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Estimating Center of Mass Kinematics During Perturbed Human
Standing Using Accelerometers

Sandra K. Hnat,"? Musa L. Audu,’? Ronald J. Triolo,'* and Roger D. Quinn’
'Case Western Reserve University; 2L ouis Stokes Cleveland VA Medical Center

Estimating center of mass (COM) through sensor measurements is done to maintain walking and standing stability with
exoskeletons. The authors present a method for estimating COM kinematics through an artificial neural network, which was
trained by minimizing the mean squared error between COM displacements measured by a gold-standard motion capture system
and recorded acceleration signals from body-mounted accelerometers. A total of 5 able-bodied participants were destabilized
during standing through: (1) unexpected perturbations caused by 4 linear actuators pulling on the waist and (2) volitionally
moving weighted jars on a shelf. Each movement type was averaged across all participants. The algorithm’s performance was
quantified by the root mean square error and coefficient of determination (R?) calculated from both the entire trial and during each
perturbation type. Throughout the trials and movement types, the average coefficient of determination was 0.83, with 89% of the
movements with R> > .70, while the average root mean square error ranged between 7.3% and 22.0%, corresponding to 0.5- and
0.94-cm error in both the coronal and sagittal planes. COM can be estimated in real time for balance control of exoskeletons for
individuals with a spinal cord injury, and the procedure can be generalized for other gait studies.
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Spinal cord injuries (SCIs) resulting in lower limb paralysis
can limit mobility and decrease quality of life.! The National SCI
Statistical Center projects an incidence of approximately 17,730
new cases of SCI each year,>? with a prevalence of 290,000 in the
United States in 2020.* Powered orthoses, or exoskeletons, are an
emerging field of research aiming to improve mobility for indivi-
duals with SCL> These devices are worn in parallel to the user’s
lower body segments, where electric motors at the joints guide the
affected limbs through walking, standing, and sitting motions.®
Exoskeletons can improve muscle tone and strength in persons
with incomplete SCI during rehabilitation and gait training.”-'!
Some commercial models have been marketed to generate walking
movements in individuals with complete paraplegia, including
Ekso (Ekso Bionics, Richmond, CA),'> ReWalk (ReWalk Robot-
ics, Yokneam, Israel),!? and Indego (Parker Hannifin, Mayfield
Heights, OH,).!*

The phase-based controllers used in these commercial devices
have been designed exclusively for stepping, where the electric
motors follow predefined joint angle or torque trajectories charac-
teristic of able-bodied walking.!>-8 These controllers are unable to
stabilize the user and do not correct for unexpected disturbances
such as tripping or volitional movements during activities of daily
living.'? Exoskeleton users stabilize themselves with upper limb
effort on crutches or a walker, which contributes to an increase of
metabolic expenditure.?>-2> Adding stabilizing controllers to pow-
ered exoskeletons would allow users to maintain balance, improve
safety, and reduce energy cost during standing and walking.
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Controllers for balance are a topic of ongoing research in the
robotics field, especially for anthropomorphic walking robots.?3
Recent advances in self-stabilizing controllers allow bipedal robots
to walk across a variety of different terrains and perform tasks such
as carrying boxes or opening doors.>* Because of the commonality
of the problem, these balance controllers for bipedal robots might
be applicable to walking exoskeletons.

Various methods have been proposed to control the balance
of bipedal robots, most notably the zero moment point, which is a
projected point on the ground where the sum of the moments
acting on the robot equal 0.2 The zero moment point is
equivalent to the center of pressure during standing and slow
walking,?” and during fast walking can be calculated based on the
mediolateral (ML) and anteroposterior (AP) center of mass
(COM) trajectories.?® Many bipedal robots, particularly Honda’s
ASIMO robot (Honda Motor Company, Tokyo, Japan), have
used zero moment point for standing and walking balance
control, 32 and therefore require accurate measurements of
COM as feedback.

Other balance controllers expand upon the concept of zero
moment point, such as the centroidal moment pivot proposed by
Herr et al.3® This is a reference point that maintains a constant
whole-body angular momentum, where stability is based on the
separation between the centroidal moment pivot and the zero
moment point. Another balance metric is the foot rotation indicator
first proposed by Goswami,3* which uses the stance-foot’s angular
acceleration as a measure of stability and has been used in
conjunction with the zero moment point.3> Other methods such
as capture point3® ensure the robot’s feet are placed within a
stability region influenced by the center of pressure.

These balance control strategies require a global, whole-body
parameter to determine instances when the robot becomes unstable,
such as when the next footstep would fall outside of the calculated
stable region of support. These global balance parameters are fed
back to the controllers to adjust the motor output needed to
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maintain stability. Therefore, estimating them in real time is a
critical component when designing a balance controller.

In robotics applications, COM can be estimated through
dynamics and parameter identification of the biped, where infor-
mation such as limb masses, inertias, and torques are easily
measured.3” However, this information is challenging to accurately
measure when a human is introduced into the system. Instead,
accurate measurements of COM kinematics can be obtained from
optical motion capture systems,?® which are limited to dedicated
laboratories and unsuitable for devices designed for community
use. Alternatively, inertial measurement units (IMUs) are becom-
ing an increasingly popular tool for estimating gait kinematics due
to their portability and low cost. Joint trajectories can be esti-
mated from body-worn IMUs during walking*®+? and rehabilita-
tive gait studies.*>** COM kinematics, some of the global balance
parameters needed for robotic controller, can be estimated from
commercial IMU systems in real time.*>—+7

Commercial IMU sensor systems require extensive calibration
procedures to determine the orientation of each sensor with respect
to each other and to each body segment. As IMU sensor calibrations
usually require subjects to stand, sit, and walk within a specific time
window,*° these systems are not suited for subjects with SCI. Guo
and Xiong*® found that commercial IMU systems can produce large
measurement errors when determining the location of the base of
support, which is related to the COM, during dynamic movements
while standing and even the optimal calibration motions they
propose are too complex for individuals with SCI to perform.

