
Sec. III introduces the mean-field chiral spin liquid model
on the square lattice. We study the spinon-phonon
interactions in two settings. Omn the lattice, we con-
sider phonon-fermion coupling by “bond stretching” in
Sec. IV, whereas for the continuum field theory, we cou-
ple phonons and spinons based on symmetry consider-
ations in Sec. V. After commenting on some physical
consequences in Sec. VI, we summarize and discuss our
results in Sec. VII.

II. PHONON HALL VISCOSITY

A. Phonon effective action with broken
time-reversal symmetry

For gapped fermionic systems, the low-energy dynam-
ics of acoustic phonons is captured by an effective action
for u(r), describing the displacement of an atom from
its original location. The effective action obtained by
integrating out the fermionic degrees of freedom is

Z = /qujpzwu e~ Swd) = /Du e~Sen(w) (2)

In the long-wavelength limit, the phonon effective action
is determined by the mass density p and the elastic mod-
uli tensor Ajjxi,

1 .
S = 5 /ddx dt (pujuj - /\ijklaiujakul> )

For gapless states such as metals, the phonon action
will generally be nonlocal and thus cannot be written
as above.

When time-reversal symmetry is broken, there is an
allowed, nondissipative Hall viscosity term [12, 13, 20]

1
08 = 3 /ddx dt 1,10 0;u; Oy, 4)

with 7k = —7nru; antisymmetric under the exchange of
pairs of indices. The number of independent components
of nijk1 can, in general, be determined using symmetry.
For example, one can show that 7;;;; will always van-
ish for a three-dimensional isotropic system. As we are
concerned with phonons in a spin-liquid background, we
will restrict ourselves to d = 2 in the subsequent analysis.
For simplicity, we will also assume Cy-rotation symmetry,
though this requirement can easily be relaxed.
Following Ref. 20, we can knead the Hall viscosity in
Eq. (4) into a more convenient form by defining the strain
tensor ¢;; and the vorticity (also called rotation) tensor
6;; according to
1
€j =3 =

(Ou; + 0ju;), 0 (Oyu; — Oju;). (5)

ij
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Dropping boundary terms, Eq. (4) can then be rewritten
as

58 =2 / d*z dt {nH(em —€yy) €ay + 1M (€2 +€4y) Gly} .
(6)

Here, we have defined nff = (Nezzy + Newys)/2 and nM =
(Nezey — Nwaeys)/2. While boundary terms can modify
surface phonon dispersions for topological insulators and
generate interesting effects such as phonon Faraday ro-
tation [26, 37], we will ignore these phenomena in our
discussion. Finally, it can also be useful to rewrite the
action S in Eq. (6) directly in terms of the deformation
field w. In that case, there ends up being one effective
Hall viscosity coefficient 7 = 9442y = 01 + 10,

-n . .
0S8 = /dQLE dt [2 (V2uxuy - V2uyux) . (N

In the calculations hereafter, however, we will follow
Eq. (6) and discuss nff and n™ separately.

B. Definition as a response function

We can also view the Hall viscosity as a response func-
tion. To begin, we make the adiabatic assumption that
the time scale of the lattice motion is infinitely slower
than that of the fermions’ motion, so that the electronic
configuration is always in its instantaneous ground state
with respect to its lattice configuration. This implies that



the electronic quasiparticles only couple to phonons that
are well below their energy gap. The lattice deformation
fields w then act to modify the effective hopping terms
in the tight-binding Hamiltonian Hy . for the electronic
system and can be treated as external parameters.

In Fourier space, viewing u(q) = Y, u(r)e'?” /L
as parameters in H;p, we can first define the two-
component Hall tensor from linear response theory
through the Kubo formula [18, 20]

oy L L iwt | | OHyy, (1) 0H, 4, (0)
nab(q) _u{%de/dte <[ au ’ ) auh_ 5

where it is clear that the Hall tensor is, by construction,
antisymmetric, i.e., 7,5 = —7pe- This leads to an effective
action of the form

d
55 = / %nab(q)ua(—q,tmb(q,t» (9)

From Eq. (9), we can obtain the Hall viscosity tensor by
taking the appropriate derivatives

1. 0 0
Nijkl = 3 ;l_f}}) @qunﬂ(q)' (10)

III. SPIN LIQUID ANSATZ ON THE SQUARE
LATTICE

Our model of interest, studied in Ref. 34, describes
S = 1/2 antiferromagnets on the square lattice with the
spin Hamiltonian Hgpi, = Ho + Hp, where

HOZZJZ_J_SZ_.SJ_+...’
i<j

Hp=J,Y 8,-8;x8,-) B,-S,
AN A

(11a)

(11b)

Hj describes nearest-neighbor spin interactions and other
possible exchange terms that are invariant under all
spacetime symmetries. Hp describes the coupling of the
electrons to an applied magnetic field [38]. The J, term
couples to the scalar spin chirality and is induced by the
orbital coupling of the magnetic field to the electrons.
The value of J, is proportional to the small magnetic
flux penetrating the square lattice. The second term in
Hpg is the Zeeman coupling of the magnetic field, with
the electron magnetic moment absorbed in the definition
of Bz. Therefore, the physical magnetic field is included
in our model through both an orbital coupling (J,) and
a Zeeman coupling (Bz). While Hypin could, in princi-
ple, also include Dzyaloshinskii-Moriya exchange terms,
we do not consider the effect of spin-orbit interactions
here.

Numerical studies of Hgpi, on the square [39] and other
lattices [40-46] have found evidence of a chiral spin liquid
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FIG. 1. The mean-field spinon ansatz defined by Eq. (13),
with nearest (¢1, black) and second-nearest neighbor (t2, red)
hopping matrix elements. The applied magnetic field in-
duces an orbital coupling it2, and there is a uniform 7/2 flux
through each elementary triangle. The inset in the bottom-
right corner illustrates the bottommost red and yellow atoms
with the d,2_,2 orbitals deviating from their equilibrium po-
sitions by u(n) and u(n + x), respectively. The result of this
deviation can be captured by changing the bond length be-
tween the two atoms from the equilibrium length 7 to the
new length ro + (u(n + ) — u(n)), as discussed further in
Sec. IVA.

phase at small nonzero J,, and it was argued in Ref. 34
that near a critical spin liquid, J, would be a relevant
perturbation leading to semion topological order. Conse-
quently, one finds an enhanced thermal Hall conductivity
Kzy even in the antiferromagnetic Néel state [34] stem-
ming from the discontinuity of the zero-temperature ther-
mal Hall response |Aky,/T| = (7/6)(k%/h) between the
trivial and topological phases [47]. On the other hand,
we will find the phonon Hall viscosity to be continuous
(but nonanalytic) across this QPT.

A. Mean-field theory

We begin our mean-field analysis by considering the
square-lattice Néel state as the confining phase of an
SU(2) gauge theory of fluctuations about a 7-flux mean-
field state [35]. Transforming to the parton representa-
tion [48, 49], the spin operator at each site is decomposed
as

S, = %f;rafi. (12)

Here, fi = (fit,fi))? represents the two-component
fermionic spinon operator while o denotes the Pauli ma-
trices. The mapping from the spin-1/2 Hilbert space to
the fermionic one expands the Hilbert space, and we must
impose a single-site occupancy constraint in order to re-
main within the physical Hilbert space. Therefore, the



fermionic band structure of spinons is always constrained
to be at half-filling. Furthermore, Eq. (12) has an SU(2)
gauge redundancy [50, 51] and a full treatment of Hgpin
would also require analysis of the SU(2) gauge field asso-
ciated with f [52-54].

In our mean-field treatment, we ignore the SU(2) gauge
fluctuations. Instead, we will be interested in a mean-
field saddle point which breaks this SU(2) gauge symme-
try down to U(1) [3, 55]. Inserting the parton represen-
tation of §; into Hypin and mean-field factorizing while
respecting the spacetime and gauge symmetries, we ob-
tain the spinon Hamiltonian [3, 34, 35, 56, 57|

Hy == (tijf;fi + trif:fﬂ')

i<j

3B GN) flad (13)

Our ansatz for the spinon hopping terms ¢;; is shown
in Fig. 1. The nearest-neighbor hopping terms, t1, arise
from the factorization of the Heisenberg exchange cou-
plings in Hy, Eq. (11a). The second nearest-neighbor
hopping terms, +ity, originate from the scalar spin chi-
rality J,, in Eq. (11b), and they have the same symmetry
as the orbital coupling of the electrons to an applied mag-
netic field orthogonal to the lattice plane. In particular,
the field-induced couplings to break time-reversal and re-
flection symmetries but preserve their composition. We
have also assumed a nonzero Néel order N = Nz, with
¢; = %1 on the two checkerboard sublattices (A/B) of the
square lattice. The Néel order is temperature-dependent
in general but for simplicity, here, we regard N as fixed.
In order to minimize the energy of the antiferromagnet
with a Zeeman coupling, we take Bz - N = 0. With the
Néel order along the z-axis and the Zeeman field along
the &-axis, Eq. (13) can be written in momentum space,
with fi, = >, e*®mifi/VL = (kamkaT,kaukaUTv

as
Hypy == fihgfs, (14)
k

hy, = 2t cos(k, )" — 2ty sin(k, )Y

Y

+ 4ty sin(k, ) cos(k, )77 + gUZTZ + @0”, (15)
where the Pauli matrices acting in sublattice and spin
spaces are denoted by (7%,7Y,7%) and (0%,0Y,0%), re-
spectively.

