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Experimental and Analytical Delay-Adaptive Control of a 7-DOF Robot
Manipulator

Alexander Bertino!, Peiman Naseradinmousavi?, and Miroslav Krstic®

Abstract— We study the analytical and experimental trajectory-
tracking control of a 7-DOF robot manipulator with an unknown long
actuator delay. In order to compensate for this unknown delay, we
formulate a delay-adaptive prediction-based control strategy in order
to simultaneously estimate the unknown delay while driving the robot
manipulator towards the desired trajectory. To the best of the authors’
knowledge, this paper is the first to present a delay-adaptive approach
for a nonlinear system with multiple inputs. Through Lyapunov
analysis, we first obtain a local asymptotic stability result of the
proposed controller. Then, through the results of both our simulation
and experiment, we demonstrate that the proposed controller is capable
of tracking the desired trajectory with desirable performance despite a
large initial delay mismatch, which would cause non-adaptive prediction
based controllers to become unstable.

I. INTRODUCTION

In this paper, we address the experimental and analytical control
of a 7-DOF robot manipulator subjected to an unknown constant
input delay. Such delays are frequently observed in the control of
remote manipulators [1]-[5], where a long, slowly time-varying
(often assumed to be constant) communication delay is likely
present. In order to account for a known delay, a variety of predictor
based approaches have been developed for linear systems [6]-
[11], nonlinear systems [12]-[15], as well as systems with a time-
varying delay [16]—[18]. In recent papers [19]-[23], adaptive control
strategies were developed in order to estimate an unknown delay
while simultaneously compensating for this delay with a predictor
based approach. In the paper [23] by Bresch-Pietri et al., this
strategy was extended to nonlinear dynamics subjected to a constant
input delay. In this effort, we extend the local technique developed
by Bresch-Pietri er al. [23] for an unmeasured distributed input,
in order to handle the case of trajectory tracking with multiple
actuators. This extension preserves the local delay-adaptive stability
result of the original method. Furthermore, through the experimental
verification of this delay-adaptive control strategy on Baxter, a
7-DOF redundant robot manipulator, we demonstrate desirable
controller performance even in the presence of a significant delay
mismatch of 0.9 seconds (Os initial prediction, 0.9s actual delay).
Thus, the delay-adaptive control strategy is both theoretically sound
and effective in practice, significantly improving the tracking perfor-
mance of the predictor based approach when the delay is unknown.
This is the main contribution of this paper.

The organization of this paper is as follows. In Section II,
we present a brief overview of the dynamics of Baxter’s right
manipulator. In Section III, we formulate the delay adaptation
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task in mathematical terms, as well as state several assumptions
on the system dynamics, feedback law, and desired trajectories
that are utilized in the Lyapunov analysis of the delay-adaptive
method. In Section IV, we present the delay-adaptation approach,
and demonstrate the local delay-adaptive stability of the method
through a Lyapunov analysis utilizing the £; norm. In Section V,
we present the simulation and experimental results of the proposed
method implemented on Baxter’s right manipulator, accounting for
a large delay mismatch of 0.9 seconds. Finally, in Section VI,
we present the case that the proposed delay-adaptive method has
the potential to significantly increase the transient performance of
a robot manipulator subjected to an unknown delay, through the
compensation of an initial delay mismatch.

Notations: In the following, we use the common definitions of
class K and Ko given in [24]. |-| and ||, refers to the Euclidean
and £, norms respectively, the matrix norm is defined accordingly,
for M € M,(R)(¢ € N*), as |M| = sup|Mz| and the spatial £;

|z|<1
and L2 norms are defined as follows:

utoll, = [ fute o),z
Hu(t)H2 = \//0 u(z, t)Tu(z, t)dx

For (a,b) € R? such that a < b, we define the standard projector
operator on the interval [a, b] as a function of two scalar arguments
f (denoting the parameter being updated) and g (denoting the
nominal update law) in the following manner:

0 if f=aand g< 0
Projiap(f,9) =9g<0 if f=band g >0
1 otherwise

II. MATHEMATICAL MODELING

The redundant manipulator, which is being studied here, has 7-
DOF as shown in Fig. 1. The Euler-Lagrange formulation leads
to a set of 7 coupled nonlinear second-order ordinary differential
equations:

M(q)§+C(q,4)d +G(g) =7 (1)

where, ¢,¢,§ € R” are angles, angular velocities and angular
accelerations of joints, respectively, and 7 € R” indicates the vector
of joints’ driving torques. Also, M (q) € R™*7 is a symmetric mass-
inertia matrix, C'(¢, ¢) € R™*” is a matrix of Coriolis coefficients,
and G(q) € R” is a vector of gravitational loading.