Betker et al®® estimated COM via a neural network, fuzzy
logic, and genetic sum-of-sines with a relative error of 9.4% (0.9%)
compared with motion capture from only 2 accelerometers (on the
trunk and shank) while subjects moved their trunks sinusoidally in
the AP direction. However, AP sinusoidal motions may not reflect
real-world conditions or adequately capture information in the ML
direction.

The purpose of this study is to explore whether whole-body
COM kinematics can be predicted through an artificial neural
network using acceleration signals obtained from a sensor array
typical for powered exoskeletons. Here, we investigate if an
artificial neural network can be trained to learn the relationship
between COM displacement, as measured by gold-standard motion
capture methods, and the corresponding changes in their accelera-
tions measured by accelerometers. Throughout, we employ the
standing motions and balance corrections from destabilized able-
bodied participants, which reflect the limited ranges of motion and
mechanical degrees of freedom exhibited by individuals with SCI
wearing an exoskeleton while standing.

Methods
Standing Destabilization Experiments

We collected standing data from 5 able-bodied individuals (4 men
and 1 woman; median age =23; median height=1.71 m, median
weight=61.7 kg). The study was approved by the institutional
review board of the Louis Stokes Cleveland Veterans Affairs
Medical Center (number 2008-027). Written informed consent
was obtained from all participants.

Participants stood upright with feet apart within the work volume
of a l6-camera motion-capture system (Vicon; Oxford Metrics,
Oxford, United Kingdom) while holding handles instrumented
with 6-axis load cells MCW-500; Advanced Mechanical Technology
Inc, Watertown, MA) attached to a custom aluminum standing frame

to simulate standing after SCI, which requires a walker or assistive
device to maintain balance and posture. The handles were 120-mm
long and 25 mm in diameter, located approximately 1 m from the
ground and 0.7 m apart. Load cell data was collected at 1000 Hz.

A total of 10 wireless triaxial accelerometers (Delsys; Trigno
Wireless, Natick, MA) were affixed to the chest (2), sternum, navel,
pelvis (2), each anterior thigh, and each anterior shank (Figure 1).
Then, the 38 retroreflective markers of the Vicon’s Plug-in Gait
marker set were affixed, along with 10 additional markers on the
accelerometers to record their locations on the participant. Motion
capture data and accelerometer signals were collected at 100 and
1000 Hz, respectively.

The COM kinematics were calculated from motion capture
and the regression equations of the U.S. Army anthropometric
studies.*® These equations provide the segmental mass parameters
as functions of participant height and weight. A weighted average
of the computed COM locations for each limb segment yielded the
whole-body COM to be used as the gold standard for training the
artificial neural network.

Subjects participated in 2 separate data collection sessions,
each with a different set of perturbations paradigms. The first
included unexpected, externally applied perturbations, while the
second consisted of volitional, internally generated perturbations.
These perturbations represented disturbances expected for a user
wearing an exoskeleton: (1) external perturbations simulated de-
stabilizing bumps or nudges and (2) internal perturbations repre-
sented disturbances from volitional movements simulating
activities of daily living such as acquiring and repositioning

Figure 1 — Location of the 10 triaxial accelerometers mounted on the
torso, sternum, navel, pelvis, anterior thighs, and anterior shanks.
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objects. While COM can be estimated from larger motions, such as
excessive trunk flexion®® or motions like squatting,*® the experi-
mental protocol was designed to be applicable for users with SCI
who may have limited ranges of motion and mechanical degrees of
freedom during standing.

External Perturbations. There were 4 linear actuators (Copley
Motion Control, Canton, MA) positioned at waist height immedi-
ately to the front, rear, left, and right of the participants that exerted
controlled and repeatable, square force pulses lasting 500 millisec-
ond in the AP and ML directions (Figure 2, left). Ropes from each
actuator were attached to a harness secured to the waist to apply the
perturbations to the pelvic region. Actuators were controlled by
issuing a force command (expressed as a percentage of body-
weight, BW), which was converted to a control current sent to the
actuators via a CAN connection from xPC Target toolbox in
MATLAB™ Simulink™,® (MathWorks, Natick, MA).

Because the study focused on standing with a static base of
support (the area of the support surface defined by the positions of
the unmoving feet), small perturbations in each direction were
prescribed at the start of each session that were discretely
increased in magnitude throughout a series of separate trials until
one or more of the following conditions were met: The participant
(1) reported feeling uncomfortable by the perturbation magnitude,
(2) stood on their toes, or (3) initiated or nearly initiated a step to
restabilize. We then created 3 different perturbation magnitudes
for each direction for a total of 12 different external perturbations
per participant:

1.Large: the maximum tolerated perturbation, without taking
a step

2.Small: 50% of the large perturbation
3.Medium: 75% of the large perturbation

The perturbation magnitudes for the 5 participants ranged
between 5% and 20% BW, depending on their individual prefer-
ences. The largest tolerable magnitude consistently occurred in the
forward direction (between 10% and 20%), while the smallest were
in the backward direction (between 4% and 6%). After SCI, the
maximum tolerated perturbation is likely to fall nearer the lower
range of these magnitudes, and the protocol would need to be
repeated to ensure safety of paralyzed volunteers.

Based on previous research for applying external perturbations
to individuals with SCL* we performed 20 repetitions per

Estimating COM Kinematics Using Accelerometers 3

perturbation magnitude and direction for a total of 240 perturba-
tions per participant. We separated the 240 perturbations into 10
trials containing 24 perturbations each, which were randomly
assigned into separate trials using a MATLAB script.

