
Unquantized thermal Hall effect in quantum spin liquids with spinon Fermi surfaces

Yanting Teng, Yunchao Zhang, Rhine Samajdar, Mathias S. Scheurer, and Subir Sachdev
Department of Physics, Harvard University, Cambridge MA 02138, USA

Recent theoretical studies have found quantum spin liquid states with spinon Fermi surfaces
upon the application of a magnetic field on a gapped state with topological order. We investigate
the thermal Hall conductivity across this transition, describing how the quantized thermal Hall
conductivity of the gapped state changes to an unquantized thermal Hall conductivity in the gapless
spinon Fermi surface state. We consider two cases, both of potential experimental interest: the state
with non-Abelian Ising topological order on the honeycomb lattice, and the state with Abelian chiral
spin liquid topological order on the triangular lattice.

I. INTRODUCTION

Quantum spin liquids (QSLs) are highly correlated
systems of mutually interacting spins, in which zero-
point quantum fluctuations are so strong as to prevent
symmetry-breaking magnetic ordering down to the lowest
temperatures [1–4]. More generally speaking, QSLs are
best defined as phases of matter realizing ground states
with long-range many-body entanglement, or massive
quantum superposition [5]. The exotic properties of these
highly entangled states can often be better understood
in terms of new (possibly nonlocal) degrees of freedom
rather than the constituent spins themselves [6]. Indeed,
quite generically, QSLs are characterized by “fractional-
ized” excitations such as charge-neutral spinons. These
spinons, which are accompanied by emergent gauge fields,
may or may not possess an energy gap, and can obey ei-
ther Fermi or Bose statistics [7–9].

First proposed in the 1970s, QSLs eluded experimen-
tal discovery in magnetic compounds for nearly half a
century and even today, undisputed material candidates
are few and far in between [10, 11]. On the theoreti-
cal side, however, models of these enigmatic phases are
plentiful. The prototypical example of a system with
an exact spin-liquid ground state is the Kitaev model
[12]. When placed in a magnetic field, this model hosts a
gapped phase with topological order, supporting Majo-
rana fermions and non-Abelian Ising anyons [13], which
may be relevant for quantum computation [14]. Despite
the seemingly contrived form of the bond-directional in-
teractions in the Kitaev model, variants thereof can ac-
tually be realized in some spin-orbit entangled j = 1/2
Mott insulators [15–17]. Among these so-called “Kitaev
materials” [18–22] are layered iridates such as Na2IrO3

[23, 24] and La2IrO3 [25], where the iridium atoms form
the sites of a honeycomb lattice.

Another promising material in this family, which has
attracted much attention recently, is α-RuCl3; here, the
Ru3+ ions act as effective localized moments. The ground
state of α-RuCl3 is known to be magnetically ordered
[26, 27] in the absence of a Zeeman field, with a zigzag
antiferromagnetic pattern [28–30]. While the system or-
ders, in zero field, at about 7 K [31, 32], the Kitaev ex-

change interaction is estimated to be ∼ 50–90 K. This
wide separation of scales has been interpreted as evi-
dence for proximity to Kitaev’s QSL state. However,
searching for fingerprints of charge-neutral quasiparticles
that could unambiguously identify this state is challeng-
ing with the familiar techniques that rely on electrical
transport. In this regard, a powerful probe of uncon-
ventional excitations in insulators is the thermal Hall ef-
fect, also known as the Righi-Leduc effect. For instance,
recent measurements of a giant thermal Hall conductiv-
ity in several undoped cuprate superconductors [33, 34]
have offered new insights [35–40] into their underlying
electronic phases.

The thermal Hall effect is especially of relevance to
the Kitaev materials because even if the charge degrees
of freedom are frozen out, heat transport [41] can still be
facilitated through charge-neutral modes. In α-RuCl3,
upon applying a Zeeman field, the intrinsic zigzag order
melts [42–45], driving the system into a paramagnetic
phase. If the field induces the aforementioned topologi-
cally ordered phase, which has a chiral Majorana fermion
edge state, one would expect a half-quantized [in units of
(π/6)k2

B/~] thermal Hall response [46] as T → 0. Claims
of such observations [47], suggesting a non-Abelian Ising
anyon phase, have sparked extensive investigation, both
experimentally [48–52] and theoretically [53–56]. Curi-
ously enough, a finite but unquantized thermal Hall con-
ductivity was also measured in α-RuCl3, over a broad
range of temperatures and magnetic fields [48, 57]. This
points towards a scenario where the effect of the field
yields an additional U(1) QSL phase [58]. Indeed a
plethora of numerical studies [59–65] indicate the pres-
ence of an intermediate gapless phase with spinon Fermi
surfaces (SFS), between the gapped topological order and
the trivial polarized phase at very strong fields.

Motivated by these diverse observations, we examine
the thermal Hall response in the Kitaev model for a wide
variety of field strengths and orientations using a parton
mean-field theory. One of our goals will be to understand
the half-quantized conductivity—and its stability—as a
function of an applied magnetic field. The quantization
ceases to hold as the system undergoes a phase transition
[66] to a field-induced U(1) spin liquid. We systematically
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investigate the thermal Hall signatures of this gapless
phase, including its temperature and field dependence,
and show that it is consistent with the behavior seen
in experiments. In particular, we demonstrate that an
unquantized response can be obtained from simply the
pure Kitaev model, coupled to a field, without requiring
any of the auxiliary Dzyaloshinskii-Moriya interactions
assumed in Ref. [67].

Interestingly, similar gapless QSLs with Fermi surfaces
of neutral emergent excitations can also appear in sys-
tems lacking spin-orbit coupling. One of the most com-
monly studied examples of this type is the Heisenberg
model on a triangular lattice. The physical importance
of this simple model is paramount as sundry QSL candi-
dates fall in the category of layered spin-1/2 triangular-
lattice magnets, like the organic salts [68–72] and the
transition metal dichalcogenides [73–76]. In all these ma-
terials, which belong to the family of weak Mott insula-
tors with strong charge fluctuations [77–81], transport
measurements hint at the existence of extensive mobile
gapless spin excitations. While, conventionally, many
of the Hamiltonians used to describe these compounds
have included “ring-exchange” couplings involving multi-
ple spins, replacing these with competing two-spin in-
teractions between different neighboring sites leads to
equally rich physics. In fact, such competition between
neighboring couplings has proved to be an essential in-
gredient in understanding potential QSL states in the
triangular-lattice delafossites [82–86] and rare-earth com-
pounds [87–93]. Guided by recent numerical work iden-
tifying a gapless chiral spin liquid (CSL) phase on the
triangular lattice [94], we analyze the thermal Hall co-
efficient in a Heisenberg antiferromagnet with compet-
ing exchange terms up to third-nearest neighbors. Fur-
thermore, we compare and contrast this conductivity to
that calculated for α-RuCl3 earlier. Our work highlights
how two seemingly disparate systems—the Kitaev and
Heisenberg models—exhibit parallel unquantized ther-
mal Hall responses, and underscores the generality of the
same.

II. KITAEV HONEYCOMB MODEL

Kitaev’s eponymous model, introduced in Ref. [12], is
comprised of S = 1/2 spins arranged on a honeycomb
lattice, with the Hamiltonian:

Hk = Kx

∑
x links

Sxj S
x
j +Ky

∑
y links

Syj S
y
j +Kz

∑
z links

Szj S
z
j ,

(1)
where Sj = (Sxj , S

y
j , S

z
j ) represents the spin operator at

site j. The spin and orbital degrees of freedom are locally
entangled as the interactions between nearest neighbors
depend on the type of the link. There are three nonequiv-
alent bond directions: the z links are the vertical bonds

(a) (b)

FIG. 1. (a) The Kitaev model on the honeycomb lattice.
Each hexagon has three types of links, labeled by x, y, or z;
the interactions between nearest-neighboring spins are bond-
dependent, as prescribed by Eq. (1). The operations R and C6

designate reflection across the x = y plane, and sixfold c-axis
rotation, respectively. (b) A hexagonal plaquette embedded
in the three-dimensional cubic lattice. The c axis is oriented
along the [111] direction. The lattice plane in (a), c = 0, is
shaded in yellow, while the blue shading marks the ac plane
(containing the magnetic field directions studied here).

of the lattice, whereas the bonds angled at ±π/3 from
the vertical constitute the x and y links (see Fig. 1). A
remarkable feature of this model is that it is exactly solv-
able and hosts different QSL [4–6] ground states. It has a
gapped topological phase (known as the A phase), which
is equivalent to the toric code [95] and supports Abelian
anyons. It also has a gapless phase (the B phase), which
morphs to a gapped non-Abelian topological phase, real-
izing Ising topological order (ITO), under a time-reversal
symmetry-breaking perturbation. The fractionalized ex-
citations in this gapped QSL are Majorana fermions and
Ising anyons.

Before studying the Kitaev model in a magnetic field,
it is instructive to first consider how the zero-field model
can be solved by writing the spins in terms of Majorana
fermions. This will also help us to draw a distinction with
the fermionization procedure employed later in Sec. II B.
We first define, for each site j, four Majorana fermions
{χµ} such that:

2Sαj = i χαj χ
0
j ; α = x, y, z. (2)

This representation induces a redundancy in the descrip-
tion, and in order to correctly reproduce the Hilbert space
of a spin-1/2 particle, the constraint

χxi χ
y
i χ

z
iχ

0
i = 1 (3)

has to be implemented ∀ i, wherefore

2Sα = iχαχ0 = −i εαβγ
2

χβχγ . (4)

In this formulation, the model (1) can be kneaded into

Hk = −1

4

∑
〈i,j〉

(
iKαij χ

αij
i χ

αij
j

) (
i χ0

i χ
0
j

)
. (5)
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Physically, this can be thought of as a simple problem of
Majorana fermions {χ0

i } that hop with a bond-dependent
amplitude tij = iKαijχ

αij
i χ

αij
j . A key observation by Ki-

taev [12] was that the Z2 flux around each hexagonal
plaquette p,

Φp =
∏
〈i,j〉 ∈ p

(iχ
αij
i χ

αij
j ) = ±1, (6)

is a conserved quantity at zero field. Therefore, Eq. (5)
can be reinterpreted as describing Majorana fermions
hopping in a background Z2 gauge flux. Conveniently,
Lieb’s theorem [96] then asserts that the ground state is
given by a uniform zero-flux state where Φp = +1 ∀ p.

Solving the Bogoliubov-de Gennes (BdG) Hamilto-
nian for {χ0

i } in momentum space leads to a fermionic
band structure, which encodes all the information about
the (short-ranged) spin correlations [97]. The spec-
trum is fully gapped if |Kz|> |Kx|+ |Ky|, which places
us in the A phase. Contrarily, if |Kz|< |Kx|+ |Ky|,
one finds a graphene-like band structure with a pair
of Dirac points at zero energy, positioned at momenta
± arccos [−Kz/(2K)] (taking Kx =Ky ≡K). This corre-
sponds to the phase B, which carries gapped vortices and
gapless fermions. A low-energy description of this phase
is thus given by Dirac fermions coupled to a dynamical
Z2 gauge field.

Moving away from the solvable limit, we now add to
Hk a Zeeman coupling to the magnetic field

Hz = −
∑
j

h · Sj = −
∑
i

(
hxS

x
j + hyS

y
j + hzS

z
j

)
, (7)

where h≡ (hx, hy, hz) is the applied field, and we have
absorbed the Bohr magneton µB in its definition. Kitaev
[12] proved that a generic perturbation of this kind opens
up a spectral gap in the originally gapless B phase. To see
this, we can consider the effect of Hz in perturbation the-
ory within the zero-flux (or vortex-free) sector; for sim-
plicity, let us assume isotropy, i.e., Kx = Ky = Kz ≡ K.
In this low-energy sector, all perturbations vanish at first
order in h, while the second-order terms simply renormal-
ize the original couplingK between each nearest neighbor
(abbreviated hereafter as NN). The lowest nonzero cor-
rection actually arises at third order in the field, leading
to an effective Hamiltonian

H3s ' −
hx hy hz
K2

∑
j,k,l

Sxj S
y
kS

z
l , (8)

where the summation runs over two possible configura-
tions of three spins arranged as follows:

(and symmetry-equivalent), or

.

In terms of the Majorana fermions {χ0
i }, H3s generates

second-NN hopping as well as four-fermion interactions,
and introduces a gap in the spectrum.

Taken together, Hk + Hz + H3s now encompasses all
the ingredients for a mean-field Hamiltonian of the pure
Kitaev model (1) coupled to a magnetic field, which we
will construct in Sec. II C. Since H3s is derived above as
only a perturbative approximation to Hz, including both
these terms in a theory might naively seem redundant.
However, at the mean-field level, we allow for all possible
symmetry-permitted terms, so it becomes necessary to
separately incorporate the distinct first- and second-NN
interactions stemming from Eqs. (7) and (8), respectively.

A. Symmetries

To proceed further, we have to establish the space
group symmetries of the Kitaev model that must be taken
into account by our eventual mean-field theory. In this
regard, it is useful to visualize the honeycomb lattice in
Fig. 1(a) as being embedded within a 3D cubic lattice
[Fig. 1(b)], as is indeed the case in material realizations
such as the layered iridates [17, 19, 98, 99]. Given the
strong spin-orbit coupling, all symmetry transformations
must act simultaneously on the spin and spatial degrees
of freedom, which live in three-dimensional real space
(rather than on the 2D honeycomb lattice alone).

In the absence of a magnetic field, the space group is
generated by the following elements. Firstly, the Hamil-
tonian enjoys the translational symmetries T1,2 along the
two primitive lattice vectors n1,2. One possible set of
point-group generators is [100, 101]:
1. Inversion—or twofold rotation—C2; the representa-
tion of this symmetry is simply

C2 : Sxr → SxC2r, S
y
r → SyC2r

, Szr → SzC2r. (9)

2. Pseudo-mirror R∗, composed of the conventional mir-
ror symmetry (namely, a reflection R across the x= y
plane) and a spin rotation eiπS

y

ei(π/2)Sz , which acts as

R∗ : Sxr → −S
y
Rr, S

y
r → −SxRr, S

z
r → −SzRr. (10)

3. Improper rotation S6, defined by a sixfold rotation
about the c axis, followed by a reflection across the c= 0
lattice plane i.e., S6≡C6 ·ei(2π/3)(Sx+Sy+Sz)/

√
3 such that

(S6)6 = 1. This symmetry holds only for the isotropic
Kitaev model with a Zeeman field in the [1, 1, 1] direction.
The components of these three operations acting on the
2D honeycomb lattice are sketched in Fig. 1

In addition, the zero-field Kitaev model naturally pos-
sesses time-reversal symmetry. The antiunitary time-
reversal operation (Θ) has no effect on the lattice per
se but acts on the spins as iSy K, where K denotes com-
plex conjugation. Even though Θ2 = −1 for a single spin,
note that we have Θ2 = +1 for the global time-reversal
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symmetry operation due to the bipartite nature of the
honeycomb lattice.

