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On the Capacity of Locally Decodable Codes
Hua Sun, Member, IEEE, and Syed Ali Jafar, Fellow, IEEE

Abstract—A locally decodable code (LDC) maps K source
symbols, each of size Lw bits, to M coded symbols, each of
size Lx bits, such that each source symbol can be decoded
from N ≤ M coded symbols. A perfectly smooth LDC further
requires that each coded symbol is uniformly accessed when we
decode any one of the messages. The ratio Lw/Lx is called
the symbol rate of an LDC. The highest possible symbol rate
for a class of LDCs is called the capacity of that class. It
is shown that given K,N , the maximum value of capacity of
perfectly smooth LDCs, maximized over all code lengths M ,

is C∗ = N
(

1 + 1/N + 1/N2 + · · ·+ 1/NK−1
)

−1
. Furthermore,

given K,N , the minimum code length M for which the capacity
of a perfectly smooth LDC is C∗ is shown to be M = NK . Both
of these results generalize to a broader class of LDCs, called
universal LDCs. The results are then translated into the context of
PIRmax, i.e., Private Information Retrieval subject to maximum
(rather than average) download cost metric. It is shown that
the minimum upload cost of capacity achieving PIRmax schemes
is (K − 1) logN . The results also generalize to a variation of
the PIR problem, known as Repudiative Information Retrieval
(RIR).

Index Terms—Capacity, locally decodable codes, private infor-
mation retrieval.

I. INTRODUCTION

A locally decodable code (LDC) with locality N is a

mapping from K source symbols, W = {W1,W2, · · · ,WK},

each of size Lw bits, to M coded symbols, X =
{X1, X2, · · · , XM}, each of size Lx bits, such that for every

source symbol Wk, there exists at least one subset of N
coded symbols, S ⊂ X , |S| = N , such that Wk can be

recovered from the elements of S. Such a set S is called

a decoding set for Wk. This basic definition is somewhat

trivial, for example, any systematic code is locally decodable

with locality N = 1. LDCs are useful primarily if they are

capable of withstanding a significant fraction of corrupted

coded symbols without losing their local decodability. An

(N, δ, 1 − ε) LDC is guaranteed to have locality N and a

randomized decoding algorithm that succeeds with probability

at least 1− ε when the fraction of corrupted coded symbols is

at most δ. For this to be meaningful, there must be multiple

decoding sets for each source symbol. Let Sk be the set of

decoding sets for source symbol Wk, so that if S ∈ Sk

then S ⊂ X , |S| = N , and Wk is decodable from S. An
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LDC is said to be perfectly smooth if the coded symbols

are uniformly distributed across decoding sets. Specifically,

∀m1,m2 ∈ {1, 2, · · · ,M}, and ∀k ∈ {1, 2, · · · ,K}, the

number of decoding sets in Sk that contain Xm1
, must be

equal to the number of decoding sets in Sk that contain Xm2
. If

there are |Sk| decoding sets for Wk in a perfectly smooth LDC

(SLDC) with locality N , then every coded symbol must appear

in exactly N |Sk|/M of them. For such a code, at least one

uncorrupted decoding set survives as long as the fraction of

corrupted coded symbols, δ, is less than 1/N . This is because

each corrupted coded symbol can corrupt at most N |Sk|/M
decoding sets in Sk. If δM coded symbols are corrupted,

then the number of decoding sets that are corrupted is no

more than δN |Sk|. So a decoding algorithm that randomly

chooses one of the decoding sets must be successful with

probability at least 1−δN , provided that δ < 1/N . Therefore,

an SLDC is an (N, δ, 1− δN) LDC for any δ < 1/N . By the

same token, the minimum distance d of an SLDC, i.e., the

minimum number of coded symbols that must be erased for

a loss of data to occur, is at least M/N . Figure 1 shows an

example of an SLDC with locality N = 2 that encodes K = 3
binary (Lw = 1) source symbols, W1,W2,W3, into M = 6
binary (Lx = 1) coded symbols, X1, · · · , X6. The decoding

sets for W1,W2,W3 are comprised of pairs of coded symbols

connected by blue, red, and green edges, respectively. This is

also a (2, δ, 1− 2δ) LDC for δ < 1/2. So if δ = 1/3, and any

two coded symbols Xi, Xj are corrupted, then at least one of

the three decoding sets remains uncorrupted for every source

symbol, and a randomized decoder succeeds with probability

at least 1− δN = 1/3. The minimum distance of this code is

d = M/N = 3 because, e.g., a loss of X1, X5, X6 causes a

loss of data (W1 is lost).

X1

X2

X3

X4

X5

X6

X1 = W1, X4 = W2 +W3

X2 = W2, X5 = W1 +W2

X3 = W3, X6 = W3 +W1

Fig. 1. An SLDC with locality N = 2 that encodes K = 3 binary
(Lw = 1) source symbols, W1,W2,W3, into M = 6 binary (Lx =
1) coded symbols, X1, · · · , X6.

LDCs were introduced in the year 2000 by Katz and
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Trevisan in [1]1. One of the motivations for studying LDCs

comes from distributed storage applications. Coding is used

in distributed storage systems to limit storage and decoding

costs while providing resilience against failures of storage

nodes and efficient repair when such failures occur. LDCs

are especially effective for reducing the decoding cost in

commonly encountered scenarios where multiple datasets are

jointly encoded and only one of them needs to be retrieved.

In particular, smoothness of LDCs is a desirable feature for

distributed storage because it minimizes risk by spreading it

evenly across storage nodes. Remarkably, LDCs play even

more important roles in complexity theory [2], [3, Chapters 17,

18], data structures [4], [5], fault tolerant computation [6],

multiparty computation [7] and private information retrieval

(PIR) [8], [9], [10]. As such, understanding the fundamental

limits of LDCs (especially the tradeoff between code length

M and locality N ) is recognized as a major open problem in

theoretical computer science [7], whose answer could have a

domino effect on a number of related problems. For further

details on LDCs, we refer to the excellent tutorials in [11],

[12] and references therein.

In this work we view this open problem through the lens

of PIR. In its basic form [8], PIR is the problem of efficiently

retrieving a desired message from a set of K messages

that are replicated across N non-colluding databases, without

disclosing any information about the identity of the desired

message to any individual database. The strong connection

between PIR and LDCs is evident from the example illustrated

in Figure 1. In fact the example is derived from a PIR scheme

with K = 3 messages, W1,W2,W3, and two databases that

store (X1, X2, X3) and (X4, X5, X6), respectively. The user

randomly asks Database 1 for one of X1, X2 or X3, and

asks Database 2 for the other element of the decoding set for

his desired message, which is also uniformly distributed over

X4, X5, X6, thus revealing no information to either database

about which message is being retrieved. The upload cost for

this PIR scheme is a 3-ary symbol per database. Interestingly,

as shown in [13], the capacity of PIR subject to this upload

cost is 1/2, so the scheme shown in Figure 1 is optimal among

all PIR schemes with the same upload constraint.

In particular, this work is motivated by recent capacity

characterizations of PIR with various assumptions on message

sets, storage, and upload costs [13], [14], [15], [16], [17],

[18], [19]. The capacity of PIR, CPIR(N,K), is the maximum

number of bits of desired message that can be retrieved

per bit of total download from the N databases. Defining

Rs = Lw/Lx as the symbol rate of an LDC, the corresponding

notion of capacity, CLDC(M,N,K), is the maximum symbol

rate that is feasible for an LDC given the locality parameter

N , the code length M , and the number of source symbols K.

From this perspective, the fundamental tradeoff for SLDCs is

expressed in terms of the 4 parameters: M,N,K,Rs. It is

1In [1], Katz and Trevisan introduced (N, δ, 1 − ε) LDCs and smooth
LDCs (which include perfectly smooth LDCs as special cases). It is noted
later in Section 3.2 of [2] that a perfectly smooth LDC produces an (N, δ, 1−
δN) LDC for every δ < 1/N , and that for constant locality N (the setting
considered in this work) all known constructions of LDCs and PIR schemes
follow from the constructions of perfectly smooth LDCs.

desirable for M,N to take smaller values, and for K,Rs to

take larger values. The rate Rs is a critical part of this tradeoff.

If we consider M,K as independently chosen natural numbers,

then the range of values of N is between 1 and M , while the

range of values of Rs is between 1/K and M/K. At one

extreme, N = 1 forces Rs = 1/K. This is because N = 1 for

an SLDC implies that all source symbols can be decoded from

any single coded symbol. At the other extreme, Rs = M/K
forces N = M , because there is no redundancy, i.e., the total

number of bits of all coded symbols is the same as the total

number of bits of all source symbols.