The mean-field phase diagram for this ansatz is
sketched in Fig. 2. With our choice of a two-site unit
cell, we obtain a total of four spinon bands, which are
half filled. When the net Chern number of the occupied
bands is zero, one obtains a conventional Néel state, and
the theory for the gauge fluctuations will have no Chern-
Simons term, leading to confinement. However, when the
net Chern number of the filled bands is two, we obtain a

Conventional
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|B|
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FIG. 2. The two phases of the spinon mean-field Hamiltonian
Hip, in Eq. (13) are shown as a function of the second-nearest-
neighbor spinon hopping t2 and the strength of the Zeeman
field |Bz|. Here, we take the Néel order to be N = 0.52 and
measure all energies in units of the nearest-neighbor spinon
hopping t1. As discussed in the main text, both ¢2 and |Bz|
are assumed to be linear functions of the applied magnetic
field. The red dots show the points for which we plot the
temperature dependence of ! in Fig. 5(b), and the dashed
green line illustrates the trajectory for which we plot the field
dependence of ¥ in Fig. 5(c).

state with semion topological order coexisting with the
Néel order. With a fixed Néel order, one can thus move
between the two phases by tuning the orbital (¢2) and
Zeeman (Byz) couplings of an applied field. We discuss
this point further in Sec. IV C.

While this specific ansatz may appear to break lattice
symmetries at first sight, the representation Eq. (12) is
invariant under the local gauge transformations

fi— fiemi, ti; — tijeiwi*ﬁf). (16)

Accordingly, the representation of lattice symmetries can
be supplemented by an appropriate gauge transforma-
tion, and so the spinons f form a projective representa-
tion of the lattice symmetry group, called the projective
symmetry group [3, 55, 58]. With this gauge freedom in
mind, the spinon lattice model Hyp in Eq. (13) indeed
preserves all the symmetries of the original spin Hamil-
tonian Hgpin, as shown in Ref. 34. We will also consider
the projective symmetries in detail when we analyze the
continuum spinon theory in Sec. V.

In what follows, we consider the total spinon-phonon
action

Stotal = Ssp + Sph + Ss (17)

p—ph
in both the lattice and continuum settings. The first term
in Eq. (17) is obtained from our ansatz Hi . in Eq. (13),
while the second term is obtained from the quadratic
phonon action in Eq. (3). On the lattice (Sec. IV) we



deduce the necessary elastic coupling to the fermions,
Ssp—ph, from geometric bond stretching whereas in the
continuum (Sec. V), we will derive the allowed elastic
coupling to the fermions from symmetry considerations.
Our goal will be to integrate out the spinon degrees of
freedom to obtain an effective theory for the acoustic
phonons (see also Fig. 3).

IV. HALL VISCOSITY FROM SPINON
COUPLINGS TO LATTICE STRAIN FIELDS

Given our tight-binding ansatz in Sec. III, we will
model the spinon-phonon coupling through the micro-
scopic deformation of the hopping amplitudes as the
result of lattice strain, i.e, bond stretching. As men-
tioned previously, we assume that the spinons only cou-
ple to low-energy phonons with frequencies well below
the spinon energy gap. There are two equivalent ways
of computing the resulting response to the lattice dis-
tortion by bond stretching. The first is to compute the
one-loop phonon effective action by integrating out the
spinons [shown in Fig. 3(b)]; the second is to use the lin-
ear response formalism and compute the adiabatic Berry
curvature as the result of the variation of the strain field
[20, 26]. We use the first approach here as it more closely
makes contact with our later continuum calculations.

A. Geometric coupling through bond stretching

To introduce the method of geometric bond stretching,
we will consider a generic tight-binding model

Ht.b. = Ztijcj'cb (18)
ij

where the hopping amplitude ¢;; represents the overlap
integral between the orbitals at site ¢ and site j with bond
length (spatial separation) |rg|. In models with multiple
orbitals with nontrivial symmetry properties, the change
of hopping amplitudes can also have an angular depen-
dence. In our case here, however, Eq. (13) is a model
with only one type of orbital (dg2_,2) on each site of the
square lattice, so, to leading order, the hopping ampli-
tude only depends on the distance between the two sites.
Following the approach of Ref. 26, suppose now that the
bond length becomes a variable r so that we can intro-
duce a bond stretching of dr = r — 7, illustrated in the
inset of Fig. 1. Assuming that ¢;; is a smooth function
of such small deformations, the hopping amplitude then
becomes

t('f') = tri,rj = t("'o) + 57. : Vt("')

To

+0(s7%). (19)

For example, the nearest-neighbor (horizontal) hopping
amplitude from site n to n + @ is ty pye = t(x) where

k+q,wp +

FIG. 3. (a) Spinon-phonon interaction vertex, as defined by
Eq. (22). (b) The Feynman diagram representing the phonon
self-energy, which contributes to the one-loop effective action
and determines the phonon Hall Viscosity. Note that we work
in the ¢ =0 limit when computing the Hall viscosity on the
lattice. For our calculations in the continuum, we also evalu-
ate the same diagram though the precise notations differ.

xr = ax. Letting u,(n) and u,(n + x) be the defor-
mations along the &-axis of the two sites, the hopping
amplitude is approximated as

btz = t(x) + % (ux(n +x)— uz(n)) + (’)((57‘2),
= i@)ta o] (9,u,) (20)

where, on the second line, we have assumed that the
lattice distortion is a smooth function on the lattice
scale. This is consistent with our assumption of con-
sidering only adiabatic spinon-phonon interactions. Car-
rying through this procedure with our mean-field ansatz
defined in Eq. (13), we obtain the modified hopping am-
plitudes as

[t maal =t + A€y (21a)
[t may| =t + A€y, (21b)
et (g | = ta + Aa(€gn + €4y + 26,,), (21c)
nmt@—y)| = ta + Aal€gn T €, —26,,),  (21d)

expressed in terms of the strain tensor ¢;; in Eq. (5).
The coupling constants A; are formally given by A\ =
a(dt1/dr)|e and Ay = (a/ﬂ)(dtg/drﬂ\/ﬁa in the bond-
stretching picture. Since ); has the same symmetry as
t;, we will take the two to be linearly related; their di-
mensionless ratio, A;/t; will be treated as an unknown,
phenomenological parameter.

Replacing the fixed hopping amplitudes in Eq. (13)
by their strain-dependent generalizations in Eq. (21),
one can systematically derive all spinon-phonon coupling
terms; for example, the term in Eq. (21a) leads to a cou-
pling term of the schematic form ff(\je..)(cos(k,)7T)f,
where the cos(k,)7T® piece in sublattice space originates
from Eq. (15).

Before listing the precise structures of all of these
couplings, we comment on further-neighbor couplings.
While we only include terms involving up to second
nearest-neighbors (2NN) in our spinon ansatz, higher-
neighbor terms are still allowed by symmetry. Usually,
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FIG. 4. Spinon ansatz with 4th-nearest-neighbour (4NN)

hopping amplitude ¢4 allowed by projective symmetry.

these couplings are not necessary as they are expected
to be weak in magnitude and can often effectively be
taken into account by renormalizing the NN or 2NN
terms. However, it turns out that additional fourth-
nearest-neighbour (4NN) terms are crucial for our anal-
ysis: while their coupling strengths may be numerically
small, their induced phonon coupling alters the diver-
gent behavior of nI at the critical point, as we will see
below and also consistently reproduce later in the con-
tinuum analysis of Sec. V. To include their effects, we
use the projective symmetry of Eq. (13) to find allowed
4NN terms with hopping strength t4, as shown in Fig. 4.
Following the bond-stretching procedure, we define an
analogous parameter Ay = (a/\/g)(dt4/dr)|\/ga. As the

J

—2),; cos(k,)T*
-2\ sin(ky)ry — 4\, sin(k

— 4, sin(

— % T
Ypv,k = E Vv, kT =
i

where wa, i defines the coefficient multiplying the Pauli

matrix 7° in Y, k-

B. Evaluation of the phonon self-energy

Given the couplings from the previous section, we will
now integrate out the spinons (¢) from the total partition
function [20, 59, 60],

z /qu Dy Du e_(Sph(u)+Ssp(1Zy7¢)+Ssp7ph(1/;71/}771))7
= /Du e~ Serr(u), (24)

This is equivalent to evaluating the phonon self-energy
to lowest-order in the interaction couplings and leads to

t4 coupling will not modify the critical behavior of the
spinon Hamiltonian, we will take t4 — 0 so that it only
enters through the spinon-phonon coupling Hamiltonian.

