On the Capacity of Locally Decodable Codes

Hua Sun, Member, IEEE, and Syed Ali Jafar, Fellow, IEEE

Abstract—A locally decodable code (LDC) maps K source
symbols, each of size L., bits, to M coded symbols, each of
size L, bits, such that each source symbol can be decoded
from N < M coded symbols. A perfectly smooth LDC further
requires that each coded symbol is uniformly accessed when we
decode any one of the messages. The ratio L., /L, is called
the symbol rate of an LDC. The highest possible symbol rate
for a class of LDCs is called the capacity of that class. It
is shown that given K, N, the maximum value of capacity of
perfectly smooth LDCs, maximized over all code lengths M,
isC*=N(14+1/N+1/N*+---+ 1/NK_1)_1. Furthermore,
given K, N, the minimum code length M for which the capacity
of a perfectly smooth LDC is C* is shown to be M = N, Both
of these results generalize to a broader class of LDCs, called
universal LDCs. The results are then translated into the context of
PIR,,.x, i.e., Private Information Retrieval subject to maximum
(rather than average) download cost metric. It is shown that
the minimum upload cost of capacity achieving PIR,.. schemes
is (K — 1)log N. The results also generalize to a variation of
the PIR problem, known as Repudiative Information Retrieval
(RIR).

Index Terms—Capacity, locally decodable codes, private infor-
mation retrieval.

I. INTRODUCTION

A locally decodable code (LDC) with locality N is a
mapping from K source symbols, W = {W;, W, --- Wk},
each of size L, bits, to M coded symbols, X =
{X1, X5, -+, X}, each of size L, bits, such that for every
source symbol W, there exists at least one subset of N
coded symbols, S C X, |S| = N, such that W can be
recovered from the elements of S. Such a set S is called
a decoding set for Wj. This basic definition is somewhat
trivial, for example, any systematic code is locally decodable
with locality NV = 1. LDCs are useful primarily if they are
capable of withstanding a significant fraction of corrupted
coded symbols without losing their local decodability. An
(N,6,1 — €) LDC is guaranteed to have locality N and a
randomized decoding algorithm that succeeds with probability
at least 1 — e when the fraction of corrupted coded symbols is
at most §. For this to be meaningful, there must be multiple
decoding sets for each source symbol. Let Si be the set of
decoding sets for source symbol Wy, so that if § € S
then S C X, |S| = N, and W}, is decodable from S. An
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LDC is said to be perfectly smooth if the coded symbols
are uniformly distributed across decoding sets. Specifically,
Ymy,mo € {1,2,--- M}, and Vk € {1,2,---,K}, the
number of decoding sets in Sy that contain X,,,, must be
equal to the number of decoding sets in Sy, that contain X,,,,. If
there are |Sj,| decoding sets for W}, in a perfectly smooth LDC
(SLDC) with locality N, then every coded symbol must appear
in exactly N|Si|/M of them. For such a code, at least one
uncorrupted decoding set survives as long as the fraction of
corrupted coded symbols, 4, is less than 1/N. This is because
each corrupted coded symbol can corrupt at most N|Sy|/M
decoding sets in Si. If M coded symbols are corrupted,
then the number of decoding sets that are corrupted is no
more than 0N|Sk|. So a decoding algorithm that randomly
chooses one of the decoding sets must be successful with
probability at least 1 — N, provided that § < 1/N. Therefore,
an SLDC is an (N,d,1 —6N) LDC for any § < 1/N. By the
same token, the minimum distance d of an SLDC, i.e., the
minimum number of coded symbols that must be erased for
a loss of data to occur, is at least M/N. Figure 1 shows an
example of an SLDC with locality N = 2 that encodes K = 3
binary (L,, = 1) source symbols, Wy, Wy, W3, into M = 6
binary (L, = 1) coded symbols, X1, -, Xg. The decoding
sets for Wy, Wy, W3 are comprised of pairs of coded symbols
connected by blue, red, and green edges, respectively. This is
also a (2,0,1—26) LDC for § < 1/2. So if 6 = 1/3, and any
two coded symbols X;, X; are corrupted, then at least one of
the three decoding sets remains uncorrupted for every source
symbol, and a randomized decoder succeeds with probability
at least 1 — N = 1/3. The minimum distance of this code is
d = M/N = 3 because, e.g., a loss of X7, X5, X¢ causes a
loss of data (W7 is lost).