In this paper we explore two particular aspects of the

(M,N,K,Rs) tradeoff2. The first is the tradeoff between

N,K,Rs for unconstrained M . In other words, we identify

the capacity of an SLDC for arbitrary N,K and unconstrained

code length M . Specifically we show that,

C∗(N,K) , max
M∈N

CLDC(M,N,K)

= N

(

1 +
1

N
+ · · ·

1

N2
+ · · ·+

1

NK−1

)−1

(1)

The second aspect of the tradeoff that we characterize is

the minimum codeword length M∗ that is needed to achieve

C?(N,K) for arbitrary N,K. Specifically, we show that

M∗ = NK . Remarkably, both results are shown not only for

all SLDCs but also for a broader class of LDCs that we label

universal LDCs (ULDCs). An LDC is universal if every coded

symbol appears in at least one of the decoding sets of every

source symbol. Mathematically, a ULDC is defined by the

property that ∀m ∈ {1, 2, · · · ,M}, and ∀k ∈ {1, 2, · · · ,K},

there exists some S ∈ Sk such that Xm ∈ S. Clearly,

every SLDC is a ULDC. However, not every ULDC is an

SLDC. For example, the LDC that maps K = 3 binary

source symbols W1,W2,W3 to the M = 4 binary code

symbols W1,W2,W3,W2 + W3 with locality N = 2 and

decoding sets S1 = {{W1,W2}, {W1,W3}, {W1,W2+W3}},

S2 = {{W1,W2}, {W2,W3}, {W3,W2 + W3}} and S3 =
{{W1,W3}, {W2,W3}, {W2,W2+W3}}, is universal but not

perfectly smooth. While less structured than SLDCs, evidently

ULDCs retain all the structure needed for the two aspects of

the tradeoff that are explored in this work.

For our final result, we apply the new insights from the

study of fundamental limits of LDCs back to the problem

of PIR. Recall that the rate of a PIR scheme is defined as

Rp = Lw

ND , where Lw is the number of bits of each message,

N is the number of databases, and D is the number of

bits downloaded from each database. For most PIR capac-

ity results [13], [16], [19], [20] the parameter D may be

interpreted either as the average download per database or as

the maximum download from any database (maximized across

all databases and all queries), without changing the capacity.

This is because the normalized downloads for almost all PIR

2Prior work in theoretical computer science literature [1], [2], [11] typically
explores a different regime where Rs is fixed (Rs = 1 is commonly assumed),
and studies the tradeoff between the number of source symbols K and the
number of coded symbols M for various values of locality parameter N
(including scaling of N with K).
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schemes are either already identical across databases or can be

made identical by time-sharing across different permutations

of databases. Exceptions include [15] which admits only the

maximum download formulation and [14] which allows only

the average download formulation. Reference [15] considers

the capacity of PIR for fixed length messages, and relies on

the maximum download formulation because averages are less

meaningful over the finite horizon. Reference [14] on the

other hand considers the minimum upload cost of a capacity

achieving PIR scheme, and allows only the average download

formulation because the PIR scheme is asymmetric and the

usual approach of making the scheme symmetric with time-

sharing arguments does not work (does not preserve the upload

cost). When PIR is viewed in relation to LDCs, the natural

interpretation of D is the maximum download across all

databases and all queries,3 which corresponds to Lx in the

corresponding LDC setting. To make the distinction clear, we

refer to PIR with the maximum download metric as PIRmax,

and PIR with the average download metric as PIRave. Using

insights from LDCs, we determine the minimum upload cost

needed to achieve the capacity of PIRmax. Specifically, we

show that the minimum upload for any capacity achieving

PIRmax scheme, linear or non-linear, is (K − 1) logN bits

per database, i.e., the user must upload a q-ary symbol per

database where q is at least NK−1. Our result complements

the result of [14] which shows that the minimum upload cost

for capacity achieving PIRave schemes is also (K − 1) logN
bits per database, although the optimality in [14] is established

only within a restricted class of decomposable (e.g., linear)

schemes. Remarkably, while the capacity and minimum upload

cost characterizations are identical for PIRmax and PIRave,

the mapping between the corresponding PIR schemes turns

out to be highly non-trivial. Furthermore, just as our results

for SLDCs generalize to ULDCs, by the same token we

show that both the capacity and the minimum upload cost

are unaffected if the privacy constraint is relaxed in the

PIRmax problem formulation from perfect privacy to a weaker

deniability condition. Perfect privacy implies that the query to

each database must not reveal any information about the user’s

desired message index. Deniability only implies that the query

does not absolutely rule out any message from being the user’s

desired message, i.e., even if some messages are revealed

by the query to be more likely to be the desired message

than others, each message has a non-zero probability of being

the desired message. Information retrieval under a deniability

constraint is called Repudiative information retrieval (RIR) in

[21]. Surprisingly, under the maximum download formulation,

PIRmax and RIRmax have the same4 capacity, and the same

3Equivalently, the size of the download from each database n is fixed at the
same constant value, D, for all queries and all databases, n ∈ {1, 2, · · · , N}.

4Under the average download formulation, the capacity of PIRave is not the
same as the capacity of RIRave. In particular, the capacity of RIRave is trivially
seen to be 1 if the number of databases is N > 1. For example, let (i, j)
be a random permutation of (1, 2) generated privately by the user. The user
downloads his desired message Wθ from Database i. With probability ε the
user downloads a randomly chosen undesired message Wθ′ from Database j.
It is easy to verify that the scheme is valid for RIR, and that the rate achieved
under the average download formulation with this scheme is 1/(1+ ε) which
approaches 1 as ε → 0. If N = 1 then the capacity of RIR is 1/K, same as
PIR, under both average and maximum download formulations.

minimum upload cost.

Notation: For positive integers n1, n2, with n1 ≤ n2, we use

the notation [n1 : n2] to represent the set {n1, n1+1, · · · , n2}.

For a set A, |A| denotes its cardinality and XA represents the

set {Xi, i ∈ A}. For two random variables X,Y , the notation

X ∼ Y denotes that X and Y are identically distributed. If

X and Y are sets of random variables, then the conditional

entropy H(X | Y ) refers to the joint entropy of all the random

variables in X , conditioned on all the random variables in Y .

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Locally Decodable Codes (LDC)

Definition 1 (Set of Source Symbols, W). Define W =
{W1, · · · ,WK} as a set of K independent source symbols,

each of size Lw bits,

H(W1, · · · ,WK) = H(W1) + · · ·+H(WK), (2)

Lw = H(W1) = · · · = H(WK). (3)

Definition 2 (Set of Coded Symbols, X ). Define X =
{X1, X2, · · · , XM} as a set of M coded symbols each of size

Lx bits,

Lx = H(X1) = · · · = H(XM ). (4)

Note that Lx and Lw are not necessarily integer values.

For example, if Wi are uniformly random 3-ary symbols,

then Lw = log(3) bits. Furthermore, both Lw and Lx are

allowed to take arbitrarily large values, since it is only their

relative size that matters (see Definition 6). Indeed, in typical

applications, such as distributed storage, each source symbol

may represent a large dataset and each coded symbol may

represent all data stored in one storage node. Measuring the

size of each symbol by its entropy is especially meaningful

for large symbols which can be optimally compressed.

Definition 3 (LDC (C,S[1:K])). An LDC (C,S[1:K]) with

locality N is comprised of a mapping C from (W1, · · · ,WK)
to (X1, · · · , XM ), and K non-empty sets Sk, k ∈ [1 : K],
called decoding supersets. Elements of the decoding superset

Sk are called decoding sets of the source symbol Wk. Each

decoding set of Wk is itself a set S containing N coded

symbols from which Wk can be recovered.

S ∈ Sk ⇒







S ⊂ X ,
|S| = N,

H(Wk | S) = 0.
(5)

Definition 3 is useful only as a baseline upon which the

definitions of more interesting types of LDCs can be built. The

most interesting type of LDCs for our purpose are perfectly

smooth LDCs, defined next.

Definition 4 (Perfectly Smooth LDC (SLDC)). An LDC is

said to be perfectly smooth if for all k ∈ [1 : K], a uniform

choice of a decoding set from Sk implies that each coded

symbol is equally likely to be in the chosen decoding set.

Equivalently, ∀m,m′ ∈ [1 : M ] and ∀k ∈ [1 : K],

|{S | S ∈ Sk, Xm ∈ S}| = |{S | S ∈ Sk, Xm′ ∈ S}|
(6)
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Thus, in an SLDC, every coded symbol appears in the

same number of decoding sets for any given source symbol.