Moreover, while it is formally possible to consider time-
dependent deformations @, we will not include them in
our analysis since these terms will be suppressed by the
ratio of the sound velocity to the Fermi velocity (~ ¢1).
We comment on potential interesting effects from these
terms in Appendix B. Lastly, we note that couplings sim-
ilar to the ones induced by A4 can also arise from bond
stretching in a multiorbital model; for coupling between
s—p and d—p orbitals, Eq. (20) would include terms that
take into account the relative rotation between sites.

Summarizing all the relevant bond stretching cou-
pling terms, we can write the spinon-phonon coupling as
Kk,0 = Yuv,k€ur (2), which couples the spinon operators:

SSP ph = L2ﬂ2 Z fkw+QKk Slfkw (22)
w,Qk

This interaction vertex is displayed in Fig. 3(a), but we
will take the limit in which the strain field, €, carries
no momentum, as terms dependent on the phonon mo-
mentum will lead to higher order, anharmonic viscosity
terms in the phonon effective action. The interaction
vertex 7,k then reads:

z

k,)cos(k,) 77, uv = rx
Cos( )TZ, pwr=yy  (23)
—8), cos(k,) sin(k, )7 — 16)\4(cos(ky) sin(2k, )7y, + sin(2k, ) sin(k,)7), pv =y

(

a term in the phonon effective action:

1

O5en =~ 5

Z Tr [Ky 0, Gk, iw,)

Wny i,k
x Ky, 0, Gk, iw, +1i%,,)] (25)

which can be represented by the Feynman diagram in
Fig. 3(b) with the external momenta ¢ = 0. In the ab-
sence of the Zeeman field (Bz = 0), the two spin sec-
tors are decoupled so we write the block-diagonal spinon
Green’s function for the spin up (+) and spin down (—)
sectors as

w, I+ Hyp -7

Gy (k2 =
:I:( ,an) (iwm)2 — Hi,k 3

(26)



in which H is defined from the momentum space Hamil-
tonian in Eq. (15),

N
H, , = (—2t; cosk,, 2t sink,, —4t,sink, cosk, F ?)
(27)

Leaving the details of the derivation to Appendix A,
Eq. (25) leads to a Hall viscosity

= 1 (1 —2np(H|) + 2[Hi [k ([Hx))
L2 k,+ 4|Hi|3

28

where np(FE) = 1/(1 4 e?/T) denotes the Fermi distri-
bution function with chemical potential at 0, and n/-(E)
denotes its first derivative with respect to E. We have
also suppressed the momentum indices of Hy j and 'yfw’ k
for ease of notation. The terms multiplying the thermal
factor in Eq. (28) should be thought of as an effective
Berry curvature for the phonon Hall viscosity, with the
summation being over occupied spinon states.

The phonon Hall viscosity is shown in Fig. 5(a)—(e).
Let us first concentrate on the zero Zeeman field limit
Bz = 0 described by Eq. (28). Figures 5(a,b) show the
Hall viscosity for Ay = —0.1 while Figs. 5(c,d) display the
viscosity for Ay =0.1. Recall, as mentioned previously,
that we take A1 o< t; and Ay o< t. We first observe that
nf is an odd function of ¢o: this property arises from the
second line of Eq. (28) via either the Green’s function
component H? or the interaction vertex viy. The vis-
cosity vanishes when ¢35 = 0 in consistency with the fact
that it can only be nonzero when time-reversal and mir-
ror symmetries are broken. The viscosity also monotoni-
cally increases with increasing to across the critical points
N = £8t5. As discussed in Sec. I11, ¢5 originates from the
orbital coupling of the magnetic field, so tuning to should
be understood as tuning the magnetic flux threading the
square lattice. Furthermore, from Figs. 5(a) and 5(c),
we notice that although the viscosity is continuous, it
exhibits a kink at zero temperature at the quantum crit-
ical point, signaling a discontinuous first derivative. The
exact difference in the slope of 1 on either side of the
critical point is nonuniversal and depends on the choice
of couplings. In our ansatz, we see that a negative (pos-
itive) A4 leads to a smaller (larger) slope for ! in the
topological phase.

The behavior of n¥ as a function of temperature is
also of experimental relevance. Figures 5(b) and 5(d) il-
lustrate the temperature dependence of nf for different
values of ty (while keeping Bz = 0), which are indicated
by the red dots in the phase diagram of Fig. 2. We ob-
serve, in both cases, a plateau of nf at small T, which
scales with the distance of ¢5 from the critical point (here,
ta.. = N/8 = 0.0625). From the plots, the extent of the

plateau can be seen to be the smallest for to = 0.06 and
increases with changing ¢o in either direction away from
the critical value. The plateau originates from the spinon
energy gap, whose scale is set by |ta — t2c|. At temper-
atures below this gap, thermal excitations fail to excite
higher spinon bands so we expect 7' to retain its zero-
temperature behavior. The viscosity eventually decays
to zero at high temperatures due to the thermal factor
in Eq. (28).

An interesting feature of the temperature dependence
sketched in Figs. 5(b) and 5(d) is that at intermediate
temperatures above the energy gap, there is a peak in the
viscosity for Ay =0.1 but not for Ay =—0.1. This peak is
nonuniversal, being dependent on our choice of parame-
ters, but its behavior can actually be understood from the
behavior of the kink in n across the QPT. Intuitively,
this can be seen as follows. In passing through the QPT,
the effective Berry curvature is exchanged between the
highest occupied and lowest unoccupied bands when the
spinon gap closes. This is similar in essence to the process
of changing temperature, which also involves accessing
the effective Berry curvature of the lowest-energy unoc-
cupied spinon bands as 7! gains (loses) Berry curvature
from the unoccupied (occupied) bands due to thermal
excitations. For the case of Ay, = —0.1, the slope of nf
with respect to t; decreases across the QPT. At the QPT,
Berry curvature is exchanged between the occupied and
unoccupied bands, so at a fixed t9, a similar redistribu-
tion of the Berry curvature between the occupied and un-
occupied bands should decrease nf. This is exactly what
occurs at intermediate temperatures because of thermal
excitations, and geometrically, this Berry curvature ex-
change deforms the viscosity towards the secant through
the kink, as illustrated in Fig. 5(a). Therefore, it is ex-
pected that n'7 decreases with increasing temperature.
A similar analysis for Ay = 0.1 with the kink in Fig. 5(c)
predicts that 77 will increase to a local maximum at in-
termediate temperatures as thermal excitations capture
larger Berry curvature contributions from the lowest un-
occupied bands. Regardless of our choice of couplings,
however, the Hall viscosity will eventually decay to zero
at high temperatures because the Berry curvatures from
states at all energies will then contribute, and the net
curvature from all spinon bands is necessarily zero.

Under a nonzero Zeeman coupling, we expect the lo-
cation of the critical points to be renormalized without
any qualitative changes in the nature of the QPT [34]. In
Fig. 5(e), we turn on the Zeeman coupling Bz. As ty and
Bz both arise from an externally applied field, we take
to and Bz to be linear functions of the applied magnetic
field B, with B = |Byz| = Tty as shown by the dashed
trajectory in Fig. 2. We find that n* scales linearly with
B at small field strengths.