Internal Perturbations. Participants moved 3 loaded jars back-
and-forth between a central position and 4 different target locations
on a wire rack (up, left, right, and down) using their right hand
(Figure 2, right) for a total of 12 internal perturbations. Each
movement cycle included

1. Standing stationary with both hands on the instrumented
walker handles

2. Moving a specific jar to the target location read aloud by the
investigator

3. Briefly removing the hand from the jar
4. Moving the jar back to the “home” location
5. Returning the hand back to the instrumented walker handle

We selected this protocol to easily determine the start and end
times of each movement cycle performed at a self-selected pace.
For instance, after lifting a hand off the walker handle to reach for a
jar, the change in handle-force marked the start of the perturbation
cycle. We chose the weight of the light, medium, and heavy jars
based on the participants’ comfortable range within 3% to 10% of
their BW. The shelf racks were adjusted until the participants did
not lift their feet off the force plates to complete any movement.
The jars’ “home” locations were on the centermost shelf, posi-
tioned at approximately 90° shoulder flexion with the heaviest jar
on the left, the medium jar in the middle, and the lightest jar on
the right.

Based on previous research using internal perturbations to
destabilize individuals with SCI,° we selected 10 trials of 30 load
transfers each for a total of 300 perturbations. The jar weight and
target location were randomly assigned into separate trials using a
MATLAB script.

COM Estimation Algorithm

Inputs to the artificial neural network trained to predict COM
kinematics were the acceleration signals measured by the accel-
erometers, while the outputs were COM displacements in the AP
and ML directions obtained through motion capture (Figure 3).

2 Force plates

4 Linear actuators

2 Force plates 3 Loaded jars

Figure 2 — Experimental setup with 48 reflective markers and ten triaxial accelerometers. Participants placed each foot on force plates and held the
handles of an instrumented walker within the volume of a motion-capture system. Standing balance was then destabilized by either (left) unexpected
perturbations caused by 4 linear actuators that pulled the participant in the forward, right, backward, and left directions, or (right) internal perturbations
caused by volitionally moving 3 jars of different weights between 4 different target locations on a shelf.
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Figure 3 — Workflow for training an artificial neural network, where the inputs are XYZ accelerations measured from accelerometers and the outputs

are the COM positions measured by motion capture. The ANN is trained by minimizing the mean squared error between the measured and estimated COM
positions in the AP and ML directions. AP indicates anteroposterior; ANN, artificial neural network; COM, center of mass; ML, mediolateral.

Table 1 IP and EP Types Classifications

IP EP

Jar A (heavy) Small

Top (A1), left (A2), right (A3), bottom (A4) Front (S0), right (S1), back (S2), left (S3)
Jar B (medium) Medium

Top (B1), left (B2), right (B3), bottom (B4) Front (MO), right (M1), back (M2), left (M3)
Jar C (light) Large

Top (C1), left (C2), right (C3), bottom (C4)

Front (LO), right (L1), back (L2), left (L3)

Abbreviations: EP, external perturbations; IP, internal perturbation. Types of IP and EP, classified by magnitude (jar weight or actuator pull magnitude) and direction (shelf

location or pull direction).

This network had a single hidden layer of sigmoidal transfer
functions and a linear function in the output layer. The network
was trained with the Deep Learning Toolbox™ in MATLAB and
the Levenberg—Marquardt algorithm>'=>* where we specified the
same 85% and 15% of the data for training and validation,
respectively. Performance was quantified by minimizing a mean
squared error (MSE) objective function between the COM esti-
mated from motion capture (COM,,c,s) and the COM predicted
from the network (COM,,.q) Where n is the number of data points:

n

1
MSE == (COMypeys ~ COMpeq)?
i=1

)]

Several networks were trained with 15 to 65 neurons in the
hidden layer to determine the ideal number of neurons to achieve
the lowest root mean square errors (RMSEs), which was obtained
by taking the square root of the MSE. All results herein will be
reported as RMSE.

After obtaining the optimal number of neurons, we then
performed a k-fold cross-validation.>> Since k values from 5 to
10 have been shown to produce acceptable bias and variance,>® we
selected 10 as the value for k. Initial conditions were set to the same
randomized values, and we shuffled into the 10 training groups by
selecting different sets of 10 trials for validation data of each k-fold.
We then calculated the average RMSE among the folds and
computed the error as a percentage between each fold and the

average RMSE. If the average RMSE among folds is similar, and
the percentage of difference is small, then the data set was deter-
mined to be rich enough to train the artificial neural network
without risk of underfitting the data.

Statistical Analysis

After training the model, we separated the validation data into 24
perturbation types (12 internal perturbations and 12 external
perturbations; Table 1). The external perturbations were classified
by the perturbation direction and magnitude, while the internal
perturbations were separated by jar weight and target location. We
then categorized the validation data into perturbation types and
defined each occurrence of a specific perturbation into a cycle,
determined by its start and stop times. After the validation data was
categorized into cycles, we calculated the mean and SD of the
measured and predicted COM displacements during each pertur-
bation type to define RMSE and the coefficient of determination,
R?, between COMyeas and COM,,eq. The R? was calculated by
dividing the sum of the residuals by the sum of squares, where
COM,..,s is the mean of the COM measured from motion capture:

Zi (COMmeas - COMpred)2

R2=1- — 5
Zi(COMmeas - COMmeas)

2
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The RMSE and the R for each perturbation type determined
how well the artificial neural network predicted the reactive COM
displacements in response to specific perturbations, magnitudes,
and directions.

Results

Prior to performing the analyses, we qualitatively determined that
all subjects responded similarly to the prescribed perturbations, and
no reactive responses differed enough from each other to exclude
from the study.