While SLDCs are most commonly encountered in various

applications of LDCs, it is useful to also define a broader

class of LDCs, called universal LDCs.

Definition 5 (Universal LDC (ULDC)). An LDC is said to be

universal if every coded symbol Xm,m ∈ [1 : M ] appears

in at least one of the decoding sets of every source symbol

Wk, k ∈ [1 : K].

∀m ∈ [1 : M ], ∀k ∈ [1 : K], ∃S ∈ Sk such that Xm ∈ S. (7)

Note that an SLDC is universal by definition.

Definition 6 (Symbol Rate and Capacity). The symbol rate of

an LDC is defined as,

Rs =
Lw

Lx
, (8)

and the supremum of Rs values achievable within a class of

LDCs is called the capacity of that class of LDCs.

For example, it may be of interest to find the capacity of

the class of SLDCs for given values of locality parameter N ,

the number of source symbols K, and the code length M .

Another important quantity of interest is the code rate of an

LDC,

Rc =
KLw

MLx
(9)

which measures the redundancy of the code. Note that Rc =
K
MRs.

B. Private Information Retrieval (PIRmax)

Instead of repeating the definition of the PIR problem from,

say [13], let us present it through the following definitions that

are analogous to the corresponding notions in the context of

LDCs. As much as possible we will use the same notation for

corresponding quantities to make their relationship obvious.

Definition 7 (Set of Messages, W). Define W =
{W1,W2, · · · ,WK} as the set of K independent messages,

each of size Lw bits.

H(W1, · · · ,WK) = H(W1) + · · ·+H(WK), (10)

Lw = H(W1) = · · · = H(WK). (11)

Definition 8 (Sets of Answers, X , X [1:N ], Upload Cost).

Define sets X [n] = {X
[n]
1 , X

[n]
2 , · · · , X

[n]
Mn

} containing all

possible answers from Database n, n ∈ [1 : N ], such that

all answers have the same size, Lx.

Lx = H(X [n]
m ), ∀n ∈ [1 : N ],m ∈ [1 : Mn].

The upload cost for Database n, is defined to be log(Mn) for

all n ∈ [1 : N ]. Furthermore, define

X =
⋃

n∈[1:N ]

X [n] (12)

as the set of all answers.

Note that we assume all answers have the same size. Under

‘maximum download’ formulation of PIR, there is no loss of

generality in this assumption because the rate of a PIR scheme

is limited only by the largest possible download (answer) from

any database for any query. If different possible answers have

different lengths, then smaller answers can be padded with

useless information to match the length of the biggest answer

(maximum download).

Definition 9 (IR (A,S[1:K])). An N -query Information Re-

trieval scheme is comprised of a mapping A from the set of

messages W to the sets of answers X [1:N ], and K non-empty

sets, Sk, k ∈ [1 : K], called decoding supersets. Elements

of the decoding supserset Sk, are called decoding sets for

the message Wk. Each decoding set for Wk is of the form

S = {X
[1]
q1 , X

[2]
q2 , · · · , X

[N ]
qN } with qn ∈ [1 : Mn], ∀n ∈ [1 : N ]

such that

S ∈ Sk ⇒ H(Wk | S) = 0, ∀k ∈ [1 : K]. [Correctness]

(13)

The parameter N is recognized as the number of databases.

The elements of the decoding set, X
[n]
qn represent what is

requested by the user from the nth database, i.e., the query sent

to Database n is qn and the answer received from Database n
is X

[n]
qn . If the desired message is Wθ, then a decoding set is

chosen from Sθ. Condition (13) is called the ‘correctness’ con-

dition, because it guarantees that the message can be decoded

correctly from the answers received from all N databases.

Definition 9 is useful only as a baseline for introducing more

interesting forms of information retrieval. The most interesting

for our purpose is perfectly private information retrieval, or

simply PIR.

Definition 10 (Perfectly Private Information Retrieval

(PIRmax)). A PIR scheme is an N -query Information Retrieval

scheme with a distribution defined on the elements of each

decoding superset (so we have K distributions, one for each

decoding superset), such that for all n ∈ [1 : N ], and for all

k, k′ ∈ [1 : K] the conditional distribution of qn given S ∈ Sk

is identical to the conditional distribution of qn given S ∈ Sk′ .

Prob(qn = q | S ∈ Sk) = Prob(qn = q | S ∈ Sk′),

∀k, k′ ∈ [1 : K], n ∈ [1 : N ], ∀q ∈ [1 : Mn]. (14)

Equation (14) ensures perfect privacy for the desired mes-

sage index, because the query sent to any database has the

same distribution regardless of the desired message index. It is

useful to also define a broader class of N -query Information

Retrieval schemes, called Repudiative Information Retrieval

(RIR), which includes PIR as a special case.

Definition 11 (Repudiative Information Retrieval (RIRmax)).

An RIR scheme is an N -query Information Retrieval scheme

such that every possible answer from every database appears

in at least one of the decoding sets of every Sk, k ∈ [1 : K].

∀n ∈ [1 : N ], ∀m ∈ [1 : Mn], ∀k ∈ [1 : K],

∃S ∈ Sk such that X [n]
m ∈ S. (15)
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Definition 12 (Rate and Capacity). The rate of an N -query

information retrieval scheme is defined as

R =
Lw

NLx
(16)

and the supremum of R values for a class of information

retrieval schemes is called the capacity of that class.

C. Connection between ULDCs and RIRmax

It is well known that LDCs and PIR schemes are closely

related [10]. Comparing preceding definitions for LDCs with

locality N and N -query information retrieval, it is evident

that source symbols correspond to messages, coded symbols

correspond to answers, code length corresponds to total upload

cost, SLDCs correspond to PIRmax, the relaxation to ULDCs

correspond to the relaxation to RIRmax, and the decoding sets,

rates and capacity expressions for both settings are similar as

well. However, a closer look also reveals clear differences.

For example, answers are partitioned into X [n], n ∈ [1 : N ],
whereas no such partitioning is invoked for coded symbols.

While both SLDCs and PIRmax impose additional constraints

on the decoding sets, the two constraints are not equivalent.

These distinctions often do not matter much in practice, indeed

most PIRmax schemes produce SLDCs and most constructions

of SLDCs are obtained from PIRmax schemes. Nevertheless,

the distinctions pose difficulties in translating theoretical re-

sults between the two problems. For our purpose, the precise

connection5 (obvious from the preceding definitions) that

allows us to connect our results across the two settings is

between ULDCs and RIRmax, as stated below.

Observation 1. The set of all answers X from an RIRmax

scheme with message set W , N databases, upload costs

log(M[1:N ]), decoding supersets S[1:K] and rate R, constitutes

a ULDC with set of source symbols W , coded symbols

X , locality N , code length M =
∑

n∈[1:N ] Mn, decoding

supersets S[1:K], and symbol rate Rs = NR.

Given the translation from RIRmax to ULDCs, one might

be interested in the other direction, i.e., the translation from

ULDCs to RIRmax, which is also possible, although in general

less efficient. For example, by choosing the sets of answers

X [n], n ∈ [1 : N ], to be each identical to the set of

coded symbols X of a ULDC, an RIRmax scheme is trivially

obtained. This is less efficient because of the expansion by

the factor N , i.e., the value of
∑

n∈[1:N ] Mn for the resulting

RIRmax scheme is N times larger than the code length M of

the ULDC. Note that no such expansion occurs in the reverse

direction. Interestingly, as illustrated in Figure 2 through an

example, an expansion by a factor of N is necessary in some

cases when translating a ULDC into an RIRmax scheme.

Note that since ULDCs and RIRmax are relaxations of

SLDCs and PIRmax, respectively, impossibility results (con-

verse arguments) for ULDCs and RIRmax apply to SLDCs

and PIRmax automatically, while achievable schemes for

5This may be viewed as an extension of the corresponding connections
between SLDCs and PIRmax (e.g., see Section 3.2 of [2] and Lemma 7.2 of
[11]).