3r7 T T
1.27 P
2 1.5¢ —tg/tl = 010
1.26 ta/t; = 0.08
0.062 0.063 Lol ~ta/t = 0.06
S0 / = —to/t1 = 0.04 |
-T/t; =0.0 —to/t1 = 0.02
-1 ‘: T/tl =0.1 0.5+ -
gt . ‘ ‘ ‘ 0.05 ‘ ‘ ‘ ‘ ‘ ‘ ‘
-0.2 -0.1 0.0 0.1 0.2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ta/th T/t
() ‘ (d)
2r -
0.306 / y 1.0} /\ o/t = 0.10
1 0.3 0.8 ty/t; = 0.08 |~
0.062 0.063 - —ty/t1 = 0.06
= 0 i = 06r _— —tg/t1:004
= | = e =0.02
! —T/tl =0.0 0.4} / _t2/t1 -
~1f | T/t; =0.1 /\ -
p | e
o §
‘ ‘ ‘ ‘ ‘ ‘ 0.0t . . . . . . .
-0.2 -0.1 0.0 0.1 0.2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
tg/tl T/tl
(e) (f)
-T/t; =0.01 50[
1.5f T/tl = 005 —
-T/t; =0.09 T of
310 -T/t; =0.13 5
-T/ty =0.17 = -50f
[t o -T/t; = 0.0
0.5f T/t; =0.1
—100f
0.0t —150 L L L L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 -0.4 -0.2 0.0 0.2 0.4
B/tl ml/tl
FIG. 5. Hall viscosity as functions of t2, T, B and its derivative with respect to mi. We set N = 0.5, A1 = t1 and A2 = 0.5¢t2.
In (a,b) and (e,f), we choose A\4/t; = —0.1. In (c,d), we choose A4/t; = 0.1 for comparison. (a) Hall viscosity as a function of

to for temperatures T'/t1 = 0,0.1 and Bz = 0. The dashed lines indicate critical points at N = £8t2. The inset shows the kink
at T = 0 after zooming in, signaling a QPT as discussed in the main text. (b) Hall viscosity n*! as a function of temperature
for different orbital coupling t> and Bz = 0. (¢, d) The same as in (a) and (b), respectively, but with the opposite sign of A4.
(e) Field dependence of ' for different T. As discussed in the main text, the orbital and Zeeman couplings scale linearly with
the applied external field, and here, we take B = |Bz| = Tt2. (f) The divergence in the second derivative of n™ with respect
to mass m; near the critical point. The blue curve shows that the mass derivative of the Hall viscosity d*n™ /dm] evaluated at
my = 0 diverges at T' = 0; the yellow curve demonstrates that d>n® /dm? has no true divergence at finite T'.



C. Hall viscosity near the spinon critical point

Compared to the quantized thermal Hall conductivity
or the ordinary Hall conductance, the Hall viscosity plot-
ted in Fig. 5 is continuous and, at first sight, does not
seem to encode any signatures of a QPT. However, as
seen in Fig. 5(a), it is possible for the derivatives of the
Hall viscosity to have a discontinuity or divergence at the
critical point.

In the mean-field ansatz given in Eq. (13), by choos-
ing appropriate mean-field orbital coupling parameters to
and Néel order N = N2z, one can tune across the topo-
logical phase transition. In particular, at Bz =0, the
critical points at N =48ty describe the transition be-
tween a confining Néel state and a state where the Néel
order coexists with a chiral spin liquid. At both critical
points, the spectra have pairs of Dirac cones at £Q where
Q = (7/2,0). For example, when N = 8tq, fermions in
the spin-down (—) sector have a Dirac cone at Q so that
|H_ q| = 0; a similar statement follows for the spin-up
(+) sector. To examine nff near the QPT, we expand
the spinon momentum around —Q as k = —Q + ¢q for
small momentum g. Then, we find—to leading order in
qfor nfl at T = 0:

(ty — %)qg)w —tAq®  (ta + %)qikl —t1q?

Ay 3/2 3
sl +4(t, - 2)°|” 64t, + & |

(29)

As mentioned earlier, we observe that the nonvanishing
leading terms above arise from the 4NN spinon-phonon
couplings in Eq. (23). The second term in Eq. (29) van-
ishes as we approach —Q. The first term appears diver-
gent but is actually finite when we take into account the
summation over momentum, which comes with measure
lqld|q].

While 7 seems well-behaved, its derivatives with re-
spect to the time-reversal-breaking ¢s can have singular-
ities and signal a QPT of the spinons. It is convenient to
rewrite our expression as a function of the Dirac masses
mig =2ty F %, which vanish at the critical points. For
instance, taking the second derivative of nff with respect
to my at the critical point m; = 0 (and k ~ —Q + q)
leads to a -function divergence

8277H 82 q2 )

X -~ —_
am% ~ >\4m22q: am% ‘H ’3 m23m1|m1| g0 o0,
ok

(30)

where we have written Ao o< t5 o< mq + mo. As pre-
viously noted, the second derivative’s divergence man-
ifests as a kink in n at the QPT. Note that without
a nonzero )4, the singularity in n would only show
up in its fourth derivative. The divergent behavior of

nH is present only at zero temperature, as illustrated in

Fig. 5(f). In the limit of N — 0, the two Dirac masses
coincide (m; = my), and n*! is better behaved, with the
divergence appearing in the third derivative. This is ac-
tually the behavior seen in previous works [25, 26] that
explored the case of two-orbital Chern insulators on the
square lattice; we discuss this point further in Sec. V D.

V. HALL VISCOSITY FROM SPINON
COUPLINGS TO CONTINUUM STRAIN FIELDS

In previous sections, we studied how phonon chiral-
ity could emerge from an underlying chiral spin liquid
on the square lattice. The calculation of the continuum
phonon Hall viscosity is qualitatively the same as that
for the lattice phonon Hall viscosity: we begin by defin-
ing the spinon Hamiltonian Hy, and symmetry consid-
erations constrain the allowed spinon-phonon couplings.
However, instead of taking into account lattice displace-
ments through the strain dependence of tight-binding pa-
rameters, we will see how phonon couplings emerge from
a projective symmetry analysis of the underlying spin
liquid. In particular, the lattice space group can have
significant effects on the topological quantization of the
phonon Hall viscosity. Our representation-theoretic ap-
proach follows Ref. 59. We also note that the symmetry-
based approach to electron-phonon interactions has been
well studied in the case of graphene [61-66].

A. Continuum low-energy theory

To define our continuum theory, we begin with our
original square-lattice Néel state N = Nz, given by Hy 1,
in Eq. (13). We will also work in the regime of no Zeeman
coupling, Bz = 0. While the low-energy theory and pro-
jective symmetry group of Hy . was already studied in
Ref. 34, we will find it convenient to first perform a local
U(1) gauge transformation in order to match the m-flux
ansatz considered in Ref. 59. Our new ansatz, which is
nevertheless gauge equivalent to Eq. (13), will have differ-
ent couplings. The resulting projective symmetries [67]
realized on the low-energy continuum fields will dictate
the allowed spinon-phonon interactions. First, we con-
sider a position-dependent gauge transformation of Hy 1,
in Eq. (13),

fu > €T,

[ — €T/ 2m/2 5 for n, odd,

(31a)
(31b)

for n, even,

where n = nix + noy. As a result, our nearest-neighbor
spinon hopping terms are given by

t = ia tn,n+y = (_1)71127 (32)

n,n+x
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FIG. 6. The nearest- (¢1, black) and second-nearest-neighbor
(t2, red) hopping matrix elements for the ansatz in Sec. V. It
is gauge equivalent to the mean-field ansatz in Fig. 1 using
the transformations outlined in Egs. (31a, 31b).

with second-nearest-neighbor chiral couplings

t
t

=1it, for m; even, (33a)

(33b)

n,ntxty

nontaty = —ity  for ny odd.

Now, we relabel our unit cell with four sites as in Fig. 6.
The resulting Bravais lattice vector is r = r1a1 + reas,
with 71,70 € Z labeling the unit cell, and a; = 2=z,
as = 2y. The full form of the Hamiltonian is given in
Appendix C.

Within the Brillouin zone kg, k, € [—7/2,7/2), our
new (but gauge-equivalent) Hamiltonian has degener-
ate Dirac points at I' = (0,0). Near T, the dispersion
can be described by four two-component (s=1,2) Dirac
fermions v%,. The four “Havors” («, o) are associated
with the two spin polarizations, o =1,], and an addi-
tional valley index =1, 2. In the following, we will sup-
press the (sublattice) spinor index s of 3 . We can
perform an expansion of the momentum-space Hamilto-
nian [see Eq. (C2)] around T using the continuum spinor

fields ¥qo:
b~ 5 (N )
bt~ G5 (K e ) o
from which the resulting Dirac Hamiltonian is
Hpirae = / (‘i’; VYo [vF (k7 + k,7Y) (35)

N
=2ty (k" + k, p¥7Y) + 2 (21527'2 - 4azuz7'z)} Voo

where we have labeled vp = 2t;. We have defined the
Pauli matrices 7 to act on the spinor (sublattice) indices,
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1 to act on the valley indices «, and ¢ to act on the spin
indices. The continuous fields also realize a projective
representation of our lattice symmetries, the details of
which are summarized in Appendix C. Away from the
critical points, the Dirac fermions ., are gapped with
a mass mq o = 2ts F N/4 given by a combination of the
orbital current t; and the Néel order, as in Sec. IV C.
Therefore, when t5 ~ N/8 close to the critical point, we
can safely integrate out the two higher-energy bands to
obtain the effective spinon Hamiltonian

d*k
H,, =2 / ——— Ul (k7" + k7Y +mT7) U, (36)

(2m)?
where we have set t; = 1 and defined
k =1
m=m, =2t,—N/4, U, (k)= Vry(k) " (37)
¢2¢(k) a=2,

and, as previously mentioned, the Pauli 7 matrices only
act on the spinor indices. From here on, we will also
denote the higher-energy Dirac mass as M = mo = 2t +
N/4. Interestingly, the effects of the orbital current to
and Néel order N counteract each other in the low-energy
theory [34], so that even though Hg, explicitly breaks
time-reversal symmetry, it re-emerges in the low energy
theory.