The time-reversal symmetry will, of course, be broken
by a finite magnetic field. Furthermore, a field along a
generic direction also breaks the pseudo-mirror symme-
try. Both these properties of the applied field are cru-
cial since the presence of either time-reversal or pseudo-
mirror symmetry prohibits a finite thermal Hall conduc-
tivity. We can illustrate this point by contrasting two
specific field directions. Let κxy denote the in-plane ther-
mal Hall conductivity, with both the temperature gra-
dient and the ensuing heat current in the honeycomb-
lattice planes depicted in Fig. 1(a). Now, for example,
if we take h ‖ [1̄10], parallel to the b axis, then κxy must
necessarily vanish as a consequence of the R∗ symmetry.
On the contrary, if h ‖ [11x], in the ac plane, then the
pseudo-mirror and time-reversal symmetries are individ-
ually broken but their combination is preserved; in this
case, one can have a nonzero κxy. Hence, in experiments
[47], the Zeeman field is aligned to be on the ac plane.
We will begin by considering a magnetic field along the
[111] direction; thereafter, we generalize the orientation
to [11x] and observe the change in the thermal Hall re-
sponse brought about by such a rotation.

B. Parton construction

While Kitaev’s original solution of the model (1) en-
tailed a rewriting of the spin variables in terms of Majo-
rana fermions, the correct low-energy degrees of freedom
can also be singled out by a different fermionization pro-
cedure using spinful complex fermions [102]. Guided by
this correspondence, we will use the latter formalism to
study the Kitaev spin liquid and proximate phases upon
perturbing away from the exactly solvable zero-field limit.

In the Abrikosov fermion representation [103–105] mo-
tivated above, the spin operator at each site is decom-
posed as:

Si =
1

2
c†i σ ci ; (11)

here, ci ≡ (ci,1, ci,2)T is a two-component fermionic
spinon operator, and σ denotes the three usual Pauli
matrices. Importantly, the mapping from spin-1/2 to
fermions in Eq. (11) expands the Hilbert space and, in
order to remain within the physical subspace, we must
restrict ourselves to the fermionic states with single oc-
cupation per site. Hence, this decoupling is to be supple-
mented with the constraints

c†i ci = 1, c†i,1c
†
i,2 = 0, ci,1ci,2 = 0, (12)

and therefore, any faithful fermionic band structure of
the spinons is always constrained to be at half-filling.

Related to this constraint, the parton construction out-
lined above exhibits an SU(2) gauge structure [106, 107].
This can be made apparent by defining the matrix

Ci =

(
ci,1 −c

†
i,2

ci,2 c†i,1

)
(13)

containing the spinon operators on site i. The physical
spin operators can now be written in terms of Ci as

Si =
1

4
Tr
(
C†i σ Ci

)
. (14)

As (14) is invariant under a local SU(2) transformation

Ci → CiWi , (15)

where Wi is an SU(2) matrix, this parton construction
has an SU(2) gauge redundancy. This leads to a descrip-
tion of the underlying spin model as a theory of fermions
coupled to an SU(2) gauge field [104, 108, 109]. However,
the actual residual gauge group can be smaller than the
full SU(2) depending on the particular phase of interest.
For instance, in the SFS state, the SU(2) symmetry is
broken down to the U(1) subgroup—this is an emergent
dynamical U(1) gauge field (as opposed to the conven-
tional U(1) electromagnetic field under which the spinons
are charge-neutral); the associated gauge transformation
that leaves the spins invariant reads as ci → cie

iθi . More-
over, if the spinons are in a superconducting phase (such
as in the CSL), then this gauge symmetry is broken down
to Z2 (ci → ±ci) by the pairing terms.

Owing to the gauge redundancy arising from the
Abrikosov fermion representation, a gauge transforma-
tion g ∈ G, with G being the residual gauge group, leaves
the Hamiltonian invariant. Any operation—including,
in particular, the symmetry transformations listed in
Sec. II A—can act within this gauge space in addition
to the spin degrees of freedom. Hence, all symmetries
act projectively and are defined by the corresponding left
(W ) and right (G) multiplications of the spinon matrix
C in Eq. (13): this information, known as the projective
symmetry group (PSG) [110, 111], characterizes the frac-
tionalized phases. The PSG for the Kitaev model was
worked out by Ref. [100]. In a generic gauge, c trans-
forms to a linear combination of c and c†. Such a de-
scription is inconvenient for U(1) SFS spin liquids, as it
would imply that pairing terms (cicj + h.c.) could be
generated from purely hopping terms (c†i cj + h.c.) due
to symmetry transformations alone. This drawback can
be circumvented, however, by choosing a suitable gauge
[101]. We define such a gauge in Appendix A and denote
the corresponding spinon operators by fiη, f

†
iη, η = 1, 2,

in the following. In that gauge, the symmetries act as

T1,2 : fi → fi+n1,2
(16a)

S6 : fi → ei
5π
6 U†S6

fC6i
(16b)
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ΘR∗ : fi → e−i
π
4 U†ΘR∗ fR i, (16c)

where

US6
≡ 1 + i(σ1 + σ2 + σ3)

2
(17a)

UΘR∗ ≡ e−iσ3
π
4 (17b)

Now we can see explicitly that the gauge charge of the
spinons is preserved by the symmetry implementation.
This will be very convenient in the following mean-field
treatment.

C. Mean-field theory

The Kitaev honeycomb lattice model was studied us-
ing the SU(2) fermion formalism by Ref. [102], which
showed that the description of Ref. [12] can be exactly
reproduced in this language. To be precise, the physical
correlation functions of the true ground state of Eq. (1)
are captured by a stable mean-field theory which can be
constructed as follows.

Since all the Kitaev interactions in Hk involve two
spins, inserting the representation (11) generates terms
that are a product of four fermions; the resultant
fermionic Hamiltonian is rather complicated due to the
lack of spin rotation invariance in the model. One way to
proceed is to use a Hubbard-Stratonovich transformation
[112] to decouple the four-fermion interactions, which can
be recast into interactions between a pair of fermion op-
erators on the sites i and j and a bosonic field (which lives
on the link between them). At the mean-field level, these
four auxiliary fields assume nonzero expectation values.
Imposing the self-consistency of the expectation values,
which can be expressed in terms of Kx,y,z leads to the
coefficients of the quadratic terms of the Hamiltonian at
the saddle point of interest.

However, significant physical insight can be gleaned
from a phenomenological analysis of such a mean-field
description without necessarily self-consistently solving
the theory. To this end, we rewrite the Kitaev model in
terms of the spinon operators f as the sum:

Hmf
k = Hhopping +Hpairing. (18)

The detailed form of these terms are documented in Ap-
pendix A. Hhopping consists solely of hopping operators
of the spinons, i.e. each term therein preserves the U(1)
symmetry. Conversely, Hpairing contains purely pairing
terms of the spinons that break the U(1) gauge symme-
try down to Z2. In total, Hmf

k is described by two types of
first-NN interactions, of strengths J1 and J ′1, and second-
NN interactions with a coupling J2. Eq. (8) informs us
that such a second-NN term originates from the effect of
a magnetic field in third-order perturbation theory, so,

-5

0

5

- 

-4

-2
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2

4
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FIG. 2. Dispersions of the mean-field spinon Hamiltonian,
Eq. (18), for the Kitaev model with J1 = 1 and J ′

1 = 3.5;
plotted here is εn,k≡En,k−µ. At low fields (a,b), we take
the coefficient of the second-NN hopping to be J2 =−2.5h3,
in accordance with Eq. (8). For h= 0.7/

√
3 (a), the system is

in the ITO phase; diagonalizing HITO [Eq. (19a)] yields eight
fully gapped bands. At h= 0.8/

√
3 (b), the band structure

clearly displays both electron-like and hole-like Fermi surfaces
as expected in the SFS phase. When h > 1 (c,d), H3s is no
longer perturbative, so we employ an ansatz in which J2 =
−0.75 and constant; the corresponding field strengths are (c)
h= 4/

√
3, and (d) h= 6/

√
3. The Fermi surfaces shrink as the

field is increased, eventually leading to the gapped polarized
phase (d).

in principle, J2 should be varied as ∝ hxhyhz. This per-
turbative expansion, of course, only holds for small h;
in the regime of large magnetic fields, we can think of a
constant J2 as being spontaneously induced by the field.

The mean field Hamiltonians that we construct for the
different phases are thus

HITO = Hhopping + ξ(h)Hpairing +Hh (19a)
HSFS = Hhopping +Hh (19b)

where

Hh = −
∑
i

f†i
(
hxσ1 + hyσ2 + hzσ3

)
fi (20)

represents the Zeeman coupling to a magnetic field in the
[hxhyhz] direction. Nevertheless, Hh should not be lit-
erally taken as the full effect of a Zeeman field, since the
latter can also renormalize the parameters in the other
terms of the Hamiltonian. The strength of the pairing
ξ(h) is modulated as ξ(h) = (1 − |h|/hc1(ĥ))1/2 ∈ [0, 1]

such that it vanishes at the critical field hc1(ĥ), and
ξ(h) = 0 for |h|>hc1(ĥ). In general, the critical field hc1
depends on the direction of the magnetic field, ĥ=h/|h|.
For concreteness, however, we will neglect this anisotropy
and set hc1(ĥ) = 0.8 throughout this work. We reiter-
ate that choosing a gauge that does not mix f and f†
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in the symmetry transformations (16) is essential here
since, otherwise, dropping the pairing term would break
the symmetries of the system and, as such, not consti-
tute a proper description of the ITO to SFS transition.
Within our description, Hhopping, Hpairing, and Hh sepa-
rately preserve all symmetries in Eq. (16).

To match the conventions of the literature with the
magnetic field along the [111] direction, we use h not to
denote the magnitude of h, but instead to parameterize
it as h = (h, h, h)T for this specific orientation of the
magnetic field.

Some representative dispersions of this mean-field
Hamiltonian are shown in Fig. 2. As the magnetic field is
increased, the Fermi pockets emerge, change in size and
shape, and eventually disappear. In this process there
can be Dirac crossings of the four bands, but since such
crossings always occur away from the chemical potential,
they do not induce a phase transition [101].

III. THERMAL HALL RESPONSE IN THE
FIELD-INDUCED PHASES

Prior to delving into the thermal Hall response of Hmf
k ,

let us briefly recast the phase diagram of the finite-
field Kitaev model in the language of fermionic spinons.
Firstly, the gapless B phase, within this description, is a
p-wave superconducting state of the spinons with zero-
energy excitations at nodal points [102]; these excita-
tions, in turn, constitute a single Dirac fermion. The
Majorana fermions of the solution in Sec. II appear as
the BdG quasiparticles of the superconducting state. In
the presence of a field, the order parameter acquires an
ip component (resulting in a weak pairing [113] px + ipy
chiral topological superconductor) and the Dirac fermion
develops a mass. This leads to a gapped ITO phase—
with a non-Abelian chiral QSL ground state—which re-
mains stable for small magnetic fields h ‖ [111] and weak
anisotropy, i.e., Kz 'Kx =Ky =K. Recognizing the cor-
respondence to a px+ipy superconductor, it immediately
follows that this state must break both time-reversal and
mirror-reflection symmetries as asserted previously.

Bordering the ITO phase is the gapless U(1) spin liq-
uid, which can be interpreted as a spinon metal. It is
characterized by both electron and hole Fermi surfaces of
neutral spinons, coupled to a dynamical U(1) gauge field.
This phase persists up to intermediate magnetic fields
and weak anisotropy. Increasing the [111] field further
shrinks these pockets, bringing us to the gapped polar-
ized phase, which is just a band insulator of spinons. This
is a partially polarized magnetic phase [65] that is adia-
batically connected to the trivial fully-polarized product
state at high fields. As a function of the field, the mag-
netization monotonically increases toward its saturation
value attained when all the spins are aligned along the
[111] direction.

0

Non-Abelian Ising 
topological order

Spinon Fermi 
surfaces

Partially polarized 
phase

G
ap

les
s  

   
Q

SL
 

(K
ita

ev
 B

 p
ha

se
)

FIG. 3. Phases of the isotropic Kitaev model under a mag-
netic field in the [111] direction, i.e., hx =hy =hz =h. Start-
ing with the B phase at h= 0, the system transitions from
a non-Abelian chiral QSL with Ising topological order, to a
gapless U(1) spin liquid, and finally, into a trivial polarized
state as the field is varied. The three field-induced phases can
also be reinterpreted in terms of the fermiology of the spinons
as a px + i py weak-pairing superconductor, a metal, and a
band insulator, respectively, as depicted.

Finally, in the limit of strong anisotropy, one can also
realize the A phase of the Kitaev model. This gapped
Z2 spin liquid corresponds to a trivial strong pairing p-
wave superconductor of the spinons [7, 114]. The state
is fully gapped because the nodes in the order parame-
ter do not intersect the Fermi surface. When h � K,
the phase boundary between the non-Abelian ITO and
this Abelian toric phase follows from perturbation the-
ory [115] as Kz/K ' 2 − 38 (h/K)2 + O(h/K)4. Sim-
ilarly, analyzing the properties of the toric code under
a transverse field [116–118], the phase boundary with
the polarized phase can be analytically determined to be
Kz/K ∼ (h/K)−1. The line Kz/K = 1, which we focus
on, does not cross these boundaries in the (h/K,Kz/K)-
plane, so we will never actually encounter the Abelian
phase in our calculations. A schematic phase diagram
summarizing the phases that we probe below is presented
in Fig. 3.