A total of 50 neurons resulted in the best performance with an
RMSE of 0.88 cm. Networks with more than 50 neurons produced
higher errors, thereby overfitting the data. The results of the cross-
validations produced an average RMSE of 1.12 cm, with errors
ranging between 0.37% and 14.0% between the folds and this
average. As the largest RMSE of 14% only yielded a 1.6-mm
difference from the average, we determined that the experimental
data were sufficient for training the artificial neural network.

Estimates from the artificial neural network on 60 seconds of
validation data from an external perturbation trial (Figure 4)
compared favorably to the COM displacement measured experi-
mentally. In this representative data set, the predicted COM
displacement showed a similar trend to the measured data and
reached the peak magnitude in the AP direction (top), while the
largest fitment errors occur at the peak ML displacements (bottom).

The averaged COM trajectories across all subjects for the
specific movement types are shown (Figure 5). The COM in the
sagittal and coronal planes correspond intuitively to the specific
movement task. For instance, moving the jars to the second
position on the shelf caused the participant to move to the left.
The COM predominantly moved in the ML direction during the
internal perturbations (left), with maximum distances from the
origin of 7.4 and 3.53 cm for ML and AP, respectively. During
the external perturbations (right), participants predominantly
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moved in the AP direction, with maximum displacements of 6.5
and 2.8 cm in the AP and ML directions, respectively.

The R* and RMSE of each perturbation type and COM
direction are summarized in Table 2. Note that in the external
perturbation data, some results are omitted because the participants
were pulled by a single actuator in one direction. For instance, if the
front actuator pulled the participant forward, their COM displace-
ment was exclusively in the sagittal plane and fitment in the coronal
plane was expected to be poor.

Throughout all trials, the average R* was .83 with 89% of the
movements with an R? larger than .70, suggesting a strong rela-
tionship between the measured and predicted COM displace-
ments.>” Overall, the algorithm better predicts movements in the
ML direction for both the external perturbations and internal
perturbations, with an average R” of .88 and .92, respectively.
In the AP direction, the average R is .80 for the external perturba-
tions, and .75 for the internal perturbations.

Across all trials, the mean RMSE was .59 cm, with the largest
errors of 1.81 cm (L2, AP) and 1.01 cm (L3, ML), suggesting that
the algorithm struggles to reach the maximum displacement in the
largest external perturbations. The RMSE increased with pertur-
bation magnitude, with average errors of 14.6% and 22.0% in the
AP and ML directions, respectively. These errors translate to
0.94 cm in the sagittal plane and 0.60 cm in the coronal plane.
During the internal perturbations, there appeared to be no relation-
ship between the RMSE and the jar weight or target location on the
shelf. The average errors for the internal perturbations were 7.3%
and 12.9% in the ML and AP directions, respectively, which
correspond to approximately 0.5-cm COM displacement error in
both planes.

To better visualize the results, the averaged movement
cycles in the ML direction during the internal perturbations
are shown (Figure 6), where the R? between the measured
COM and the predicted COM is indicated, along with the
perturbation type. Translucent, shaded regions indicate one
SD away from the mean.

Measured vs estimated COM
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Figure 4 — COM displacements measured experimentally from motion capture (thick) and estimated through the COM estimation algorithm (thin)
during an external perturbation trial. The data presented here are part of the validation data set. Only 60 seconds of the trial are shown. AP indicates

anteroposterior; COM, center of mass; ML, mediolateral.
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Figure 5 — Averaged COM movement per perturbation type during internal perturbations (left) and external perturbations (right). The
perturbation type for each movement is indicated at the maximum distance away from the origin, in between the participants' feet. To better
visualize how far the COM was displaced from the starting position, we included a shoeprint to approximate the foot position, which were determined
by taking the average position of toe, heel, and lateral ankle markers throughout the trials. Refer to Table 1 for the notations used in the figure. AP

indicates anteroposterior; COM, center of mass; ML, mediolateral.

Discussion

We presented a method of calculating whole-body COM kine-
matics to be used as global feedback parameters for standing
balance controllers. Although commercially available motion
capture systems3® and IMU systems are able to estimate COM
kinematics*® in real time, the presented algorithm is based on
easily-mounted accelerometers suitable for integrating into exo-
skeletal systems for community use. Such a strategy is necessary
for standing and walking stability of exoskeletons for individuals
with an SCIL.

Through able-bodied perturbed standing experiments, the
algorithm’s predicted COM kinematics strongly described the
majority of observed COM displacements in the AP and ML
directions measured by a motion capture system. Based on the
low average error (RMSE < 1.0 cm) and large average R” of .83, the
algorithm can replicate the majority of COM displacements
induced by the prescribed unexpected and volitional destabilizing
movements. Previous studies found that commercial IMU systems
produce large measurement errors between —12.6% and +64.6%
when determining the location of the base of support, related to the
COM, during dynamic movements,*® whereas our algorithm’s
RMSE error fell within 7.3% to 22.0%. This compares favorably
to Betker et al®® (9.4% [0.9%]) from stereotypical rhythmic sinu-
soidal motions exclusively in the AP direction.

The largest errors occurred when predicting peak displace-
ments, with RMSE values ranging between .5 and 1.0 cm. In
bipedal walking robots, the COM or the center of pressure obtained
from mathematical models describing the biped are inexact, but
balance controllers can be effective despite these approximations as
long as they are kept within the size range of a humanoid foot.3 We

expect that the errors of 1 cm estimated from our algorithm could be
accounted for by a robust balance controller.