Our verified coupled nonlinear dynamic model of the robot [14],
[15], [25]-[31] is used as the basis of the delay-adaptive approach.
Note that the inertia matrix M (q) is symmetric, positive definite,
and consequently invertible. This property is used in the subsequent
development. The multi-input nonlinear system (1) can be written as
14th-order system of ODEs with the following general state-space
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(b)

Fig. 1. The joints’ configuration: (a) sagittal view; (b) top view

form:

X = fo(X(t),U(t)) @)

where X (t) = [q1(t), -+, qr(t),d1(t), -+ ,dr(t)]T € R™ is the
14-dimensional vector of states, and U(t) = 7(t) € R” represents
the input torques to the system (2).

In order to track a desired trajectory, we reformulate (2) in terms
of the error dynamics. We introduce the state error vector F(t) =
[e,é]T € R, where e = qaes — g € R” is the positional error
of the robot manipulator, and q4es € R” are the reference joint
trajectories to track. Utilizing this state error vector, we reexpress
2): )

E=f(E®),U()) 3

Furthermore, we make the following assumption regarding the
reference joint trajectories:

Assumption 1. The desired joint trajectories are designed such
that qges(t) € R7 is a class C*° function and is bounded for all
t>0.

III. PROBLEM STATEMENT

Consider the following nonlinear plant:
E = f(E(t),U(t - D)) “

in which D is an unknown delay introduced to the error dynamic
model of Baxter’s right manipulator (3), belonging to the interval
[D, D], with D > 0. The objective of the delay-adaptive approach
is to stabilize the error dynamics with input delay (4), despite
the length of the delay being initially unknown. In order to assist
the Lyapunov stability analysis in the next section, the following
assumptions are made regarding the nonlinear plant (4), the control

feedback law, as well as the desired joint trajectories.

Assumption 2. The nonlinear plant (3) is strongly forward com-
plete.

Assumption 3. There exists a feedback law U(t) = k(E(t)) such
that the nominal delay-free plant (3) is globally exponentially stable
and such that k is a class C? function, i.e. there exist A > 0 and a
class C radially unbounded positive definite function V' such that
for E € R*
dv
de(E)f(Evﬁ(E)) < -AV(E)
B < V(EB) < o1 B
dv 2
—(F)| < c|E
5 (®)| <l
Assumption 4. The contribution of the desired joint trajectories
Gdes(t) to the dynamics of the nonlinear plant subject to an

unknown delay (4), as well as the feedback control law k(E(t)),
vary slowly as a function of time. That is, ¥Yn > 0:

Of _n+1) Ok (nt1)
(n) qd:s ~ 07 (n) qd:s ~0
8qdes aqdes

Assumption 2 assures that (4) does not escape in finite time.
This assumption is necessary to ensure that the system does not
escape before the input U (¢ — D) reaches the system. Assumption
3 is a stronger than necessary condition used in order to prove the
local stability of the delay-adaptive approach. Finally, Assumption 4
ensures that the desired joint trajectories do not change too quickly,
in a manner that noticeably alters the error dynamics of the system.

To analyze the closed-loop stability despite delay uncertainties,
we use the systematic Lyapunov tools introduced in [12] and first
reformulate plant (4) in the form:

E = f(E(t),u(0,1))
Dui(z,t) = ug(x,t) (%)
u(1,t) =U(t)

by introducing the following distributed input:
u(z,t) =U({t+ D(x—1)), ze€]0,1] (6)

Thus, the input delay is now represented as a coupling with a
transport PDE driven by an input with unknown convection speed
1/D.

IV. DELAY-ADAPTIVE CONTROLLER FORMULATION

Due to the fact that the distributed input is unmeasured, we
introduce an estimate of the distributed input:

a(z,t) = Ut + D(t)(x — 1)), z€[0,1] (7)

where ﬁ(t) is the current estimate of the input delay. In order to
stabilize (5), we must first predict the state of the system (5) once
the delayed input reaches the system. In order to achieve this, we
introduce a distributed predictor estimate:

x
Pz, t) = E(t+ D(t)z) = E(t) + D(t)/ f((y, 1), aly, t))dy
’ (8)
If the input delay was known, the control law U (t) = k(E(t+ D))
could be used to stabilize the system, exactly compensating for the
delay present in the system. Therefore, by the certainty equivalence
principle, we choose the control law as:

U(t) = w(E(t + D(#))) = r(p(L, 1)) ©)

In order to derive an adaptation update law for the estimated
delay, we utilize the following instantaneous cost function, initially
proposed in [20] for a linear plant:

o (t,D) e [to,oo[—> ’Xp(m D) — X(1) (10)

where Xp (¢, D) is a ¢ seconds ahead predictor of the system state,
starting from the state X (¢ — ¢) and assuming the input delay is
D(t) By taking the gradient of the cost function with respect to
the estimated delay, one can obtain:

ToXp

L, D 11
aD(t ) (1D

o(t) = —(Xp(t, D) — X(t))

where

Xp(t,D) = X(t — ¢) + /t; fo (Xp(s), U(s — D))ds (12)
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OXp, ~ [ 3f . .
5 (D)=~ /Hs W(XP(SL Uls — D))U(s ~ D)ds
(13)

Utilizing this computed gradient 7p, the rate of change of the delay
estimate can be computed as:

ﬁ(t) =vProjip p {ﬁ(t), D (t)}

where v > 0 is the adaptation rate of the delay estimate, and the
projection operator is utilized in order to ensure that the delay
estimate remains in the interval [D, D]. By utilizing a steepest
descent argument [32], one can obtain the following properties of
(11), provided that the initial delay estimate is close enough to the

true value of the delay:

(14)

Proposition 1. There exist positive parameters H > 0 and D*>0
such that, if D(0) < D*:

D(t)rp(t) >0, |rp|<H, |ip|<H (15)

where D(t) = D — D(t) is the current estimation error of the
delay.

Utilizing the delay estimate update law (14), as well as the control
law (9), we are now ready to present the stability theorem for
the delay-adaptive controller operating on a robot manipulator with
unknown input delay.

Theorem 1. Consider the closed-loop system consisting of the
error dynamics of the robot manipulator (3), control law (9), delay
estimate update law (14), and desired joint trajectories qaes(t)
satisfying Assumptions 1-4. Define the functional:

t

r'(t) = |E()| +/ |U(s) — 5(0)|ds+

t—maz{D,f)(t)}

/ttm{D b} olas+ [ tm) U(s)|ds + D(t)”

Then, there exist v* > 0 (potentially dependent on initial condi-
tions), p > 0 and a class Ko function o™ such that, if I'(0) < p
and vy < ~*, then

VE>0, T(t) < a*(I(0)

E(it) — 0

t—o0

A. Lyapunov Analysis

In this section, the proof of Theorem 1 bears strong resemblance
to the proof of Theorem 3 in [23], since the delay-adaptive control
approach in our paper is an extension of their approach. Further-
more, the Lemmas 1 and 2 in this section are mostly equivalent in
representation to the Lemmas 4 and 5 in [23]. Thus, in the interest
of brevity, the proofs of these lemmas are not provided in this paper.

In order to perform the Lyapunov stability analysis, a backstep-
ping transformation is first used in order to reformulate (5).

Lemma 1. The backstepping transformation of the distributed input
estimate (7)

w(z, t) = a(z, t) — k(p(x,t)) (16)

in which the distributed predictor estimate is defined in (8), together
with the control law (9), transforms plant (5) into:

E(t) = f(E(t),x(E(t)) +w(0,t) +a(0,t)) 17)

w(l,t) =0
Di, =i — D(t)pi(z,t) - D()pa(x,t) (19)
u(1,t) =0
in which
u(x,t) = u(z, t) — 4(x, t) (20)

is the distributed input estimation error. The expressions for the
terms p1, P2, q1, g2, and fu can be found in [33].

Additionally, the governing equations for several spatial deriva-
tives of the distributed input estimation error (20) and the backstep-
ping transformation (16) are required in order to proceed with the
Lyapunov analysis.

Lemma 2. The spatial derivatives of the distributed input estima-
tion error (20) and of the backstepping transformation (16) satisfy

Dilgt lze — D(t)ps(,1) — D(t)pa(z,t)
i (1,t) = D()pi(1,t)

@n

Dt)ivar = thas + D(t)as(w,) — qa(a, ) fa(t

. (22)
We(1,t) = —=D(t)q1(1,t) + q2(1, 1) fa(t)

D(tyser = taze + D(t)gs5 () — g (a0, £)f (1)
Wae(1,t) = —D(t)gs(1,t) + qa(1,t) fa(t) + D(t)gr(t)
(23)

in which p3 = p1,z, P4 = P2,2, 43 = Q1,2 G4 = 42,2, G5 = (3,2
g6 = qa,0, and q7 = W +(1,t). The expressions for these functions
can be found in [33].