X1 X2

X3 X4

W1 = (a1, a2, a3, a4)
W2 = (b1, b2, b3, b4)
W3 = (c1, c2, c3, c4)
X1 = (a1, a2, b1, b2, c1, c2)
X2 = (a3, a4, b1, b3, c1, c3)
X3 = (a1, a3, b3, b4, c2, c4)
X4 = (a2, a4, b2, b4, c3, c4)

Fig. 2. A ULDC (also an SLDC) with locality N = 2 that encodes
K = 3 source symbols with Lw = 4 bits each, W1,W2,W3, into
M = 6 coded symbols, X1, X2, X3, X4, with Lx = 6 bits each.
The decoding sets for W1,W2,W3 are comprised of pairs of coded
symbols connected by blue, red, and green edges, respectively. It is
easy to see that the only RIRmax scheme that can be constructed
from this ULDC is with answer sets {X1, X2, X3, X4} replicated
at the N = 2 databases. Therefore, the total number of answers is
8, N = 2 times the ULDC length, i.e., we have an expansion by a
factor of N = 2.

the SLDCs and PIRmax apply automatically to ULDCs and

RIRmax. These inclusions will be useful to prove our main

results, presented in the next section.

III. MAIN RESULTS

A. Capacity Results

Our first set of results are capacity characterizations. Given

K source symbols, code length M , and locality N , let

CSLDC(N,K,M) and CULDC(N,K,M) denote the capacity for

the class of SLDCs and ULDCs respectively. Our first result

characterizes the maximum possible capacity of a ULDC given

the locality N and the number of source symbols K. The

maximum is over all possible codeword lengths M .

Theorem 1.

C∗
ULDC

(N,K)
4
= max

M∈N

CULDC(N,K,M)

= N
(

1 + 1/N + 1/N2 + · · ·+ 1/NK−1
)−1

.
(17)

The expression for C∗
ULDC

(N,K) is reminiscent of the ca-

pacity of PIR [13]. Indeed, since the capacity achieving PIR

schemes in [13] naturally produce SLDCs, and all SLDCs are

also ULDCs, the achievability argument is directly implied.

However, since ULDCs are a more general class of objects

than the LDCs produced by PIR schemes, the converse from

[13] does not apply. Instead, a new combinatorial converse

proof is presented for Theorem 1 in Section IV. As an

immediate corollary, we settle the corresponding question for

SLDCs as well.

Corollary 1.1.

C∗
SLDC

(N,K)
4
= max

M∈N

CSLDC(N,K,M)

= N
(

1 + 1/N + 1/N2 + · · ·+ 1/NK−1
)−1

.
(18)

The achievability argument for Corollary 1.1 follows from

the capacity achieving PIR schemes in [13] (note that Corol-

lary 2.1, to be presented in the next subsection, also contains
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a capacity achieving SLDC). The converse follows from

Theorem 1 as SLDCs are special cases of ULDCs.

As another corollary, the capacity of RIRmax is shown to

be the same as the capacity of PIRmax.

Corollary 1.2.

CRIRmax(N,K) =
(

1 + 1/N + 1/N2 + · · ·+ 1/NK−1
)−1

= CPIRmax(N,K) = CPIRave
(N,K). (19)

The achievability for Corollary 1.2 follows because PIRmax

schemes are special cases of RIRmax schemes and capac-

ity achieving PIRmax schemes are available from [13]. The

converse follows from Observation 1 and Theorem 1. That

is, the rate of any RIRmax scheme must be no higher than

CRIRmax
(N,K), otherwise by Observation 1 we will have a

ULDC that has a rate higher than C∗
ULDC

(N,K), contradicting

Theorem 1.

B. Optimal Code Length and Upload Cost Results

The next set of results concerns minimum code lengths and

minimum upload costs. We first show that given N,K, the

minimum code length M of ULDCs for which the capacity

takes its maximum value (maximum over all M ), is NK .

Theorem 2.

min{M | CULDC(N,K,M) = C∗
ULDC

(N,K)} = NK . (20)

For the converse, we prove that any capacity achieving

ULDCs must have length M ≥ NK . The proof is presented

in Section V. Since SLDCs are special cases of ULDCs, the

converse also applies to SLDCs. For the achievability, we

provide a construction of a capacity achieving SLDC with

length M = NK . The proof is presented in Section VI. Since

every SLDC is also a ULDC, the achievability applies also to

ULDCs. Thus, we immediately have the following corollary

for SLDCs.

Corollary 2.1.

min{M | CSLDC(N,K,M) = C∗
SLDC

(N,K)} = NK . (21)

Corollary 2.2. The minimum upload cost of a capacity achiev-

ing RIRmax scheme with K messages and N databases is

(K − 1) log(N) per database.

Corollary 2.3. The minimum upload cost of a capacity achiev-

ing PIRmax scheme with K messages and N databases is

(K − 1) log(N) per database.

The proofs of Corollaries 2.2 and 2.3 are presented in

Section VII.

It is already known from [13] that the capacity of PIRmax

is the same as the capacity of PIRave. Surprisingly, based on

Corollary 2.3 and the results in [14], it turns out that the

minimum upload cost for PIRmax is also the same as the min-

imum upload cost of PIRave. Note that any capacity achieving,

upload optimal PIRmax scheme is also a capacity achieving,

upload optimal PIRave scheme. However, the reverse direction

is not true. This is evident from Figure 3 which shows capacity

achieving and upload optimal schemes for both settings.

a1

b1

c1

a1 + b1 + c1

φ

a1 + b1

a1 + c1

b1 + c1

X1

X2

X3

X4

X5

X6

X7

X8

X1 = (a1, b1, c1, a2 + b2, a3 + c2, b3 + c3, a4 + b4 + c4)
X2 = (a6, b6, c4, a5 + b5, a8 + c3, b8 + c2, a7 + b7 + c1)
X3 = (a7, b4, c6, a8 + b3, a5 + c5, b2 + c8, a6 + b1 + c7)
X4 = (a4, b7, c7, a3 + b8, a2 + c8, b5 + c5, a1 + b6 + c6)
X5 = (a5, b2, c2, a6 + b1, a7 + c1, b4 + c4, a8 + b3 + c3)
X6 = (a2, b5, c3, a1 + b6, a4 + c4, b7 + c1, a3 + b8 + c2)
X7 = (a3, b3, c5, a4 + b4, a1 + c6, b1 + c7, a2 + b2 + c8)
X8 = (a8, b8, c8, a7 + b7, a6 + c7, b6 + c6, a5 + b5 + c5)

Fig. 3. Shown at the top is a capacity achieving, upload optimal
PIRave scheme for K = 3 messages, N = 2 databases from [14]. At
the bottom is the corresponding capacity achieving, upload optimal
PIRmax scheme from this work. The messages are denoted by W1 =
a[1:Lw ],W2 = b[1:Lw ],W3 = c[1:Lw ], in both cases, with Lw = 1
for PIRave and Lw = 8 for PIRmax. Nodes in the left column are all
possible answers from Database 1, and the nodes in the right column
are all possible answers from Database 2. In both cases, W1 can be
retrieved from pairs of nodes connected by blue edges, W2 from red
edges and W3 from green edges.

The PIRave scheme shown in Figure 3 uses message size

Lw = 1 bit and achieves an average download of Lw from

Database 1, and 3
4Lw = 3/4 from Database 2, for total

average download of 7
4Lw, so its rate is 4/7, the capacity

for this setting. Note that this is because with probability

1/4 nothing is downloaded from Database 2. However, the

maximum download for this scheme is Lw per database which

is not optimal. Therefore, using the answers from this scheme

directly to produce an LDC would result in an LDC with

Lx = Lw, which is not capacity achieving. On the other

hand, the PIRmax scheme shown in Figure 3 uses message

size Lw = 8 bits, and achieves constant, maximum, and

average download of 7
8Lw = 7 bits from each database, for

a total download of 7
4Lw, so its rate is also 4/7, same as the

capacity for this setting. This is a stronger capacity achieving

scheme because not only is it capacity achieving and upload

optimal for PIRmax but also it is capacity achieving and upload

optimal for PIRave. Furthermore, the same scheme gives us a

minimum length capacity achieving ULDC, a minimum length
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capacity achieving SLDC, as well as a capacity achieving

and upload optimal scheme for RIRmax. Note that the upload

optimal PIRmax scheme cannot be obtained simply from a

time-sharing argument that symmetrizes the upload optimal

PIRave scheme, because the time-sharing argument increases

the upload cost. Instead, this powerful scheme, which gets

even more sophisticated for larger number of messages and

databases, is obtained by a special construction specified in

Section VI.

IV. CONVERSE PROOF OF THEOREM 1

Let us start with a simple yet extremely useful lemma.

Lemma 1. Let S ∈ Sk be an arbitrary decoding set of Wk.

Consider an arbitrary subset of [1 : K], denoted by J , such

that k /∈ J . Then for any element Xs in S, we have
∑

Xi∈S

H(Xi|WJ ) ≥ Lw +H(Xs|W{k}∪J ), ∀Xs ∈ S.

