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Abstract

We describe a solvable model of a quantum transition in a single band model involving a change in the
size of the electron Fermi surface without any symmetry breaking. In a model with electron density 1 — p,
we find a ‘large’ Fermi surface state with the conventional Luttinger volume 1 — p of electrons for p > pe,
and a first order transition to a ‘small’ Fermi surface state with a non-Luttinger volume p of holes for
p < pe. As required by extended Luttinger theorems, the small Fermi surface state also has fractionalized
spinon excitations. The model has electrons with strong local interactions in a single band; after a canonical
transformation, the interactions are transferred to a coupling to two layers of ancilla qubits, as proposed
by Zhang and Sachdev (Phys. Rev. Research 2, 023172 (2020)). Solvability is achieved by employing
random exchange interactions within the ancilla layers, and taking the large M limit with SU(M) spin
symmetry, as in the Sachdev-Ye-Kitaev models. The local electron spectral function of the small Fermi
surface phase displays a particle-hole asymmetric pseudogap, and maps onto the spectral function of a
lightly doped Kondo insulator of a Kondo-Heisenberg lattice model. We discuss connections to the physics
of the hole-doped cuprates: the asymmetric pseudogap observed in STM, and the sudden change from
incoherent to coherent anti-nodal spectra observed recently in photoemission. A holographic analogy to

wormhole transitions between multiple black holes is briefly noted.
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I. INTRODUCTION

A number of recent experiments [1-3] have highlighted the role of optimal doping in the hole-
doped cuprate superconductors, where there is a rapid change in the size of the underlying Fermi
surface. At hole doping p away from half-filling, a conventional, Fermi-liquid-like, large Fermi surface
corresponding to an electron density of 1 — p is obtained for p > p., where p. is critical optimal
doping. In the pseudogap regime for p < p., a small Fermi surface corresponding to a hole density
p is observed. We shall take the point-of-view here that this change in Fermi surface size is the

primary physics driving the transition. Symmetry breaking is often observed at low temperatures
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in the small Fermi surface regime, but we shall view this here as a secondary phenomenon to be
understood in a more refined treatment.

Large-to-small Fermi surface transformations without symmetry breaking, between phases that
obey and violate the conventional Luttinger theorem, have been studied a great deal [4-16] in the
context of two band Kondo lattice models. Such models have a band of localized spins coupled to a
second band of mobile electrons. In the large Fermi surface phase (FL), the localized spins are Kondo
screened by the conduction electrons, and so the Fermi surface size corresponds to the combined
density of the mobile electrons and the localized spins [17]. In the small Fermi surface phase, the
‘fractionalized Fermi liquid’ (FL*), the spins form a decoupled spin liquid with fractionalized spinon
excitations, and the Fermi surface size corresponds only to the density of mobile electrons. The
conventional Luttinger relation for the Fermi surface size is obeyed only in the large Fermi surface
phase. On the other hand, in the small Fermi surface phase, the fractionalized excitations and
emergent gauge fields accompanying the small Fermi surface allow this phase to satisfy a generalized
Luttinger relation [5-7, 18]. (We note that in studies of ‘Kondo breakdown’ critical points [19-22],
the small Fermi surface phase has broken symmetry and obeys the conventional Luttinger theorem,
and so this phase is not required to have fractionalized excitations.) Recent experiments on CePdAl
[23] and CeColns [24] have presented significant evidence for such a small-to-large Fermi surface
transition without any symmetry breaking.

Large-to-small Fermi surface transformations also appear in various dynamic mean-field theory
treatments of multi-band models, where they are often referred to as ‘orbitally-selective Mott tran-
sitions’ [25-31]. But these treatments do not account for the fractionalized excitations that are
required to appear along with the small Fermi surface to account for any violation of the Luttinger
value for the Fermi surface size.

For the cuprates, the observations appear to require a small-to-large Fermi surface transition in
a single band model. Models of small Fermi surfaces of electrons obtained by the non-perturbative
binding spinons and holons excitations of a doped spin liquid have been proposed [32-46], but none
provide a fully self-consistent method for computing the Fermi surface in both the small and large
Fermi surface states. Unlike the Kondo lattice model, there is no natural criterion for choosing
between the electrons which form local moments and fractionalize, and those which are mobile, and
so this leads to significant technical difficulties in obtaining the small Fermi surface FL* state.

Recent work [47, 48] has shown that many of these difficulties are overcome in an ‘ancilla qubit’
approach, which can describe both the small and large Fermi surface states of a single band model.
This approach begins with a single band Hubbard model of electrons, C'. We then perform an
analog of a Hubbard-Stratonovich transformation on the Hubbard interaction, by ‘integrating in’
a pair of S = 1/2 ancilla spins on each site, coupled to each other by a large antiferromagnetic

exchange coupling J, (see Fig. 1). As described in Appendix A, upon eliminating the ancillas by
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a canonical transformation, in a 1/J, expansion which locks the ancillas into rung spin singlets,
we recover the original single band Hubbard model of C' electrons. But we choose instead to keep
the ancilla degrees of freedom ‘alive’ at intermediate stages, and work in the canonically equivalent
model of free electrons coupled to the ancillas: this gives us the flexibility needed to obtain a large
M saddle point which describes the pseudogap phase. Fluctuations of a SU(2)¢ gauge field beyond
the saddle-point are needed to project the ancillas into a rung-singlet subspace [47, 48], and this
ensures that the final theory is expressed only in terms of the single band degrees of freedom of
the physical C electrons. The theory of the SU(2)s gauge fluctuations shows that the small Fermi
surface state is stable to the projection to the physical degrees of freedom: this is because the
SU(2)s gauge fluctuations are higgsed in the FL* phase.

In the present paper, we will combine the ancilla qubit method for a single band model, with
the method employed by Burdin et al. [4] for the Kondo lattice model. We will couple two ancilla
layers to a physical single band model, and use a Sachdev-Ye-Kitaev [49-52] (SYK) description of
the spin liquid states on the ancillas; this is achieved by including a random exchange interaction
of mean-square strength J within each ancilla layer. We show below that this leads to a tractable
description of the phases on both sides of a first order Fermi volume changing transition, while also
providing a self-consistent description of the incoherent and fractionalized excitations.

We begin by recalling the ancilla qubit method and its description of the phases of the single
band model [47, 48]: see Fig. 1. The top physical layer of electrons, C, of density 1 — p is coupled to
2 layers of ancilla qubits. The ancilla qubits are realized by fermions ¥, 5 using the usual Schwinger
construction, with the constraint ) \I/ZT;G;OC\I/,;;G;& = 1 satisfied on each lattice site i (@ = 1,2 is a
layer index, and o =1,/ is a spin index). It is important that we add two layers of ancilla qubits,
because only then are the added layers free of all anomalies [18], and are allowed to form a trivial
insulator. Some previous discussions of the FL* phase [37, 38] were obtained by adding a single
band near half-filling: this gives a suitable description of the electron spectral function in the FL*
phase, but misses the FL* spectrum of spin excitations associated with the second ancilla layer,
and cannot obtain a FL phase.

In the large Fermi surface FL phase, we assume that the non-random and antiferromagnetic
coupling J, dominates, and so the ancilla are locked into rung singlets, and can be safely ignored in
the low energy theory: then the C' electrons form a conventional Fermi liquid phase, and we obtain
a Fermi surface corresponding to electron density 1 — p, or hole density 1 + p.