For the purpose of the Lyapunov analysis, we consider the
following Lyapunov-Krasovskii functional candidate:

1
W(t) = Vo(E) +boD/ (1 + )|, 1)) da
0
1 R 1
+b1D/0 (1+z)|ﬁz(x,t)|ldx+b2D(t)/0 (14 2)|i(z,t)|,dz
1
+b3D(t)/0 (1+x)|11)z(x,t)‘1d:c

1
+ baD(t) / (1 + @) |tbga (x,t)|  dz + D(t)?
’ (24)

in which Vo = v/V, which was previously defined in Assumption
3. Utilizing the properties of Assumption 3, along with the state
space model of the robot manipulator (3), the following inequality
can be obtained:

. A c _
Vo <= SIE|+ 5 |M()" (25)

|@(0,t) + w(0,t)|,
By taking the derivative of (24) and utilizing integration by parts,
the following inequality can be obtained:

W(o) < 518+ 2 |M(a) ™ [a(0, 01 +2(0,8)] ~ bolfact)],

N 1
,b0|a(o,t)\1+b0‘D(t)(/o (1+2)|p1(2,1)]  da
. 1
+bo‘f)(t)‘/0 (1+2)|p2(e, )] dz — b1 || (1) 2

1
+b1|ax(1,t)|1—b1|aw(o,t)|1+b1\D(t)‘/o (1 +2)|ps (=, 1)| de
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. 1
+b1’l§(t)’/0 (1+a)|pa(, )| dz — bz || (t)||, — b2|@(0,1)],
. 1
+b2’D(t)‘/O (1+a)|q1(2,8)|, do
1
-i-bz/O (1+$)}Q2(xvt)fa(t)|1dx—b3||11)z(t)||3

—bgtdz (0, ) T 10z (0, ) +b3 |y

s 1
(Lt>|1+b3\D(t>(/o (1+42)|q3(x, t)| , dz

1
+ b3/ (1 + )| qa(x, t) fa ()|, dz + ba|dza(1,1)],
0
= ba| 2z (0, 8)] — bal[dza (t)]]

. 1 1
+b4‘ﬁ(t)‘/0 (1+x)|q5(x,t)|1dx+b4/0 (142)|as (@, ) fa (1) |, do

+baD(t) /0 Y

. 1 .
+b4D(2) /O (1 4 @) |[tbza (2, )| dz — 2D(t) D(t)  (26)

. 1
w(z, t)!ldx + b3D(t)/0 1+ a:)|u?x(:v, t)‘ldac

In order to bound the positive terms in the previous expression, we
define the following alternative functional:

Wo(t) = |E@®)| + [|la®)], + [|la= 0], +
+ [z (1), +

@n

Then, by applying Lemmas 6-8 in [23], and introducing n =
min{\/2, bo, b1, ba, b3, bs}, one can bound (26) in terms of class
Koo functions au:21(Wo(t)) of (27):

W(t) < (nWO ‘D(t)‘ (boa4 Wo(t)) + braz(Wo(t))
+ baag(Wo(t)) + b2 (Wo(t)) + baccia(Wo(t))
+ 2(2b3 + by )Wo (t) + bBQlo(WO(t))>
7b4<‘D }+D ‘D ‘ >a16(W0(t))
= b4 D(B) s (Wo (1)) — | D) (boars(Wo 1)
+ brog (Wo(t)) + braii (Wo(t)) + bras(Wo(t))

b ‘ﬁ(t) ‘alo(WQ(t)) + b4a20(Wo(t))>

- |ie

0,t)| (bl — b4a17(W0(t))) — |’t7,(07 t)|1 <b0
— bgag(WQ(t ) — b3a11(W0(t)) — b3a13(W0(t)) — b4a15(Wo(t))
— baaas(Wo(1)) — a1 (Wo(1) ) — [@(0,0)], (b2 — a2 (Wo (1))
'Lf)m(o t)|1 (bg — b4a17(Wo( ) — !lﬁxm(o, t)|1b4 (1 — ‘b(t)’)

(28)

(
)

—2D(t)D(t)