(22)

Proof:
∑

Xi∈S

H(Xi|WJ ) ≥ H(S|WJ ) (23)

(a)
= H(S,Wk|WJ ) (24)

(2)
= H(Wk) +H(S|Wk,WJ ) (25)

(3)

≥ Lw +H(Xs|W{k}∪J ) (26)

where (a) follows from the fact that S is a decoding set of

Wk, so from S, we may decode Wk. The last step is due to

the assumption that Xs ∈ S.

Remark: Lemma 1 states that the amount of information

contained in any decoding set of a source symbol is no less

than the entropy of that source symbol plus the entropy of

any coded symbol from the decoding set conditioned on that

source symbol (i.e., interference about other source symbols).

The rest of the proof follows from invoking Lemma 1

for a carefully chosen sequence of decoding sets and a

permutation of the K source symbols. Consider an arbitrary

permutation of [1 : K], π such that (1, 2, · · · ,K) is mapped

to (π1, π2, · · · , πK).
The decoding sets and coded symbols involved in the

converse proof are constructed following a full N -ary tree

with depth K (see Figure 4). At depth-k, k ∈ [1 : K], there

are Nk−1 decoding sets (not necessarily distinct) of the source

symbol Wπk
. Specifically, we start from the root, where we

pick an arbitrary coded symbol, Xi1 . Because the LDC is

universal, Xi1 can be used to decode Wπ1
, with another N−1

symbols (denoted as Xi2 , · · · , XiN ). These N symbols form

the depth-1 nodes and this decoding set is denoted as S
[1]
π1 .

The remaining procedure is similar, where for each node at

depth-(k − 1), we find a decoding set of the source symbol

Wπk
that contains it and these decoding sets appear at depth-

k. Finally, at depth-K, we have NK−1 decoding sets of the

source symbol WπK
. When referring to a node in the full N -

ary tree, we may use either the content (i.e., the entropy term)

or the Xi value (called the node label).

Example 1. To illustrate the construction of the full N -ary

tree, we consider an example of a ULDC as shown in Figure

5. For one possible construction of the full binary tree, we set

the permutation π as the identity permutation and pick X1 as

the root node. To find the depth-1 nodes, we pick any decoding

set of W1 that contains X1, say {X1, X2} , S
[1]
1 , so that

the depth-1 nodes are H(X1|W2,W3) and H(X2|W2,W3).
Next, we find the depth-2 nodes. Consider the two depth-1

nodes and for each of them, we pick any decoding set of W2

that contains the coded symbol in the depth-1 node. For the

first depth-1 node H(X1|W2,W3), we only have 1 decoding

set that contains X1 (note that there must exist one as the

LDC is universal), so S
[1]
2 = {X1, X2}. For the second

depth-1 node H(X2|W2,W3), we have 2 decoding sets that

contain X2 and we may choose either one, say we choose

{X2, X3} , S
[2]
2 . We have now found the 4 depth-2 nodes, as

H(X1|W3), H(X2|W3), H(X2|W3), and H(X3|W3), where

the first two nodes are from S
[1]
2 and the last two nodes

are from S
[2]
2 . Note that the nodes at the same depth are

not necessarily distinct, e.g., X2 appears twice6 at depth-2.

Finally, we consider the depth-K (depth-3) nodes. For each

one of the depth-2 nodes, we find a decoding set of W3 that

contains it, e.g., S
[1]
3 = {X1, X3}, S

[2]
3 = {X2, X3}, S

[3]
3 =

{X2, X4}, S
[4]
3 = {X3, X2}, then the depth-3 nodes are

H(X1), H(X3), H(X2), H(X3), H(X2), H(X4), H(X3), H(X2),
where sequentially every 2 nodes form a decoding set of W3.

The construction of the full binary tree is now complete.

Remark: From this example, it is clear that there are

many different ways to generate the full N -ary tree (e.g.,

the permutation can be chosen arbitrarily, the root node can

be chosen arbitrarily, and when there are multiple qualified

decoding sets, any one may be chosen). Interestingly, the

converse proof works for any realization of the full N -ary

tree.

For the converse proof, we start from the NK−1 decoding

sets of the source symbol WπK
at depth-K and repeatedly

apply Lemma 1 as we ascend the tree, and stop when we

reach the root.

NKLx =

NK−1
∑

n=1

∑

Xi∈S
[n]
πK

H(Xi) (27)

(22)

≥ NK−1Lw +

NK−2
∑

n=1

∑

Xi∈S
[n]
πK−1

H(Xi|WπK
)(28)

(22)

≥ NK−1Lw +NK−2Lw

+
NK−3
∑

n=1

∑

Xi∈S
[n]
πK−2

H(Xi|WπK−1:K
) (29)

≥ · · · (30)

6However, for any ULDC to achieve the capacity, the nodes from the same
depth must be distinct. We refer to the proof of Theorem 2 for the justification
of this distinctness property. Therefore, it follows that this ULDC does not
achieve the capacity, verified by noting that the symbol rate is R = Lw/Lx =
1 while the capacity is C∗

ULDC(N = 2,K = 2) = 4/3.
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of H(Xi3 |Xi1 ,WK) = 0 follows by symmetry.

H(Xi1 |Xi3 ,WK)

= H(Xi1 |Xi2 , Xi3 ,WK) + I(Xi1 ;Xi2 |Xi3 ,WK)(35)

= H(Xi1 |Xi2 , Xi3 ,WK) +H(Xi2 |Xi3 ,WK)

−H(Xi2 |Xi1 , Xi3 ,WK) (36)

= 0 (37)

where in (36), the first term is zero because Xi1

WK

' Xi2

(i.e., H(Xi1 |Xi2 ,WK) = 0) and adding conditioning can

not increase entropy and the last two terms are zero because

Xi2

WK

' Xi3 .

Similarly, we define when two coded symbols contain

distinct information about a single source symbol.

Definition 14 (Distinct information). We say that two coded

symbols Xi1 , Xi2 contain distinct information about the source

symbol Wk, k ∈ [1 : K] if H(Xi1 |Xi2 ,Wk) = H(Xi1 |Wk)

and denote it as Xi1

Wk

⊥ Xi2 .

Next we distill properties of capacity achieving ULDCs.

Lemma 3 (Properties of capacity achieving ULDC). For

capacity achieving ULDCs, we have

1) (Non-zero entropy property) ∀i ∈ [1 : M ], ∀k ∈ [1 : K],
H(Xi|Wk) 6= 0.

2) For an arbitrary decoding set of Wk, k ∈ [1 : K], S ∈
Sk,

a) (Same interference property) ∀i1, i2 ∈ S, ∀k′ 6= k,

Xi1

Wk′

' Xi2 .

b) (Distinct desired information property) ∀i1, i2 ∈ S,

Xi1

Wk

⊥ Xi2 .

c) (Independence of coded symbols) ∀i1, i2 ∈ S,

H(Xi1 |Xi2) = H(Xi1).

3) (Incompatibility of same and distinct information) There

do not exist coded symbols Xi1 , Xi2 and source symbol

Wk such that Xi1

Wk

' Xi2 and Xi1

Wk

⊥ Xi2 .

The proof of Lemma 3 is deferred to Section V-C.

Remark: The idea of using properties on same interference

and distinct information has appeared previously in [14],

albeit within a restricted class of decomposable (e.g., linear)

schemes. Here we develop them in the information theoretic

sense (that works for any non-linear schemes). Further we

treat same and distinct information as general mathematical

operators and establish the transitivity of same information

and incompatibility of same and distinct information.

Equipped with the definitions and lemmas presented above,

we are now ready for the proof, i.e., any capacity achieving

ULDC must have length M ≥ NK . The proof idea is to

consider a full N -ary tree (refer to Figure 4) that contains

NK coded symbols and show that these coded symbols must

be all distinct (so the length M ≥ NK). To this end, we show

that if any two coded symbols are the same, then the ULDC

can not achieve the capacity (as some properties established

in Lemma 3 are violated). To illustrate the idea in a simpler

setting, let us start from an example with N = 2,K = 3.

A. Example: N = 2,K = 3

We redraw the full binary tree with depth 3 in Figure

6, when the permutation is the identity permutation. There

are NK = 8 coded symbols (leaf nodes) involved, i.e.,

Xi1 , · · · , Xi8 , and we show that they are all distinct, i.e.,

Xij 6= Xil , ∀j, l ∈ [1 : 8], j 6= l. This is proved by

contradiction, i.e., if Xij = Xil , then the ULDC violates some

property that must be satisfied by capacity achieving ULDCs.