In the small Fermi surface FL* phase, we assume that the non-random and antiferromagnetic
Kondo coupling Jx dominates, and so the Kondo effect causes the W, spins to ‘dissolve’ into the
Fermi sea of the mobile electrons. By analogy with the corresponding process in the two-band
Kondo lattice model, we conclude that the Fermi surface will correspond to an electron density of

14+ (1—p) = 2—p: this is a small Fermi surface of holes of density p. There is an interesting inversion
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FIG. 1. (a) The top layer is the physical layer of electrons C in a single band model coupled to two ‘hidden’
layers of ancilla qubits (spin-1/2 spins) realized by fermions ¥; and Ws. The antiferromagnetic exchange
couplings Jx and J| are non-random, while the dashed lines represent random exchange interactions of
mean-square strength J between the W; spins and between the Wy spins. (b) In the large Fermi surface
FL phase, the ancilla spins lock into rung singlets, while the C electrons are largely decoupled from the
ancilla and form a conventional Fermi liquid of electron density 1 — p. (c) In the small Fermi surface FL*
phase, the ¥, ancilla spins are Kondo screened by the C' electrons to form a Fermi surface with density
2 — p electrons. This is equivalent to a small hole-like Fermi surface of size p, as observed in the cuprates
at low doping. The ¥y spins are largely decoupled from the top two layers in the FL* phase, and form a

gapless spin liquid with fractionalization, whose presence is required by the generalized Luttinger theorem.

here that is worth noting: at the mean-field level, the small Fermi surface FL* phase of the single-
band-+ancilla model maps on to the large Fermi surface phase of the two-band Kondo lattice model,
where it is the FL phase of that model. At small doping p, we can refine this to the statement that
the FL* phase of the single band model maps onto a lightly-doped Kondo insulator in a Kondo-
Heisenberg lattice model. This correspondence, however, does not hold beyond mean-field: in the
small Fermi surface FL* phase of the single-band+ancilla model there are fractionalized spinon

excitations arising from the W, ancillas, which are required by the generalized Luttinger theorem.
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FIG. 2. Local electron spectral function pec(w) = —(1/7)Im Gee(w) (with [ dwpee(w) = 1) in the FL*
state for the model with random hopping of electrons (these spectra can also be computed, with more
numerical effort, for a non-random electron dispersion ey ) showing a particle-hole asymmetric pseudogap
near the Fermi level. Also shown is the corresponding Wigner semi-circle spectral function in the FL phase.
The areas of the hatched regions are indicated, with p the hole doping away from half-filling. The extended
Luttinger theorem in the FL* phase (see Section III and Appendix C) implies that the values of pe.(w)
identified by the red circle are equal. The plot is for p = 0.246,t =1, J =1, Jx = 2.03.

There are no fractionalized excitations in the large Fermi surface FL phase of the two-band Kondo
lattice model.

(For completeness, we clarify what we mean by ‘fractionalization’ in a metal. Although a FL
phase has half-integer spin excitations, it is not fractionalized: all half-integer spin excitations carry
an odd electronic charge. A fractionalized excitation has half-integer spin with even charge, or
integer spin with odd charge; the zero charge case is the spinon.)

At this point, it is useful to contrast the ancilla qubit approach to the pseudogap phase of the
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single band cuprates from earlier variational wavefunction approaches. In the popular and influential
‘vanilla’ approach to resonating valence bond theory [53], the underdoped normal state is modeled

as a Gutzwiller projected Fermi liquid

|®yanina) = [Project out doubly-occupied sites|
> [Slater determinant of C). (1.1)

However, this approach predicts a large Fermi surface for small p, which appears to be incompatible
with recent experiments [1-3]. In our ancilla approach, the corresponding wavefunction of the FL*

phase present at small p is [47]

| P ancilla) = [Projection onto rung singlets of W, \T/}
> [Slater determinant of (C, ¥))
® [Slater determinant of \Tl> (1.2)

Note that after the projection onto rung singlets on the right hand side of Eq. (1.2), |Pancina) is
a wavefunction dependent only upon the physical C' degrees of freedom in the single band model
under consideration. As has been well understood [54] for some time, for |®yapina) the consequences
of the projection can be understood by examining a gauge theory for the constrained subspace. The
gauge symmetry is fully higgsed in the phase described by |®Pyanina), and so gauge fluctuations are
not singular; in the language of wavefunctions, the projection in Eq. (1.1) has little influence on
the large Fermi surface of C, apart from a Brinkman-Rice renormalization [55] of the quasiparticle
mass. Turning to |®,ucina), the implementation of the rung singlet projection requires consideration
of a SU(2)s gauge field [47, 48]: this gauge field is also fully higgsed in the FL* phase, and so the
small Fermi surface formed by the Slater determinant of (C, V) in Eq. (1.2) is stable under the
projection.

With our use of SYK models for the couplings within each ancilla layer, it becomes possible
to obtain exact results for the electron spectral function in the FL* phase. A typical spectrum in
shown in Fig. 2. This spectrum is for a random matrix model of hopping within the electronic
C layer, which leads to a semi-circular density of states in FL. phase. We shall show below that
computations are also possible for arbitrary translationally invariant band structures within the
C layer. As shown in the figure, our numerical results obey a modified Luttinger theorem which
constrains the value of the density of states at the Fermi level in the FL* phase. A notable feature of
Fig. 2 is the appearance of a pseudogap in the electronic spectrum of the FL* phase. This pseudogap
leads to a particle-hole asymmetry in the electron spectral function which has similarities to that
discussed in Ref. [56]. Moreover, the minimum in the local density of states is slightly above the

Fermi level, as is observed in STM experiments at higher temperatures [57].
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It is interesting to ask if there is any holographic parallel, along the lines of Ref. [58], to the
small-to-large Fermi surface transition we describe here. The physical electronic layer has a ¢ = 2
SYK model with quasiparticle excitations which has no black hole dual, but the question becomes
better defined if we consider the non-Fermi liquid phases of higher ¢ analogs of our model. In this
case there is a correspondence to wormhole transitions of black holes [59], as we will discuss further
at the end of Section VI.

We will define the model and obtain its saddle-point equations in Section I, with details of the
G-Y theory appearing in Appendix B. We will discuss some exact features of the phases of the
model, including the Luttinger theorems which apply in the FL* and FL phases in Section I1I and
Appendix C. Our numerical solutions of the imaginary frequency saddle-point equations and the
mean field phase diagram are described in Section V. In Section V we turn to a discussion of the
electronic spectrum in the FL* phase by a direct solution of the saddle point equations for real
frequencies. This reveals interesting structure in the spectrum which would have been difficult to
obtain by numerical analytic continuation of the imaginary frequency solution. This real frequency
analysis is aided by an exact solution of the saddle point equations at J = 0 which is presented in

Appendix D.

II. MODEL AND SADDLE-POINT EQUATIONS

We extend the model of Burdin et al [4] to include 2 layers of ancilla as illustrated in Fig. 1 to

obtain the following Hamiltonian
H= > LGt —= 3 1501 Cha+ 2537 Ol CrsSis
- 0005 \/N oy J o005 M i 1,0 5 IR

1 J
+ SN Z Z Ja:ijSia:08 ;80 T ML Z Si1:089i:2:8a - (2.1)

a=1,2 i<j i

The physical layer has electrons Cj., on the sites i of a lattice, and «, 8 = 1,2,..., M are SU(M)
spin indices which generalize the SU(2) spin indices. The ancilla layers a = 1,2 are represented by
SU(M) spins Si.a.as-

We will now take the large spatial dimension and large M limit of (2.1) as discussed by Burdin et
al [4]. This can be performed in a model with non-random ¢;; and a corresponding momentum space
dispersion e of the bare electrons Cy.,; such a model will have sharp Fermi surfaces in momentum
space, and so a well-defined concept of the ‘size’ of the Fermi surface. However, it is technically
somewhat easier to work in a model in which the ¢;; are independent random numbers representing
all-to-all hopping on a cluster of sites ¢ = 1... N; such a random model has the same phases in the

large M limit, and is also constrained by a Luttinger theorem, as we will review in Section [1I. We
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will present our analysis for the case of random ¢;;, but will indicate in Section III the modifications
needed for the case with non-random hopping and a sharp momentum space dispersion ¢y. For the

random case, the couplings in (2.1) obey

Joij =0 J2,. = J (2.2)

The Kondo exchange coupling Jx and the rung exchange coupling between the ancilla, Jx are taken
to be positive (i.e. antiferromagnetic) and non-random.