Our computation of the thermal Hall response will be
carried out at the parton mean-field level, and we will
not consider the consequences of gauge fluctuations. In
the ITO, the gauge fluctuations are fully gapped and
only lead to exponentially small corrections to κxy at low
temperatures. On the other hand, the U(1) gauge fluc-
tuations in the gapless Fermi surface phase can lead to
significant corrections: the structure of these corrections
has been discussed elsewhere [40].

A. Formalism

The thermal Hall conductivity can be computed from
the microscopic Hamiltonian using a linear response
framework. It is, however, well recognized that calcula-
tions of κxy based on a direct application of the Kubo for-
mula are plagued by unphysical divergences at zero tem-
perature [119, 120]. This is known to be a consequence of
the broken time-reversal symmetry in the system. Under
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such circumstances, a temperature gradient drives not
only the transport current, but also an experimentally
unobservable circulating current [121, 122]. While the
microscopic current density calculated by the standard
linear response theory encapsulates both contributions,
the circulating component has to be subtracted out for
a well-defined response since it does not facilitate heat
transport. As pointed out by Qin et al. [123], this can be
achieved by carefully accounting for the electromagnetic
and gravitomagnetic energy magnetizations [124, 125],
which naturally arise as corrections to the thermal trans-
port coefficients.

We now use the formalism of Ref. [123] to first com-
pute κxy in the SFS phase, for which the Hamiltonian
[Eq. (19b)] does not involve any pairing terms. Trans-
forming to momentum space, we have

fA(B),η(k) =
1√
N

∑
k

e−ik·rfA(B),η(r), (21)

where A,B stand for the two sublattices, N is the number
of unit cells, and η = 1, 2. The mean-field Hamiltonian
can now be expressed as

Hmf
k =

∑
k

ψ†kH(k)ψk, (22)

ψk =
(
fA,1(k), fA,2(k), fB,1(k), fB,2(k)

)T

.

Diagonalizing H(k) produces the dispersion in Fig. 2 (b-
d); there are four bands, labeled by n, with the corre-
sponding eigenergies En,k. The thermal transport coef-
ficient is directly related to the Berry curvature in mo-
mentum space [119], which is given by

Ωn,k = −2 Im

〈
∂ un,k
∂kx

∣∣∣∣∂ un,k∂ky

〉
, (23)

un,k being the periodic part of the Bloch wavefunction
with band index n = 1, . . . , 4. For reference, Fig. 4 dis-
plays Ωn,k for the n= 2 and n= 3 bands (colored yellow
and green, respectively) of Fig. 2(b) and (c), correspond-
ing to the SFS phase at two different fields; we will see
shortly how the variations in κxy can be connected to the
momentum space distribution of the Berry curvatures.
Defining

σxy(ε) = −
∫
En,k<ε

d2k

(2π)2
Ωn,k, (24)

which is simply ~/e2 times the zero-temperature anoma-
lous Hall coefficient for a system with chemical potential
ε [126, 127], the thermal Hall conductivity is given by
[123]

κxy = − k
2
B

~T

∫
dε (ε− µ)2 σxy (ε) f′(ε− µ) (25)

FIG. 4. Berry curvatures Ωn,k for the second, n = 2, and
third, n = 3, bands (which cross the Fermi surfaces) in
Fig. 2(b) and (c). The profiles here correspond to h =
(h, h, h)T with (a) h= 0.8/

√
3, n= 2, (b) h= 0.8/

√
3, n= 3,

(c) h= 4/
√

3, n= 2, and (d) h= 4/
√

3, n= 3. The integrals
of the curvatures over the Brillouin zone [Eq. (26)] define the
Chern numbers, which are (a) 2, (b) 0, (c) −1, and (d) 1.

where µ is the chemical potential and f (ε) is the Fermi
distribution function. Enforcing the parton constraint in
Eq. (12) fixes µ so that the system is always maintained
at half-filling.

For an isolated band separated from all others by an
energy gap, the Chern number, which is the integral of
the Berry curvature over the Brillouin zone,

Cn =
1

2π

∫
d2k Ωn,k ∈ Z, (26)

is well-defined and integer-valued. Using the Sommerfeld
expansion, it is easy to see that as T → 0,

κxy
T

= −π k
2
B

6 ~
∑

n∈ filled bands

Cn. (27)

Consequently, κxy/T is quantized in units of π/6 as
T → 0. On the other hand, if either the occupied bands
are all topologically trivial or the net sum of their Chern
numbers is zero, then κxy eventually vanishes at T = 0.
Clearly, this analysis is not applicable to the SFS state,
which is gapless, but it will prove to be relevant to the
polarized phase, as well as to Sec. IVB below.

The story has to be modified when the Hamiltonian
involves spinon pairing terms, such as for the ITO phase
[Eq. (19a)], since the spinor structure in Eq. (22) can no



8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0 1 2 3 4 5  
-0.12

-0.10

-0.08

-0.0 

-0.04

-0.02

0.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00(a) (b) (c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.2

-0.1

0.0

0.1

0.2

0.3 0.4 0.5 0. 0.7 0.8

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.3 0.4 0.5 0. 0.7 0.8
-0.10

-0.08

-0.0 

-0.04

-0.02

0.00(d) (e) (f)

FIG. 5. Thermal Hall conductivity of the Kitaev model (in mean-field theory) as a function of field strengths and orientations.
Gapped (gapless) phases are portrayed as solid (dashed) lines. (a) For small magnetic fields in the [111] direction, the zero-
temperature value of κxy/T is half-quantized at −π/12, which is indicative of the Majorana edge state. Increasing |h| leads
to the onset of the SFS phase, whereupon we obtain an unquantized coefficient. (b) The SFS phase transitions to the trivial
partially polarized state at high fields; the latter is characterized by a vanishing thermal Hall response as T → 0. (c) Temperature
dependence of κxy/T for a magnetic field in the [11x] direction with a fixed magnitude |h|= 0.8 but variable polar angle θ with
respect to the c-axis in the ac plane. (d) Scanning the angle from θ=−π/2 to θ=π/2 in increments of π/12 for a magnetic
field |h| = 0.6 shows clear anisotropy, with a change of sign between θ=−π/4 and θ=−π/6. (e–f) Field dependence of κxy/T
for a magnetic field in the [11x] direction with fixed temperatures T/J1 = 0.1 (e) and T/J1 = 0.5 (f).

longer be used. Instead, we can manipulate the Hamil-
tonian into the BdG form,

Hmf
k =

1

2

∑
k

Ψ†kHBdG(k) Ψk, (28)

Ψk =
(
fA(k), fB(k), f†A(−k), f†B(−k)

)T

where Ψ is an eight-component Nambu spinor; note that
we have suppressed the index η = 1, 2 on each of fA,B for
brevity of notation. The bands obtained upon diagonal-
ization of HBdG are plotted in Fig. 2(a); we, once again,
denote the associated eigenenergies and wavefunctions by
En,k and un,k, respectively, but with the distinction that
n = 1, . . . , 8. This eight-band description necessitates
a theory of the thermal Hall effect for superconductors
[128–131]. The most general formalism in this regard was
developed by Ref. [132], starting from the assumptions
that the BdG Hamiltonian is Hermitian and preserves
particle-hole symmetry, both of which are satisfied by
Eq. (28). The end result is remarkably simple:

κxy = −1

2

k2
B

~T

∫
dε (ε− µ)2 σxy (ε) f′(ε− µ), (29)

lim
T→0

κxy
T

= −π k
2
B

12 ~
∑

n |En,k≤0

Cn, (30)

where σ and Cn are defined exactly as in Eqs. (24) and
(26), respectively, but for the BdG spectrum. The crucial
difference compared to Eq. (27) is the additional factor
of 1/2, which implies that κxy/T is now half-quantized at
zero temperature. Nonetheless, if all pairing terms were
to be dropped, Eqs. (25) and (29) would yield identical
answers for κxy.

Notably, the derivation of the quantum thermal Hall
conductivity in Ref. [132] relies solely on the bulk mi-
croscopic Hamiltonian without any reference to the edge
whatsoever. However, their final formula [Eq. (29)] is in
complete agreement with the result in Ref. [113], which
studied the purely edge theory in a spinless chiral p-wave
superconductor to show that the thermal Hall coefficient
in the low-temperature limit is precisely c (πT/6)(k2

B/~),
where c = 1/2 is the central charge of the Ising conformal
field theory describing the Majorana edge state.

B. Results

The thermal Hall conductivity for the parton mean-
field theory [Eq. (18)] of the Kitaev model is shown in
Fig. 5. Let us first concentrate on the low-field regime
with h ‖ [111]: under these conditions, as discussed ear-
lier, the second-NN interactions can be regarded as aris-
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ing from the perturbative three-spin term of Eq. (8), so
we set J2 =−2.5h3. Figure 5(a) illustrates that for small
h, κxy/T is quantized at precisely −π/12 as T → 0 over
a substantial field range. This plateau, which is at half
of the two-dimensional thermal Hall conductance in in-
teger quantum Hall systems, agrees perfectly with the
existence of the Majorana edge mode in the ITO phase.
The negative sign simply follows from Eq. (30) as the
Chern numbers of the lowest four bands in Fig. 2(a) are
{1,−1, 0, 1} and thus, sum to +1. In the opposite limit
of high temperatures (T � J1), the bands are all equally
populated, as determined by the Fermi distribution func-
tion; since the net Chern number of all the bands is neces-
sarily zero, the thermal Hall conductivity also vanishes as
T →∞. The quantization persists up to |h| ≤ hc1 = 0.8.
Increasing the field beyond this critical value results in
the formation of Fermi surfaces, as seen in Fig. 2(b), and
the response ceases to be pinned at −π/12. This tran-
sition from the ITO to the SFS phase is described by
QCD3-Chern-Simons theory, which has emergent gapless
Dirac fermions (with Nf = 1 flavors) coupled to a U(2)
Chern-Simons gauge field [101, 133, 134]. Once the Fermi
surfaces begin to grow, there is an additional component
to the zero-temperature value of κxy/T , which we can
quantify as ∆≡ limT→0 (κxy/T )− (−π/12). The sign of
this deviation ∆ is positive in Fig. 5(a) and can be un-
derstood in terms of the Berry curvatures as follows. As
h is increased from hc1 , the electron-like Fermi surfaces
near the Γ point of the Brillouin zone, as well as the hole-
like pockets near the K and K ′ points, start to expand.
In the process, κxy effectively gains (loses) some contri-
bution from part of the third (second) band. However,
from Fig. 4(b), we can see that the Berry curvature of
the n= 3 band centered around the Γ point is negative,
so, by Eq. (25), the portion of the third band below the
Fermi surface contributes to a positive ∆. Analogously,
the curvature of the n= 2 band in the vicinity of K and
K ′ is positive, and therefore, given the hole-like nature
of the Fermi surfaces concerned, this too leads to a net
positive ∆.

Proceeding to even larger h, one would expect to move
beyond the scope of Eq. (8); therefore, we now take the
parameter J2 to be a constant (instead of the earlier cu-
bic h dependence); physically, this amounts to asserting
that a finite J2 emerges spontaneously as the effect of
an external magnetic field. Specifically, we set the ratio
J2/J1 =−0.75, as suggested by the density-matrix renor-
malization group (DMRG) results of Zou and He [101].
Upon increasing the field, the Fermi surfaces gradually
shrink [see Fig. 2(c)], and the system is driven into the
field-induced polarized phase. Figure 5(b) highlights the
thermal Hall signatures of this quantum phase transition,
which can be described by Nf = 2 QCD3 [101]. While we
initially observe a nonzero κxy/T at zero temperature
for h . hc2 = 5.5, this disappears in the partially po-

larized phase, for which limT→0 (κxy/T ) = 0. Intuitively,
this trivial response can be deduced from Eq. (27) as the
sum of the Chern numbers of the occupied bands is zero.
The trends of κxy/T in Fig. 5(b) can once again be un-
derstood, at least at low temperatures, in terms of the
Berry curvatures for the n= 2 and n= 3 bands, plotted in
Figs. 4(c) and (d), respectively. Note that the mean-field
hc2 does not match the critical field predicted in numer-
ics, which is unsurprising since we neglect the possibility
that the magnetic field can also nontrivially renormalize
the other couplings in the Hamiltonian.

Thus, we have demonstrated the origin of a large but
unquantized thermal Hall conductivity in Kitaev mate-
rials, such as α-RuCl3, without assuming any spin-orbit
coupling terms in the Hamiltonian beyond those already
in the original Kitaev model (1). This is to be contrasted
with the scenario proposed by Ref. [67], in which the
spinons experience an emergent Lorentz force in the ap-
plied field due to additional Dzyaloshinskii-Moriya (DM)
interactions [135, 136]. Such a mechanism relies on the
field generating a finite second-NN scalar spin chirality
on the honeycomb lattice through the DM interaction,
thereby inducing an internal gauge flux for the spinons,
which gives rise to thermal Hall transport. However, our
calculations above show that the unquantized behavior
of the thermal Hall effect does not hinge on DM in-
teractions, the microscopic forms of which are presently
unclear [137], but rather, is a much more general phe-
nomenon.

Recall that we can also obtain a nonzero thermal Hall
conductivity of O(k2

B/~) for a generic vector h ‖ [11x],
which lies on the ac plane. A special case of this is, of
course, the [111] direction that we have considered so far.
To generalize our previous results, we present in Fig. 5(c)
and (d) the temperature dependence of κxy for other po-
lar angles, θ, of the magnetic field [56], with strengths
corresponding to the SFS and ITO phases, respectively.
Note that the variation with θ changes not only the Zee-
man term in Eq. (20) but also the coefficient J2∝hxhyhz.
Interestingly, we observe in Fig. 5(c) that, for small rota-
tion angles around θ = π/8, the zero-temperature value
of κxy/T is enhanced from the quantized value in the
ITO phase. While κxy is almost invariant under change
of sign of the angle θ in the SFS state (not shown for
clarity), there is a clear anisotropy in the ITO phase [see
Fig. 5(d)], as was noticed earlier [51, 138]; upon increas-
ing θ from −π/2, we see that κxy/T is first half-quantized
at a positive value, and subsequently changes sign be-
tween θ=−π/4 and θ=−π/6 to a negative coefficient.