We have 3 cases for the 2 leaf nodes Xij , Xil .

1) Xij , Xil are siblings (i.e., Xij , Xil have the same

parent). For example, Xi1 and Xi5 are siblings. Now

if Xi1 = Xi5 , we have H(Xi1 |Xi5) = 0. Noting

that Xi1 , Xi5 form a decoding set of W3, we apply

the independence property of coded symbols (Property

2.(c)), and obtain H(Xi1) = H(Xi1 |Xi5) = 0, which

contradicts the fact that H(Xi1) = Lx 6= 0 (as the

code is capacity achieving). Therefore Xi1 , Xi5 must be

distinct.

2) Xij , Xil are descendants of the same node from depth-1

(i.e., the same depth-1 node is reached from Xij , Xil by

proceeding from child to parent). For example, the leaf

nodes Xi5 and Xi6 are descendants of the same depth-

1 node with label Xi1 . As {Xi1 , Xi5} can be used to

decode W3, we apply the same interference property to

obtain that Xi1 , Xi5 contain the same information about

W2, i.e.,

{Xi1 , Xi5} ∈ S3
Property 2.(a)

=⇒ Xi1

W2
' Xi5 . (38)

Similarly, {Xi3 , Xi6} can be used to decode W3 so that

they contain the same information about W2,

{Xi6 , Xi3} ∈ S3
Property 2.(a)

=⇒ Xi6

W2
' Xi3 . (39)

Now suppose Xi5 = Xi6 . Applying the transitivity of

the same information operation, we have that Xi1 , Xi3

must contain the same information about W2.

Xi1

W2
' Xi5 , Xi5

W2
' Xi3

Lemma 2
=⇒ Xi1

W2
' Xi3 . (40)

However, {Xi1 , Xi3} can be used to decode W2, so

from the distinct desired information property (Property

2.(b)), they must contain distinct information about W2.

{Xi1 , Xi3} ∈ S2
Property 2.(b)

=⇒ Xi1

W2

⊥ Xi3 . (41)

Finally, we arrive at the contradiction by invoking the in-

compatibility property of same and distinct information

(Property 3).

Xi1

W2
' Xi3 , Xi1

W2

⊥ Xi3

Property 3
=⇒ Contradiction. (42)

Therefore we conclude that Xi5 and Xi6 must be dis-

tinct. The proof for other choices of Xij , Xil is similar.

3) Xij , Xil are descendants of the same node from depth-0.

For example, the leaf nodes Xi6 and Xi8 are descendants

of the same depth-0 node with label Xi1 . The remaining

proof is similar to the one above, where we trace Xi6

to Xi1 (and Xi8 to Xi2 ) using decoding constraints of

W2,W3 and argue that they must contain the same infor-

mation about W1. Then if Xi6 = Xi8 , Xi1 and Xi2 must
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C. Proof of Lemma 3

Let us prove the properties listed in Lemma 3 one at a time.

1) Proof of Property 1: To set up the proof by contradic-

tion, let us assume, for some i1 ∈ [1 : M ], k ∈ [1 : K],

H(Xi1 |Wk) = 0. (56)

Consider a full N -ary tree (see Figure 4) with root node

label Xi1 and permutation π such that π1 = k. Thus Wπ2:K
=

Wk̄. For a capacity achieving ULDC, all the inequalities from

(28) to (33) must be equalities. Replacing (32) and (33) with

equalities, we have

Lw =
∑

Xi∈S
[1]
π1

H(Xi|Wk) (57)

= H(Xi1 |Wk) +H(Xi2 |Wk) + · · ·

+H(XiN−1
|Wk) +H(XiN |Wk) (58)

= H(Xi2 |Wk) + · · ·+H(XiN |Wk) (59)

where in (59), we used our assumption (56). Because the sum

of N − 1 non-negative terms is equal to Lw, we must have at

least one term, say corresponding to Xi∗, that is not less than
Lw

N−1 .

H(Xi∗|Wk) ≥
Lw

N − 1
. (60)

Because the code is universal, there exists a decoding set S ∈
Sj of message Wj , j 6= k that contains Xi∗.

NLx =
∑

Xi∈S

H(Xi) (61)

(22)

≥ Lw +H(Xi∗ |Wj) (62)

≥ Lw +H(Xi∗ |Wk) (63)

Plugging in the capacity achieving condition, Lx =
C∗

ULDC
(N,K)−1Lw, we have

H(Xi∗ |Wk) ≤ Lw(NC∗
ULDC

(N,K)−1 − 1) (64)

=

(

1

N
+

1

N2
+ · · ·+

1

NK−1

)

Lw (65)

<
1/N

1− 1/N
Lw =

Lw

N − 1
(66)

But (60) and (66) contradict each other. The contradiction

completes the proof of Property 1.

2) Proof of Property 2: First let us prove (a), that

∀Xi1 , Xi2 ∈ S ∈ Sk and ∀k′ 6= k, Xi1

Wk′

' Xi2 . For this

purpose, let us consider a full N -ary tree (see Figure 4) where

the root has label Xi1 , the permutation π satisfies πK = k,

and Xi1 , Xi2 appear at depth-K in decoding set S. Consider

the step from depth-K to depth-(K−1) of the converse proof

(i.e., (28)). As we assume the ULDC achieves the capacity,

the following equality must hold (refer to (26)).
∑

Xi∈SπK

H(Xi) =
∑

Xi∈S

H(Xi) (67)

= Lw +H(Xi1 | Wk) (68)

= Lw +H(S | Wk) (69)

In (69) we used (26), which must also be an equality for a

capacity achieving ULDC. From (68) and (69) we must have

H(Xi1 , Xi2 |Wk) = H(Xi1 |Wk) (70)

⇒ H(Xi2 |Xi1 ,Wk) = 0 (71)

⇒ H(Xi2 |Xi1 ,Wk′) = 0, k′ 6= k. (72)

By symmetry, we can similarly prove H(Xi1 |Xi2 ,Wk′) = 0

so that Xi1

Wk′

' Xi2 and we have proved Property 2(a).
To prove Property 2(b), we consider a full N -ary tree (see

Figure 4) where the root has label Xi1 , the permutation π
satisfies π1 = k (such that π2:K = k), and the label Xi2

appears at depth-1. Consider the step from depth-1 to depth-0
of the converse proof (i.e., (32)). As the ULDC achieves the

capacity, the following equality must hold (refer to (23)).

H(Xi1 |Wk) +H(Xi2 |Wk) = H(Xi1 , Xi2 |Wk)(73)

⇒ H(Xi1 |Xi2 ,Wk) = H(Xi1 |Wk) (74)

Therefore we have proved Property 2(b), that Xi1

Wk

⊥ Xi2

holds.

To prove Property 2(c), we consider a full N -ary tree (see

Figure 4) where the root label is Xi1 , the permutation π
satisfies πK = k, and the label Xi2 appears at depth-K.

Consider the step from depth-K to depth-(K − 1) of the

converse proof (i.e., (28)). As we assume the ULDC achieves

the capacity, the following equality must hold (refer to (23)).

H(Xi1) +H(Xi2) = H(Xi1 , Xi2) (75)

⇒ H(Xi1 |Xi2) = H(Xi1) (76)

Therefore the desired claim is proved.

3) Proof of Property 3:

Xi1

Wk

' Xi2 ⇒ H(Xi1 |Xi2 ,Wk) = 0 (77)

Xi1

Wk

⊥ Xi2 ⇒ H(Xi1 |Xi2 ,Wk) = H(Xi1 |Wk)(78)

⇒ H(Xi1 |Wk) = 0 (79)

which contradicts the non-zero entropy property (Property

1). So same and distinct information conditions can not be

simultaneously satisfied and the proof is complete.

VI. PROOF OF THEOREM 2: ACHIEVABILITY

In this section, we present the construction of a capacity

achieving SLDC with length M = NK . Before proceeding to

the general proof, we first consider two examples.

A. Example 1: N = 2,K = 2

When N = 2,K = 2, the capacity is C∗
ULDC

(N = 2,K =
2) = Lw

Lx
= 2(1+ 1

2 )
−1 = 4

3 . We present an SLDC with length

4, where each source symbol is comprised of Lw = 4 bits and

each coded symbol has Lx = 3 bits.

Denote W1 = (a1, a2, a3, a4),W2 = (b1, b2, b3, b4), where

ai, bj are i.i.d. uniform bits. The code is as follows.