The large M limit is implemented by a fermionic parton representation of the spins with

Sitias = U1 Vi
Sizap = VinaVizs (2.3)

where the fermions ¥, 5 obey the local constraint

M
Z \I/;r;a;a\l}iﬂ;a = ? : (24)

The chemical potential y is adjusted so that the average density of the electrons is

S (Cl0) = 2-p) 2.5)

«

We now discuss the crucial issue of the gauge symmetries introduced by the parton representation
in Eq. (2.3). As written, the model (2.1) has a global U(1) symmetry of the conservation of the
electron number C'C, and a pair of U(1) gauge symmetries, denoted U(1); and U(1),, associated
with the constraints (2.5) on the two ancilla layers. However, for the theory with the ancillas to
apply to the underlying single band Hubbard model, we also need to project the ancilla spins onto
the rung singlet subspace. This projection has been discussed at length in earlier papers [47, 48] for
M = 2 (see especially, Section II in Ref. [47], and Sections II and III.A in Ref. [48]): it was shown
that the projection is accomplished by integrating over a rotating reference frame in spin space [60]
by employing an additional SU(2)g gauge symmetry; the subscript S denotes that the spin space
rotation, in contrast to the U(1); 5 gauge symmetries which act on the Nambu pseudospin space
[61]. It is possible to extend this SU(2)s gauge symmetry to the model with general M (similar
to Ref. [62]), but we will not enter into this technical complexity here because it does not change
the structure of the large M saddle point. As we have noted earlier, the SU(2)¢ gauge symmetry is
fully higgsed in the FL* phase, and so does not lead to any singular corrections to the small Fermi

surface. In the FL phase, the SU(2)s gauge fluctuations are confining, and have little influence on
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the low energy theory of the large Fermi surface. The SU(2)s gauge symmetry is important mainly
at possible deconfined critical points [47, 48] which we do not address in the present paper, because

the transitions are found to be first order at large M.

A. Schwinger-Dyson equations

In Appendix B we describe the formal procedure of taking the large N and large M limits of
H. This procedure yields the following equations for diagonal components of the 3 x 3 matrices of

Green’s functions G and self energies >

Yoo T) = *Gee(T) (2.6)
Ewlwl (T) = _J2G12pl1/11 <T>G¢1¢1<_7) (27)
S (T) = =2 G (T) Gy (—7) (2.8)

These are just the self-energies of the ¢ = 2 and ¢ = 4 complex SYK models.
The off-diagonal self-energies play an important role in our analysis. As the interband couplings
are non-random, these self-energies are independent of frequency, and we use a different symbol, R

for their constant values (similar to Ref. [4]). So we write

Rmm = —JKGC% (7' = 0_) (29)
R¢1¢2 = _JLG%% (T - O_) . (2'10>

Then, the Green’s functions are related to self energies by the following matrix Dyson equation in

Matsubara frequency w,

—iwy — b+ Bee(iwy) Ry, 0
Go(iwn) = — Rey, —iWn = gy + Dy (W) Ry,
0 R¢1¢2 — Wy — Hoapy + Ed)%bz (an)

(2.11)

where the subscript of G, is any of (cc), (V1¢1), (Vatba), (¥1102), (ciby). We have made a gauge choice
in which the R are real.

Our task is now to solve equations (2.6-2.11) for the Green’s functions and self energies, where the
chemical potentials i, fuy,, fuy, are chosen to satisfy (2.4,2.5). If there is more than one solution,
we have to choose the one with the lowest free energy, expressions for which are presented in

Appendix B.
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III. PHASES AND THE LUTTINGER RELATIONS

The nature of the phases of the model of Section II are controlled by the values of the real
saddle-point variables R.; and Ry, 4,. This becomes clear upon examining their role as Higgs
fields under the gauge symmetries which were discussed at the end of Section II.

The fields associated with the mean values R, and Ry, 4, carry charges of the U(1) gauge fields

as follows
RC% R%T/Jz
U(1 1 0
(D] + (3.1)
U(),| -1 +1
U(l)s| 0 -1

In the full theory, beyond the large M saddle-point, with projection onto the rung singlet subspace,
we have to consider a SU(2)s gauge symmetry, and the fields analogous to Ry, and Ry, also
carry SU(2)s gauge charges [47, 48]. From the charge assignments in (3.1), we can deduce the basic
properties of the phases found in our numerical analyses:

(A) Large Fermi surface, FL: Rey, =0, Ry, 4, # 0.

The non-zero value of Ry, 4, higgses a diagonal combination of U(1); xU(1)a, but leaves the other
diagonal combination unbroken. As we will see below, the spectrum of ¥, 5 fermions is fully gapped
in this phase, and so there is no obstacle for the unbroken gauge symmetry to confine. So the
structure of this phase is as sketched in Fig. 1b: the ¥; and ¥y fermions confine in a rung-singlet
phase, and the C electrons form a Fermi liquid with a Fermi suface of size 1 — p electrons. The
SU(2)s gauge theory is also confining, but this confinement only influences the already gapped
ancilla layers, and has little effect on the large Fermi surface.

(B) Small Fermi surface, FL*: Ry, # 0, Ry, = 0.

Now U(1); is higgsed by R.y,, and this effectively endows the W; fermions with the global U(1)
charge. The hybridized bands of C' and W, fermions form a Fermi sea of size 2 — p electrons, which
is equivalent to p holes. Indeed, the structure of the state formed by C' and V¥, is indentical to that
obtained by Burdin et al. [4] in their HFL state. The Wy fermions form a gapless ¢ = 4 SYK spin
liquid state with fractionalized spinon excitations, and U(1), remains unbroken. The SU(2)g gauge
symmetry is fully higgsed by the generalized field analogous to R, [47, 48], and so the small Fermi
surface is stable to SU(2)g gauge fluctuations.

(C) Reyy, # 0, Ry, y, # 0.

Both U(1); and U(1), are now Higgsed, and both the ¥; and W, fermions effectively carry the global
U(1) charge; the SU(2)g gauge symmetry is also higgsed. This state does appear in our iterative
solution of the saddle-point equations. However, upon computation of its free energy, we always

find it is metastable, with a free energy higher than the states (A) and (B) above. This state forms
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a Fermi surface of 3 — p electrons; subtracting a filled band, this is equivalent to a Fermi surface
of 1 — p electrons. So by Higgs-confinement continuity, we can assume this state is formally the
same as the FL phase (A). But both layers of ancilla are involved in the band structure, and so this
phase may not be a realistic description of the FL phase of the single-band model.

Let us now describe the structure of the Luttinger relations in these phases, following earlier
work [4, 52, 63-68]. We note that these relations are expected to be exact, and do not rely upon
the large M limit. In the present formulation, we will see that the generalized Luttinger relations
obtained earlier by topological arguments [5-7, 18] can also be obtained in a more conventional
Luttinger-Ward formalism.

It is useful to first solve the equations in Section Il A for G.. and Y., in terms of the other

unknowns. We solve (2.11) in the form a continued fraction by writing

1
G liw,) = - . : 3.2
<2w ) Wy, + 1 — Ecc(Z(-"-]n) - Ripl g‘/’1 (an) ( )
1
o) = - ' : 3.3
gwl <2w ) Wyt [y — Ed)ld)l (an) - Rilﬂﬂgw? (an) ( )
1
G (i) = (3.4)

Wy, gy — S (Twn)
Note that G, and G, are not the same as the Green’s functions Gy, , and Gy, 4,; rather, they are
the Green’s functions for ¥; and W, in absence of mixing between W; (Uy) and C' (V). Indeed,
from (3.2-3.4), we can obtain explicit expressions for the remaining Green’s functions of (2.11)

(these expressions are easy to obtain diagrammatically from the Dyson series)

G (iwn) = Gy, (iwn) + R2y, Geeliwn) Gy, (iwn)]” (3.5)
G (i) = Gy (i) + Ry, Gy (i) [Gp (i) ] (3.6)

Gy, (iwn) = Rep, Gee(iwy )Gy, (wn) (3.7)
Gy (iwn) = Ry, Gy, (1wn) Gy, (wi) (3.8)