Finally, in Fig. 5(e) and (f), we show the magnetic-
field dependence of κxy/T at two different temperatures
for different angles θ. At a low but finite temperature
in Fig. 5(e), κxy/T decreases smoothly for small mag-
netic field. As the field’s magnitude increases to |h| =
0.6, a plateau at −π/12 for θ= 0 and θ=π/24 indicates
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the ITO phase. We note that for lower temperatures
T/J1< 0.1 (not shown), the plateau persists for a wider
range of fields. Further increase of the magnitude of the
field to |h|= 0.8 shows a phase transition to the SFS
phase. At a higher temperature, Fig. 5(f), the thermal
Hall conductivity dies off approaching zero as expected.

IV. TRIANGULAR-LATTICE HEISENBERG
ANTIFERROMAGNET

The Kitaev model, studied in the previous sections,
provided a natural platform to probe the thermal Hall
transport in a gapless U(1) spin liquid: associated with
the onset of Fermi surfaces, we found an additional zero-
temperature contribution to κxy that destroys the origi-
nal quantization. To gain more insight into this generic
behavior, we now turn to a different class of spin models:
Heisenberg antiferromagnets. Recent numerical evidence
[94] suggests that, on a triangular lattice, the Heisen-
berg model with competing interactions proffers another
example of a quantum spin liquid with emergent Fermi
surfaces. Importantly for our purposes, the physics of
this system, which is fully spin-rotation invariant, is in-
herently different from the Kitaev model that, by con-
struction, relies on spin-orbit coupling.

The Heisenberg model on the triangular lattice has
long been the prototype to understand the effects of
competing interactions on magnetic orders [82–85] and
potential QSL states [89] in several materials. We here
consider exchange interactions up to third NNs with the
corresponding Hamiltonian

Hh = J1

∑
〈i,j〉

Si ·Sj +J2

∑
〈〈i,j〉〉

Si ·Sj +J3

∑
〈〈〈i,j〉〉〉

Si ·Sj ,

(31)
where Jn > 0 stands for the strength of the n-th-NN
exchange coupling; in particular, the inclusion of further
interactions beyond NNs alone is believed to be an impor-
tant ingredient in stabilizing QSLs. In such a frustrated
system, quantum fluctuations can induce QSL states in
the vicinity of classical phase boundaries between differ-
ent magnetic orders [7, 139].

Even with J3 = 0, the model in Eq. (31) is widely rec-
ognized to host a spin-liquid phase. The nature of this
so-called J1-J2 spin liquid has been a subject of exten-
sive debate, with several proposed scenarios including a
gapless U(1) Dirac spin liquid [140–142], a gapped Z2

spin liquid [143–145], or competing spin liquid states
[146] among others. The story is even richer upon adding
the J3 coupling; it is believed that the J1-J2 spin liquid
can then extend to a larger parameter range [147, 148].
In a recent work, Gong et al. [94] studied the J1-J2-J3

Heisenberg model using the DMRG algorithm. Choosing
J1 = 1.0 as the overall energy scale, they identified a
CSL phase in the coupling range 0 ≤ J2/J1 ≤ 0.7, 0 ≤
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FIG. 6. Phase diagram of the J1-J2-J3 Heisenberg model in
mean-field theory [see Eq. (34)]. At J2 = 0, the spectrum is
gapless and hosts a pair of Dirac cones. By varying J3 while
keeping J2 fixed, the system can be driven from a gapped J1-
J2 spin liquid, with a quantized zero-temperature κxy/T to
a gapless U(1) CSL with emergent spinon Fermi surfaces and
an unquantized response. The red points indicate the values
of J3 considered for computing the thermal Hall conductivity
in Fig. 8(a).

J3/J1 ≤ 0.4, in proximity to the previously found J1-J2

spin liquid and the triple point of the different magnetic
orders. Unlike the gapped CSL phase on the kagomé
lattice [149–151], the CSL phase harbored by the trian-
gular lattice is gapless. This state spontaneously breaks
time-reversal symmetry with a finite scalar chiral order
〈Si · (Sj × Sk)〉 for the three spins i, j, k on a trian-
gular plaquette. Moreover, the large central charge esti-
mated numerically is redolent of a scenario with emergent
spinon Fermi surfaces [78, 79, 152, 153]. In light of these
observations, we will now try to understand the thermal
Hall effect in this CSL phase and compare the response
to that previously evaluated for the Kitaev model.

A. Model

In order to explain the abovementioned DMRG results,
Ref. [94] proposed a staggered flux state, which could ac-
count for both the Fermi surfaces in the gapless CSL and
the observed coexisting chiral edge modes [154, 155]. As
before, we construct a mean-field theory for this state
using the Abrikosov-fermion representation of spin-1/2
operators (14). Due to the SU(2) spin-rotational sym-
metry, the Hamiltonian simplifies considerably using the
identity

Ŝxi Ŝ
x
j + Ŝyi Ŝ

y
j + Ŝzi Ŝ

z
j = −1

2
c†iαcjαc

†
jβciβ +

1

4
c†iαciαc

†
jβcjβ ,

with repeated indices implicitly summed over. In a U(1)
QSL, all spinon pairing terms must necessarily vanish.
Thus, carrying out the mean-field decoupling with the
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assumption that only fermionic hopping terms acquire
nonzero expectation values, the Heisenberg Hamiltonian
H '

∑
i,j Jij Si · Sj reads (up to constants) as

Hmf
h =

∑
〈ij〉

Jij
4

∑
α

(
−ζ∗ij c

†
i,αcj,α + h.c.

)
+
∑
〈ij〉

Jij
4
|ζij |

2;

ζij ≡
∑
α

〈c†i,αcj,α〉 = ζ∗ji. (32)

Note that in deriving Eq. (32), we have made use of the
single-occupancy constraint (12) on the parton Hilbert
space to eliminate on-site terms such as 〈c†iαciα〉 at the
mean-field level.

In principle, the ζij can be solved for self-consistently
but here, for the sake of generality, we treat them as
free (bounded) parameters. The expectation values {ζij}
then collectively define a mean-field ansatz. The projec-
tive action of lattice or time-reversal symmetries on this
ansatz describes the particular spin-liquid state of inter-
est. Specifically, we focus on a U(1) spin liquid known as
the staggered flux state [110, 156, 157]. Its PSG specifies
that the fermionic spinons transform as

cα (r)
T1−→ cα (r+ a1), cα (r)

T2−→ (−)r1c†α (r+ a2), (33)

under translations T1 and T2 along the unit vectors
a1 = (1, 0) and a2 = (1,

√
3) of the triangular lattice, re-

spectively. As can be seen from the factor of (−1)r1 in
Eq. (33), the mean-field ansatz is translationally invari-
ant only modulo a gauge transformation, thus necessi-
tating the use of a two-site unit cell when working in a
fixed gauge. In spite of the unit cell being doubled, the
projected wavefunction, of course, preserves the lattice
translation symmetries along both a1,2.

The mean-field phase diagram determined from this
ansatz is sketched in Fig. 6. While the explicit form of the
Hamiltonian is detailed in Appendix B, let us briefly dis-
cuss its structure here. Since the underlying spin model
retains couplings up to third-NN sites, it is only natural
to allow for all symmetry-allowed hopping terms up to
the same range in the mean-field ansatz. To wit, we take

Hmf
h = J1H1 + J2H2 + J3H3, (34)

where Hi describes hopping between i-th neighbors. The
first-NN hopping processes are characterized by an ampli-
tude ζ and two phases φ1, φ2. On setting φ1 =φ2 =π/2,
the ansatz with NN hopping alone reduces to the familiar
π-flux U(1) QSL state [158], and the spectrum exhibits
a pair of Dirac cones, centered at half filling, for each
spinon species as drawn in Fig. 7(a). However, one can
also engineer any other value of the flux threading each
plaquette through a suitable choice of the phases φ1,2.
Inclusion of the second- (or third-) NN hoppings result
in the opening of a direct gap at each Dirac cone. The re-
sultant (fully gapped) bands are topologically nontrivial,

(a) (b)

(c) (d)

(e) (f)

FIG. 7. Band structure of the staggered-flux ansatz [Eq. (34)]
along high-symmetry lines with mean-field parameters as fol-
lows. The amplitudes of the first-, second-, and third-NN hop-
pings are ζ = 1.0, λ= 1.0, and ρ= 3.0; the associated phases
are φ1 =φ2 =π/2, ϕ1 =ϕ2 =ϕ3 = 0, and γ1 = γ2 = γ3 =π/2,
respectively. Each band is doubly degenerate as the two
spinon species have identical energies. (a) At J2 =J3 = 0,
there are two Dirac cones in the spectrum. (b) Adding a
nonzero J2 = 0.3 gaps them out. (c) A small J3 = 0.04/ρ shifts
the two cones unequally; note that the state is still gapped
at this stage. (d) Finally, beyond a threshold J3, Fermi sur-
faces emerge as plotted here for J3 = 0.16/ρ. (e) The blue
and yellow pockets trace out electron-like and hole-like Fermi
surfaces, respectively. Owing to our choice of a two-site unit
cell, the Brillouin zone is defined as the region enclosed by
the dashed rectangle. (f) The Berry curvature is a function
of J2 alone; for each of the two bands, its distribution in mo-
mentum space is peaked at the k-vectors of the original Dirac
points.

with Chern numbers C =±1; from the bulk-boundary
correspondence [159, 160], this gives rise to the chiral
edge state. Lastly, the third-NN hoppings split the de-
generacy of the two Dirac cones, generating a particle-like
and a hole-like SFS, one around each Dirac point [blue
and red, respectively, in Figs. 7(e)]. These terms do not
alter any of the topological properties, which are con-
trolled instead by J2. Since the mean-field ground state
is, once again, at half-filling by virtue of Eq. (12), the
particle- and hole-like Fermi surfaces are always perfectly
compensated.

So far, we have regarded the couplings Ji as material
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(a) (b) (c)

FIG. 8. Temperature dependence of the thermal Hall conductivity for the J1-J2-J3 Heisenberg model described by the mean-
field theories (a) Hmf

h [Eq. (34)], and (b) H̃mf
h [Eq. (36)]. In both cases, the system can be tuned from the J1-J2 spin liquid,

with a quantized thermal Hall coefficient of −π/3, to a CSL, endowed with spinon Fermi surfaces and an unquantized response,
by varying either (a) the third-NN coupling J3, or (b) the magnetic field Bz. The precise mean-field parameters used for the
computation of κxy/T are detailed in Figs. 7(b)-(d) and 9, respectively. (c) Field dependence of κxy/T of H̃mf

h for a magnetic
field in the z direction. As expected, the thermal Hall conductivity dies off at higher temperatures.

parameters which are inherent to the particular quantum
magnet under consideration and thus, cannot be easily
varied. For the purpose of tunability, therefore, it is use-
ful to consider the coupling to an external field, as a func-
tion of which, the system can be driven across a phase
transition between the J1-J2 spin liquid and the CSL.
Note that time-reversal symmetry is already broken by a
nonzero J2 in Eq. (34) (i.e., there does not exist a gauge
transformation which, combined with the action of the
TRS operation, leaves the ansatz invariant)—this points
toward a natural route to incorporating the effect of a
magnetic field, as in the Kitaev model. However, H2 also
breaks further symmetries, including reflections, C2 ro-
tation, as well as the combination of reflection and time-
reversal: so, as it stands, H2 lacks the correct symmetries
to describe a physical magnetic field perpendicular to the
plane of the system. Similar considerations apply to H3

as well; in fact, it can be shown for this model that any
term breaking the degeneracy of the Dirac points cannot
have the symmetries of a perpendicular magnetic field
(see Appendix B).

To correct for this shortcoming, we now construct
an alternative mean-field Hamiltonian which resembles
Eq. (34) but with the minimal modification that the
second-NN hopping term mimics the orbital coupling of a
magnetic field [161] from the point of view of symmetries.
The spinons transform as

cα(r)
C2−−→ (−)r1+r2 cα (C2r) , (35a)

cα(r)
Θ−→ (−)r1+r2 cᾱ(r), (35b)

cα(r)
R1−−→ e−i r2π/2 cα (R1r) , (35c)

cα(r)
R2−−→ ei (r1π−r2π/2)cα (R2r) , (35d)

where R1(R2) refers to the horizontal (vertical) axis of
reflection. The modified term, which we label H̃2, breaks
time-reversal and both reflections, but preserves C2 and
ΘRi. Including a coupling to a Zeeman field in the ẑ

direction as well, the combined Hamiltonian, shown in
Appendix B, assumes the form

H̃mf
h = J1H1 + J̃2H̃2 + J3H3 −

1

2

∑
i,α

(−)αBz c
†
i,αci,α,

(36)
with J̃2∝Bz. The physics of this model, as we will see
below, is similar to that of Eq. (34).

B. Thermal Hall conductivity

Since the projective actions of translation symmetries
in Eq. (33) dictate the use of a two-sublattice unit cell,
the Fourier-transformed counterparts of both Hmf

h and
H̃mf

h can be compactly expressed in momentum space by
using a spinor structure identical to Eq. (22). This im-
plies that four bands are obtained upon diagonalization
of the respective kernels. With regard to Hmf

h , the bands
for the different spinon species are degenerate, as con-
veyed by Fig. 7. This degeneracy is split by the Zeeman
field in H̃mf

h ; the dispersions of this model for relevant
parameters are arrayed in Fig. 9 of Appendix B.