X1 X4

= ><: =

X3 Xe
X1:W1, Xy =Wo+Ws
Xo = Wa, X5 =W+ W,
X3 = Ws, Xe = W3+ W1

Fig. 1. An SLDC with locality N = 2 that encodes K = 3 binary
(L = 1) source symbols, W1, Wa, W3, into M = 6 binary (L, =
1) coded symbols, X1, --- , Xe.

LDCs were introduced in the year 2000 by Katz and



Trevisan in [1]!. One of the motivations for studying LDCs
comes from distributed storage applications. Coding is used
in distributed storage systems to limit storage and decoding
costs while providing resilience against failures of storage
nodes and efficient repair when such failures occur. LDCs
are especially effective for reducing the decoding cost in
commonly encountered scenarios where multiple datasets are
jointly encoded and only one of them needs to be retrieved.
In particular, smoothness of LDCs is a desirable feature for
distributed storage because it minimizes risk by spreading it
evenly across storage nodes. Remarkably, LDCs play even
more important roles in complexity theory [2], [3, Chapters 17,
18], data structures [4], [5], fault tolerant computation [6],
multiparty computation [7] and private information retrieval
(PIR) [8], [9], [10]. As such, understanding the fundamental
limits of LDCs (especially the tradeoff between code length
M and locality N) is recognized as a major open problem in
theoretical computer science [7], whose answer could have a
domino effect on a number of related problems. For further
details on LDCs, we refer to the excellent tutorials in [11],
[12] and references therein.

In this work we view this open problem through the lens
of PIR. In its basic form [8], PIR is the problem of efficiently
retrieving a desired message from a set of K messages
that are replicated across IV non-colluding databases, without
disclosing any information about the identity of the desired
message to any individual database. The strong connection
between PIR and LDCs is evident from the example illustrated
in Figure 1. In fact the example is derived from a PIR scheme
with K = 3 messages, W1, Ws, W3, and two databases that
store (X7, X2, X3) and (X4, X5, X¢), respectively. The user
randomly asks Database 1 for one of X;, X, or X3, and
asks Database 2 for the other element of the decoding set for
his desired message, which is also uniformly distributed over
X4, X5, Xg, thus revealing no information to either database
about which message is being retrieved. The upload cost for
this PIR scheme is a 3-ary symbol per database. Interestingly,
as shown in [13], the capacity of PIR subject to this upload
cost is 1/2, so the scheme shown in Figure 1 is optimal among
all PIR schemes with the same upload constraint.

In particular, this work is motivated by recent capacity
characterizations of PIR with various assumptions on message
sets, storage, and upload costs [13], [14], [15], [16], [17],
[18], [19]. The capacity of PIR, Cyr (N, K), is the maximum
number of bits of desired message that can be retrieved
per bit of total download from the N databases. Defining
Ry = L.,/ L, as the symbol rate of an LDC, the corresponding
notion of capacity, Cipc(M, N, K), is the maximum symbol
rate that is feasible for an LDC given the locality parameter
N, the code length M, and the number of source symbols K.
From this perspective, the fundamental tradeoff for SLDCs is
expressed in terms of the 4 parameters: M, N, K, R;. It is

'In [1], Katz and Trevisan introduced (N,8,1 — €) LDCs and smooth
LDCs (which include perfectly smooth LDCs as special cases). It is noted
later in Section 3.2 of [2] that a perfectly smooth LDC produces an (N, §,1—
6N) LDC for every § < 1/N, and that for constant locality N (the setting
considered in this work) all known constructions of LDCs and PIR schemes
follow from the constructions of perfectly smooth LDCs.

desirable for M, N to take smaller values, and for K, R, to
take larger values. The rate R, is a critical part of this tradeoff.
If we consider M, K as independently chosen natural numbers,
then the range of values of IV is between 1 and M, while the
range of values of R, is between 1/K and M/K. At one
extreme, N = 1 forces Ry = 1/K. This is because N = 1 for
an SLDC implies that all source symbols can be decoded from
any single coded symbol. At the other extreme, Ry = M/K
forces N = M, because there is no redundancy, i.e., the total
number of bits of all coded symbols is the same as the total
number of bits of all source symbols.