We now observe that (2.6) and (3.2) form a pair of coupled equations for G, and X..; these

equations can be solved analytically in terms of the Green’s function G? for the C' electrons on their

own
Geeliwn) = Goliwy + p1 — ngl Gy, (iwn)) (3.9)
oy [ o D)
Gc(z)—/_wdﬁz_ﬂ, (3.10)

where the density of mobile electron states D(€2) is given by the Wigner semi-circular distribution

for the random ¢;; model:

D) = — VIP—(P , Qe|-2 421, (3.11)

o2
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and D(Q2) = 0 for |Q2] > 2¢t. As discussed in Refs. [4, 63], we can now also present the form of the
saddle-point equations if we had chosen a disorder-free ¢;; with a sharp momentum space dispersion

ex: we simply have to replace (3.11) by
D(Q) =) 62— e (3.12)
K

From these D(€) and (3.10), the explicit expressions for G%(z) for all complex z are:

1
o [z F V22— 4t2} ., random t;;
Z , non-random %;;
" Z — €k

where the sign in front of the square root is chosen so that G%(|z] — oo) = 1/z. The conduction
electron Green’s function is then determined by (3.9), while the equations for the Uy and ¥y Green’s
functions and self-energies are given by (2.7,2.8,3.5,3.6). Also, for the non-random ¢;; we have the

full momentum-dependent Green’s function of the physical electrons on the lattice in the FL* phase

1
Goo(K, iwy,) = - . 3.14
(K, iwn) Wy + b — € — Rgm Gy, (iwy) ( )

So the main approximation in this method is that the influence on the ancilla arises only via a k-
independent (but frequency-dependent) self energy, while a more realistic description of the Fermi

surface structure of the pseudogap would have a k-dependent self energy. Also note that
Gocliwn) =Y Geolk, iwy) . (3.15)
Kk

We can now state the Luttinger constraint on the solution of the saddle-point equations. The
Luttinger analysis [4, 64, 65, 68] is reviewed and extended in Appendix C: it fixes the value of

chemical potential at T'= 0 to equal
= Ep + R}, ReGy, (0) (3.16)

where the Fermi energy Er is determined from the free electron density of states as the solution of

2/EF 19.D(Q) 1—p , Large Fer@i surface, FL ‘ (3.17)
—at 2 —p , Small Fermi surface, FL*

The remarkable fact is that it is the density of states of the non-interacting electrons which exactly
determines the value of Er for the interacting electron problem. The relationship (3.17) is illustrated
in Fig. 2, where the value of Er for the FL* phase is determined by the position of the red circle
in the lower panel showing the density of states in the FL phase.
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We can also fix the nature of the low frequency behavior of the Green’s function in the metallic
states. In the FL* phase, we expect that the C' and ¥; Green’s functions will have a finite imaginary

part at zero frequency, and so

Gee(T) ~ Gy (1) ~ 1/7 (3.18)
at large |7| at T'= 0. Using (2.7), we can deduce that
Im Xy, 4, (Q) ~ Q (3.19)

at small Q. Then from (3.2,3.3) we obtain Im Gy, (Q) ~ Q2. Along with (3.16), we can now obtain
the exact density of states of the C' electrons at the Fermi level from (3.9)

— %Im Geo(i0%) = D(EF). (3.20)

This relationship is also illustrated in Fig. 2 by the equal values of p..(w) at the 2 red circles.

IV. NUMERICAL RESULTS

We turn to a numerical solution of the saddle point equations in Section Il A. This section will
present a numerical analysis with imaginary time Green’s functions. Results obtained by solving

the equations directly on the real frequency axis will be presented in Section V.

A. Zero doping

In this case we set the chemical potentials to zero, p = pu;, = pty, = 0, by particle-hole symme-
try. The numerical solution of the Schwinger-Dyson equations is based on an iteration procedure,
starting from a trial Green’s function. After convergence, we inspect the values of the off-diagonal
self energies Ry, and Ry, , to determine the nature of each phase. In some cases there are multiple

solutions, and we select the solution with the lowest free energy.
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FIG. 3. Phase diagram at zero doping. The right plot shows the free energy of the Fermi liquid (FL),
Kondo insulator + spin liquid (KI 4+ SL) and merged phases at Jx = 9. We note that the merged phase
where R.y, # 0 and Ry, # 0 is never dominant. The black dot in the right plot indicates the point
where the phase transition happens. Parameters: t =2, J =2, § =1/T = 100.

Fig. 3. shows the phase diagram as a function of the two couplings between the layers. When
J1 < Ji.and Jg < Jg. the ‘trivial’ phase is realized, where all three layers are decoupled, and
R.y, = Ry, = 0. The boundaries of this trivial phase can be determined by taking the limit
R.y, — 0 and Ry, .y, — 0 in equations (2.9,2.10):

JKe Z ) A(d)

1 = _7 ch)Gi/Jlﬂ’l (4.1)
Jic S G, G

l=- B G1/)21/12G¢1¢1 : (4‘2)

where the superscript (d) implies that the Green’s functions are computed with layers decoupled.
Under this condition, the first layer is described by the SYK,; model while second and third layers
are described by the SYK, models (here SYK, represents the SYK model with random couplings
of ¢ fermion operators). It can then been seen for Gfp‘?wl = Gfp‘?% ~ 1/y/7T that J,.=0at T = 0.
So the ‘trivial’ region in Fig. 3 shrinks to the line Jx < Jg., J. = 0 at T = 0. This ‘“trivial’ is
expected to be unstable to confinement upon including SU(2)s gauge fluctuations, and so we will
not consider it further.

In the large Jg regime of Fig. 3, the physical and first ancilla layers are strongly coupled. This
implies that the first layer ancilla spins are Kondo screened by the physical electrons. As the latter

are at half filling, we realize a Kondo insulator. However, the second ancilla layer remains a SYKy
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spin liquid. So while a conventional Kondo insulator is smoothly connected to a trivial band insu-
lator, that is not the case in our model. We instead realize a Mott insulator with fractionalization,
with the fractionalized spinon excitations residing on the second ancilla layer. Indeed the presence
of the fractionalized excitations in this insulator is required by the extended Luttinger theorem.

In the other limit, when J, is large enough, the free energy of the FL becomes lower. Here the
physical layer is decoupled from the ancilla layers, and forms a free electron metal. On the other
hand, the SYK, spin liquids on the ancilla layers are coupled by J,, and this drives them into a
gapped state which is smoothly connected to a band insulator.

As R.y, and Ry, , change discontinuously between the phases above, the transition between FL
and the Kondo insulator is first order. When J, and Jx are close to each other, we also obtain a
‘merged’ solution, with both Ry, and Ry, y, non-zero. However, Fig. 3 shows that the free energy
of this merged solution is never the global minimum, and the transition is first order.

Fig. 4 shows the Green’s functions in the Kondo insulator phase. We observe exponential decay,
indicating the presence of a gap in the physical layer and the first ancilla layer (there is no gap on
the second ancilla layer, which forms a gapless SYK, spin liquid). We will obtain a more accurate

determination of the gap in the real frequency solution in Section V.

— Gulw)
= Gy (W) |
= ]
i
&0
Q
—
0 1 2 3 4 5 6 0 10 20 30 40

27/ w

FIG. 4. Imaginary time Green’s functions in the Kondo insulator phase at zero doping. The frequency w

is on the Matsubara frequency axis. Parameters: t =2, J =2, Jx =6, 8 = 10.

B. Non-zero doping

When we turn to non-zero p, the Kondo insulator phase in Fig. 3 turns into the metallic FL*
phase, due to a difference between the density of mobile C' electrons and the density of spins in the
first ancilla layer. The size of the Fermi surface will be 2 — p, which is equivalent to a density of p

mobile holes.
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FIG. 5. Phase diagram as a function J, and p. At p = 0, J,. is non-zero because of the non-zero
temperature, and the Kondo insulator is present below the black circle. The chemical potential changes
discontinuously at any non-zero p, and so the phase boundary of the FL* phase does not meet the black

circle. Parameters: t =2, J =2, Jx = 2.6, =1/T = 100.