B. Spinon-phonon coupling vertex

In this section, we will describe a general framework
for deriving the spinon-phonon interaction Hamiltonian
from symmetry considerations and then apply it to our
model, Eq. (36). Approaches based on symmetry have
also been used to find the phonon couplings in graphene
[62, 66], but the main difference in our spin-liquid system
is that the analysis needs to account for the projective
symmetry group of our ansatz. A universal procedure
that does exactly this is provided by Serbyn and Lee
[59], and we will reproduce their method here to provide
background.

We begin by specifying the form of the spinon-phonon
interaction Hamiltonian,

A’k d%q
Hey on = / CC AW (k + @)y (k. @)V, (R).

(2m)
(38)
Expanding k around the Dirac points at I', we allow the
(0)

presence of terms of zeroth order, hy '
(1

order, hsp_ph(k, g), in the spinon momentum k so that
the total interaction Hamiltonian can be written as

hep—pn(ko@) = b (q) + 1), (K, q). (39)

(g), and linear

Often, only the zeroth-order contribution héglph(q)

needs to be considered, but as we will find for the nonchi-
(0)

ral w-flux state, hsp_ph(q) = 0 by symmetry. In the case



of nonzero to, there is a single symmetry-allowed zeroth-
order phonon coupling. Either way, to obtain a nonzero

nf, it will be necessary to also take hg;lph(k,q) into

account. The hg;)_ph term can be understood as a de-
formation of the spinon band structure near the Dirac
points at I' by acoustic phonons.

Acoustic phonons can only couple to the spinons
through spatial derivatives of the phonon field, so they
enter into hsp—ph(k, ) through the g Fourier component
of u(r). As in the previous section, we expect couplings
to the time derivative of u to be suppressed by the ra-
tio of the sound and Fermi velocities, so we will ignore
them in our analysis. Since both the phonon fields and
the phonon momenta transform under the vector repre-
sentation F; of Cy,, we can decompose the set of terms
O;uj(r) ~ —ig;u;(q) into irreducible representations as

EP" ® EY" = @, DP", (40)

where th labels irreducible representations of Cly,. As
spinons are fermionic while phonons are bosonic, the
leading order coupling of phonons must be to bilinears
of the continuum spinon fields . Even though v realizes
a projective representation of the lattice symmetry group
C,, the space of local spinon bilinears,

Gyiy = {WL}W, it T b, ¢T(MiTj)¢}, (41)

realizes regular representations in our Abelian U(1) spin
liquid because the U(1) gauge factors cancel. For non-
Abelian SU(2) spin liquids, as studied in Refs. 67-69,
we must restrict ourselves to spin singlet bilinears to ob-
tain regular representations. We omit the spin degrees
of freedom since we assume that the phonons couple to
both 1 and v bilinears equally. In similar fashion to
the phonons, we can decompose the representation of all
bilinears into irreducible representations,

.
Gy = ®,;D) ¥ (42)

As hg;lph includes terms that couple spinon momenta k
(transforming in the vector representation) and bilinears,
we must also consider

s T
EP ® Gy, =@, D50 (43)

We observe that Hsp—pn, which could possibly contain
terms like

h Pl h kT
> (e Dy + Dt eDkY) (4
ij
must be invariant under all symmetries. This is only pos-
t
sible if the representations are equal; that is, th = D;/’ ¥

t
or th = D;W’ v, Therefore, pairing together basis func-
tions of equivalent irreducible representations between
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Eq. (40) and Eqs. (42,43) will give us all possible cou-
plings in hgp—pn. Furthermore, the additional SU(2)
symmetries of time-reversal and charge conjugation will
impose further constraints on allowed couplings, as the
phonon strain field d;u; is invariant under both symme-
tries.

Applying this formalism to our lattice symmetry group
Cyy, the underlying symmetry group of the phonons, we
have

@, D" =A, & A, B, & B,, (45)

in Eq. (40), with basis elements Oyu, + Oyuy, Opuy —
OylUy, OxUy — Oyuy, and Oyuy + Oyu, respectively. For
the spinon sector, we can decompose the bilinears into
representations of C},

wa,:Al@A2@"'v (46)
EP @G, =A 04 0B, 0B,o -, (47)
where the (---) stands for irreducible representations of

C), that transform nontrivially under lattice transla-
tions; these cannot be coupled to the phonons, which
transform trivially under translations. The full results
and explicit basis elements are tabulated in Section III
of Ref. 59.

The ostensibly allowed couplings between the (A;, As)
components in Gy, and EY" @ EP" turn out to be for-
bidden by time-reversal symmetry, as the (A4, As) com-
ponents in Gyt y,

DYV = {yilp}, D4Y={oirg),  (48)

are both time-reversal odd. However, there is an allowed
coupling to the Ay channel through the orbital current
to. Since the orbital current to also transforms as As, by
t
coupling ¢t o< (m + M) and D“ﬁf’ together, we obtain
a term that transforms trivially (as A;). This term is
t
permitted because Dﬁ;ﬂ like 5, is time-reversal odd, so

:
the product ts - Dz;’/’ can couple to the phonon density
fluctuations. Therefore, we find

WO (@) = igo(m + M)T* (q,u, +qu,),  (49)

with go labeling some phenomenological coupling coeffi-
cient. Note that we cannot couple m7? to phonons as
m itself is not an irreducible representation (it includes
the Néel order), but the combination m + M = t5 is
irreducible.

The bilinears in Eq. (47) suffer no such restriction as
they are all time-reversal and charge-conjugation invari-
ant. The basis elements for the irreducible representa-
tions in Eq. (47) are analogous to those in Eq. (45), with
the replacement u; — 7°. Now, we can couple each of
the first four irreducible representations in Eq. (47) to its



partner in Eq. (45). For example, the A; spinor-bilinear
component is of the form

D’w V= (Yl (k™ + kT (50)

so that the A;-A; coupling contribution to hgp_pn will
be of the form iga, (¢zus + qyuy) (k™" + kyT?) for some

coupling constant g4, . After some simplification, the end
result is
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for phenomenological couplings g;. The g; label combina-
tions of irreducible representations, with g1 4 = g4, £9B,
and g2.3 = 9B, £ ga,-

C. Evaluation of phonon polarization and Hall
viscosity

As in Egs. (24) and (25), we will now integrate out the
fermion fields to obtain the Hall viscosity for the phonon

hi;) ph(k7 q) =i(gyq,k, ™" + 9,k T+ g3, kT ﬁelds.' From Eq. (51) we can'd.eﬁn.e our spinon-phonon
y coupling vertices to be (rewriting in terms of the low-
940,k T )tz + (2 < y), (51) energy Dirac fields U)
J
d*k d?
Moy = [ s VA + N1, () (52)
l:::,q = (gl%ckxT + ngykyTz + ngyszy + g4q3:ky7-y + 904 (m + M)TZ)7 (52b)
)\qu = i(919,k, 7Y + 920,k 7Y + 93¢, K, 7" + 949,k T" + goq,(m + M)T7). (52¢)

The last term coming from the coupling of the orbital current to = m + M in )\w’g has no dependence on spinon
momentum k. We can write the phonon self-energy, as in Fig. 3(b), in Matsubara frequency space as

1 .
(g, i) = — /k 21 [N, Gk, i)\ q oGk + .0, +190,)] (53)

where G(k,iw,) denotes the Dirac fermion Green’s func-
tion,

wl+Hg -7

G(k,w) = ;
_ Hi

Hy = (kg, ky,m). (54)
In Eq. (53), we define [, ~=T3%  [d°k/(27)°

we have also included a factor of 2 to account for the
two species of Dirac fermions. The Hall viscosity origi-
nates from the off-diagonal, antisymmetric component of