X1 X2 X3 X4

∅ a1 a1 + b1 b1
a2 ∅ b2 a2 + b2
b3 a3 + b3 a3 ∅

a4 + b4 b4 ∅ a4

(80)
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We have 2 decoding sets for each source symbol.

S1 = {{X1, X2}, {X3, X4}} (81)

S2 = {{X1, X4}, {X2, X3}} (82)

Correctness is easy to verify (i.e., from any decoding in Sk, we

can decode Wk). Perfect smoothness is also easily verified, as

each coded symbol appears once and only once in the decoding

sets for any message.

Inspecting the code in (80), we see that each row forms a

feasible sub-code and the rows are some permutations of each

other (note however, this is a highly-structured permutation

that preserves the same upload cost and is particularly distinct

from time-sharing). This is in fact the key idea of our SLDC

and we will further develop it in the following example and

in the general proof.

B. Example 2: N = 3,K = 3

When N = 3,K = 3, the capacity is C∗
ULDC

(N = 3,K =
3) = Lw

Lx
= 3(1 + 1

3 + 1
32 )

−1 = 27
13 = 54

26 . We present an

SLDC with length 27, where each source symbol is comprised

of Lw = 54 bits and each coded symbol has Lx = 26 bits.

Each source symbol is divided into 27 sub-source-symbols

and each sub-source-symbol has 2 bits. Denote W1 as the

collection of (a
(γ1,γ2,γ3)
1 , a

(γ1,γ2,γ3)
2 ) for all γ1, γ2, γ3, where

γ1, γ2, γ3 ∈ [0 : 2] are indices for sub-source-symbol. Simi-

larly, W2 is the collection of (b
(γ1,γ2,γ3)
1 , b

(γ1,γ2,γ3)
2 ) and W3

is the collection of (c
(γ1,γ2,γ3)
1 , c

(γ1,γ2,γ3)
2 ). ai, bj , cl are i.i.d.

uniform bits. a
(γ1,γ2,γ3)
0 , b

(γ1,γ2,γ3)
0 , c

(γ1,γ2,γ3)
0 are set to 0.

To simplify the notation, we denote the NK = 27 coded

symbols as Xp1,p2,p3
where pi ∈ [0 : 2], i ∈ [1 : 3]. These

27 coded symbols are divided into 3 groups depending on

the value of p1 + p2 + p3, so that xp1,p2,p3 belongs to Group

p1+p2+p3 (modulo 3), and each group has 9 coded symbols.

Each coded symbol is similarly comprised of 27 sub-

coded-symbols, denoted as X
(γ1,γ2,γ3)
p1,p2,p3 . When there will be no

confusion from the context, we simply denote X
(γ1,γ2,γ3)
p1,p2,p3 as

xp1,p2,p3
. To determine the value of xp1,p2,p3

, we use pk + γk
as the bit sub-script for the (γ1, γ2, γ3) sub-source-symbol

of Wk, k ∈ [1 : 3] and take the sum of all 3 bits, i.e.,

xp1,p2,p3 = a
(γ1,γ2,γ3)
p1+γ1

+ b
(γ1,γ2,γ3)
p2+γ2

+ c
(γ1,γ2,γ3)
p3+γ3

. For example,

the symbol denoted as x0,1,2 = aγ1
+ b1+γ2

+ c2+γ3
, is

comprised of 27 sub-coded-symbols corresponding to all 27
values of (γ1, γ2, γ3) ∈ [0 : 2]3, such as a1 + b0 + c1 when

(γ1, γ2, γ3) = (1, 2, 2). All these symbols belong to Group 0
because p1 + p2 + p3 = 0 + 1 + 2 = 0 mod 3.

The decoding constraints are as follows (easy to verify from

the table above).

From xp1,p2,p3
, xp1+1,p2,p3

, xp1+2,p2,p3
,

we can decode ap1
, ap1+1, ap1+2. (84)

From xp1,p2,p3
, xp1,p2+1,p3

, xp1,p2+2,p3
,

we can decode bp2
, bp2+1, bp2+2. (85)

From xp1,p2,p3
, xp1,p2,p3+1, xp1,p2,p3+2,

we can decode cp3
, cp3+1, cp3+2. (86)

That is, if we pick one coded symbol from each group such

that their subscripts only differ in the kth digit, then we

can decode Wk. Further, this claim remains valid for any

realization of (γ1, γ2, γ3). As a result, for each source symbol,

we have 9 decoding sets and each coded symbol appears once

and only once in the decoding sets, leading to correctness and

perfect smoothness.

Finally, we note that each coded symbol contains 26 bits,

although it contains 27 sub-coded-symbols (each sub-coded-

symbol is one equation, thus at most 1 bit). This follows

from the observation that for any p1, p2, p3, there exists one

and only one realization of (γ1, γ2, γ3) such that pi + γi =

0 (modulo 3), ∀i ∈ [1 : 3], X
(γ1,γ2,γ3)
p1,p2,p3 = a0+ b0+ c0 = 0 and

nothing needs to be stored. For all other cases, the sub-coded-

symbol is 1 bit. Therefore, Lx = 26 and the SLDC achieves

the capacity.

C. General Proof for Arbitrary N,K

The general proof follows from the ideas presented in pre-

vious sections. For any N,K, the capacity is C∗
ULDC

(N,K) =
Lw

Lx
= N(1+ 1

N + · · ·+ 1
NK−1 )

−1 = NK(N−1)
NK−1

. We present an

SLDC with length M = NK , where each source symbol is

comprised of Lw = NK(N − 1) bits and each coded symbol

has Lx = NK − 1 bits.

Each source symbol is divided into NK sub-source-symbols

and each sub-source-symbol has N − 1 bits. Define ~γ =
(γ1, γ2, · · · , γK).

Wk = (W
(0,0,··· ,0)
k ,W

(0,0,··· ,1)
k , · · · ,W

(N−1,N−1,··· ,N−1)
k ),

∀k ∈ [1 : K]. (87)

W~γ
k = (W~γ

k,0,W
~γ
k,1,W

~γ
k,2, · · · ,W

~γ
k,N−1),

∀i ∈ [1 : K], ∀γi ∈ [0 : N − 1]. (88)

W~γ
k,0 , 0. (89)

Define ~p = (p1, p2, · · · , pK). The NK coded symbols are

denoted as X~p, where i ∈ [1 : K], pi ∈ [0 : N − 1]. These

NK coded symbols are divided into N groups depending on

the value of
∑K

i=1 pi (modulo N ), so that X~p belongs to

Group
∑K

i=1 pi (modulo N ) and each group has NK−1 coded

symbols.

∀n ∈ [0 : N − 1], Group n =

{

X~p :

K
∑

i=1

pi (modulo N ) = n

}

. (90)

Each coded symbol is similarly comprised of NK sub-

coded-symbols and each sub-coded-symbol is designed as

follows.

X~p = (X
(0,0,··· ,0)
~p , X

(0,0,··· ,1)
~p , · · · , X

(N−1,N−1,··· ,N−1)
~p ), ∀~p(91)

X~γ
~p = W~γ

1,p1+γ1
+W~γ

2,p2+γ2
+ · · ·+W~γ

K,pK+γK
, ∀~γ (92)

For each message, we have NK−1 decoding sets. For given

p1, · · · , pk−1, pk+1, · · · , pK , define p∗k = N − (p1 + · · · +
pk−1 + pk+1 + · · ·+ pK) (modulo N ). The subscripts below

are understood modulo N .