Intuitively, an algorithm based on an artificial neural network
will prioritize minimizing the error during the instances of the largest
COM displacements, which would occur in the AP direction for
external perturbations, and the ML direction for internal perturba-
tions. As an example, the R? for moving jar B to position 1 is .18 in
the AP direction but .87 in the ML direction. This directly corre-
sponds to the amount of COM movement observed in the coronal
and sagittal planes for this perturbation type. Lower R* values may
not necessarily indicate that the algorithm performs poorly during
these instances but could be explained by less movement during
those tasks in the specified direction. Alternatively, participants may
not be consistently responding to the perturbations, within or
between trials, or among each other. As some variability exists
between participants, the algorithm would struggle to predict these
instances if no clear pattern emerges during the specific movement.

Within the selected validation data, it is important to note that the
medium external perturbation in the forward direction (MO) caused
the participants to move farther forward than the pulls induced by the
largest magnitude (LO). This is a feature of this specific sample of data
used as part of the validation set where the participants may have
reacted more strongly to the particular perturbation. As the perturba-
tions are (1) randomized and (2) repeated multiple times throughout
the trial, it is possible for identical perturbations to be prescribed in
succession. In this case, participants may begin to anticipate and resist
the perturbation, which would reduce their reactive COM displace-
ment (as in the case of LO).

One study limitation is that the destabilizing movements
prescribed throughout the experiments were not large enough
for the participant to take a step in any direction or shift their
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Table 2 Statistical Analysis for Perturbations, RMSE, and R?

AP ML
Perturbation R? RMSE, cm R? RMSE, cm
EPs
Small
SO .87 47 — —
S1 — — 9 24
S2 .55 .52 — —
S3 — — 94 .39
Medium
MO .79 1.11 — —
M1 — — .86 43
M2 92 .88 — —
M3 — — .85 12
Large
LO .88 .89 — —
L1 — — .84 91
L2 7 1.81 — —
L3 — — .87 1.01
Mean (SD) .80 (.13) .95 (.49) .88 (.04) .62 (.31)
1Ps
Jar A(heavy)
Al .86 .30 .96 33
A2 91 42 .97 .54
A3 81 .64 97 .82
A4 .84 48 95 35
Jar B(medium)
Bl 18 .55 .87 .53
B2 78 33 .96 .58
B3 .86 42 97 .80
B4 .76 44 75 33
Jar C(light)
Cl .60 41 .83 47
C2 .69 40 .96 .57
C3 .87 Sl 97 78
C4 .80 .58 .85 42
Mean (SD) 75 (.20) 46 (.10) .92 (.07) .54 (.18)

Abbreviations: AP, anteroposterior; EP, external perturbations; IP, internal perturbations; ML, mediolateral; RMSE, root mean square error. Note: RMSE and coefficient of

determination R* for each perturbation type in the AP and ML directions.

weight onto their toes. Similarly, the protocol restricted the parti-
cipants to hold onto the handles of the instrumented standing frame,
which could counteract the prescribed perturbations. On average,
the COM displacements in the AP direction during the external
perturbations were less than half of the distance to the participants’
base of support, with the maximum displacements stopping within
the midfoot region before the metatarsophalangeal joint. While
there are several important aspects of balance control that occur
during, before, or after reactive steps, these investigations fall
outside the scope of this work. The prescribed perturbations
were enough for an artificial neural network to learn the relation-
ship between COM displacement and acceleration signals mea-
sured by the accelerometers. For larger movements involving more
degrees of freedom involving the legs or trunk, we expect that the

algorithm would need to be retrained with different calibration
data. These movements were excluded in the current study, which
exclusively focused on standing motions that could be performed
by an individual with SCL

Another limitation of the current study is that knowledge of the
COM in the inferior—superior direction and COM accelerations
were not included in this analysis, although they are often used to
calculate the zero moment point.?® Acceleration signals alone
cannot provide information about the COM’s absolute vertical
position in 3-D space, which is approximately the height from the
ground to the individual’s waist.

Throughout the trials and movement types, the average coef-
ficient of determination was 0.83 with 89% of the movements with
R*> .70, while the average RMSE errors ranged between 7.3% and
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Figure 6 — Averaged COM displacements in the ML direction during internal perturbations, comparing the measured COM (thin) and the predicted
COM (thick). Translucent, shaded regions correspond to one SD from the mean. The perturbations are classified by: (1) the jar weight of heavy (A),
medium (B), and light (C), and (2) the target location on the shelf: top (1), left (2), right (3), and bottom (4). COM indicates center of mass; ML,

mediolateral.

22.0% corresponding to 0.5 and 0.94 cm error in both the coronal
and sagittal planes. This demonstrates that COM kinematics in the
AP and ML direction can be estimated from only acceleration
signals measured by accelerometers. Though our method is moti-
vated by designing a standing balance controller for powered
exoskeletons, the procedure is general and can be applied to other
studies, such as gait studies where COM kinematics are measured,
especially during activities outside of a gait lab.

Acknowledgments

This research is supported by grants from the National Science Foundation
Cyber-Physical Systems Award Number 1739800 and the National In-
stitutes of Health Grant: RO1 NS040547-13, and also with the support of
laboratory and other facilities located at the Advanced Platform Technol-
ogy Center in the Louis Stokes Cleveland VA Medical Center, Cleveland,
OH. The authors have no conflict of interest to disclose.

References

1. Stevens SL, Caputo JL, Fuller DK, Morgan DW. Physical activity and
quality of life in adults with SCI. J Spinal Cord Med. 2008;31(4):
373-378. PubMed ID: 18959354 doi:10.1080/10790268.2008.
11760739

2. SCI facts and injuries at a glance. https://www.nscisc.uab.edu/Public/
Facts%20and%20Figures %202019%20-%20Final.pdf. Accessed
February 25, 2020.

10.