I1*¥. In real frequency, Eq. (53) contributes a term to
the phonon effective action of the form

5Seff = / o HMV(q7 Q)up,(_qv _Q)uu<q7 Q) (55)

5

from which we can extract

(

In our continuum model, we did not consider any cou-
pling to the rotational strain field, so n™ = 0. Other
terms in the phonon self-energy, such as the diagonal and
symmetric components, will renormalize the real part of
the phonon propagator. This is a small effect that does
not contribute to phonon chirality, so we will not consider
it here. As we are only interested in the leading-order
contributions of ¢ and 2, we use

)\#

k+q,—q /\II:: —q + O(q2) (57)

and neglect the anharmonic contributions. Relegating
the details of the computation to Appendix D, we find

H —1; . _ 2 Yy
n (}1_% g121310 —QLd OgIm [117¥(q, )] (56)  that
J
Ty . 2 mS) 2 Q
1*(q, im) = q°(9192 — 939a) g — (A = 2Iml) + @790 (92 — g)(m + M) o~ (A = 2|m]),
where A is a UV cutoff near the Dirac points. Then, Eq. (56) gives us
1
' = [(9195 = 9394)m + go(g2 — g3)(m + M)] (A — 2|m]), (58)

472



after analytic continuation to real 2. To compare the
continuum result to the lattice, we need to extract the
leading nonanalytic contribution:

"~ ~[g0(92 — g3)(m + M) fm| ~ M|m|;  (59)

we see that the second derivative 921 /0?m o §(m) is
divergent in the limit m — 0, in agreement with what we
found in Eq. (30) on the lattice.

From Eq. (58), we notice that the Hall viscosity n*
scales with the two effective couplings g192 — g3g4 and
go(g2 —g3). This can be understood in the representation
theory framework presented earlier, as both ¢192 — g394
and go(g2— g3) transform in the A channel of Cly,, which
descends to the A; channel of Cy as reflection symmetry
is broken in our ansatz. Further discussions on this point
are included at the end of Appendix D.

D. Discussion and comparison to the lattice results

Our analysis highlights that the lattice symmetries
strongly constrain the allowed spinon-phonon couplings.
Therefore, though most spin-liquid phases of interest
have similar Dirac excitations and effective theories in
the continuum, the allowed spinon-phonon interactions
and resulting Hall viscosity n in the continuum are sen-
sitive to microscopic information about the phase.

We contrast our result with the quantized Hall viscos-
ity found in Refs. 60 and 70 for Majorana fermions in
the gapless B phase of the Kitaev honeycomb model [71].
This is a special feature of the lattice symmetry group
Cey, as in addition to a trivial density fluctuation cou-
pling, the zero-flux phase [59, 62| on a honeycomb lattice
allows a spinon-phonon interaction in the F5 channel of
the form

B o (R) ~ [(@5t, = 4,0,)7° = (qu, + 4,u,)7"] 1*

sp—p 'tz T Ay y 'ty T Ayt

(60)
to zeroth order in the spinon momentum k near the Dirac
point. This additional coupling should be understood as
a consequence of the special symmetries of the honey-
comb lattice. Integrating out the spinons on the honey-
comb lattice then leads to a discontinuous Hall viscosity
[60, 70],
77H ~ Sign(m)’ (61)
that depends only on the sign of the Dirac mass m. More-
over, it was found in Ref. 60 that for the Kitaev spin lig-
uid, nff decreased as the magnitude of the time-reversal-
symmetry-breaking perturbation increased.

In our analysis for the square lattice, we see that the
nonanalytic behavior of the continuum 7’ agrees with
the lattice result, Eq. (28), at low energies and near the
Dirac point. However, it should be noted that the con-
tinuum viscosity is in general regularization-dependent,
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FIG. 7. Finite-temperature scaling of the continuum phonon
Hall viscosity from Eq. (62), with F; = 2F>, = 2 and M =
A = 5. The inset shows the low-temperature plateaus of n'
with a scale set by m.

and only the difference in n¥ between two phases is uni-
versal [24, 25]. With this in mind, we observe that the
difference in n* across the QPT scales, at leading order,
linearly with the Dirac mass m = 2ty — N/4 in both the
lattice and continuum formulations. This differs from the
Hall viscosity obtained for the Dirac Chern insulator on
a square lattice [26] in which case, the Hall viscosity of
the tight-binding Hamiltonian scales quadratically with
the Dirac mass. For the continuum Dirac field theory
of the Chern insulator, introducing suitable Pauli-Villars
regulators and counterterms eliminates the dependence
of the viscosity on the UV cutoff A and also leads to a
quadratic dependence of I on m [25].

In our chiral spin liquid ansatz in Eq. (13), the phonons
are coupled directly to the orbital current ¢5 but not the
effective Dirac mass m = 2to — N /4. This is caused by the
presence of Néel order, which does not couple to lattice
distortions as it is purely an on-site term [see Eq. (13)].
In the limit N — 0, the two Dirac masses coincide and
for our calculation on the lattice, n¥ ~ M|m| = m|m],
as in the case of the Chern insulator. In the continuum,
we reproduce the field theory of the Chern insulator as
in Refs. 24 and 25, and with further regularization, the
same scaling is obtained for the Hall viscosity. In both
the lattice and the continuum, the divergence in n*! is
then only visible in its third derivative with respect to
m.

Finally, our analysis can be extended to include the
finite-temperature result [see Eq. (D18) in Appendix D],

n™ = (FyM + Fom)-[Da(T, m)
— 4T log(2 cosh(|m|/2T))], (62)

for some function D dependent on m, T, and a UV cutoff
A. The constants F; and F5 are combinations of the



spinon-phonon couplings. In the limit that A > m, T,
we have

n' = (F1M + Fom)-[4T log (2 cosh(A/2T)) (63)
— A — 4T log(2 cosh(|m|/2T"))].

As the hyperbolic cosine is an even and positive func-
tion, we find that the viscosity is smooth at finite T—this
is expected because the Matsubara summation, at finite
temperatures, does not introduce any nonanalyticities.
In the limit of M >m, we see that the A-independent
part of nf /(MT) is only a function of the ratio |m|/T.
The temperature and m dependence of n*! arising from
Eq. (62) is illustrated in Fig. 7. The zero-temperature
value of nf depends on the momentum cutoff A. We ob-
serve, in particular, that n decays at high temperature
and plateaus near zero temperature, with the size of the
plateau dependent on the mass gap m. These universal
features were also present in our lattice calculation, in
Figs. 5(b) and 5(d).

VI. PHYSICAL CONSEQUENCES

For acoustic phonons, the dispersion is assumed to be
wpn X |q| + O(g?), so, according to Eq. (4), the Hall
viscosity’s contribution to the phonon effective action is
of order Qudi ~ |g|>u?. This is more relevant than the
leading anharmonic correction, which is of order g*. Note
that the other possible O(g®) contribution to the phonon
action

/dQI dt Dijklmaiajukalu"l (64)

vanishes in the presence of inversion symmetry. In two-
dimensional isotropic systems, it was found that the Hall
viscosity mixes the longitudinal and transverse modes
and renormalizes the phonon spectrum [20, 60],

Awpy ~ g’ (65)

However, the exact numerical prefactor of the correc-
tion, estimated to be very small by Barkeshli et al. [20],
requires knowledge of the energies associated with the
appropriate spin-lattice couplings, and the phonon spec-
trum cannot distinguish the sign of the Hall viscosity.
Another consequence of a Hall viscosity is phonon Fara-
day rotation, which describes the rotation of the linear
polarization vector of transverse acoustic phonons due to
splitting in the circularly-polarized velocities [26, 72, 73].