∀k ∈ [1 : K], ∀i ∈ [1 : k − 1] ∪ [k + 1 : K],

∀pi ∈ [0 : N − 1], (93)
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Group 0 Group 1 Group 2

x0,0,0 = aγ1 + bγ2 + cγ3 x0,0,1 = aγ1 + bγ2 + c1+γ3 x0,0,2 = aγ1 + bγ2 + c2+γ3

x1,1,1 = a1+γ1
+ b1+γ2

+ c1+γ3
x0,1,0 = aγ1

+ b1+γ2
+ cγ3

x0,2,0 = aγ1
+ b2+γ2

+ cγ3

x2,2,2 = a2+γ1
+ b2+γ2

+ c2+γ3
x1,0,0 = a1+γ1

+ bγ2
+ cγ3

x2,0,0 = a2+γ1
+ bγ2

+ cγ3

x0,1,2 = aγ1
+ b1+γ2

+ c2+γ3
x0,2,2 = aγ1

+ b2+γ2
+ c2+γ3

x0,1,1 = aγ1
+ b1+γ2

+ c1+γ3

x0,2,1 = aγ1
+ b2+γ2

+ c1+γ3
x2,0,2 = a2+γ1

+ bγ2
+ c2+γ3

x1,0,1 = a1+γ1
+ bγ2

+ c1+γ3

x1,0,2 = a1+γ1 + bγ2 + c2+γ3 x2,2,0 = a2+γ1 + b2+γ2 + cγ3 x1,1,0 = a1+γ1 + b1+γ2 + cγ3

x2,0,1 = a2+γ1 + bγ2 + c1+γ3 x1,1,2 = a1+γ1 + b1+γ2 + c2+γ3 x2,2,1 = a2+γ1 + b2+γ2 + c1+γ3

x1,2,0 = a1+γ1
+ b2+γ2

+ cγ3
x1,2,1 = a1+γ1

+ b2+γ2
+ c1+γ3

x2,1,2 = a2+γ1
+ b1+γ2

+ c2+γ3

x2,1,0 = a2+γ1
+ b1+γ2

+ cγ3
x2,1,1 = a2+γ1

+ b1+γ2
+ c1+γ3

x1,2,2 = a1+γ1
+ b2+γ2

+ c2+γ3

(83)

Sk =
⋃

∀pi,i 6=k

{

Xp1,··· ,pk−1,p∗

k
,pk+1,··· ,pK

,

Xp1,··· ,pk−1,p∗

k
+1,pk+1,··· ,pK

, · · ·

Xp1,··· ,pk−1,p∗

k
+N−1,pk+1,··· ,pK

}

(94)

where each decoding set is comprised of one and only one

coded symbol from each group.

We verify that the code is correct, perfectly smooth and

capacity achieving.

First, to show that the code is correct, we verify that from

any coding set in Sk, we can decode Wk, ∀k ∈ [1 : K].
Consider any realization of p1, · · · , pk−1, pk+1, · · · , pK . From

(92), we consider the N coded symbols and obtain that ∀~γ,

X~γ
p1,··· ,pk−1,p∗

k
,pk+1,··· ,pK

=

K
∑

j=1,j 6=k

W~γ
j,pj+γj

+W~γ
k,p∗

k
+γk

(95)

X~γ
p1,··· ,pk−1,p∗

k
+1,pk+1,··· ,pK

=

K
∑

j=1,j 6=k

W~γ
j,pj+γj

+W~γ
k,p∗

k
+1+γk

(96)

· · · (97)

X~γ
p1,··· ,pk−1,p∗

k
+N−1,pk+1,··· ,pK

=

K
∑

j=1,j 6=k

W~γ
j,pj+γj

+W~γ
k,p∗

k
+N−1+γk

(98)

Note that the interference about source symbols Wk is the

same in the above N equations and the desired sub-source-

symbol has N − 1 bits. So we can decode all N − 1 desired

bits, W~γ
k,1,W

~γ
k,2, · · · ,W

~γ
k,N−1. Repeating the same decoding

procedure for all ~γ, we decode all Lw = NK(N − 1) bits in

Wk. Therefore the LDC is correct.

Second, the code is perfectly smooth because from (94), we

note that for any source symbol Wk and for any Group n ∈ [0 :
N − 1], any coded symbol X~p (from Group n) appears once

and only once. Therefore, the definition of perfect smoothness

(refer to Definition 4) is satisfied.

Finally, we prove that the code achieves the capacity. To this

end, we verify that H(X~p) = Lx = NK−1, ∀~p. Note that each

coded symbol contains NK sub-coded-symbols, and there

exists one and only one sub-coded-symbol that is constantly

zero. That is, for any given ~p, when

γk = −pk (modulo N ), ∀k ∈ [1 : K], (99)

we have X~γ
~p =

∑K
k=1 W

~γ
k,0 = 0 (refer to (92), (89)). The

proof is thus complete.

Remark: One might wonder if our SLDC (and the corre-

sponding upload optimal PIRmax scheme) can be constructed

from the upload optimal PIRave scheme in [14] by symmetriza-

tion (e.g., as described in Section 5 of [14]), as one sub-code

in our scheme is similar to the PIRave scheme in [14]. This

does not work because general symmetrization techniques will

increase the upload proportional to the number of concatena-

tions of sub-codes, while in our PIRmax scheme, the upload

cost of the concatenated code remains the same as that of one

sub-code (i.e., (K − 1) log(N) per database). Therefore, our

code is is not constructed by generic symmetrizations. Instead,

the specific sub-code has a permutation-invariant property that

allows us to shift the symbol indices while retaining the same

decoding structure (refer to (92)).

VII. PROOF OF COROLLARIES 2.2 AND 2.3

For the converse, it suffices to provide the proof for RIRmax,

which automatically implies the converse for PIRmax. The

converse proof for RIRmax is as follows.

To set up the proof by contradiction, suppose on the contrary

that we have a capacity achieving RIRmax scheme such that

the upload cost from some database is strictly less than (K −
1) log(N), i.e., there exists a set of answers X [n] from one

database such that |X [n]| < NK−1. Then by Observation 1,

we have a capacity achieving ULDC such that there exists at

least one group of strictly fewer than NK−1 coded symbols

(this group corresponds to the set of answers X [n] from the

database in PIR) such that any decoding set must contain one

coded symbol from this group (as any decoding set in PIR

must contain one answer from each database, including the one

with answer set X [n]). Note that for any full N -ary tree (refer

to Figure 4), the NK leaf nodes form NK−1 decoding sets. As

any one of these NK−1 decoding sets must contain one coded

symbol from X [n] (where |X [n]| < NK−1), the leaf nodes

must have at least two identical coded symbols. Then from

the converse proof of Theorem 2, it follows that the ULDC

can not achieve capacity and we arrive at the contradiction.

For the achievability, it suffices to provide the proof for

PIRmax, which automatically implies the achievability for

RIRmax. The achievable scheme for PIRmax is based on the

SLDC from Theorem 2. The SLDC has an N -partite property,

that any decoding set is comprised of one symbol from each
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group. Group n, n ∈ [0 : N − 1] maps to answer set X [n+1],

i.e., the coded symbols from Group n, n ∈ [0 : N − 1] of the

SLDC (refer to (90)) form the answers from the (n + 1)th

database in PIRmax. The decoding supersets S[1:K] of PIRmax

are chosen to be the same as the decoding supersets S[1:K] of

the SLDC. Now if the user wishes to retrieve Wk, the user

simply asks for one of the decoding sets for Wk of the SLDC,

uniformly over all NK−1 choices of decoding sets (refer to

(94)). Thus, the user downloads exactly N answers, one from

each database. The correctness and perfect smoothness of LDC

translate to the correctness and privacy of PIRmax directly.

VIII. DISCUSSION

We introduce the notion of capacity for LDC,

and show that the capacity of ULDCs and

SLDCs with K source symbols and locality N is

C∗ = N
(

1 + 1/N + 1/N2 + · · ·+ 1/NK−1
)−1

. We

further show that the minimum length of capacity achieving

ULDCs and SLDCs is NK . The results are translated into

the context of PIRmax and RIRmax, where we show that

the capacity of RIRmax is equal to that of PIRmax, and the

minimum upload cost of both PIRmax and RIRmax is equal

to (K − 1) logN .

In this work, we have focused on the capacity achieving

regime for LDCs. That is, the number of bits in each coded

symbol is equal to 1/C∗ times the number of bits in each

source symbol, Lx = Lw

C∗ = Lw(1−1/NK)
N−1 < Lw

N−1 . In other

words, the size of each coded symbol is (sometimes much)

smaller than the size of each source symbol, a regime that

is rarely studied in classical coding theory or theoretical

computer science. Specifically, when the coded symbol has

the smallest size (capacity achieving), the code length M must

be exponential, i.e., M ≥ NK in order to preserve either

universality or perfect smoothness. It is an interesting avenue

for future work to study other rate regimes. In particular, the

minimum symbol rate for which the code length is polynomial

remains an interesting question.

As a final remark, we note that in the PIRmax problem

formulation of this work, we have defined the max to be over

all queries and all databases, as this formulation is the one

that connects to LDCs and is consistent with most scenarios.

Essentially, we restrict the downloads to be symmetric and

constant over all databases. An alternative formulation could

be defining the max to be only over all queries, e.g., this

formulation was adopted in [15], where the downloads are

constant for one database, but could be asymmetric across the

databases. These two formulations have the same capacity,

but could behave differently in terms of other metrics, such

as message size, upload cost etc. It is an interesting question

to compare these models and identify their similarities and

differences.
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