In order to ensure that the last 5 terms of (28) are initially
negative, we choose parameters such that:
bo > baag(Wo(0)) + bza1(Wo(0)) + b1z (Wo(0))
+ bga15(Wo(0)) + baa1g(Wo(0)) + a21(Wo(0))

b1 > baa17(Wo(0)), b2 > a21(Wo(0)),b3 > baar7(Wo(0)) (29)

To further reduce (28), we apply Proposition 1 and introduce the
following functions:

o (Wo() = H (boaa(Wo (1) + braa (Wo(£))
+ baag(Wo(t)) + bgar2(Wo(t)) + baa1a(Wo(t))
+2(2b3 + b4)Wo(t)) + bsH?a10(Wo (1))
+ba(H? + H* + Ha16(Wo(t)) + baHa1e(Wo(t)) (30)

a3 (Wo(t)) = boas(Wo(t)) + brag(Wo(t)) + brari (Wo(t))

75

+bras(Wo (1)) + bi H?a10(Wo (b)) + baazo(Wo(t)) (31
For |[Wo(t)| < Wo(0), (28) reduces to:
W () < —(aWo(t) = vai (Wo(8)) — [ D(®)|a3 (Wa(1)))
= ba(1 = vH) |22 (0,8)|,  (32)

Using the following inequality, which results from Young’s
inequality:
pw| < S+ Lhw?< S+ tw
2 2 2 2

one can obtain the following inequality:

(33)

W(t) < - (ﬁWO(t) —yai(Wo(t)—

(5+ ;wm)a;(%(t))) = ba(1 = yH)|iozz(0,0)],  (34)

Thus, by choosing for a given v € [0, 1]:

1
Y <At =maxql, o, (35)
H max of (z)
z€[0,Wq(0)]
vn—+7 max oﬁf/ (z)
e <o 2EOWoO) (36)
max ab (x)
z€[0,Wp(0)]
vn—7 max af(m) — 5§ max Oz;/(x)
W(O) < 2 z€[0,W(0)] ,ZE[O,WU(O)] 37)
max o3 (x)
z€[0,Wq(0)]
one can ensure that:
W(t) < —(1 —v)nWo(t) (38)

and consequently the following inequality which concludes the
Lyapunov analysis: W(t) < W(0) 39)

In order to provide a stability result in terms of I', Assumption 3
can be used to prove the existence of two class Ko functions aj
and « such that a3 (T'(¢)) < W (t) < ai(I'(t)). It follows that:

() < a3~ (W(0)) < a5 (a1(I'(0))

Thus, the condition I'(t) < «*(I'(0)) in Theorem 1 is verified.

We now use Barbalat’s Lemma to prove the convergence of E(t).
By integrating (38) from 0 to oo, it can be seen that both |E (t)| and
U (t)‘ are integrable. Furthermore, from (39), it can be seen that
’ﬁz (t)”l, 0 (t)H1 and sz (t) |1 are uniformly bounded. From the
application of Lemma 7 in [23], u(0, ¢) is also uniformly bounded.
Using the properties of u(0,t), and applying them to (5), it can
be seen that |E(t)| is uniformly bounded. Thus, we conclude with
Barbalat’s Lemma that F(t) — 0 as t — co.

(40)

V. SIMULATION AND EXPERIMENTAL RESULTS

In order to assess the performance of the delay-adaptive ap-
proach, we perform both a simulation using ODE methods on
Baxter’s dynamic equation (1), as well as an experiment. In both
the simulation and the experiment, Baxter must track a trajectory
designed for a pick and place task in [30], while having an input
delay of D = 0.9 seconds. Furthermore, we initialize the estimated
delay as D(0) = 0.0 seconds. This large delay mismatch is
intentionally chosen in order to demonstrate the ability of the delay-
adaptive approach to achieve stability under conditions that would
cause a purely predictor based approach to fail.

The experimental, simulated, and desired joint trajectories for
several select joints can be seen in Figure 2. Despite the large initial
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Fig. 2. The experimental (blue line), simulated (green line), and desired

(red dashed line) joint trajectories of Baxter: (a) Joint 1, (b) Joint 3, (c)
Joint 5, (d) Joint 6

o

Tracking Error (Deg.)
Tracking Error (Deg.)
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(@)

Fig. 3. The simulated (a) and experimental (b) joint tracking errors of
select joints of Baxter (Joints 1, 3, 5 and 6).

delay mismatch, the delay-adaptive approach is effective at driving
the robot manipulator towards the desired trajectory. After the initial
0.9 seconds of operation, in which the robot manipulator was
expectedly stationary due to the input delay, the robot manipulator
quickly corrects itself towards the desired trajectory. This behavior
can also be observed in Figure 3, as both the simulated and
experimental joint tracking errors decrease rapidly after around
1 second of operation. Furthermore, both the experimental and
simulated trajectories appear to be smooth, indicating that changes
to the estimated delay during adaptation did not cause disturbances
in the tracking performance of the manipulator.