Armed with the band structures, the thermal Hall con-
ductivities of our two mean-field theories for the J1-
J2-J3 Heisenberg model can now be computed using
Eq. (25); the final results are illustrated in Fig. 8. Begin-
ning with Hmf

h , at small J3�J1, we notice that κxy/T is
quantized for T → 0 [Fig. 8(a)], as before. However, the
key difference with Fig. 5 lies in that the plateau occurs
at −π/3 (gauge fluctuations modify this to −π/6 [40]),
as opposed to −π/12 for the Kitaev model. Recognizing
that the Chern number of the lower band in Fig. 7(c) is
+1, this fourfold-enhanced transport coefficient can be
explained straightforwardly from Eq. (27), multiplied by
an additional factor of 2 to account for the two spinon
species. As the Fermi surfaces develop for larger J3, the
zero-temperature value strays from the quantized num-
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ber; following arguments analogous to Sec. III B, the sign
of this deviation can be intuited by inspecting the profiles
of the Berry curvatures in the Brillouin zone [Fig. 7(f)].
Finally, we also study the thermal Hall response of H̃mf

h
in Fig. 8(b), as a function of the magnetic field Bz, which
takes the system from a fully gapped phase to one with
emergent Fermi surfaces. The general features of the con-
ductivity are comparable to those seen in Fig. 8(a), in
terms of both the quantization (or lack thereof) as well
as the overall magnitude. It is interesting to note, how-
ever, that for any given T , κxy/T is always monotonically
increasing with Bz; such uniform monotonicity is absent
in the case of Hmf

h , for which κxy/T can either increase
or decrease as J3 is tuned, depending on the tempera-
ture range. This effect is also shown in Fig. 8(c), which
illustrates the thermal Hall response as a function of the
field magnitude Bz.

V. SUMMARY AND CONCLUSION

In this work, we analyzed the thermal Hall conduc-
tivity in two important models of quantum magnets—
the Kitaev honeycomb lattice model and the J1-J2-J3

Heisenberg magnet on the triangular lattice. We paid
special attention to the impact of the magnetic field,
taking into account that it can drive the gapped QSL
phases these systems harbor into gapless QSLs with
spinon Fermi surfaces, as indicated by recent numeri-
cal studies [59–65, 94]. For our computations, we em-
ployed a mean-field description of these phases, based on
fermionic spinons, that is constrained by the aforemen-
tioned numerics and a PSG analysis.

For the Kitaev honeycomb lattice model in a magnetic
field, Hk + Hz defined in Eqs. (1) and (7), our analy-
sis captures three phases: as illustrated in Fig. 3, the
non-Abelian ITO phase, which emerges when gapping
out the Kitaev B phase by a small magnetic field, tran-
sitions into a gapless U(1) QSL at an intermediate value,
hc1, of the magnetic field. In the fermionic spinon lan-
guage, this corresponds to the magnetic-field-induced loss
of px + ipy superconducting pairing; we capture this by
the mean-field Hamiltonian in Eq. (19) where the ξ(h)
describes the vanishing of the superconducting term. Be-
sides ξ(h), the magnetic field also enters as the usual Zee-
man term and nonlinearly induces a second-NN hopping
J2 ∝ hxhyhz of the spinons. As a result of the finite gap,
the thermal Hall conductivity κxy/T is quantized at zero
temperature in the ITO phase, see solid lines in Fig. 5(a);
it reaches −π/12 in units of k2

B/~ at T = 0, resulting
from the Chern numbers of the BdG spinon bands, and
is associated with the presence of Majorana edge modes.
When the superconducting pairing disappears at hc1, we
obtain spinon Fermi surfaces and limT→0 κxy/T is not
quantized any more, but varies continuously with mag-

netic field, see dashed lines in Fig. 5(a) and (b). We
have related its increase with |h| to the distribution of
the Berry curvature and Fermi surfaces of the spinons.
For larger magnetic fields, we eventually reach a phase
at |h| = hc2 that is adiabatically connected to the fully
polarized state. This corresponds to a gapped spinon
band structure with vanishing net Chern number in the
occupied bands and associated vanishing κxy/T at zero
temperature, see solid lines in Fig. 5(b). We have also
studied in detail the predicted dependence as a function
of the direction of the magnetic field, as summarized in
Fig. 5(c)-(f), both for the ITO and SFS phases.

In the second part of the paper, we have performed
a similar analysis for the triangular-lattice Heisenberg
model with exchange interactions up to third NNs, which
is experimentally relevant as a low-energy description of
various QSL candidate materials [68–76, 82–93]. Moti-
vated by a recent numerical study [94] indicating that
this model can host a gapless spin-liquid phase with non-
vanishing chiral spin correlations, we study two different
ansätze, Eqs. (34) and (36), that can capture the tran-
sition from a gapped to a gapless CSL on the triangular
lattice, see Fig. 6. Unlike the Kitaev honeycomb-lattice
model, this model does not involve any spin-orbit cou-
pling; nonetheless, the behavior of κxy/T is qualitatively
similar, as can be seen in Fig. 8: in the gapped phase
[solid lines in Fig. 8(a) and (b)], κxy/T is quantized as
T → 0, albeit with a value four times larger, resulting
from the presence of spinful and complex spinons (as op-
posed to the nondegenerate bands of Majorana fermions
in our description of the ITO phase of the Kitaev model);
in the gapless phase with a spinon Fermi surface, we again
observe that the low-temperature thermal Hall conduc-
tivity is not quantized and reduced in magnitude (see
dashed lines).

Taken together, our analysis shows that a proper de-
scription of the thermal Hall conductivity in a QSL re-
quires taking into account the effect of the magnetic field
on the parameters of the underlying parton ansatz. We
believe that a detailed comparison of our predictions with
future measurements of κxy will help shed light on the
possible QSL phases hosted by “Kitaev materials” and
other frustrated magnets.

Finally, we note that our computations were in the
context of a spinon mean-field theory. This yields the
correct exact value of the thermal Hall conductivity in
the non-Abelian ITO phase. Gauge fluctuations will be
important in the other phases, and some discussion of
their consequences appears elsewhere [40].
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Appendix A: Mean-field theory for the Kitaev model

In this appendix, we discuss the representation of the
Kitaev model [12] in terms of fermionic spinons, following
closely the analyses of Refs. [100] and [101]. Each two-
spin term in the original model (1) can be written as a
product of four Majorana fermions, as outlined in Eq. (5).

Carrying out a systematic mean-field decoupling, the Ki-
taev model reduces to a quadratic Hamiltonian of Majo-
rana fermions χαA,B , with α= 0, x, y, z, where A(B) con-
notes the sublattice index. This consists of three types
of terms:

Hmf
k = H1 +H2 +H3 (A1)

where H1,3 involve NN couplings while H2 couples next-
NNs. These are given by

H1 = 2iJ1

∑
ri

(
χ0
B(ri)χ

0
A(ri) + χ0

B(ri + n2)χ0
A(ri) + χ0

B(ri − n1)χ0
A(ri)

)
,

H2 = 2iJ2

∑
ri

(
χ0
A(ri + n1)χ0

A(ri) + χ0
A(ri + n2)χ0

A(ri) + χ0
A(ri + n3)χ0

A(ri)

−χ0
B(ri + n1)χ0

B(ri)− χ0
B(ri + n2)χ0

B(ri)− χ0
B(ri + n3)χ0

B(ri

)
,

H3 = 2iJ ′1
∑
ri

(
χzA(ri)χ

z
B(ri) + χxA(ri − n2)χxB(ri) + χyA(ri + n1)χyB(ri)

)
,

(A2)

with n1,2 denoting the lattice vectors along the directions
corresponding to translations T1,2 in Fig. 1(a). Our focus
will be not so much on the precise values of J1, J2 and J ′1
(which can, in principle, be solved for self-consistently)
but rather, on the set of phases that can be obtained by
varying them as free parameters.

Next, we need to specify how the Abrikosov fermions
are constructed from the Majoranas but this mapping is
certainly not unique. You et al. [100] relate the spinon c,
defined in Eq. (13), to the Majorana fermions via

c1 =
1√
2

(
χ0 + iχz

)
, c2 =

1√
2

(iχx − χy) . (A3)

However, the SU(2) gauge redundancy (15) connotes that
we have the freedom to define another (equally valid) set
of partons fi,η, η = 1, 2, which are related to (14) by a

gauge transformation

Fi =

(
fi,1 −f†i,2
fi,2 f†i,1

)
= CiWi, (A4)

where we take W to be WA(B) on the A (B) sublattice,
such that

WA = a+i(b σ1 +a σ3), WB = e−iσ3
π
4 W∗A eiσ3

π
4 (A5)

with

a =

√
1

6− 2
√

3
, b = (

√
3− 1) a. (A6)

The utility of this exercise lies in that the gauge charge
of these new spinons is always preserved under the sym-
metry transformations. The Majorana Hamiltonian (A2)
can easily be re-expressed using these modified spinons.
In the spirit of Eq. (18), we now decompose each of the
three pieces in (A1) individually into hopping and pair-
ing terms, in accordance with the prescription of Zou and
He [101]. In the following, our equations employ the con-
vention that the first lines on the right-hand-side always
contribute to Hhopping only, while the second lines add to
Hpairing alone.
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When expanded using the transformed spinons, H1 reads as

2iJ1χ
0
B(rj)χ

0
A(ri) = J1

{
f†B(rj)

[(
a2 +

b2

2

)
+ (a2 − b2

2
)σ3 + abσ1 + abσ2

]
fA(ri) + h.c.

+fTB (rj)

[(
ia2 +

b2

2

)
+

(
ia2 − b2

2

)
σ3 + ab(1 + i)σ1

]
fA(ri) + h.c.

}
.

(A7)

All terms in H2 are of the form 2iJ2τzχ
0(rj)χ

0(ri), with τz = +1 (τz = −1) for the A (B) sublattice:

2iJ2τzχ
0(rj)χ

0(ri) = J2

{
f†(rj)

[
i

(
a2 +

b2

2

)
+ i

(
a2 − b2

2

)
σ3 + iabσ1 + iabσ2

]
τzf(ri) + h.c.

+fT (rj)

[(
a2 − ib2

2

)
+

(
a2 +

ib2

2

)
σ3 + ab(1− i)σ1

]
f(ri) + h.c.

}
.

(A8)

The minus sign between the two sublattices is due to the directed nature of the Majorana hopping stemming from the
effective Hamiltonian (8); for details of the derivation, we refer the interested reader to Eq. (48) of Ref. [12]. Finally,
the terms in H3, which depend on the type of the bond (x, y, or z), have the spinon representation

2iJ ′1χ
x
A(rj)χ

x
B(ri) = J ′1

{
f†A(rj)

[(
−a2 − b2

2

)
+

(
a2 − b2

2

)
σ3 − abσ1 + abσ2

]
fB(ri) + h.c.

+fTA (rj)

[(
−ia2 − b2

2

)
−
(
−ia2 +

b2

2

)
σ3 − ab(1 + i)σ1

]
fB(ri) + h.c.

}
, (A9)

2iJ ′1χ
y
A(rj)χ

y
B(ri) = J ′1

{
f†A(rj)

[(
−a2 − b2

2

)
+

(
a2 − b2

2

)
σ3 + abσ1 − abσ2

]
fB(ri) + h.c.

+fTA (rj)

[(
ia2 +

b2

2

)
+

(
−ia2 +

b2

2

)
σ3 − ab(1 + i)σ1

]
fB(ri) + h.c.

}
, (A10)

2iJ ′1χ
z
A(rj)χ

z
B(ri) = J ′1

{
f†(rj)

[(
−a2 − b2

2

)
−
(
a2 − b2

2

)
σ3 + abσ1 + abσ2

]
f(ri) + h.c.

+fT (rj)

[(
−ia2 − b2

2

)
+

(
−ia2 +

b2

2

)
σ3 + ab(1 + i)σ1

]
f(ri) + h.c.

}
. (A11)

Appendix B: Ansatz for the staggered flux state

In this section, we summarize the details for the stag-
gered flux state proposed by Gong et al. [94] to explain
their numerical observation of a gapless CSL in the J1-
J2- J3 Heisenberg model.

The structure of the mean-field theory that we study
is specified by Eq. (34), wherein Hi encompasses i-th NN
hopping processes. The ground state is always at half-
filling of the fermionic spinons. For the purpose of the
following discussion, it suffices to consider only one of
the two species of spinons; the Hamiltonian for the other
species is identical.

To begin, we note that the unit cell is doubled in the

mean-field ansatz [162]. Defining the three NN vectors

δ1 = (1, 0) = a1,

δ2 =

(
1

2
,

√
3

2

)
=

a2

2
,

δ3 =

(
−1

2
,

√
3

2

)
=

a2

2
− a1,

(B1)

the hopping Hamiltonians Hi can be explicitly written as

H1 = ζ
∑
r

(
eiφ1c†rcr+δ1

+ e−iφ1c†r+δ2
cr+δ1+δ2

+eiφ2c†rcr+δ2
− e−iφ2c†r+δ2

cr+2δ2

+c†rcr+δ3
+ c†r+δ2

cr+δ3+δ2
+ h.c.

)
,
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(a) (b)

(c) (d)

FIG. 9. Dispersion of the mean-field Hamiltonian (36) with
the same hopping amplitudes and phase factors as in Fig. 7
for H1 and H3. The main difference comes from the term H̃2,
in which we set θ1 =π/2, θ2 = 0. The remaining parameters
(J̃2,J3ρ,Bz) are taken to be (a) (0, 0.1, 0), (b) (0.1, 0.1, 0.05),
(c) (0.2, 0.1, 0.1), and (d) (0.3, 0.1, 0.15). Since the modified
second-NN hopping in Eq. (B6) is assumed to originate from
the orbital coupling of a magnetic field, the coupling J̃2 is
varied proportionally to the Zeeman field Bz.

H2 = λ
∑
r

(
eiϕ1c†rcr+δ1+δ2

+ e−iϕ1c†r+δ2
cr+δ1+2δ2

+eiϕ2c†rcr+δ2+δ3
+ e−iϕ2c†r+δ2

cr+2δ2+δ3

+eiϕ3c†rcr+δ3−δ1 − e−iϕ3c†r+δ2
cr+δ2+δ3−δ1 + h.c.

)
,

H3 = ρ
∑
r

(
eiγ1c†rcr+2δ1

− e−iγ1c†r+δ2
cr+δ2+2δ1

+eiγ2c†rcr+2δ2
− e−iγ2c†r+δ2

cr+3δ2

+eiγ3c†rcr+2δ3
− e−iγ3c†r+δ2

cr+δ2+2δ3
+ h.c.

)
.

While we set the NN-hopping strength ζ to unity with-
out loss of generality, the real-valued amplitudes λ and
ρ are still allowed to vary freely. To ensure compati-
bility with the DMRG results of Ref. [94], we choose
λ= 1.0, and ρ= 3.0, with the accompanying phases
φ1 =φ2 =π/2, ϕ1 =ϕ2 =ϕ3 = 0, and γ1 = γ2 = γ3 =π/2.