In this paper we explore two particular aspects of the
(M, N, K, R,) tradeoff>. The first is the tradeoff between
N, K, Rs for unconstrained M. In other words, we identify
the capacity of an SLDC for arbitrary N, K and unconstrained
code length M. Specifically we show that,

*(N,K) & (M,N, K
C(, ) HMlg)R{ICLD(,( ) 7)

-1
N N2 NK—1>
(1)

The second aspect of the tradeoff that we characterize is
the minimum codeword length M* that is needed to achieve
C*(N,K) for arbitrary N, K. Specifically, we show that
M* = NX, Remarkably, both results are shown not only for
all SLDCs but also for a broader class of LDCs that we label
universal LDCs (ULDCs). An LDC is universal if every coded
symbol appears in at least one of the decoding sets of every
source symbol. Mathematically, a ULDC is defined by the
property that Vm € {1,2,--- , M}, and Vk € {1,2,--- | K},
there exists some S € Si such that X,, € S. Clearly,
every SLDC is a ULDC. However, not every ULDC is an
SLDC. For example, the LDC that maps K = 3 binary
source symbols Wi, Wy, W3 to the M = 4 binary code
symbols Wi, Wy, W3, Ws + W3 with locality N = 2 and
decoding sets S; = {{Wy, Wa}, {Wy, W3}, {W1, Wa+W5}},
Sy = {{W],WQ},{WQ,W?,},{WS,WQ + W3}} and S3 =
{{Wy, W5}, {Wa, W3}, {Wa, Wo + W51}, is universal but not
perfectly smooth. While less structured than SLDCs, evidently
ULDC:s retain all the structure needed for the two aspects of
the tradeoff that are explored in this work.

For our final result, we apply the new insights from the
study of fundamental limits of LDCs back to the problem
of PIR. Recall that the rate of a PIR scheme is defined as
R, = %, where L,, is the number of bits of each message,
N is the number of databases, and D is the number of
bits downloaded from each database. For most PIR capac-
ity results [13], [16], [19], [20] the parameter D may be
interpreted either as the average download per database or as
the maximum download from any database (maximized across
all databases and all queries), without changing the capacity.
This is because the normalized downloads for almost all PIR

1 1 1
:N<1_|_+..._|_..._|_

2Prior work in theoretical computer science literature [1], [2], [11] typically
explores a different regime where R is fixed (Rs = 1 is commonly assumed),
and studies the tradeoff between the number of source symbols K and the
number of coded symbols M for various values of locality parameter N
(including scaling of N with K).



schemes are either already identical across databases or can be
made identical by time-sharing across different permutations
of databases. Exceptions include [15] which admits only the
maximum download formulation and [14] which allows only
the average download formulation. Reference [15] considers
the capacity of PIR for fixed length messages, and relies on
the maximum download formulation because averages are less
meaningful over the finite horizon. Reference [14] on the
other hand considers the minimum upload cost of a capacity
achieving PIR scheme, and allows only the average download
formulation because the PIR scheme is asymmetric and the
usual approach of making the scheme symmetric with time-
sharing arguments does not work (does not preserve the upload
cost). When PIR is viewed in relation to LDCs, the natural
interpretation of D is the maximum download across all
databases and all queries,> which corresponds to L, in the
corresponding LDC setting. To make the distinction clear, we
refer to PIR with the maximum download metric as PIR,,x,
and PIR with the average download metric as PIRaye. Using
insights from LDCs, we determine the minimum upload cost
needed to achieve the capacity of PIR; .. Specifically, we
show that the minimum upload for any capacity achieving
PIR,,.x scheme, linear or non-linear, is (K — 1)log N bits
per database, i.e., the user must upload a g-ary symbol per
database where ¢ is at least N1, Our result complements
the result of [14] which shows that the minimum upload cost
for capacity achieving PIRaye schemes is also (K — 1) log N
bits per database, although the optimality in [14] is established
only within a restricted class of decomposable (e.g., linear)
schemes. Remarkably, while the capacity and minimum upload
cost characterizations are identical for PIR,,.x and PIRgye,
the mapping between the corresponding PIR schemes turns
out to be highly non-trivial. Furthermore, just as our results
for SLDCs generalize to ULDCs, by the same token we
show that both the capacity and the minimum upload cost
are unaffected if the privacy constraint is relaxed in the
PIR,,.x problem formulation from perfect privacy to a weaker
deniability condition. Perfect privacy implies that the query to
each database must not reveal any information about the user’s
desired message index. Deniability only implies that the query
does not absolutely rule out any message from being the user’s
desired message, i.e., even if some messages are revealed
by the query to be more likely to be the desired message
than others, each message has a non-zero probability of being
the desired message. Information retrieval under a deniability
constraint is called Repudiative information retrieval (RIR) in
[21]. Surprisingly, under the maximum download formulation,
PIR,,.. and RIR,., have the same® capacity, and the same

3Equivalently, the size of the download from each database n is fixed at the
same constant value, D, for all queries and all databases, n € {1,2,--- , N}.