The density of the electrons in the first layer is equal to 1 — p, while in both ancilla layers it
is equal to 1. This is equivalent to the constraints: —G..(87) = (1 — p)/2 and —Gy,, (87) =
—Glyyyy (B7) = 1/2. These can be satisfied by tuning only one chemical potential x in the FL phase
(while gty, = fty, = 0), and tuning both chemical potentials: p and iy, in the FL* phase (while
[y = 0).

Derivation of the two-dimensional phase diagram as in the Fig. 3 for p > 0 is complicated because
the chemical potentials are unknown. We show a phase diagram as a function of p and J, in Fig. 5
obtained as described below.

As in Section 3, the equations (4.1), (4.2) can be used to find the values of Jk. and J,. that
determine the phase transition lines from the trivial phase to FL and FL* phases. It is clear that
J 1. does not depend on doping and is equal to zero at zero temperature, while Jx.(p) depends on
doping in a nontrivial way, it increases at larger doping (see Fig. 6). This has an important physical
consequence: the transition between FL and FL* phases can be initiated by varying doping, without
changing any physical couplings. As the doping increases, the onset of the FL* phase goes to a
larger Jx and the FL phase emerges.

We focus on a fixed Jx > Jg. and show that FL* phase exists for all dopings, and it goes to the FL
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FIG. 6. The onset of the FL* phase from the trivial decoupled phase. The FL* phase is present for
Jr > Jk.(p). Parameters: t =2, J =2, 8 = 100.

phase at large J; . As the chemical potentials are unknown, we solve the Schwinger-Dyson equations
for all chemical potentials, and impose the constraints afterwards. Our numerical solutions are also
aided by analytical solutions which are possible at J = 0, as described in Appendix D.

Fig. 7 displays the lines of the constant densities as functions of two chemical potentials in
the FL* phase. The red line corresponds to a fixed density n,, = 1 in the first ancilla layer. It
intersects with the lines at constant p which indicates the presence of FL* phase. We note that the
line at constant density does not intersect with the p = 0 line which is expected since the chemical
potentials are zero at zero doping. The jump in the chemical potentials from p = 0 to p # 0 is
consistent with the Luttinger theorem (3.16).

This conclusion can be further substantiated by analyzing the behaviour of Green’s functions.
Imaginary time Green’s functions decay as 1/7 at large times (Fig. 8), while in the frequency space
they reach constant values at w = 0 and decay as 1/w at large frequencies. This demonstrates the
gapless metallic nature of the FL* phase.

In the FL phase, the two ancilla layers decouple from the physical layer and form a ‘trivial’
insulator. The decoupled ancilla layers are a pair of the SYK,; models with a non-random exchange
coupling J, between them. This is similar, but not identical, to coupled SYK models considered
in the literature: there have been studies of SYK models each with a different random 4-fermion
term, coupled with another random 4-fermion term [69-72]; and of SYK models each with the
same random 4-fermion term, coupled by non-random 2-fermion terms [59, 73-78|. In our case

with a non-random 4-fermion coupling J,, the argument below (4.2) implies that an infinitesimal
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FIG. 7. Red lines show the contours of constant doping, while blue line shows the contour of constant
density in the second layer. The dashed lines delineate the region of convergence of Schwinger-Dyson
equations. The intersection of red line with the lines of constant p gives chemical potentials at the concrete

doping. Parameters: Jx =10,t =2, J =2, § = 10.
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FIG. 8. Green’s functions in FL* phase at nonzero doping as functions of imaginary time (left, logarithmic

scale) and imaginary frequency (right). Parameters: p = 0.4, t =2, J =2, Jg = 10, 5 = 200.
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J, induces a gap. In our numerical study, the imaginary time Green function demonstrates an
exponential decay at large times (Fig. 9). This implies that the ancilla excitations are gapped, and

do not contribute to the low energy excitations of the physical layer.

o 1 2 3 4 5 6 0 10 20 30 40
27/ 8 w

FIG. 9. Imaginary time Green’s functions of the two coupled Ancilla layers. The frequency w is on the

Matsubara frequency axis. Parameters: J, =5, J =2, 5 =10.

V. SPECTRAL FUNCTIONS IN THE FL* PHASE

This section solves the saddle-point equations along the real frequency axis, allowing us to obtain
accurate results for the electron spectral function. We will consider only the FL* phase, where
we have new results on electron spectral functions which do not obey the conventional Luttinger
theorem. As the second ancilla layer decouples from the first two layers in the FL* phase, the

equations we need to solve are:
Ewld)l (T) = _J2G2 101 (T)GT/JI’l/)l (_T>7

R2
Goe(2) =G (24 — i : (5.1)
2+ gy — Dy, (2)

1 R%, G..(2)
Gy, (2) = e 5
24 gy = By (2) (24 phgy — By, (2))

We solve these equations by iteration. As before, we fix R.; to some value, and the chemical

potential fu,, is to be found such that the constraint on the half-filling on the first level (2.4) is
satisfied.

In both cases of zero and non-zero doping we solve the equations on the spectral functions directly
that are related to the Green’s functions as follows:

Gy(z) = /_+OO dwpv(w>, (5.2)

Z— W
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where the subscript v indicates either (cc) or (1111). The self energies are complex valued, thus we
consider equations for both real and imaginary parts. The imaginary part can be obtained directly
from the Schwinger-Dyson equation (5.2). Taking the Fourier transform of the first equation, the

imaginary part of the self-energy can be written in the following form

jus

Ty (W > 0) = —mJ2w? /2 dusin® u py,p, (—w cos® u) (5.3)
0

™

2
X / do $in® 2 Py, (W Sin® u cos® @) py,y, (wsin® usin® @)
0

The above expression is defined at positive frequencies. For negative frequencies we change the sign
w — —w. The real part is obtained using the Kramers-Kronig relations.

To obtain the solutions we are interested in, we choose the exact expressions for the spectral
functions p..(w) and py,y, (W) at J = 0 (see Appendix D) as the initial functions and proceed with
iterations until the needed convergence is reached.

We use slightly different equations to obtain solutions at zero and non-zero doping. At p =0, i.e.
when the chemical potentials are set to zero, the equations on the spectral functions are obtained
as the imaginary parts of the Green’s function in (5.2).

For the case of p # 0 we instead use the matrix Dyson equation (2.11) for the FL* phase, and
consider the imaginary parts of both G..(w) and Gy, y, (w). We find that these equations converge
easier to the solutions that are discussed below. In both cases, we use the same equations for the
self-energies (5.3).

As in Section [V, we consider p = 0 and p > 0 cases in turn.

A. Zero doping

At p = 0, our FL* phase reduces to Mott insulator. However, the Mott insulating behavior is
realized in a novel way in the ancilla approach. As we noted in Section IV A, the electron layer
combines with the first ancilla layer to form a Kondo insulator. Then the second ancilla layers
realizes a gapless SYK, spin liquid, which is required to exist in a Mott insulator in a single band
model at half filling. In our mean-field analysis, the second ancilla layer decouples in the FL* phase,
and we will not consider it further here.

We define the spectral densities p,(w) = —ImG?(w)/7 and find their behaviors at zero doping
p = 0 for different values of the coupling constant .J on the first layer. See Figs. 10, 11.

The spectra show a gap A. At J = 0, we can determine the value of A, and the full spectrum,
exactly from the solution in Appendix D. At non-zero J, the value of A decreases with increasing

J. We also observe signs of non-analyticities in the spectrum at w = 3A, 54, .. .: these are expected
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FIG. 10. Electron spectral density for different values of J and fixed Ry, = 0.75, in the Mott insulator
(i.e. Kondo insulator in the electron and first ancilla layer) at doping p = 0. Inset: Behavior of the spectral

densities at small frequencies. The gap becomes smaller with increasing J.

at all odd multiples of A from (2.7), and are thresholds associated with the decay of an excitation
to 3 excitations.
In conclusion of the analysis at zero doping, we compute the value of the gap A as a function of

the off-diagonal self-energy R.,. In Fig. 12 we show its behavior at J = 1.