. Jain NB, Ayers GD, Peterson EN, Harris MB, Morse L, O’Connor

KC, Garshick E. Traumatic SCI in the United States, 1993-2012.
JAMA. 2015;313:2236-2243. PubMed ID: 26057284

. Lasfargues JE, Custis D, Morrone F, Carswell J, Nguyen T. A model

for estimating SCI prevalence in the United States. Spinal Cord.
1995;33(2):62—-68. doi:10.1038/sc.1995.16

. Dollar AM, Herr H. Lower extremity exoskeletons and active ortho-

ses: challenges and state-of-the-art. IEEE Trans Rob. 2008;24(1):
144-158. doi:10.1109/TR0O.2008.915453.

. Anam K, Al-Jumaily AA. Active exoskeleton control systems: state

of the art. Procedia Eng. 2012;41:988-994. doi:10.1016/j.proeng.
2012.07.273

. Diaz I, Gil JJ, Sanchez E. Lower-limb robotic rehabilitation: literature

review and challenges. J Robot. 2011;2011:1-11. doi:10.1155/2011/
759764

. Winfree KN, Stegall P, Agrawal SK. Design of a minimally con-

straining, passively supported gait training exoskeleton: ALEX II.
2011 IEEE International Conference on Rehabilitation Robotics;
2011:1-6.

. Banala SK, Agrawal SK, Scholz JP. Active Leg Exoskeleton (ALEX)

for gait rehabilitation of motor-impaired patients. 2007 IEEE 10th
International Conference on Rehabilitation Robotics; 2007:401-407
Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Asseldonk
EHF, Van der Kooij H. Design and evaluation of the LOPES
exoskeleton robot for interactive gait rehabilitation. IEEE Trans.
Neural Syst Rehabil Eng. 2007;15(3):379-386. PubMed ID:
17894270 doi:10.1109/TNSRE.2007.903919

(Ahead of Print)

Unauthenticated | Downloaded 09/01/21 01:34 AM UTC


http://www.ncbi.nlm.nih.gov/pubmed/18959354?dopt=Abstract
https://doi.org/10.1080/10790268.2008.11760739
https://doi.org/10.1080/10790268.2008.11760739
https://www.nscisc.uab.edu/Public/Facts%20and%20Figures%202019%20-%20Final.pdf
https://www.nscisc.uab.edu/Public/Facts%20and%20Figures%202019%20-%20Final.pdf
http://www.ncbi.nlm.nih.gov/pubmed/26057284?dopt=Abstract
https://doi.org/10.1038/sc.1995.16
https://doi.org/10.1109/TRO.2008.915453
https://doi.org/10.1016/j.proeng.2012.07.273
https://doi.org/10.1016/j.proeng.2012.07.273
https://doi.org/10.1155/2011/759764
https://doi.org/10.1155/2011/759764
http://www.ncbi.nlm.nih.gov/pubmed/17894270?dopt=Abstract
https://doi.org/10.1109/TNSRE.2007.903919

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

What’s HAL? — The World’s First Cyborg Type Robot. https:/www.
cyberdyne.jp/english/products/HAL/. Accessed February 25, 2020.
Kolakowsky-Hayner SA, Crew J, Moran S, Shah A. Safety and
feasibility of using the Ekso bionic exoskeleton to aid ambulation
after SCI. J Spine. 2013;4:1-8.

ReWalk — More than Walking http://rewalk.com. Accessed February
25, 2020.

. Parker Indego. http://www.indego.com/indego/en/home. Accessed

February 25, 2020.

Kawamoto H, Lee S, Kanbe S, Sankai Y. Power assist method for
HAL-3 using EMG-based feedback controller. /EEE Int Conf Syst
Man Cyber. 2003;2:1648-1653.

Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk powered
exoskeleton to restore ambulatory function to individuals with tho-
racic-level motor-complete SCI. Am J Phys Med Rehabil. 2012;
91(11):911-921. PubMed ID: 23085703 doi:10.1097/PHM.0b013e
318269d9a3

Esquenazi A. New bipedal locomotion options for individuals with
thoracic level motor complete SCI. J Spinal Res Found. 2013;8:26-28
Farris RJ, Quintero HA, Murray SA, Ha KH, Hartigan C, Goldfarb M.
A preliminary assessment of legged mobility provided by a lower
limb exoskeleton for persons with paraplegia. IEEE Trans Neural
Syst Rehabil Eng. 2014;22(3):482-490. PubMed ID: 23797285
doi:10.1007/978-3-319-08072-7_38

Veneman JF. Exoskeletons supporting postural balance-the BAL-
ANCE project. Replace, Repair, Restore, Relieve—Bridging Clinical
and Engineering Solutions in Neurorehabilitation. Springer Interna-
tional Publishing, Cham, Switzerland. 2014;203-208. doi:10.1109/
TNSRE.2013.2268320

Miller LE, Zimmermann AK, Herbert WIG. Clinical effectiveness
and safety of powered exoskeleton-assisted walking in patients with
SCI: systematic review with meta-analysis. Med Dev Evid Res.
2016;9:455. doi:10.2147/MDER.S103102

Evans N, Hartigan C, Kandilakis C, Pharo E, Clesson 1. Acute
cardiorespiratory and metabolic responses during exoskeleton-
assisted walking overground among persons with chronic SCIL
Top SCI Rehab. 2015;21:122-132.

Asselin P, Knezevic S, Kornfeld S, Cirnigliaro C, Agranova-Breyter
I, Bauman WA, Spungen AM. Heart rate and oxygen demand of
powered exoskeleton-assisted walking in persons with paraplegia. J
Rehab Res Develop. 2015;52(2):147-158. PubMed ID: 26230182
doi:10.1682/JRRD.2014.02.0060.

Katic D, Vukobratovic M. Survey of intelligent control techniques for
humanoid robots. J Intell Rob Syst. 2003;37:117-141.