Since H2 and H3 already break symmetries such as
time reversal and reflection, we are motivated to incor-
porate the effect of the orbital magnetic field coupling
into those terms. However, it turns out that this will not
be possible for H3, which breaks the degeneracy of the
Dirac points. To show that a Fermi surface cannot arise
from induced field couplings in this particular model,
we first recognize that in order to have a Fermi surface,
the degeneracy of the Dirac points at k= (0, π/2

√
3) and

(π, π/2
√

3) must be broken. After a Fourier transforma-
tion, a general coupling contributes a term to the Hamil-
tonian in the form of

∑
k

η†k

(
v0(k)I +

3∑
i=1

vi(k)σi

)
ηk, ηk = (ck,+, ck,−)

T
,

(B2)

where we have denoted I to be the identity matrix and
+,− to be sublattice labels. Under this coupling, the
energy of the Dirac points are shifted by v0(k)−

√
vi(k)2.

Note that v0(k) and vi(k) are made up of trigonometric
terms with the general form

sin

 3∑
j=1

njδj · k + ϑ

 , (B3)

for ni ∈ Z. Now, due to the constraints from the pro-
jective translation symmetry, any allowed vi(k) term will
not break the degeneracy of the Dirac points. Therefore,
the condition that the Dirac points are unequally gapped
means that we must have a v0(k) term that does so. Such
couplings are between the same sublattice and can take
the form

eiφc†rcr+n1δ1+n2δ2
+ e−iφc†r+δ2

cr+δ2+n1δ1+n2δ2
(B4)

with φ= 0 or π for n1 odd or

eiφc†rcr+n1δ1+n2δ2
− e−iφc†r+δ2

cr+δ2+n1δ1+n2δ2
(B5)

with φ=±π/2 for n1 even. It can be checked that nei-
ther of the terms above have the correct symmetries of
the magnetic field, which breaks time-reversal and re-
flections, but preserves their composition. Thus, field-
induced couplings in this ansatz will not lead to a Fermi
surface.

The orbital coupling to a magnetic field can be incor-
porated by modifying the second-NN term H2, which is
then replaced by

H̃2 =
∑
r

(
eiθ1c†rcr+δ1+δ2

+ e−iθ1c†r+δ2
cr+δ1+2δ2

(B6)

+eiθ2c†rcr+δ2−2δ1
− e−iθ2c†r+δ2

cr+2δ2−2δ1
+ h.c.

)
.

We have set θ1 =π/2, θ2 = 0. This modified second-NN
term opens up a direct gap at each Dirac points, leading
to topologically nontrivial bands. We have retained the
original H3, which generates a Fermi surface around each
Dirac point. The full Hamiltonian in this case, including
the effect of a Zeeman coupling, is listed in Eq. (36).



17

[1] P. W. Anderson, Mater. Res. Bull. 8, 153 (1973).
[2] L. Balents, Nature 464, 199 (2010).
[3] J. Knolle and R. Moessner, Annu. Rev. Condens. Matter

Phys. 10, 451 (2019).
[4] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera,

M. R. Norman, and T. Senthil, Science 367, eaay0668
(2020).

[5] L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502
(2016).

[6] Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys.
89, 025003 (2017).

[7] N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991).

[8] T. Senthil and M. P. A. Fisher, Phys. Rev. B 62, 7850
(2000).

[9] T. Senthil and M. P. A. Fisher, Phys. Rev. Lett. 86, 292
(2001).

[10] P. A. Lee, Science 321, 1306 (2008).
[11] M. R. Norman, Rev. Mod. Phys. 88, 041002 (2016).
[12] A. Kitaev, Ann. Phys. 321, 2 (2006).
[13] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and

S. D. Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[14] A. Stern and N. H. Lindner, Science 339, 1179 (2013).
[15] G. Khaliullin, Prog. Theor. Phys. Supp. 160, 155

(2005).
[16] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102,

017205 (2009).
[17] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev.

Lett. 105, 027204 (2010).
[18] W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Ba-

lents, Annu. Rev. Condens. Matter Phys. 5, 57 (2014).
[19] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Annu. Rev.

Condens. Matter Phys. 7, 195 (2016).
[20] S. Trebst, arXiv preprint (2017), arXiv:1701.07056

[cond-mat.str-el].
[21] S. M. Winter, A. A. Tsirlin, M. Daghofer, J. van den

Brink, Y. Singh, P. Gegenwart, and R. Valenti, J. Phys.:
Condens. Matter 29, 493002 (2017).

[22] M. Hermanns, I. Kimchi, and J. Knolle, Annu. Rev.
Condens. Matter Phys. 9, 17 (2018).

[23] Y. Singh and P. Gegenwart, Phys. Rev. B 82, 064412
(2010).

[24] S. H. Chun, J.-W. Kim, J. Kim, H. Zheng, C. C.
Stoumpos, C. Malliakas, J. Mitchell, K. Mehlawat,
Y. Singh, Y. Choi, T. Gog, A. Al-Zein, M. M. Sala,
M. Krisch, J. Chaloupka, G. Jackeli, G. Khaliullin, and
B. J. Kim, Nature Phys. 11, 462 (2015).

[25] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale,
W. Ku, S. Trebst, and P. Gegenwart, Phys. Rev. Lett.
108, 127203 (2012).

[26] J. M. Fletcher, W. E. Gardner, A. C. Fox, and G. Top-
ping, J. Chem. Soc. A , 1038 (1967).

[27] Y. Kobayashi, T. Okada, K. Asai, M. Katada, H. Sano,
and F. Ambe, Inorg. Chem. 31, 4570 (1992).

[28] J. A. Sears, M. Songvilay, K. W. Plumb, J. P. Clancy,
Y. Qiu, Y. Zhao, D. Parshall, and Y.-J. Kim, Phys.
Rev. B 91, 144420 (2015).

[29] R. D. Johnson, S. C. Williams, A. A. Haghighirad,

J. Singleton, V. Zapf, P. Manuel, I. I. Mazin, Y. Li,
H. O. Jeschke, R. Valentí, and R. Coldea, Phys. Rev.
B 92, 235119 (2015).

[30] H. B. Cao, A. Banerjee, J.-Q. Yan, C. A. Bridges, M. D.
Lumsden, D. G. Mandrus, D. A. Tennant, B. C. Chak-
oumakos, and S. E. Nagler, Phys. Rev. B 93, 134423
(2016).

[31] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev.
Lett. 110, 097204 (2013).

[32] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Phys. Rev.
Lett. 112, 077204 (2014).

[33] G. Grissonnanche, A. Legros, S. Badoux, E. Lefrançois,
V. Zatko, M. Lizaire, F. Laliberté, A. Gourgout, J. S.
Zhou, S. Pyon, T. Takayama, H. Takagi, S. Ono,
N. Doiron-Leyraud, and L. Taillefer, Nature 571, 376
(2019).

[34] G. Grissonnanche, S. Thériault, A. Gourgout, M.-
E. Boulanger, E. Lefrançois, A. Ataei, F. Laliberté,
M. Dion, J.-S. Zhou, S. Pyon, T. Takayama, H. Tak-
agi, N. Doiron-Leyraud, and L. Taillefer, arXiv preprint
(2020), arXiv:2003.00111 [cond-mat.supr-con].

[35] R. Samajdar, S. Chatterjee, S. Sachdev, and M. S.
Scheurer, Phys. Rev. B 99, 165126 (2019).

[36] J. H. Han, J.-H. Park, and P. A. Lee, Phys. Rev. B 99,
205157 (2019).

[37] R. Samajdar, M. S. Scheurer, S. Chatterjee, H. Guo,
C. Xu, and S. Sachdev, Nature Phys. 15, 1290 (2019).

[38] Z.-X. Li and D.-H. Lee, arXiv preprint (2019),
arXiv:1905.04248 [cond-mat.str-el].

[39] J.-Y. Chen, S. A. Kivelson, and X.-Q. Sun, arXiv
preprint (2019), arXiv:1910.00018 [cond-mat.str-el].

[40] H. Guo, R. Samajdar, M. S. Scheurer, and S. Sachdev,
arXiv preprint (2020), arXiv:2002.01947 [cond-mat.str-
el].

[41] I. A. Leahy, C. A. Pocs, P. E. Siegfried, D. Graf, S.-H.
Do, K.-Y. Choi, B. Normand, and M. Lee, Phys. Rev.
Lett. 118, 187203 (2017).

[42] A. Banerjee, J. Yan, J. Knolle, C. A. Bridges, M. B.
Stone, M. D. Lumsden, D. G. Mandrus, D. A. Ten-
nant, R. Moessner, and S. E. Nagler, Science 356, 1055
(2017).

[43] P. Lampen-Kelley, L. Janssen, E. C. Andrade, S. Rachel,
J.-Q. Yan, C. Balz, D. G. Mandrus, S. E. Nagler,
and M. Vojta, arXiv preprint (2018), arXiv:1807.06192
[cond-mat.str-el].

[44] N. Janša, A. Zorko, M. Gomilšek, M. Pregelj, K. W.
Krämer, D. Biner, A. Biffin, C. Rüegg, and M. Klan-
jšek, Nature Phys. 14, 786 (2018).

[45] A. Banerjee, P. Lampen-Kelley, J. Knolle, C. Balz, A. A.
Aczel, B. Winn, Y. Liu, D. Pajerowski, J. Yan, C. A.
Bridges, A. T. Savici, B. C. Chakoumakos, M. D. Lums-
den, D. A. Tennant, R. Moessner, D. G. Mandrus, and
S. E. Nagler, npj Quant. Mater. 3, 1 (2018).

[46] M. Banerjee, M. Heiblum, V. Umansky, D. E. Feldman,
Y. Oreg, and A. Stern, Nature 559, 205 (2018).

[47] Y. Kasahara, T. Ohnishi, Y. Mizukami, O. Tanaka,
S. Ma, K. Sugii, N. Kurita, H. Tanaka, J. Nasu, Y. Mo-
tome, T. Shibauchi, and Y. Matsuda, Nature 559, 227

http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1146/annurev-conmatphys-031218-013401
http://dx.doi.org/10.1146/annurev-conmatphys-031218-013401
http://dx.doi.org/ 10.1126/science.aay0668
http://dx.doi.org/ 10.1126/science.aay0668
http://dx.doi.org/10.1088/0034-4885/80/1/016502
http://dx.doi.org/10.1088/0034-4885/80/1/016502
http://dx.doi.org/10.1103/RevModPhys.89.025003
http://dx.doi.org/10.1103/RevModPhys.89.025003
http://dx.doi.org/10.1103/PhysRevLett.66.1773
http://dx.doi.org/10.1103/PhysRevLett.66.1773
http://dx.doi.org/10.1103/PhysRevB.62.7850
http://dx.doi.org/10.1103/PhysRevB.62.7850
http://dx.doi.org/10.1103/PhysRevLett.86.292
http://dx.doi.org/10.1103/PhysRevLett.86.292
http://dx.doi.org/10.1126/science.1163196
http://dx.doi.org/10.1103/RevModPhys.88.041002
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/ 10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1126/science.1231473
http://dx.doi.org/10.1143/PTPS.160.155
http://dx.doi.org/10.1143/PTPS.160.155
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1103/PhysRevLett.105.027204
http://dx.doi.org/10.1103/PhysRevLett.105.027204
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125138
http://dx.doi.org/10.1146/annurev-conmatphys-031115-011319
http://dx.doi.org/10.1146/annurev-conmatphys-031115-011319
http://www.arxiv.org/abs/1701.07056
http://arxiv.org/abs/1701.07056
http://arxiv.org/abs/1701.07056
http://dx.doi.org/10.1088/1361-648X/aa8cf5
http://dx.doi.org/10.1088/1361-648X/aa8cf5
http://dx.doi.org/10.1146/annurev-conmatphys-033117-053934
http://dx.doi.org/10.1146/annurev-conmatphys-033117-053934
http://dx.doi.org/10.1103/PhysRevB.82.064412
http://dx.doi.org/10.1103/PhysRevB.82.064412
http://dx.doi.org/10.1038/nphys3322
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1039/J19670001038
http://dx.doi.org/10.1021/ic00048a025
http://dx.doi.org/10.1103/PhysRevB.91.144420
http://dx.doi.org/10.1103/PhysRevB.91.144420
http://dx.doi.org/10.1103/PhysRevB.92.235119
http://dx.doi.org/10.1103/PhysRevB.92.235119
http://dx.doi.org/ 10.1103/PhysRevB.93.134423
http://dx.doi.org/ 10.1103/PhysRevB.93.134423
http://dx.doi.org/10.1103/PhysRevLett.110.097204
http://dx.doi.org/10.1103/PhysRevLett.110.097204
http://dx.doi.org/10.1103/PhysRevLett.112.077204
http://dx.doi.org/10.1103/PhysRevLett.112.077204
http://dx.doi.org/10.1038/s41586-019-1375-0
http://dx.doi.org/10.1038/s41586-019-1375-0
http://www.arxiv.org/abs/2003.00111
http://www.arxiv.org/abs/2003.00111
http://arxiv.org/abs/2003.00111
http://dx.doi.org/10.1103/PhysRevB.99.165126
http://dx.doi.org/10.1103/PhysRevB.99.205157
http://dx.doi.org/10.1103/PhysRevB.99.205157
http://dx.doi.org/ 10.1038/s41567-019-0669-3
http://www.arxiv.org/abs/1905.04248
http://arxiv.org/abs/1905.04248
http://www.arxiv.org/abs/1910.00018
http://www.arxiv.org/abs/1910.00018
http://arxiv.org/abs/1910.00018
http://www.arxiv.org/abs/2002.01947
http://arxiv.org/abs/2002.01947
http://arxiv.org/abs/2002.01947
http://dx.doi.org/10.1103/PhysRevLett.118.187203
http://dx.doi.org/10.1103/PhysRevLett.118.187203
http://dx.doi.org/ 10.1126/science.aah6015
http://dx.doi.org/ 10.1126/science.aah6015
http://www.arxiv.org/abs/1807.06192
http://arxiv.org/abs/1807.06192
http://arxiv.org/abs/1807.06192
http://dx.doi.org/ 10.1038/s41567-018-0129-5
http://dx.doi.org/10.1038/s41535-018-0079-2
http://dx.doi.org/ 10.1038/s41586-018-0184-1
http://dx.doi.org/10.1038/s41586-018-0274-0


18

(2018).
[48] Y. Kasahara, K. Sugii, T. Ohnishi, M. Shimozawa,

M. Yamashita, N. Kurita, H. Tanaka, J. Nasu, Y. Mo-
tome, T. Shibauchi, and Y. Matsuda, Phys. Rev. Lett.
120, 217205 (2018).