B. Non-zero doping

We already showed a result for the spectral function of the FL* phase in Fig. 2 for p = 0.246.
There is now no strict gap in the spectrum, but a pseudogap at positive frequencies; any non-zero
hole doping moves the Fermi energy to the top of the lower band in the insulator in Fig. 11. The
density of states at the Fermi energy, w = 0, is suppressed to a value that is constrained by the
extended Luttinger theorem in Appendix C: as illustrated in Fig. 2, and from (3.20), the density
of states at the Fermi level has the same value as the case where p holes are doped in a fully-filled
band of the C' electrons. For the case with a non-random dispersion ¢y, the equivalent statement
would be that the Fermi surface encloses a volume equivalent to p holes in the FL* phase. We also

show the spectral density of the 1); fermions in the first ancilla layers in Fig. 13.
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FIG. 11. Spectral density of ¥; fermion for the case in Fig. 10, with different values of J and fixed
Ry, = 0.75, in the Mott insulator at doping p = 0.

Spectral functions at a smaller doping p = 0.1 appear in Figs. 14 and 15. Note the decrease in
the electron density of states at the Fermi level, and pseudogap above the Fermi energy.

We note that the above computations of the FL* spectral functions do not include the influence
of the spin liquid state in the second ancilla layer. Such a coupling appears at higher orders in 1/M,
and consequences are similar to those described by Burdin et al. [4] for the Kondo lattice: for the
case of a SYK spin liquid on the second ancilla layer, there are marginal Fermi liquid self energy

corrections for the quasiparticles on the small Fermi surface.
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FIG. 12. Numerically computed gap A as function of Ry, with fixed r.m.s. exchange in the ancilla layers

J =1 at doping p = 0.

Prp1apn (w)

FIG. 13. Spectral density of ¥; fermion for the case in Fig. 2, with Ry, = 0.75 and doping p = 0.246.
The dashed line indicates the density at w = 0. The r.m.s. exchange in the ancilla layers is J = 1. Inset:

behavior of the spectral density at small frequencies.

24



0.3 o\ ~ T TH
= / 0.04 | H
i / 0.02 | 1
g 0.2___ ______________ . \ .
3 N . 1
N——"
Q r 0k . =
QO | 0 0.2 04
0.1
= b |
-2 —1 0 1 2 3 4

W

FIG. 14. Electron C spectral density at R.;, = 0.75 and value of doping p = 0.1. The dashed line indicates

the density at w = 0. The r.m.s. exchange in the ancilla layers is J = 1.8.
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FIG. 15. W; fermion spectral density for the case in Fig. 14. The dashed line indicates

w=20.
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VI. CONCLUSIONS

We examined a solvable single band model with hole doping p away from half-filling. The model
displays a small Fermi surface of holes of volume p at small doping, and a transition to a large Fermi
surface of holes of volume 1+p (or equivalently, a Fermi surface of electrons of volume 1—p) obeying
the conventional Luttinger theorem at large doping. This basic phenomenology tracks the physics
of the hole doped cuprates in the crossover from the pseudogap at low doping to the Fermi liquid at
high doping, as displayed in numerous experiments [1-3]. There are no broken symmetries in any of
the phases we find, and so the observed broken symmetries at low temperatures are presumed to be
secondary phenomena. Our approach maps the low energy electronic excitations of the pseudogap
phase to those a doped Kondo insulator (plus a spin liquid in the second ancilla layer). The popular
approach of a doped Mott insulator [54] requires a non-perturbative binding of spinons and holons

in the FL* state, and that is not needed in our framework.

We employed an ancilla approach, in which the physical layer is coupled to two fictitious layers of
ancilla spins. We show in Appendix A that, in a suitable limit, the ancilla spins can be eliminated
by a canonical transformation, and the resulting effective Hamiltonian for the physical spins is a
single band Hubbard model in the strong correlation regime. So we can view the ancilla spins as
being akin to Hubbard-Stratonovich fields, which are chosen to be a pair of quantum spins rather
than bosonic fields. The pairing of ancilla spins is essential to avoid introducing new anomalies
[18] associated with extended Luttinger theorems. Fluctuations of a SU(2)s gauge field, acting as
a rotating reference frame in spin space [60, 61], are also need to ensure that the final theory acts

only on the physical layer, and the ancilla spins are projected onto rung singlets [47, 48].
In the absence of symmetry breaking, the insulator at half-filling (p = 0) in a single band model

is neccesarily a spin liquid with topological order. Our ancilla approach captures both spin and
charge fluctuations in such a Mott insulator in an interesting manner. The physical electron (C')
layer and the first ancilla (W) layer form a Kondo insulator. There is a charge gap in this Kondo
insulator, and conventional electron and hole excitations across the charge gap, with no spin-charge
separation. The spectrum of these charge excitations is shown in Fig. 10 for the case of random
matrix hopping in the electron layer. At the same time, this insulator also has fractionalized
spinon excitations—indeed such fractionalized excitations are required by the extended Luttinger
theorems. In our approach, these fractionalized excitations reside on the second ancilla (W,) layer.
In the present paper we used a SYK, model of a gapless spin liquid, but other possibilities have
also been considered [47, 48].

Upon doping this Mott insulator, we obtain a FL* phase as our theory for the pseudogap. Given
the mapping of the Mott insulator to the Kondo insulator above, the FL* phase maps onto a

doped Kondo insulator. The spectrum of electron-like excitations of this metallic phase are shown
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in Figs. 2 and 14 for two values of p. These are computed for the simplest case where the band
structure of the physical electron layer is a random matrix—so the density of states in the large
doping Fermi liquid phase will be a Wigner semi-circle, as shown in Fig. 2. In the FL* phase,
our results show a number of notable features: a reduction in the density of states at the Fermi
level, a pseudogap above the Fermi level, and a pronounced particle-hole asymmetry. It would be
interesting to extend these computations to more realistic band structures on the physical layer;
computations with a realistic band structure were carried out in Ref. [47], but without the dynamic
spin fluctuations present in our SYK model.

In comparing to experimental observations of pseudogap spectra in STM experiments [57, 79, 80],
we do observe a particle-hole asymmetry with the same sign. Moreover, as in Figs. 2 and 14, the
minimum in the local density of states (LDOS) is indeed observed to be slightly above the Fermi
level at higher temperatures (see Fig. 3C in Lee et al. [57]). As the temperature is lowered, the
minimum in the LDOS moves towards the Fermi level, indicating the appearance of physics not
captured by our present analysis. It would be interesting to study fluctuation corrections, possibly
from spinon or electron pairing, or from disorder [81], and determine if they can explain the pinning
of the LDOS minimum to the Fermi level as T — 0.

At larger p our model undergoes a first order phase transition to a conventional Fermi liquid phase
(FL), as we showed in Section IV. In this phase, the physical electronic layer is largely decoupled
from the two ancilla layers, which are locked into a trivial spin gap insulator, as illustrated in Fig. 1b.
The first order transition is compatible with the observed sudden change between incoherent and
coherent photoemission spectra in the antinodal region upon a small change in doping in Bi2122 [2];
we also that the sharp vertical boundary of the pseudogap phase in the doping-temperature plane,
as detected by the nematicity in X-ray scattering [82]. On the other hand, the critical fluctuation
effects associated with ghost Fermi surfaces, studied in Refs. [47, 48] are absent in the present large
M limit at T = 0. It is possible that such fluctuations are restored at non-zero temperatures, and
it would be interesting to incorporate such fluctuations in extensions of our approach.

Our computations also make general predictions for spectra observed in photoemission and neu-
tron scattering experiments in the pseudogap phase. While, the ancillas are a computational device,

they also give a simple physical picture for such experiments:

e For photoemission, the main prediction is that the electronic spectrum near the Fermi sur-
face should be similar to that of a lightly doped Kondo insulator. This provides a direct
understanding of the spectrum, rather than proceeding by doping the spin liquid of a Mott

insulator [54].

e For neutron scattering, the prediction is that there are 2 components to the spin fluctuations.