Recently, the thermal Hall effect has emerged as a
powerful probe of neutral excitations such as spinons,
prompting extensive experimental and theoretical stud-
ies in a variety of correlated quantum materials, including
the cuprate superconductors [31, 34, 74-79] and Kitaev
materials like a-RuCls [70, 80-89]. Here, we observe that
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a phonon Hall viscosity, in general, implies a nonzero
phonon thermal Hall conductivity by imparting a Berry
curvature to the phonon energy bands. Moreover, their
relative signs can be determined given the coupling con-
stants. As previously studied, a phonon thermal Hall
response can arise from a coupling of phonons to the mag-
netization of the system [90]. More recently, in ferroelec-
tric insulators [78], the flexoelectric coupling of acoustic
phonons to the dipole density was shown to lead to a
thermal Hall response. In our case, the Hall viscosity ap-
pears in the phonon effective action as a term analogous
to those flexoelectric couplings. For example, consider
isotropic phonons in two dimensions,

1 .
Sop = 3 /dQ:c dt pi® + 1, Vu? 4 1(V - u)?,  (66)
with mass density p and elastic constants p;. Assuming
the Hall viscosity in Eq. (7), the thermal Hall conductiv-
ity [91], in the low-temperature limit, reads

2d o 3((3)k?}’3 [ . g2 2
H:py(T) =N Th2 N/ /iy + fiz e, (67

g _Ap + e o= 4pa + 3pe
1= 57— 5 =5 —F——.
VIRV 2pu2/p1 + pi2

Hence, given that n plateaus at low temperature from our
analyses in Secs. IVB and VD, we see that 35 /T oc T
as T — 0. While we are unable to make quantitative es-
timates of the strength of this response, we have demon-
strated that this effect generically exists for both the con-
ventional Néel phase and the Néel state coexisting with
semion topological order in Fig. 2, providing an intrin-
sic source of phonon chirality. With an eye towards re-
cent experiments on the phonon thermal Hall response
in cuprates [31, 32], our proposal lays the foundation for
work on possible enhancement of heat transport due to
extrinsic mechanisms in these topological systems [33].

VII. CONCLUSION AND OUTLOOK

In this article, we have analyzed the phonon Hall vis-
cosity arising from the coupling to spin degrees of free-
dom on the square lattice in a magnetic field.

We employed a fermionic spinon formulation and ob-
tained a low-energy effective action for the phonon fields
by integrating out the spinons. Two complementary ap-
proaches were studied: first, starting from the lattice
spinon model of Ref. 34, we introduced the coupling
to lattice vibrations using the physical model of bond
stretching (or equivalently, adiabatic response). In the
second approach, only the relevant low-energy spinon de-
grees of freedom were retained, and the resulting contin-
uum Dirac theory was coupled to lattice vibrations purely
by symmetry considerations.



Even in the continuum limit, microscopic details about
the lattice symmetry were shown to have drastic effects
on the critical behavior of n: as opposed to the dis-
continuity of n when changing the sign of the effective
Dirac mass m at the transition on the honeycomb lattice,
we demonstrated that the symmetries of the square lat-
tice lead to a Hall viscosity that varies linearly with the
effective Dirac mass m—in both the continuum and the
lattice theory. We also calculated n™ at finite tempera-
ture and determined a scaling form for the ratio n*/ /T M.

The Hall viscosity is a measure of time-reversal sym-
metry breaking in the spinon sector, and its nonanalytici-
ties can serve as signatures of the field-driven topological
quantum phase transition. We found that the second
derivative of the Hall viscosity with respect to the mass,
02,nH, diverges at the transition (m = 0) between the
two phases in Fig. 2 at zero temperature. This leads to
a kink in the field dependence of n% [see Fig. 5(a) and
(c)]. We showed that this enhanced singular behavior—
as compared to the square-lattice Chern insulator where
93 mH diverges [26]—can be traced back to the presence
of Néel order.

In addition to previous studies which have proposed
measuring the Hall viscosity through various phononic
properties of the material, we have shown how the Hall
viscosity also leads to an intrinsic thermal Hall response.
This response can potentially be enhanced by extrinsic
scattering mechanisms and may be detectable in exper-
iments which indicate that phonons are the dominant
contribution to heat transport. As more and more ex-

J

B8 s
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periments probe the exotic nature of topological phases
and possible spin liquid candidates, we believe that the
phonon Hall viscosity can be a powerful tool for detecting
fractionalization and quantum critical phenomena.

Finally, we note that our computations were carried
out in the setting of a spinon mean-field theory. Whether
gauge-field fluctuations are important for the phonon dy-
namics remains an open question, and their consequences
are avenues for further study.
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Appendix A: Hall viscosity in the absence of a
Zeeman field

To evaluate the effective action, we have to compute

(using Tr[r*7P7°] = 2ie*?, ¢ being the Levi-Civita ten-
sor) the trace

Yol s
2e9B QmHi_’,c

T [7 Gl 0, )7 Gk i, + 0,0)] =
+

HZ , +w2)(HL , + (w0, +Q,)%) B T

2

where we have only kept the terms antisymmetric and linear in €2 since these are the only ones that will contribute
to the Hall viscosity. This approximation is valid because we are only extracting the first-order (in ) contribution
to the effective action. The Matsubara summation yields

1- 2nF(’H:I:,k‘) + Q‘Hi,k’n%(‘Hi,k‘)

TZ > ) 3 (A2)
(HY , +w? 4’Hi,k’
Therefore, we can extract from
1 . .
Seft = _W Z Tr [Kk,iQmG(kvan)Kk,fiQmG(ka i(w,, + Qm))] (A3)
Wi s,k
the Hall viscosity
1- 2”F(‘H:I: k‘) + Q'H:I: k‘n/F(‘Hﬂ:.k’)
3 D) DR (A4)

3
aBé k,+ 4’Hik‘

Writing out the summation over «, 3,6 explicitly leads to Eq. (28) of the main text.

(

Appendix B: Rotational strain field coupling ric treatments of phonon interactions. However, given

The rotational strain field 8;; = (0;u; — d;u;)/2, repre-
senting a vorticity, is ordinarily not considered in geomet-



the symmetries of our ansatz, we can couple the time
derivative of 06;;/0t to the orbital current ¢y [38, 57]:

‘tn,ni(a:-i-y)l = |tn,ni(w—y)‘ ~ iy + )‘3 a:;y (Bl)

Since the rotational strain field has only one polarization
0y, this gives an additional interaction term in Eq. (23)
that couples to 6,

Yy (Q)7% = 4Q\; sin(k,,) cos (k,)7%, pv=uazy. (B2)

R 0+ (SO (0 4 (),
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This additional coupling is interesting to consider since
it can, in principle, lead to a finite Hall viscosity. Follow-
ing the same procedure for calculating 7%, we state the
analytic answer for n below:

]' ~z
alm

Yoz
4’Hi.k

+

This expression simplifies at 7' = 0 to nM =

HE L HE o, — ((HL,)? + (HY %)%
\3 '

1 ~z
ﬁzz%y
k,+ ’H:I:,k
(B4)

At the critical point, where m; = 0, expanding for mo-
menta g near the Dirac point at Q = (g, 0), we have

2
2 (B5)
m1=0 q |q‘

Although the above term seems to have a singularity, it
is remedied by the integration measure d?q ~ |q|d|q|.
Therefore, n™ goes to a finite value as ¢ — 0. Just as
for nf, we can analyze n™ near the critical point. As
we tune towards the QPT, the second derivative of n™
is d-function divergent,

82 M 82 2

377771% ~ Q73 ~ afnl‘mﬂ H) oo,

2
e, )

(B6)

with essentially the same behavior as n.

Appendix C: Hamiltonian and projective symmetry
of the chiral nm-flux state

From the couplings given by Egs. (32, 33a, 33b), we
obtain the Hamiltonian for the gauge-transformed ansatz

’ [~1+2np(|Hy ]) + 2|Hi,k|n%(|Hi,k|)]] :

[1 - 2"F(|Hi,k) + 2H:t,kn/F(H:t,k‘ﬂ

(B3)

(

in momentum space as (labeling the sublattices by indices
m, n)

Hey ==Y fonohmn (8.0 finor— (C1)
k,o
where the 4 x 4 matrix h is given by
0 -—14+4K; 0 -1+4K;
. 1-K, 0 -1-K; 0
Meo)=iti| = o 1k, 0 1-K,
1-K, 0 -1+ K7} 0
0 K, 0 1000
) 0 0 0 Kg No| 0-10 0
Tl g0 0 o0 [T2 o010
0 —-Ky 0 0 00 0-1
(C2)
For the equations above, we have defined
Ky p=ekaz, (C3)
K,=-1-K; - K} - KK}, (C4)
Kp=1+K, + K; + K,Kj. (C5)

Expanding the Hamiltonian H;j, around the Dirac
points at I" then leads to the effective Dirac Hamiltonian
given in Eq. (35).