[49] C. Balz, P. Lampen-Kelley, A. Banerjee, J. Yan, Z. Lu,
X. Hu, S. M. Yadav, Y. Takano, Y. Liu, D. A. Tennant,
M. D. Lumsden, D. Mandrus, and S. E. Nagler, Phys.
Rev. B 100, 060405 (2019).

[50] E. Lefrancois, G. Grissonnanche, P. Kelley, C. Balz,
J. Yan, D. Mandrus, S. Nagler, and L. Taillefer, Bul-
letin of the American Physical Society 64 (2019).

[51] T. Yokoi, S. Ma, Y. Kasahara, S. Kasahara,
T. Shibauchi, N. Kurita, H. Tanaka, J. Nasu, Y. Mo-
tome, C. Hickey, S. Trebst, and Y. Matsuda, arXiv
preprint (2020), arXiv:2001.01899 [cond-mat.str-el].

[52] M. Yamashita, N. Kurita, and T. H., arXiv preprint
(2020), arXiv:2005.00798 [cond-mat.str-el].

[53] M. Ye, G. B. Halász, L. Savary, and L. Balents, Phys.
Rev. Lett. 121, 147201 (2018).

[54] Y. Vinkler-Aviv and A. Rosch, Phys. Rev. X 8, 031032
(2018).

[55] J. Cookmeyer and J. E. Moore, Phys. Rev. B 98,
060412(R) (2018).

[56] A. Go, K. Hwang, J. H. Seong, T. Shibauchi, and E.-G.
Moon, arXiv preprint (2020), arXiv:2004.06119 [cond-
mat.str-el].

[57] R. Hentrich, M. Roslova, A. Isaeva, T. Doert,
W. Brenig, B. Büchner, and C. Hess, Phys. Rev. B
99, 085136 (2019).

[58] Y. H. Gao and G. Chen, SciPost Phys. Core 2, 004
(2020).

[59] Z. Zhu, I. Kimchi, D. N. Sheng, and L. Fu, Phys. Rev.
B 97, 241110(R) (2018).

[60] S. Liang, M.-H. Jiang, W. Chen, J.-X. Li, and Q.-H.
Wang, Phys. Rev. B 98, 054433 (2018).

[61] M. Gohlke, R. Moessner, and F. Pollmann, Phys. Rev.
B 98, 014418 (2018).

[62] J. Nasu, Y. Kato, Y. Kamiya, and Y. Motome, Phys.
Rev. B 98, 060416 (2018).

[63] C. Hickey and S. Trebst, Nat. Commun. 10, 1 (2019).
[64] D. C. Ronquillo, A. Vengal, and N. Trivedi, Phys. Rev.

B 99, 140413(R) (2019).
[65] N. D. Patel and N. Trivedi, Proc. Natl. Acad. Sci. 116,

12199 (2019).
[66] S. Sachdev, Quantum Phase Transitions , 2nd ed. (Cam-

bridge University Press, 2011).
[67] Y. H. Gao, C. Hickey, T. Xiang, S. Trebst, and G. Chen,

Phys. Rev. Research 1, 013014 (2019).
[68] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and

G. Saito, Phys. Rev. Lett. 91, 107001 (2003).
[69] Y. Kurosaki, Y. Shimizu, K. Miyagawa, K. Kanoda,

and G. Saito, Phys. Rev. Lett. 95, 177001 (2005).
[70] S. Yamashita, Y. Nakazawa, M. Oguni, Y. Oshima,

H. Nojiri, Y. Shimizu, K. Miyagawa, and K. Kanoda,
Nature Phys. 4, 459 (2008).

[71] M. Yamashita, N. Nakata, Y. Kasahara, T. Sasaki,
N. Yoneyama, N. Kobayashi, S. Fujimoto, T. Shibauchi,
and Y. Matsuda, Nature Phys. 5, 44 (2009).

[72] M. Yamashita, N. Nakata, Y. Senshu, M. Nagata, H. M.
Yamamoto, R. Kato, T. Shibauchi, and Y. Matsuda,

Science 328, 1246 (2010).
[73] K. T. Law and P. A. Lee, Proc. Natl. Acad. Sci. 114,

6996 (2017).
[74] Y. J. Yu, Y. Xu, L. P. He, M. Kratochvilova, Y. Y.

Huang, J. M. Ni, L. Wang, S.-W. Cheong, J.-G. Park,
and S. Y. Li, Phys. Rev. B 96, 081111(R) (2017).

[75] A. Ribak, I. Silber, C. Baines, K. Chashka, Z. Salman,
Y. Dagan, and A. Kanigel, Phys. Rev. B 96, 195131
(2017).

[76] M. Klanjšek, A. Zorko, J. Mravlje, Z. Jagličić, P. K.
Biswas, P. Prelovšek, D. Mihailovic, D. Arčon, et al.,
Nature Phys. 13, 1130 (2017).

[77] G. Misguich, C. Lhuillier, B. Bernu, and C. Waldt-
mann, Phys. Rev. B 60, 1064 (1999).

[78] O. I. Motrunich, Phys. Rev. B 72, 045105 (2005).
[79] D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher,

Phys. Rev. B 79, 205112 (2009).
[80] M. S. Block, D. N. Sheng, O. I. Motrunich, and M. P. A.

Fisher, Phys. Rev. Lett. 106, 157202 (2011).
[81] W.-Y. He, X. Y. Xu, G. Chen, K. T. Law, and P. A.

Lee, Phys. Rev. Lett. 121, 046401 (2018).
[82] H. Kadowaki, H. Kikuchi, and Y. Ajiro, J. Phys.: Con-

dens. Matter 2, 4485 (1990).
[83] T. Kimura, J. C. Lashley, and A. P. Ramirez, Phys.

Rev. B 73, 220401 (2006).
[84] F. Ye, J. A. Fernandez-Baca, R. S. Fishman, Y. Ren,

H. J. Kang, Y. Qiu, and T. Kimura, Phys. Rev. Lett.
99, 157201 (2007).

[85] S. Seki, Y. Onose, and Y. Tokura, Phys. Rev. Lett.
101, 067204 (2008).

[86] P.-L. Dai, G. Zhang, Y. Xie, C. Duan, Y. Gao, Z. Zhu,
E. Feng, C.-L. Huang, H. Cao, A. Podlesnyak, G. E.
Granroth, D. Voneshen, S. Wang, G. Tan, E. Morosan,
X. Wang, L. Shu, G. Chen, Y. Guo, X. Lu, and P. Dai,
arXiv e-prints (2020), arXiv:2004.06867 [cond-mat.str-
el].

[87] Y. Li, G. Chen, W. Tong, L. Pi, J. Liu, Z. Yang,
X. Wang, and Q. Zhang, Phys. Rev. Lett. 115, 167203
(2015).

[88] Y. Shen, Y.-D. Li, H. Wo, Y. Li, S. Shen, B. Pan,
Q. Wang, H. C. Walker, P. Steffens, M. Boehm, Y. Hao,
D. L. Quintero-Castro, L. W. Harriger, M. D. Frontzek,
L. Hao, S. Meng, Q. Zhang, G. Chen, and J. Zhao,
Nature 540, 559 (2016).

[89] J. A. M. Paddison, M. Daum, Z. Dun, G. Ehlers, Y. Liu,
M. B. Stone, H. Zhou, and M. Mourigal, Nature Phys.
13, 117 (2017).

[90] Y. Li, D. Adroja, R. I. Bewley, D. Voneshen, A. A.
Tsirlin, P. Gegenwart, and Q. Zhang, Phys. Rev. Lett.
118, 107202 (2017).

[91] Z. Zhu, P. A. Maksimov, S. R. White, and A. L. Cherny-
shev, Phys. Rev. Lett. 120, 207203 (2018).

[92] X. Zhang, F. Mahmood, M. Daum, Z. Dun, J. A. M.
Paddison, N. J. Laurita, T. Hong, H. Zhou, N. P. Ar-
mitage, and M. Mourigal, Phys. Rev. X 8, 031001
(2018).

[93] Y. Shen, Y.-D. Li, H. C. Walker, P. Steffens, M. Boehm,
X. Zhang, S. Shen, H. Wo, G. Chen, and J. Zhao,
Nat.Commun. 9, 1 (2018).

[94] S.-S. Gong, W. Zheng, M. Lee, Y.-M. Lu, and D. N.
Sheng, Phys. Rev. B 100, 241111(R) (2019).

http://dx.doi.org/10.1038/s41586-018-0274-0
http://dx.doi.org/10.1103/PhysRevLett.120.217205
http://dx.doi.org/10.1103/PhysRevLett.120.217205
http://dx.doi.org/ 10.1103/PhysRevB.100.060405
http://dx.doi.org/ 10.1103/PhysRevB.100.060405
https://meetings.aps.org/Meeting/MAR19/Session/V03.13
https://meetings.aps.org/Meeting/MAR19/Session/V03.13
http://www.arxiv.org/abs/2001.01899
http://www.arxiv.org/abs/2001.01899
http://arxiv.org/abs/2001.01899
http://www.arxiv.org/abs/2005.00798
http://www.arxiv.org/abs/2005.00798
http://arxiv.org/abs/2005.00798
http://dx.doi.org/ 10.1103/PhysRevLett.121.147201
http://dx.doi.org/ 10.1103/PhysRevLett.121.147201
http://dx.doi.org/10.1103/PhysRevX.8.031032
http://dx.doi.org/10.1103/PhysRevX.8.031032
http://dx.doi.org/10.1103/PhysRevB.98.060412
http://dx.doi.org/10.1103/PhysRevB.98.060412
http://www.arxiv.org/abs/2004.06119
http://arxiv.org/abs/2004.06119
http://arxiv.org/abs/2004.06119
http://dx.doi.org/10.1103/PhysRevB.99.085136
http://dx.doi.org/10.1103/PhysRevB.99.085136
http://dx.doi.org/10.21468/SciPostPhysCore.2.2.004
http://dx.doi.org/10.21468/SciPostPhysCore.2.2.004
http://dx.doi.org/ 10.1103/PhysRevB.97.241110
http://dx.doi.org/ 10.1103/PhysRevB.97.241110
http://dx.doi.org/ 10.1103/PhysRevB.98.054433
http://dx.doi.org/10.1103/PhysRevB.98.014418
http://dx.doi.org/10.1103/PhysRevB.98.014418
http://dx.doi.org/ 10.1103/PhysRevB.98.060416
http://dx.doi.org/ 10.1103/PhysRevB.98.060416
http://dx.doi.org/10.1038/s41467-019-08459-9
http://dx.doi.org/10.1103/PhysRevB.99.140413
http://dx.doi.org/10.1103/PhysRevB.99.140413
http://dx.doi.org/10.1073/pnas.1821406116
http://dx.doi.org/10.1073/pnas.1821406116
http://dx.doi.org/10.1017/CBO9780511973765
http://dx.doi.org/ 10.1103/PhysRevResearch.1.013014
http://dx.doi.org/ 10.1103/PhysRevLett.91.107001
http://dx.doi.org/ 10.1103/PhysRevLett.95.177001
http://dx.doi.org/10.1038/nphys942
http://dx.doi.org/ 10.1038/nphys1134
http://dx.doi.org/10.1126/science.1188200
http://dx.doi.org/10.1073/pnas.1706769114
http://dx.doi.org/10.1073/pnas.1706769114
http://dx.doi.org/10.1103/PhysRevB.96.081111
http://dx.doi.org/10.1103/PhysRevB.96.195131
http://dx.doi.org/10.1103/PhysRevB.96.195131
http://dx.doi.org/10.1038/nphys4212
http://dx.doi.org/ 10.1103/PhysRevB.60.1064
http://dx.doi.org/10.1103/PhysRevB.72.045105
http://dx.doi.org/10.1103/PhysRevB.79.205112
http://dx.doi.org/10.1103/PhysRevLett.106.157202
http://dx.doi.org/ 10.1103/PhysRevLett.121.046401
http://dx.doi.org/10.1088/0953-8984/2/19/014
http://dx.doi.org/10.1088/0953-8984/2/19/014
http://dx.doi.org/10.1103/PhysRevB.73.220401
http://dx.doi.org/10.1103/PhysRevB.73.220401
http://dx.doi.org/ 10.1103/PhysRevLett.99.157201
http://dx.doi.org/ 10.1103/PhysRevLett.99.157201
http://dx.doi.org/10.1103/PhysRevLett.101.067204
http://dx.doi.org/10.1103/PhysRevLett.101.067204
http://arxiv.org/abs/2004.06867
http://arxiv.org/abs/2004.06867
http://dx.doi.org/10.1103/PhysRevLett.115.167203
http://dx.doi.org/10.1103/PhysRevLett.115.167203
http://dx.doi.org/ 10.1038/nature20614
http://dx.doi.org/10.1038/nphys3971
http://dx.doi.org/10.1038/nphys3971
http://dx.doi.org/ 10.1103/PhysRevLett.118.107202
http://dx.doi.org/ 10.1103/PhysRevLett.118.107202
http://dx.doi.org/10.1103/PhysRevLett.120.207203
http://dx.doi.org/10.1103/PhysRevX.8.031001
http://dx.doi.org/10.1103/PhysRevX.8.031001
http://dx.doi.org/ 10.1038/s41467-018-06588-1
http://dx.doi.org/ 10.1103/PhysRevB.100.241111


19

[95] A. Y. Kitaev, Ann. Phys. 303, 2 (2003).
[96] E. H. Lieb, Phys. Rev. Lett. 73, 2158 (1994).
[97] G. Baskaran, S. Mandal, and R. Shankar, Phys. Rev.