One component consists of the spin fluctuations of the particles/holes observed in photoemis-
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sion, which would also be present in a doped Kondo insulator. The other component arises
from the spinons of the spin liquid in the second ancilla layer, and this is not present in a

doped Kondo insulator.

In closing, we note an interesting correspondence along the lines of Ref. [58], to a recent study
by Sahoo et al. [59] of wormholes and Hawking-Page transitions in coupled SYK models. They
considered two ¢ = 4 complex SYK models with random 4-fermion interactions determined by the
same couplings, and a non-random 2-fermion coupling between them. Under suitable conditions,
they found a first-order transition between two compressible non-Fermi liquid phases. In the ‘large
black hole’ phase, all fermions are involved in the low energy non-Fermi liquid excitations and
a wormhole connects to the black holes dual to the SYK models. This is separated by a first
order partial Hawking-Page transition from a ‘small black hole’ phase in which a particular linear
combination of fermions is locked into a trivial gapped state, while the remaining fermions form the
non-Fermi liquid. This has parallels in our study, although the details are different. We have two
g = 4 SYK models with different random 4-fermion couplings, one ¢ = 2 SYK model with random
2-fermion couplings, and non-random 4-fermion couplings between the SYK models. The FL phase
is the analog of the small black hole phase: in our case, the ¢ = 4 SYK models lock into a trivial
insulator, while the ¢ = 2 SYK model forms a Fermi liquid state. The FL* phase is the analog of
the large black hole phase: in our case, the ¢ = 2 SYK model and one ¢ = 4 SYK model together

form a Fermi liquid, while the other ¢ = 4 SYK model forms a non-Fermi liquid.

For a closer holographic analogy, we can imagine 3 SYK models in a row, with the central SYK
model coupled to the outer ones. In one phase, the central black hole is connected by a wormhole
to the one on the left, and in the other phase the central black hole is connected by a wormhole to
the one on the right. These phases are separated by a Hawking-Page type transition, which is the
holographic analog of the FL* to FL transition discussed here.
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Appendix A: Mapping to the single band Hubbard model

In this appendix we obtain the effective Hamiltonian for non-interacting electrons C' in the
physical layer coupled to two ancilla layers, as in Fig. 1, in the limit of large J, , for the SU(2) case
with M = 2. To leading order in the 1/J, expansion, this effective Hamiltonian turns out to be the
familiar Hubbard model. This Hubbard model can be in a strong correlation regime by a judicious
choice of ancilla couplings, as we shall show below.

For simplicity, we only consider the case with non-random, nearest-neighbor, exchange interac-

tions. So we have

e non-interacting electrons at chemical potential ;4 with nearest-neighbor hopping ¢ in the phys-

ical layer,
e antiferromagnetic exchange Jx between the physical layer and the first ancilla layer,
e antiferromagnetic exchange J, between the second ancilla layer and the first ancilla layer,
e antiferromagnetic exchange J; within the first ancilla layer,

e antiferromagnetic exchange J, within the second ancilla layer.

We can perform Schrieffer-Wolff transformation [83] in powers of 1/.J, to eliminate the ancilla
layers. To order 1/.J%, this will yield an effective Hamiltonian for the physical layer of C' fermions

of the following form

Heg = Z [EO = [eff CiT;aCi;a + Uett CJ;TC"?TC&CW

Je L "
+§:{4(ngu+Hc)+ fC&pwaﬁG%%ﬁ%%, (A1)
(i)

where ¢ are the Pauli matrices.

At order 1/J,, we only introduce on-site couplings in the physical layer. These couplings can
be computed by exact diagonalization of the 3 site model, with one site in each layer. With 0 or 2
electrons in the C layer, the ancilla spins lock in a singlet with energy —3J, /4. With 1 electron in
the physical layer, the ground state energy of the 3 site model is

J+Jx 1
42
This lowers the energy of a singly-occupied site in the physical layer, and the result is an effective

Fy = (J2 4+ 72— J )" (A2)

repulsive interaction between the electrons; by matching energy levels to those of Heg, we obtain

,ueff:,u_l'(]eff/2

372 33
Ugp = —& K
Y T

+0(1/J3). (A3)
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The exchange coupling J.g appears only at order 1/J%, and it can be computed by diagonalizing
a 6 site cluster with 2 sites in each layer. We performed such a diagonalization in a power series in
1/J, and obtained

3JL 3(J1 + J2)2 3(J1 + J2)3

= — — _ 1 3
0 2 647, 25672 OU/J1)
JZ(J + J
Jur = TR o). (A4)
472

We now observe that we can obtain the physically reasonable heierarchy Jog < t < Ueg by

J\* ot J\?
- — 1 A
(JL) <<Jl<<(h) <1, (A5)

where J is a generic coupling of order Jg, Ji, or Js.

choosing

Appendix B: Derivation of Schwinger-Dyson equations

After an averaging of the initial Hamiltonian (2.1) over the random couplings we obtain the

action:
S=Sp+Si+S;+ Sy, (B1)

where the kinematic Berry phase term is

SB - Z/dTCT a _ﬂ’c zoc + Z/dT\Ijjaa a _luiﬁa)\lli%(l;a(T)? (BQ)

the random hopping term is
Si==2 5% /drdr Clo(T)Clia(T)CL (7)) Cip () (B3)
the random exchange terms are
N
Sy=- Z AN M deT/Si;a%a@(T)Sj;a;ﬁa(T)Si;a;a’ﬁ’ (T/>Sj;a;,3’a’ (T,) ) (B4)
a,i
and the non-random exchange terms are
I Ji T
M Z A7 Si1508(T) Si2i80(T) + i Z dTCi;a(T)Ci;B(T)Si;l;Ba(T) (B5)
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The random hopping term can be rewritten in terms of a bilocal field:

G(r,7) = ——Z(Jw (B6)

Then, assuming G2 = G044

2

Si/(NM) = /deT' %GCC(T, TYGeo(T',7) — Lo/, 7) (Gco 7,7) ZO”" )]

To simplify the random exchange terms, we introduce the following 4-field:
QY (7.7 Z S (7) S (7)) (B8)
Including a corresponding 4-self-energy we obtain:
NJ2 1l /N
Sy :/deT' {__4]\4 QPP (1, 7QPP (1, 1")
s (1 1y [ Quir, Ty 4 - > Siwas(M)Siaars () || - (BY)
M Q;a ) al\’l N i ;a0 a0 B

In the large M limit, we can safely assume that the saddle-point has [49] Q%% = §,4/050/Q,, and

similarly for the corresponding self energy. We also introduce a bilocal field:
Gl (1,7 ———me Ul (7). (B10)

Then we obtain,
J2
S;/(NM) = /deT' — ZQQ(T, ) — YT, 7) (Qu(T, T') — Gy (T, T G (T', 7))

_Z"Z)ad)a(T,?T) (G"/’a"ﬁa T T Z\Ijlaa laa( /)> ] ‘

The non-random exchange terms can be rewritten in terms of bilocal fields and self-energies as

(B11)

follows. We introduce Green’s functions as:
Gi, (1.7) ———ZOW Ul (7)) G T) ———Z\pm (') (B12)

We assume that Gy, (T = +0) = Gy, (T = —0) due to commutation relation. Indeed Gy, (7) =
—(TC(T)¥1(0)). Then Guy,(+0) = —(CV!) and Gy, (—0) = (VIC) = —(C¥!). Then, after
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assuming G = G we obtain

Sy [(NM) = /deT' [ — kG e(T 4+ 0,7)Geyp, (T + 0,7)0(T — 7')
— Yyt 7) <G¢lc 7,7) + Z Uig.0( ))
— By (T, 7) (Gcwl 7,7") ZCW )) ]

(B13)
+ /deT' [ — J1 Gy (T 4 0,7) Gy r (T + 0, 7) (T — 7')

— Sy (7', 7) (wa/n 7.7 quz?a lla( ))

= Sy (7', 7) (Gzpm 7.7 Z‘I’zla Ul (r ))]

Now we can integrate over ¥ = (C, V) degrees of freedom. The action is quadratic in these variables:

S=>un Z antlia n\IfZ .a.n, Where the n subscript refers to Matsubara frequency:

_iwn —p+ ch,n Ecwl,n 0
H, = Zd)lcm — Wy — Hopy T+ Zwﬂbl,n Ewﬂllmn (B14>
0 Ewm,n —iwy, — Hiapy + Etﬁzwz,n

After integrating these degrees of freedom we obtain:
1

S/(NM) = (—log(detH,) — SijnGijn) + 5 (Hoy + 1) - (B15)
Differentiating over the self-energies we obtain:
~1
_iwn — K + Ecc,n E(:1Lv1,n 0
Gn=— Zwlc,n —in = iy, + 21/111&1,” Ewlwz,n : (B16)
0 Eiﬁzwhn —in — Poapy, + Eiﬁzwzm

Differentiating over the Green’s functions we obtain the following self-energies:
Yee(T) = 12Ge(T)
Zpatra(T) = =G (T)* Gipu
) = —JkGy (T =+0)o(T
) =

(=)

)
—JKGcwl( +0)o(7)

(

(

Bow (7 (B17)

2%0(7
5(7)



which leads to the expressions in Section [T A.