4Under the average download formulation, the capacity of PIR,. is not the
same as the capacity of RIR,.. In particular, the capacity of RIR,,. is trivially
seen to be 1 if the number of databases is N > 1. For example, let (3, 5)
be a random permutation of (1,2) generated privately by the user. The user
downloads his desired message Wy from Database i. With probability ¢ the
user downloads a randomly chosen undesired message Wy, from Database j.
It is easy to verify that the scheme is valid for RIR, and that the rate achieved
under the average download formulation with this scheme is 1/(1+ ¢) which
approaches 1 as e — 0. If N = 1 then the capacity of RIR is 1/K, same as
PIR, under both average and maximum download formulations.

minimum upload cost.

Notation: For positive integers ni, no, with ny < no, we use
the notation [ny : ns] to represent the set {ni,n1+1,--- ,na}.
For a set A, |A| denotes its cardinality and X 4 represents the
set {X;,i € A}. For two random variables X,Y, the notation
X ~ Y denotes that X and Y are identically distributed. If
X and Y are sets of random variables, then the conditional
entropy H(X | Y) refers to the joint entropy of all the random
variables in X, conditioned on all the random variables in'Y .

II. PROBLEM STATEMENT AND PRELIMINARIES
A. Locally Decodable Codes (LDC)

Definition 1 (Set of Source Symbols, W). Define W =
{Wy,--- ,Wk} as a set of K independent source symbols,
each of size L, bits,

H(Wl,'”,WK):H(Wl)—F"'—l-H(WK), 2)
Ly = H(Wi) = - = H(Wx). 3)

Definition 2 (Set of Coded Symbols, X). Define X =
{X1,Xs, -+, X} as a set of M coded symbols each of size
L, bits,

L,=H(X))=--=H(Xu). “)

Note that L, and L, are not necessarily integer values.
For example, if W, are uniformly random 3-ary symbols,
then L,, = log(3) bits. Furthermore, both L,, and L, are
allowed to take arbitrarily large values, since it is only their
relative size that matters (see Definition 6). Indeed, in typical
applications, such as distributed storage, each source symbol
may represent a large dataset and each coded symbol may
represent all data stored in one storage node. Measuring the
size of each symbol by its entropy is especially meaningful
for large symbols which can be optimally compressed.

Definition 3 (LDC (C,S[LK])). An LDC (C,S[LK]) with
locality N is comprised of a mapping C from (W1, --- W)
to (X1, -+ ,Xm), and K non-empty sets Si, k € [1 : K],
called decoding supersets. Elements of the decoding superset
Sy, are called decoding sets of the source symbol Wy,. Each
decoding set of Wy, is itself a set S containing N coded
symbols from which Wy, can be recovered.

S C&X,
Ses; = S| =N, 5
HWy|S) =0.

Definition 3 is useful only as a baseline upon which the
definitions of more interesting types of LDCs can be built. The
most interesting type of LDCs for our purpose are perfectly
smooth LDCs, defined next.

Definition 4 (Perfectly Smooth LDC (SLDC)). An LDC is
said to be perfectly smooth if for all k € [1 : K|, a uniform
choice of a decoding set from Sy implies that each coded

symbol is equally likely to be in the chosen decoding set.
Equivalently, Vm, m' € [1 : M| and Vk € [1 : K],

{S|S €Sk, XmeSH=|{5]S €Sk Xm €S}
6)



Thus, in an SLDC, every coded symbol appears in the
same number of decoding sets for any given source symbol.
While SLDCs are most commonly encountered in various
applications of LDCs, it is useful to also define a broader
class of LDCs, called universal LDCs.

Definition 5 (Universal LDC (ULDC)). An LDC is said to be
universal if every coded symbol X,,,m € [1 : M| appears

in at least one of the decoding sets of every source symbol
Wi, k € [1 : K]

Ym e [1: M], Vk € [1: K|, 35S € S such that X,,, € S. (7)

Note that an SLDC is universal by definition.

Definition 6 (Symbol Rate and Capacity). The symbol rate of
an LDC is defined as,
Ly,
Rs = 7
L,
and the supremum of R values achievable within a class of
LDCs is called the capacity of that class of LDCs.