Lett. 98, 247201 (2007).
[98] Y. Singh and P. Gegenwart, Phys. Rev. B 82, 064412

(2010).
[99] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale,

W. Ku, S. Trebst, and P. Gegenwart, Phys. Rev. Lett.
108, 127203 (2012).

[100] Y.-Z. You, I. Kimchi, and A. Vishwanath, Phys. Rev.
B 86, 085145 (2012).

[101] L. Zou and Y.-C. He, Phys. Rev. Research 2, 013072
(2020).

[102] F. J. Burnell and C. Nayak, Phys. Rev. B 84, 125125
(2011).

[103] A. A. Abrikosov, Physics Physique Fizika 2, 5 (1965).
[104] I. Affleck, Z. Zou, T. Hsu, and P. W. Anderson, Phys.

Rev. B 38, 745 (1988).
[105] J. B. Marston and I. Affleck, Phys. Rev. B 39, 11538

(1989).
[106] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod.

Phys. 78, 17 (2006).
[107] M. Hermele, Phys. Rev. B 76, 035125 (2007).
[108] P. Coleman and N. Andrei, J. Magn. Magn. Mater. 76,

504 (1988).
[109] N. Andrei and P. Coleman, Phys. Rev. Lett. 62, 595

(1989).
[110] X.-G. Wen, Phys. Rev. B 65, 165113 (2002).
[111] A. M. Essin and M. Hermele, Phys. Rev. B 87, 104406

(2013).
[112] J. Hubbard, Phys. Rev. Lett. 3, 77 (1959).
[113] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[114] X. G. Wen, Phys. Rev. B 44, 2664 (1991).
[115] H.-C. Jiang, C.-Y. Wang, B. Huang, and Y.-M. Lu,

arXiv preprint (2018), arXiv:1809.08247 [cond-mat.str-
el].

[116] J. Vidal, S. Dusuel, and K. P. Schmidt, Phys. Rev. B
79, 033109 (2009).

[117] J. Vidal, R. Thomale, K. P. Schmidt, and S. Dusuel,
Phys. Rev. B 80, 081104(R) (2009).

[118] S. Dusuel, M. Kamfor, R. Orús, K. P. Schmidt, and
J. Vidal, Phys. Rev. Lett. 106, 107203 (2011).

[119] H. Katsura, N. Nagaosa, and P. A. Lee, Phys. Rev.
Lett. 104, 066403 (2010).

[120] R. Matsumoto and S. Murakami, Phys. Rev. Lett. 106,
197202 (2011).

[121] L. Smrcka and P. Streda, J. Phys. C: Solid State Phys.
10, 2153 (1977).

[122] N. R. Cooper, B. I. Halperin, and I. M. Ruzin, Phys.
Rev. B 55, 2344 (1997).

[123] T. Qin, Q. Niu, and J. Shi, Phys. Rev. Lett. 107, 236601
(2011).

[124] J. M. Luttinger, Phys. Rev. 135, A1505 (1964).
[125] S. Ryu, J. E. Moore, and A. W. W. Ludwig, Phys. Rev.

B 85, 045104 (2012).
[126] D. Xiao, Y. Yao, Z. Fang, and Q. Niu, Phys. Rev. Lett.

97, 026603 (2006).
[127] T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys.

Rev. Lett. 88, 207208 (2002).
[128] O. Vafek, A. Melikyan, and Z. Tešanović, Phys. Rev.

B 64, 224508 (2001).
[129] Z. Wang, X.-L. Qi, and S.-C. Zhang, Phys. Rev. B 84,

014527 (2011).
[130] K. Nomura, S. Ryu, A. Furusaki, and N. Nagaosa, Phys.

Rev. Lett. 108, 026802 (2012).
[131] M. Stone, Phys. Rev. B 85, 184503 (2012).
[132] H. Sumiyoshi and S. Fujimoto, J. Phys. Soc. Jpn. 82,

023602 (2013).
[133] P.-S. Hsin and N. Seiberg, J. High Energ. Phys. 2016,

95 (2016).
[134] N. Seiberg and E. Witten, Prog. Theor. Exp. Phys.

2016 (2016), 10.1093/ptep/ptw083.
[135] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
[136] T. Moriya, Phys. Rev. 120, 91 (1960).
[137] S. M. Winter, Y. Li, H. O. Jeschke, and R. Valentí,

Phys. Rev. B 93, 214431 (2016).
[138] J. S. Gordon and H.-Y. Kee, arXiv preprint (2020),

arXiv:2004.13723 [cond-mat.str-el].
[139] S. Sachdev, Phys. Rev. B 45, 12377 (1992).
[140] R. Kaneko, S. Morita, and M. Imada, J. Phys. Soc.

Jpn. 83, 093707 (2014).
[141] Y. Iqbal, W.-J. Hu, R. Thomale, D. Poilblanc, and

F. Becca, Phys. Rev. B 93, 144411 (2016).
[142] S. Hu, W. Zhu, S. Eggert, and Y.-C. He, Phys. Rev.

Lett. 123, 207203 (2019).
[143] Z. Zhu and S. R. White, Phys. Rev. B 92, 041105(R)

(2015).
[144] W. Zheng, J.-W. Mei, and Y. Qi, arXiv preprint (2015),

arXiv:1505.05351 [cond-mat.str-el].
[145] S. N. Saadatmand and I. P. McCulloch, Phys. Rev. B

94, 121111(R) (2016).
[146] W.-J. Hu, S.-S. Gong, W. Zhu, and D. N. Sheng, Phys.

Rev. B 92, 140403(R) (2015).
[147] N. Y. Yao, M. P. Zaletel, D. M. Stamper-Kurn, and

A. Vishwanath, Nature Phys. 14, 405 (2018).
[148] J. Iaconis, C. Liu, G. B. Halász, and L. Balents, SciPost

Phys. 4, 003 (2018).
[149] Y.-C. He, D. N. Sheng, and Y. Chen, Phys. Rev. Lett.

112, 137202 (2014).
[150] S.-S. Gong, W. Zhu, and D. N. Sheng, Sci. Rep. 4, 6317

(2014).
[151] S.-S. Gong, W. Zhu, L. Balents, and D. N. Sheng, Phys.

Rev. B 91, 075112 (2015).
[152] L. B. Ioffe and A. I. Larkin, Phys. Rev. B 39, 8988

(1989).
[153] N. Nagaosa and P. A. Lee, Phys. Rev. Lett. 64, 2450

(1990).
[154] H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101,

010504 (2008).
[155] J. Dubail and N. Read, Phys. Rev. B 92, 205307 (2015).
[156] S. Bieri, C. Lhuillier, and L. Messio, Phys. Rev. B 93,

094437 (2016).
[157] Y.-D. Li, Y.-M. Lu, and G. Chen, Phys. Rev. B 96,

054445 (2017).
[158] Y.-M. Lu, Phys. Rev. B 93, 165113 (2016).
[159] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and

M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
[160] Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
[161] D. Sen and R. Chitra, Phys. Rev. B 51, 1922 (1995).
[162] Y. Ran, M. Hermele, P. A. Lee, and X.-G. Wen, Phys.

Rev. Lett. 98, 117205 (2007).

http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/PhysRevLett.73.2158
http://dx.doi.org/10.1103/PhysRevLett.98.247201
http://dx.doi.org/10.1103/PhysRevLett.98.247201
http://dx.doi.org/10.1103/PhysRevB.82.064412
http://dx.doi.org/10.1103/PhysRevB.82.064412
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevB.86.085145
http://dx.doi.org/10.1103/PhysRevB.86.085145
http://dx.doi.org/10.1103/PhysRevResearch.2.013072
http://dx.doi.org/10.1103/PhysRevResearch.2.013072
http://dx.doi.org/10.1103/PhysRevB.84.125125
http://dx.doi.org/10.1103/PhysRevB.84.125125
http://dx.doi.org/10.1103/PhysicsPhysiqueFizika.2.5
http://dx.doi.org/ 10.1103/PhysRevB.38.745
http://dx.doi.org/ 10.1103/PhysRevB.38.745
http://dx.doi.org/10.1103/PhysRevB.39.11538
http://dx.doi.org/10.1103/PhysRevB.39.11538
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/PhysRevB.76.035125
http://dx.doi.org/10.1016/0304-8853(88)90467-2
http://dx.doi.org/10.1016/0304-8853(88)90467-2
http://dx.doi.org/10.1103/PhysRevLett.62.595
http://dx.doi.org/10.1103/PhysRevLett.62.595
http://dx.doi.org/10.1103/PhysRevB.65.165113
http://dx.doi.org/10.1103/PhysRevB.87.104406
http://dx.doi.org/10.1103/PhysRevB.87.104406
http://dx.doi.org/10.1103/PhysRevLett.3.77
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.44.2664
http://www.arxiv.org/abs/1809.08247
http://arxiv.org/abs/1809.08247
http://arxiv.org/abs/1809.08247
http://dx.doi.org/10.1103/PhysRevB.79.033109
http://dx.doi.org/10.1103/PhysRevB.79.033109
http://dx.doi.org/10.1103/PhysRevB.80.081104
http://dx.doi.org/ 10.1103/PhysRevLett.106.107203
http://dx.doi.org/10.1103/PhysRevLett.104.066403
http://dx.doi.org/10.1103/PhysRevLett.104.066403
http://dx.doi.org/10.1103/PhysRevLett.106.197202
http://dx.doi.org/10.1103/PhysRevLett.106.197202
http://dx.doi.org/10.1088/0022-3719/10/12/021
http://dx.doi.org/10.1088/0022-3719/10/12/021
http://dx.doi.org/10.1103/PhysRevB.55.2344
http://dx.doi.org/10.1103/PhysRevB.55.2344
http://dx.doi.org/ 10.1103/PhysRevLett.107.236601
http://dx.doi.org/ 10.1103/PhysRevLett.107.236601
http://dx.doi.org/10.1103/PhysRev.135.A1505
http://dx.doi.org/10.1103/PhysRevB.85.045104
http://dx.doi.org/10.1103/PhysRevB.85.045104
http://dx.doi.org/ 10.1103/PhysRevLett.97.026603
http://dx.doi.org/ 10.1103/PhysRevLett.97.026603
http://dx.doi.org/10.1103/PhysRevLett.88.207208
http://dx.doi.org/10.1103/PhysRevLett.88.207208
http://dx.doi.org/10.1103/PhysRevB.64.224508
http://dx.doi.org/10.1103/PhysRevB.64.224508
http://dx.doi.org/10.1103/PhysRevB.84.014527
http://dx.doi.org/10.1103/PhysRevB.84.014527
http://dx.doi.org/10.1103/PhysRevLett.108.026802
http://dx.doi.org/10.1103/PhysRevLett.108.026802
http://dx.doi.org/10.1103/PhysRevB.85.184503
http://dx.doi.org/10.7566/JPSJ.82.023602
http://dx.doi.org/10.7566/JPSJ.82.023602
http://dx.doi.org/10.1007/JHEP09(2016)095
http://dx.doi.org/10.1007/JHEP09(2016)095
http://dx.doi.org/10.1093/ptep/ptw083
http://dx.doi.org/10.1093/ptep/ptw083
http://dx.doi.org/10.1016/0022-3697(58)90076-3
http://dx.doi.org/10.1103/PhysRev.120.91
http://dx.doi.org/ 10.1103/PhysRevB.93.214431
http://www.arxiv.org/abs/2004.13723
http://arxiv.org/abs/2004.13723
http://dx.doi.org/10.1103/PhysRevB.45.12377
http://dx.doi.org/10.7566/JPSJ.83.093707
http://dx.doi.org/10.7566/JPSJ.83.093707
http://dx.doi.org/ 10.1103/PhysRevB.93.144411
http://dx.doi.org/ 10.1103/PhysRevLett.123.207203
http://dx.doi.org/ 10.1103/PhysRevLett.123.207203
http://dx.doi.org/10.1103/PhysRevB.92.041105
http://dx.doi.org/10.1103/PhysRevB.92.041105
http://www.arxiv.org/abs/1505.05351
http://arxiv.org/abs/1505.05351
http://dx.doi.org/10.1103/PhysRevB.94.121111
http://dx.doi.org/10.1103/PhysRevB.94.121111
http://dx.doi.org/ 10.1103/PhysRevB.92.140403
http://dx.doi.org/ 10.1103/PhysRevB.92.140403
http://dx.doi.org/10.1038/s41567-017-0030-7
http://dx.doi.org/10.21468/SciPostPhys.4.1.003
http://dx.doi.org/10.21468/SciPostPhys.4.1.003
http://dx.doi.org/10.1103/PhysRevLett.112.137202
http://dx.doi.org/10.1103/PhysRevLett.112.137202
http://dx.doi.org/10.1038/srep06317
http://dx.doi.org/10.1038/srep06317
http://dx.doi.org/ 10.1103/PhysRevB.91.075112
http://dx.doi.org/ 10.1103/PhysRevB.91.075112
http://dx.doi.org/10.1103/PhysRevB.39.8988
http://dx.doi.org/10.1103/PhysRevB.39.8988
http://dx.doi.org/10.1103/PhysRevLett.64.2450
http://dx.doi.org/10.1103/PhysRevLett.64.2450
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevB.92.205307
http://dx.doi.org/10.1103/PhysRevB.93.094437
http://dx.doi.org/10.1103/PhysRevB.93.094437
http://dx.doi.org/ 10.1103/PhysRevB.96.054445
http://dx.doi.org/ 10.1103/PhysRevB.96.054445
http://dx.doi.org/10.1103/PhysRevB.93.165113
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.71.3697
http://dx.doi.org/10.1103/PhysRevB.51.1922
http://dx.doi.org/10.1103/PhysRevLett.98.117205
http://dx.doi.org/10.1103/PhysRevLett.98.117205

	Unquantized thermal Hall effect in quantum spin liquids with spinon Fermi surfaces
	Abstract
	I Introduction
	II Kitaev honeycomb model
	A Symmetries
	B Parton construction
	C Mean-field theory

	III Thermal Hall response in the field-induced phases
	A Formalism
	B Results

	IV Triangular-lattice Heisenberg antiferromagnet
	A Model
	B Thermal Hall conductivity

	V Summary and conclusion
	 Acknowledgements

	A Mean-field theory for the Kitaev model
	B Ansatz for the staggered flux state
	 References