1. Free energy

The free energy is given by the action at the saddle point: SF = Sgaqdie

BF
NM - (—log(detH,) — % nGijn)

n

+ / deT/|:

— BIk Gy, (0

o | T

2
Gl )Gl 7) = G (1), (77) (B18)

1
Gepy (0) = BILG gy, (0) Gy, (0) + 5 (P o)

The double integration can be further simplified assuming that Green’s functions depend on time

~—

difference(I also divide it by iw, to get rid of divergences):

]6_]\2 =3 (-~ log(detHy /(iwn)?) — £4juGijn)

B ! 2
b [ (5= 1) [Pl o) = 6 ()G () (B19)

1
= BIkGy1c(0)Gepy (0) = BIL G (0) Gy (0) + 5 (s + prasa)
The formula can be checked (at least partially) in the following way: we compute Free energy for
different »;; and it the minimum of the Free energy should coincide with the actual solution of the

Schwinger-Dyson equations.

Appendix C: Luttinger relations

This appendix will employ a conventional Luttinger-Ward formalism to obtain the distinct Lut-
tinger relations in the FL* and FL phases in a unified manner. All results here are exact, and hold
to all orders in the 1/M expansion.

First, we review the derivation of the Luttinger result (3.16) from Refs. [64, 65, 84] in the context
of our FL* phase where Ry, # 0, but Ry, 4, = 0. We use (3.9, 3.10) to write the ¢ fermion Green’s

function as

F d [~ 2 AF 2 dg51 (W) r
Gcc(w) = @ - dQD(Q) In [w +p— Rcwlgwl (CU) - Q} + Rcwl TGcc(w)’ (C]')
where the superscript F' denotes Feynman Green’s functions at 7= 0. From (3.3) we have
dGr (w) 2 dxy, ,, (W)
) et (1- <ca>
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Combining (C1, C2) with (3.3, 3.5), we obtain for the sum of the ¢ and t; Green’s functions

GL(w) + Gy, (w) = di / dQD(Q) In [w + p — R, G (w) — Q]

W J o

dvl o (w)  d
Y1
SR Sty — S, @] (03)

Recall that we are in the FL* phase where Ry, 4, = 0. Now we can compute the total number of

F
+ GTZ’H/H

fermions by

2—p > dw i
T = / 2_71'2 [Gi(@) + Gi1¢1 (Cd)} e 0F (04)

As in traditional proofs of the Luttinger theorem [85], the central point is that the frequency integral
of the G}, (dX} , (w)/dw) term of (C3) vanishes. In our case, this follows directly from (2.7) or
from the G-X theory in Appendix B: this shows that G, (w) = 65/0%] , (w), and so the noted
term in (C3) is a total derivative of w. The remaining terms in (C3) are explicitly total derivatives
of w, and so their frequency integrals are easily evaluated [64, 85]. For 0 < p < 1, the FL* phase
appears in a regime where the frequency integral of the In[w + fiy, - - - ] term in (C3) vanishes, and
then the Infw + g - -] term in (C3) yields the FL* case of the Luttinger relation in (3.17). We note
that this Luttinger relation is found to be accurately obeyed in all our numerical analyses.

Next, let us also consider the FL case (C) in Section III where Ry, # 0 and Ry,y, 7# 0. Then,
from the expressions in Section 11, the identity (C3) is replaced by

GL(w) + Gy, (W) 4+ Gl (w) = i / dQOD(Q)In [w + p — RZ, Gl (w) — Q]

dw J_

dxh . (W) d
+ Giﬂlll wd:i + @ In [w + Hopy — 21};1% (w) - prlqug}/{; (w)}
dvf (w)  d
P2t
+ Giz’l/)z ;wz + % In [w + Hyy — 2521!12 (w)} : (05)

The frequency integral of (C5) can be performed exactly, as for (C3): now the In [w + py, - - -] term
yields unity, while the In[w + iy, - - -] term yields 0, and we obtain the FL case of the Luttinger
relation in (3.17).

For our purposes, the FL case in Fig. 1 actually corresponds to case (A) in Section III with
Ry, = 0 and Ry, 4, # 0. In this case the Luttinger relations follow as special cases of the analyses
above. The Luttinger relations for the physical C' layer follows directly from (C1), where the last
term vanishes. The Luttinger relation for the two ancilla layers in obtained from (C5) after dropping
the first terms from both the left and right hand sides.

Appendix D: Solution at J =0

It is instructive to examine the solution of the saddle-point equations in the limit where the

ancilla spins are decoupled from each other. An exact solution is possible, similar to the Kondo
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FIG. 16. Electron (a) and fermionic (b) spectral densities of the insulating solution at p = 0 for J = 0,
t =1, Rey, = 0.75.

model studied in Ref. [65], but now for the case of a Wigner semi-circle band of conduction electrons.
The exact solution gives insight into the origin of the gap at p = 0, and how it closes for non-zero
p.

At J =0, we have Xy, 4, = oy, = 0, and then the expressions in Section III constitute exact
results for the frequency dependence of all Green’s functions in terms of the chemical potentials
and Ry, and Ry, y,.

Here we examine these expressions in the FL* phase, where we also set Ry, = 0. Then the

non-zero Green’s functions are

RQ
2t oy
1 R%, G..(2)
Glﬁlwl(z) = o 2 (Dl)
2+ oy (Z + ﬂwl)
where G%(2) is given in (3.13). It is useful to note the large |z| limit
G%|z| = o0) = ! + £ + (D2)
. =t st

which establishes that there are no poles in (D1) at z = —uy, .

Consider first the undoped insulating limit p = 0, where we obtain a gapped phase. Particle-hole
symmetry requires g = 0 and gy, = 0. Examination of (D1) then shows that there is a gap in the
spectrum for any Ry, as shown in Fig. 16.

Turning to non-zero p, with gapless metallic solutions. Now the Luttinger relation in (3.16,3.17)
applies, and this relates p to p

R2
H= EF + ,L:fl ) (DB)
1

35



~0.15} ] -1r

5 -0.201 s
-3

3

~0.25} ] _af

-5F
_0.30 7\ L L L L L 1 L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
p (a) P (b)

FIG. 17. Numerically computed chemical potentials p,, (a) and p (b) as functions of doping p for J =0,
t =1, Ry, = 0.75.

where Frp — 2t as p — 0 as

Er 1 p
2/ dQD(Q)) =2—-p = d:c\/l—xQZZ. (D4)

2t Er/(2t)

At a given doping, the chemical potential p,, is found numerically using the constraint (2.4) and
presented in Fig. 17. The spectral densities change with doping as shown in Fig. 18. We check
numerically the Luttinger relation (D3) with the constraint (2.5) and find that it works with the
precision 10~ which is comparable with the precision that we tune to find the chemical potential
oy, - We also check the formula for the density of states of the electrons at the Fermi level (3.20)

and obtain that it works with the precision 1078.
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