Kuindersma S, Deits R, Fallon M, et al. Optimization-based locomo-
tion planning, estimation, and control design for Atlas. Auton Robots.
2016;40(3):—455. doi:10.1007/s10514-015-9479-3

Vukobratovic M, Juricic D. Contribution to the synthesis of biped
gait. [EEE Trans Biomed Eng. 1969;BME(1):1-6. doi:10.1109/
TBME.1969.4502596

Vukobratovic M, Borovac B. Zero-moment point—thirty five years
of its life. Int J Humanoid Rob. 2004;1:157-173.

Sardain P, Bessonnet G. Forces acting on a biped robot: center of
pressure—zero moment point. IEEE Trans Syst Man Cyber Part A
Syst Hum. 2004;34(5):630-637. doi:10.1109/TSMCA.2004.832811
Kim J-Y, Park I-W, Oh J-H. Experimental realization of dynamic
walking of the biped humanoid robot KHR-2 using zero moment
point feedback and inertial measurement. Adv Rob. 2006;20(6):707—
736. doi:10.1163/156855306777361622.

Hirose M, Ogawa K. Honda humanoid robots development. Philo-
soph Trans R Soci A Math Phys Eng Sci. 2007;365(1850):11-19.
doi:10.1098/rsta.2006.1917

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Estimating COM Kinematics Using Accelerometers 9

Takenaka T, Matsumoto T, Yoshiike T. Real time motion generation
and control for biped robot 1st report: walking gait pattern generation.
2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems, St. Louis, MO, USA. 108410911EEE 2009.

Takenaka T, Matsumoto T, Yoshiike T, Shirokura S. Real time motion
generation and control for biped robot -2nd report: Running gait pattern
generation. 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems; 2009. St. Louis, MO. 1092-1099IEEE.
Takenaka T, Matsumoto T, Yoshiike T, Hasegawa T, Shirokura S,
Kaneko H, Orita A. Real time motion generation and control for biped
robot -4th report: Integrated balance control. 2009 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems; 2009. St.
Louis, MO.1601-16081EEE.

Herr HA, Popovic M. New horizons for orthotic and prosthetic
technology: merging body and machine. ZIF International Confer-
ence on Walking Machines; 2003. Bielefeld, Germany.

Goswami A. Postural stability of biped robots and the foot rotation
indicator (FRI) point. Int J Rob Res. 1999;18(6):523-533. doi:10.
1177/02783649922066376.

Popovic MB, Goswami A, Herr H. Ground reference points in legged
locomotion: definitions, biological trajectories and control implications. Int
J Rob Res. 2005;24(12):1013-1032. doi:10.1177/0278364905058363.
Pratt J, Carff J, Drakunov S, Goswami A. Capture point: a step toward
humanoid push recovery. 2006 6th IEEE-RAS International Confer-
ence on Humanoid Robots; 2006. Genova, Italy: University of
Genova: 200-207.

Khosla PK, Kanade T. Parameter identification of robot dynamics.
24th IEEE Conference on Decision and Control; 1985, December.
Fort Lauderdale, FL.

Betker AL, Moussavi ZMK, Szturm T. Center of mass approximation
and prediction as a function of body acceleration. IEEE Trans Biomed
Eng. 2006;53(4):686—-693. PubMed ID: 16602575 doi:10.1109/
TBME.2006.870222.

Cuesta-Vargas Al, Galdn-Mercant A, Williams JM. The use of inertial
sensors system for human motion analysis. Phys Ther Rev. 2010;15(6):
462-473. PubMed ID: 23565045 doi:10.1179/1743288X11Y.000000
0006.

Roetenberg D, Luinge H, Slycke P. Xsens MVN: Full 6DOF human
motion tracking using miniature inertial sensors. Xsens Motion
Technol BV Tech. Rep. 1. 2009;3.

Gil-Agudo A, Los Reyes-Guzman A, Dimbwadyo-Terrer I, et al. A
novel motion tracking system for evaluation of functional rehabilita-
tion of the upper limbs. Neural Regen Res. 2013;8:1773-1782.
PubMed ID: 25206474

Findlow A, Goulermas JY, Nester C, Howard D, Kenney LPJ.
Predicting lower limb joint kinematics using wearable motion sen-
sors. Gait & Posture. 2008;28(1):120-126. PubMed ID: 18093834
doi:10.1016/j.gaitpost.2007.11.001

Cutti AG, Ferrari A, Garofalo P, Raggi M, Cappello A, Ferrari A.
‘Outwalk’: a protocol for clinical gait analysis based on inertial
and magnetic sensors. Med Biol Eng Comput. 2010;48(1):17-25.
PubMed ID: 19911214 doi:10.1007/s11517-009-0545-x

Vries SI, Bakker I, Hopman-Rock M, Hirasing RA, Mechelen W.
Clinimetric review of motion sensors in children and adolescents. J
Clin Epidemiol. 2006;59(7):670-680. PubMed ID: 16765269 doi:10.
1016/j.jclinepi.2005.11.020

Esser P, Dawes H, Collett J, Howells K. IMU: Inertial sensing
of vertical CoM movement J Biomech. 2009;42(10):1578-1581.
PubMed ID: 19442978 doi:10.1016/j.jbiomech.2009.03.049

Guo L, Xiong S. Accuracy of base of support using an inertial sensor
based motion capture system. Sensors. 2017;17(9):2091. doi:10.
3390/517092091

(Ahead of Print)