®)

For example, it may be of interest to find the capacity of
the class of SLDCs for given values of locality parameter N,
the number of source symbols K, and the code length M.
Another important quantity of interest is the code rate of an
LDC,

KL,
ML,

which measures the redundancy of the code. Note that R, =
K

= Rs.

Mts

R. =

9

B. Private Information Retrieval (PIRy.x)

Instead of repeating the definition of the PIR problem from,
say [13], let us present it through the following definitions that
are analogous to the corresponding notions in the context of
LDCs. As much as possible we will use the same notation for
corresponding quantities to make their relationship obvious.

Definition 7 (Set of Messages, W). Define W =
{W1,Wa, -+ Wk} as the set of K independent messages,
each of size Ly, bits.

H(le"' 7WK):H(W1)++
Lw:H(Wl):"':H(WK).

H(Wx), (10)

(1)
Definition 8 (Sets of Answers, X, X [1:N]] Upload Cost).
Define sets X"l = {X{n],Xén],~-- ,X][C}]} containing all
possible answers from Database n, n € [1 : N, such that
all answers have the same size, L.

L, = H(XI'),

m

Vn € [l: N],m e [l: M,].

The upload cost for Database n, is defined to be log(M,,) for
all n € [1: N|. Furthermore, define

x=J aH

n€[l:N]

12)

as the set of all answers.

Note that we assume all answers have the same size. Under
‘maximum download’ formulation of PIR, there is no loss of
generality in this assumption because the rate of a PIR scheme
is limited only by the largest possible download (answer) from
any database for any query. If different possible answers have
different lengths, then smaller answers can be padded with
useless information to match the length of the biggest answer
(maximum download).

Definition 9 (IR (A, S(1.x))). An N-query Information Re-
trieval scheme is comprised of a mapping A from the set of
messages W to the sets of answers X'"N and K non-empty
sets, Sk, k € [1 : K], called decoding supersets. Elements
of the decoding supserset Sy, are called decoding sets for
the message Wy. Each decoding set for Wy, is of the form

s ={xM xZ XN with q, € [1: M,),¥n € [1: N]
such that
SeS,=H(W;,|S)=0, Vkel[l:K]. [Correctness]
(13)

The parameter N is recognized as the number of databases.
The elements of the decoding set, X(EZ] represent what is
requested by the user from the n** database, i.e., the query sent
to Database n is ¢, and the answer received from Database n
is Xg,f]. If the desired message is Wy, then a decoding set is
chosen from Sy. Condition (13) is called the ‘correctness’ con-
dition, because it guarantees that the message can be decoded
correctly from the answers received from all N databases.
Definition 9 is useful only as a baseline for introducing more
interesting forms of information retrieval. The most interesting
for our purpose is perfectly private information retrieval, or
simply PIR.

Definition 10 (Perfectly Private Information Retrieval
(PIRhax)). A PIR scheme is an N-query Information Retrieval
scheme with a distribution defined on the elements of each
decoding superset (so we have K distributions, one for each
decoding superset), such that for all n € [1 : N|, and for all
k k' € [1: K] the conditional distribution of q,, given S € Sy
is identical to the conditional distribution of q,, given S € Sy.

Prob(g, = ¢ | S € Si.) = Prob(gn, = ¢ | S € Sir),
Vk,k' € [1: K],n€[l1: N],VYq € [l:M,]. (14)
Equation (14) ensures perfect privacy for the desired mes-

sage index, because the query sent to any database has the

same distribution regardless of the desired message index. It is
useful to also define a broader class of N-query Information

Retrieval schemes, called Repudiative Information Retrieval

(RIR), which includes PIR as a special case.

Definition 11 (Repudiative Information Retrieval (RIRax))-
An RIR scheme is an N-query Information Retrieval scheme
such that every possible answer from every database appears
in at least one of the decoding sets of every Si,k € [1 : K.

Vnell: N,Vme[l: M,], Vke[l: K],

3S € Sy, such thar X" € §. (15)



Definition 12 (Rate and Capacity). The rate of an N-query
information retrieval scheme is defined as

Ly,

NL,

and the supremum of R values for a class of information
retrieval schemes is called the capacity of that class.