The experimental and simulated joint toque input signals for
several select joints can be seen in Figure 4. It is important to
note that these torques are significantly lower than the maximum
torque output of Baxter’s joints, which are 50 Nm for joints 1-4,
and 15 Nm for joints 5-7. Thus, the delay-adaptive approach is
able to compensate for a large delay mismatch without producing
excessive joint torques. In the simulation, slight chattering can be
observed in the input joint torque signal. This chattering, which
is most prominent during the 1st 2 seconds of the simulation, is
caused by large changes in the estimated delay in the beginning
of the simulation. This behavior is not of concern however, as the
chattering is of a small amplitude, and is mostly eliminated after 2
seconds. In the experiment, a small amount of noise can be observed
in the control signal. This is likely due to the indirect measurement
of the joint angular velocities through the use of encoders. This

76

Experimental Torque

- Shmalated Torque — Experimental Torque

- - -Simulated Torque

73 (Nm)

) 2 4

Time (sec)

(d)

Time (sec)
@

Experimental Torque

—— Experimental Torquel .
P n - - -Simulated Torque

- - -Simulated Torque

76 (Nm)

Time (sec)

(@

Time (sec)

(©)

Fig. 4. The experimental (blue line) and simulated (red dashed line) joint
torque input signals of Baxter: (a) Joint 1, (b) Joint 3, (c) Joint 5, (d) Joint
6

measurement noise, introduced when taking the derivative of the
joint angular positions, is reflected in a small amount of noise being
present in the torque signal. This is also not a cause of concern, as
the amplitude of the noise is not large enough to noticeably impact
tracking performance.

1-
0.8+
—~
&)
% 0.6+
—
>
=04}
A
0.21 Estimated Delay (Experiment)
—— Estimated Delay (Simulation)
- - - Actual Delay
0 L L .
0 2 4 6
Time (sec)

Fig. 5. The adaptation of the estimated delay in experiment (blue line)
and simulation (green line), compared to the actual input delay (red dashed
line)

The adaptation of the estimated delay in the experiment and
simulation can be seen in Figure 5. In both the experiment and
simulation, the estimated delay quickly converges to the actual
delay. Furthermore, the following important observations can be
made regarding the behavior of the adaptation. First of all, the
rate of change of the adaptation appears to be constant during
the 1st 0.9 seconds of the simulation and experiment, until the
estimated delay coincides with the actual delay. Due to the initial
state of the robot manipulator being at rest, delays longer than the
elapsed time ¢ are indistinguishable from a delay of ¢ seconds.
Thus, as a consequence of the properties stated in Proposition 1,
the estimated delay is upper bounded by the simulation time in
the simulation and experiment. Second of all, we observe that the
estimation of the delay in simulation and experiment follow a nearly
identical curve. This indicates that the delay-adaptive procedure
does not suffer significantly from factors such as measurement noise
of joint states which are present in the experiment but not in the
simulation. Finally, it can be seen that there is slight overshoot in
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the estimated delay during the experiment. Although this behavior
technically violates Proposition 1, it can reasonably be attributed to
discretization of the control law.

VI. CONCLUSION

In this effort, we investigated the analytical and experimental
trajectory-tracking control of a 7-DOF robot manipulator with an
unknown long actuator delay. In order to compensate for this
unknown delay, we formulated a delay-adaptive prediction-based
control strategy in order to simultaneously estimate the unknown
delay while driving the robot manipulator towards the desired
trajectory. To the best of the authors’ knowledge, this paper is the
first to present a delay-adaptive approach for a nonlinear system
with multiple inputs. Through Lyapunov analysis utilizing the £;
norm, we obtained a local asymptotic stability result of the proposed
controller. Then, we demonstrated through both simulation and
experiment that the proposed controller is capable of achieving
desirable trajectory tracking performance, even in the case of
a large initial delay mismatch. This research represents a large
improvement upon the predictor-based approach in the case of an
unknown delay, and thus has promising potential for use cases in
which the delay is difficult to accurately predict or measure directly.
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