Unauthenticated | Downloaded 09/01/21 01:34 AM UTC


https://www. cyberdyne.jp/english/products/HAL/
https://www. cyberdyne.jp/english/products/HAL/
http://rewalk.com
http://www.indego.com/indego/en/home
http://www.ncbi.nlm.nih.gov/pubmed/23085703?dopt=Abstract
https://doi.org/10.1097/PHM.0b013e318269d9a3
https://doi.org/10.1097/PHM.0b013e318269d9a3
http://www.ncbi.nlm.nih.gov/pubmed/23797285?dopt=Abstract
https://doi.org/10.1007/978-3-319-08072-7_38
https://doi.org/10.1109/TNSRE.2013.2268320
https://doi.org/10.1109/TNSRE.2013.2268320
https://doi.org/10.2147/MDER.S103102
http://www.ncbi.nlm.nih.gov/pubmed/26230182?dopt=Abstract
https://doi.org/10.1682/JRRD.2014.02.0060
https://doi.org/10.1007/s10514-015-9479-3
https://doi.org/10.1109/TBME.1969.4502596
https://doi.org/10.1109/TBME.1969.4502596
https://doi.org/10.1109/TSMCA.2004.832811
https://doi.org/10.1163/156855306777361622
https://doi.org/10.1098/rsta.2006.1917
https://doi.org/10.1177/02783649922066376
https://doi.org/10.1177/02783649922066376
https://doi.org/10.1177/0278364905058363
http://www.ncbi.nlm.nih.gov/pubmed/16602575?dopt=Abstract
https://doi.org/10.1109/TBME.2006.870222
https://doi.org/10.1109/TBME.2006.870222
http://www.ncbi.nlm.nih.gov/pubmed/23565045?dopt=Abstract
https://doi.org/10.1179/1743288X11Y.0000000006
https://doi.org/10.1179/1743288X11Y.0000000006
http://www.ncbi.nlm.nih.gov/pubmed/25206474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18093834?dopt=Abstract
https://doi.org/10.1016/j.gaitpost.2007.11.001
http://www.ncbi.nlm.nih.gov/pubmed/19911214?dopt=Abstract
https://doi.org/10.1007/s11517-009-0545-x
http://www.ncbi.nlm.nih.gov/pubmed/16765269?dopt=Abstract
https://doi.org/10.1016/j.jclinepi.2005.11.020
https://doi.org/10.1016/j.jclinepi.2005.11.020
http://www.ncbi.nlm.nih.gov/pubmed/19442978?dopt=Abstract
https://doi.org/10.1016/j.jbiomech.2009.03.049
https://doi.org/10.3390/s17092091
https://doi.org/10.3390/s17092091

10

47.

48.

49.

50.

Hnat et al

Fuschillo VL, Bagala F, Chiari L, Cappello A. Accelerometry-based
prediction of movement dynamics for balance monitoring. Med Biol
Eng Comput. 2012;50(9):925-936. PubMed ID: 22802142 doi:10.
1007/s11517-012-0940-6

McConville JT, Clauser CE, Churchill TD, Cuzzi JR, Kaleps L.
Anthropometric relationships of body and body segment moments
of inertia in AFAMRL-TR-80-119. Ohio: U.S. Air Force Aerospace
Medical Research Laboratory, Wright-Patterson Air Force Base;
1980.

Nataraj R, Audu M, Triolo RJ. Center of mass acceleration feedback
control of standing balance by functional neuromuscular stimulation
against external postural perturbations. [EEE Trans Biomed Eng,
2012;60(1):10-19. PubMed ID: 22987499 doi:10.1109/TBME.2012.
2218601

Nataraj R, Audu M, Triolo RJ. Center of mass acceleration feedback
control of functional neuromuscular stimulation for standing in the
presence of internal postural perturbations. J Rehab Res Develop.
2012;49(6):889. PubMed ID: 23299260 doi:10.1682/JRRD.2011.07.
0127

51.

52.

53.

54.

55.

56.

57.

Levenberg K. A method for the solution of certain non-linear
problems in least squares. Q Appl Math. 1944;2(2):164—-168. doi:10.
1090/qam/10666

Marquardt DW. An algorithm for least-squares estimation of nonlin-
ear parameters. J Soci Indus Appl Math. (1963); 11(2): 431-441.
doi:10.1137/0111030

Hagan MT, Menhaj M. Training feed-forward networks with the
Marquardt algorithm. IEEE Trans Neural Netw. 1994;5(6):989-993.
PubMed ID: 18267874 doi:10.1109/72.329697

Hagan MT, Demuth HB, Beale MH. Neural Network Design, Boston,
MA: PWS Publishing; 1996.

Hastie T, Tibshirani R, Friedman J. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Science
& Business Media; 2009.

James G, Witten D, Hastie T, Tibshirani R. An Introduction to
Statistical Learning: with Applications in R;117. New York, NY:
Springer; 2013.

Moore NWI, Flinger MA. The Basic Practice of Statistics. 6th ed.
New York, NY: Freeman and Company; 2013.

(Ahead of Print)

Unauthenticated | Downloaded 09/01/21 01:34 AM UTC


http://www.ncbi.nlm.nih.gov/pubmed/22802142?dopt=Abstract
https://doi.org/10.1007/s11517-012-0940-6
https://doi.org/10.1007/s11517-012-0940-6
http://www.ncbi.nlm.nih.gov/pubmed/22987499?dopt=Abstract
https://doi.org/10.1109/TBME.2012.2218601
https://doi.org/10.1109/TBME.2012.2218601
http://www.ncbi.nlm.nih.gov/pubmed/23299260?dopt=Abstract
https://doi.org/10.1682/JRRD.2011.07.0127
https://doi.org/10.1682/JRRD.2011.07.0127
https://doi.org/10.1090/qam/10666
https://doi.org/10.1090/qam/10666
https://doi.org/10.1137/0111030
http://www.ncbi.nlm.nih.gov/pubmed/18267874?dopt=Abstract
https://doi.org/10.1109/72.329697