To specify the projective symmetry of the continuous
spinor fields 1., defined in Eq. (34), we need to know
how the spinons transform under the relevant symme-
try group generators. Following closely the analyses of
Ref. 59, we begin by specifying the projective action of
the symmetry operations on the lattice fermions. The
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symmetries of the m-flux ansatz, as in Sec. V, are gener- Cy : fo1 = —fouwra frosa— forsan (C7b)
ated by translation by a&, T, : v = Tpr = (rz + a,1y); T f

’ Y : — — C7
reflection about the &-axis, R, : 7 — Ry7r = (—7,,7y); and T fes = fes froa = froa (CTe)
rotation by 7/2, Cy: v — Car = (ry, —r5); together, these C: frnr — fikn,L’ Jeny — —fiknT (C7d)

make up the symmetry group C},. Furthermore, there
are two additional SU(2) symmetries of our ansatz, given
(in momentum space) by time-reversal T : friv — f,iw

From the form of Eq. (34), we can now deduce the action
of a symmetry generators on the continuous fields:

and charge-conjugation symmetry, C : fri; — fiki_a.

. . . . T, =Y, (C8a)
Note that T is also accompanied by complex conjugation. oy
While 7T flips the spin operator S; = %fgo'fh C leaves Ry =ip’r?, (C8b)
it invariant. To leave the Hamiltonian invariant under C, = 1( 1+ ) (1 + ir?). (C8c)

these symmetry operations, we may need to supplement 2
the symmetries with additional gauge transformations;

For example, under T,, we have ¢y — T,v. Likewise,
hence, the symmetry is implemented projectively. For a P : v =¥

for time-reversal and charge-conjugation symmetries, we

U(1)-symmetric ansatz, the gauge factors can be conve- find
niently chosen to be £1. For example, T, is implemented
as T — = (yhT, (C9a)
C:p— a¥u (1) C9b
To t fog = ~frotpg fra = fpo,, Y = ot (W) (C9b)

(C6)  With the symmetries now defined, we can determine how
the fermion bilinnears split into irreducible representa-
tions. Further details, including background on repre-
sentation theory and the structure of C},, can be found

in Ref. 59.

Iro—= —froe1s Jrs = froea

and the other transformations can be found similarly:

Ry : fr13— fRor24, froa— —frr13 (CTa)

J

Appendix D: Continuum phonon self-energy

In order to find

o 1 o S
I(q,i,,) = —5 /k’wn 2. Tr {szqa(k, i) g —q Gk + gy, + mm)}
1
— 5 [ 2 NG )N Gk + i, +i0,)] + Ol?), (d1)
k,wn
it will be convenient to first define
/k TP (g, i) = Tr [(k ks - )7 Gy i, ) TGk + @, o, + i92,)] (D2)

because I17Y(q, i€),,) is a linear combination of terms of the form ¢*I1. As with the vertex in Eq. (57), we can make
simplifications based on the fact that we are working in the linear-response regime. We only consider terms of order
Q,, and g? in IT1*Y for the Hall viscosity, so we just have to keep terms of order O(Q2! ), O(¢") in II. We can also
observe that of the 25 possible contractions of terms between AY and A\*, most will not contribute to the Hall viscosity,
either because they will be symmetric or because they contain spinon momentum terms like k%, , which vanish after
integrating over k. The end result is that

II*Y(q, iw,,) = q*(9192 — 9394)os — @*90(g2 — g)(m + M)IIZ". (D3)

Here, we used ﬁgf = ﬁg‘f and Tr [TO‘TﬁT’Y] = 2ie*P7 to simplify the result. Including only the antisymmetric terms
(under 2 <+ 1) and terms of order O(Q2}, ¢°), we can evaluate I12L as
2mQ, k2

ﬁ21 0 _ / m'Vx D4
a:x(qa 7 m) b, (W% + k2 + m2)(<wn + Qm)2 + (k + q)2 + m2) ( )
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2mQ, k2
JA W e e e e b9
where we have introduced Feynman parameters in the second line. Due to the Pauli matrix contractions, we have
2Q,, k2 H21 1(q,iQ )
(.19, / d / my - ’ D6
(g.1 u kw, u(w, +Q,,)% + (1 —w)w2 + k2 + u(l — u)g® + m?]? m (D6)
Continuing, we define A(u) = u(wy, + Qm)? + (1 — u)w? + u(l —u)q® +m?, so that
dk,dk, k2
(q7 ? ) m U A2 [kQ + A} ( )
Imposing a UV cutoff A and taking the limit 7" — 0, we obtaln
2L (g, i) = du (A 2/ u(l —u)g —|—m2) +0(922) (D8)
Now taking the ¢ — 0 limit, we get
Q
2} (q,i9,,) = “ (A = 2fm]) (DY)
™
so that, using Eq. (56),
Ty - 2 QO 2 Q
11"¥(q,i%,,) = q”(9192 — 9394) . (A —2[m|) + q°go(g — g3)(m + M) 31 (A —2[m|) (D10)
1
— 7 = e [(9192 — 9394)m + go(92 — g3)(m + M)] (A — 2|m]). (D11)
Now, to obtain the finite-temperature result, we go back to Eq. (D7) to calculate
21 dk,dk, k2
1% (q,i9,,) = 2mQ,, / du/ 7 21 AP (D12)
dk‘wdkz k2
oo, [ [T K4 o) 26 6) + 0l 02) (D13)
0 4 &k

where we have evaluated the Matsubara sum—which is of the same form as for the lattice calculation—and defined
&r = Vk? + m2. Proceeding with the integral over u, we arrive at

dk - 27k k?
24(0.i0,) =m0, [ SR (a6 +20nk(6) (D14)
k
QO —|m QO
:?(—|m|—2Tlog (14! l/T))+8—WDA(m,T), (D15)

where we have defined the function

A2 (\/}\24—% — 3) - 2m2
o e T 41

Nrcres
Dy(m,T) = e + 4T log (e = +1>. (D16)

This brings us to

11°0(g,10,,) =  [(9192 — 9592)m + 09(05 — g)(m -+ M)] 3 - (D (m, T) — 2| — 4Tlog (1=} (D17)

8w
1 —|m

— 0 = 5 (6192 — 959.)m + (92 — 93)(m + M)] - (D5 (m, T) = 2fm]| — 4T log (1 4+~ "V/T) ). (D18)

In the limit m, T < A, we have Dy(m,T) — A + 4T log (1 + e‘A/T), and we can write the expression for n in the
continuum, at finite temperature, as

1 — —|m
" = 75 (9192 = 9392)m + 9o (92 — g5) (m + M)] - (A +4T log (1 +e A/T) —2|m| — 4T log (1 +el '/T))
(D19)

(

the zero-temperature limit of which is in agreement with Eq. (D11). The finite-temperature continuum result al-



lows us to rewrite the cutoff independent part of nf as

n" ~ |m| + 2T log (1 + e*‘mI/T)
= |m| + 2T10g(26_|m|/2T cosh(|m| /2T))

= 2T log(2 cosh(|m|/2T)), (D20)
which leads to Eq. (63). We observe that n is analytic
at all T > 0 as cosh is an analytic and even function.

From Eq. (D18) above, we see that n scales with the
effective couplings g192 — g3g4 and go(g2 — g3). This can
be understood in the representation-theoretic framework.
Writing out the g;s in terms of irreducible representations
as defined at the end of Sec. V B, we find that both com-
binations

(D21a)
(D21b)

9192 — 9394 X Ga,94, * 9B,9B,>
9o(92 — 93) < 94,94,

transform under the A; ® Ay = By ® By = Ay represen-
tation of Cy,. Now, we expect % to transform trivially
under all symmetries (under A;) as the phonon effec-
tive action must be invariant under all symmetries. This
still holds true because nff can only exist in the pres-
ence of broken reflection symmetry, in which case, the
symmetry of the phonon action is reduced Cy, — Cy,
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and the Ay of Cy, descends to the trivial A; of C4. As
a result, n has only one independent component with
Cy symmetry. More precisely, as the four-indexed Hall
viscosity tensor is antisymmetric upon exchanging pairs
of indices (phonon modes) while it is symmetric for ex-
change within each pair, we know that it has to trans-
form under the antisymmetric A; tensor representation,
which we denote A{. Since the phonon field transforms
under the vector representation F;p, this means that the
independent component(s) of ! correspond to the com-
ponent(s) of A% within A Sym?(E;) (with Sym? and A?
denoting the symmetrized and antisymmetrized tensor
product, respectively). In our ansatz, we can illustrate
this algebraically as

N’Sym®(E,) = \*(A, © B, @ By) = A3 & B @ BS,
(D22)
in C4y, which descends to A & 2B¢ in C4, so the Hall
viscosity has one component. This procedure can also be
carried out for other lattices. For example, as was shown
for phonons with Cg, symmetry [60] on the honeycomb
lattice, we have
N’Sym*(E,) = \*(A, & E,) = A§ @ B3, (D23)
which descends to A} @ EY in Cs, giving one independent
component of nff. As A$ originated from E, ® Fy, we
know that n” must scale as g, .
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