R= (16)

C. Connection between ULDCs and RIR .«

It is well known that LDCs and PIR schemes are closely
related [10]. Comparing preceding definitions for LDCs with
locality N and N-query information retrieval, it is evident
that source symbols correspond to messages, coded symbols
correspond to answers, code length corresponds to total upload
cost, SLDCs correspond to PIR,.«, the relaxation to ULDCs
correspond to the relaxation to RIR,,x, and the decoding sets,
rates and capacity expressions for both settings are similar as
well. However, a closer look also reveals clear differences.
For example, answers are partitioned into X [”],n €[l:N],
whereas no such partitioning is invoked for coded symbols.
While both SLDCs and PIR,,,x impose additional constraints
on the decoding sets, the two constraints are not equivalent.
These distinctions often do not matter much in practice, indeed
most PIR,,,x schemes produce SLDCs and most constructions
of SLDCs are obtained from PIR,, .. schemes. Nevertheless,
the distinctions pose difficulties in translating theoretical re-
sults between the two problems. For our purpose, the precise
connection® (obvious from the preceding definitions) that
allows us to connect our results across the two settings is
between ULDCs and RIR,, ., as stated below.

Observation 1. The set of all answers X from an RIR .5
scheme with message set W, N databases, upload costs
log(M [1: N]), decoding supersets S|1. k) and rate R, constitutes
a ULDC with set of source symbols W, coded symbols
X, locality N, code length M = Zne[l N M, decoding
supersets S}, and symbol rate R; = NR.

Given the translation from RIR,,,x to ULDCs, one might
be interested in the other direction, i.e., the translation from
ULDC:s to RIR,ax, Which is also possible, although in general
less efficient. For example, by choosing the sets of answers
xln e 1 N], to be each identical to the set of
coded symbols & of a ULDC, an RIR,,x scheme is trivially
obtained. This is less efficient because of the expansion by
the factor N, i.e., the value of 3, ;. M, for the resulting
RIR,ax scheme is IV times larger than the code length M of
the ULDC. Note that no such expansion occurs in the reverse
direction. Interestingly, as illustrated in Figure 2 through an
example, an expansion by a factor of N is necessary in some
cases when translating a ULDC into an RIR,,x scheme.

Note that since ULDCs and RIR,,.. are relaxations of
SLDCs and PIR,.x, respectively, impossibility results (con-
verse arguments) for ULDCs and RIR,,,x apply to SLDCs
and PIR,,x automatically, while achievable schemes for

5This may be viewed as an extension of the corresponding connections
between SLDCs and PIRmax (e.g., see Section 3.2 of [2] and Lemma 7.2 of
[L1]).

Wy =
W2

(a1, az,as, a4)
(b17 b27 b37 b4)
= (

C1,C2,C3, 64)

X, X5
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Xy = (a1, a3,b3,bs,c2,4)
X4 = (ag, a4, b2, by, c3,¢4)

>
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Fig. 2. A ULDC (also an SLDC) with locality N = 2 that encodes
K = 3 source symbols with L., = 4 bits each, W1, Wa, W3, into
M = 6 coded symbols, X1, X2, X3, X4, with Ly = 6 bits each.
The decoding sets for W1, Wa, W3 are comprised of pairs of coded
symbols connected by blue, red, and green edges, respectively. It is
easy to see that the only RIRmax scheme that can be constructed
from this ULDC is with answer sets {X1, X2, X3, X4} replicated
at the N = 2 databases. Therefore, the total number of answers is
8, N = 2 times the ULDC length, i.e., we have an expansion by a
factor of N = 2.

the SLDCs and PIR,,,x apply automatically to ULDCs and
RIR,,x- These inclusions will be useful to prove our main
results, presented in the next section.

I1I.
A. Capacity Results

MAIN RESULTS

Our first set of results are capacity characterizations. Given
K source symbols, code length M, and locality N, let
Csine(N, K, M) and Cype(N, K, M) denote the capacity for
the class of SLDCs and ULDCs respectively. Our first result
characterizes the maximum possible capacity of a ULDC given
the locality NV and the number of source symbols K. The
maximum is over all possible codeword lengths M.
Theorem 1.

A
C (N, K) = Cupe(N, K, M
Umc( ’ ) ?}2}1\(] U‘C( )

-1

=N(1+1/N+1/N*+---+1/NK)

a7)
The expression for C (N, K) is reminiscent of the ca-
pacity of PIR [13]. Indeed, since the capacity achieving PIR
schemes in [13] naturally produce SLDCs, and all SLDCs are
also ULDCs, the achievability argument is directly implied.
However, since ULDCs are a more general class of objects
than the LDCs produced by PIR schemes, the converse from
[13] does not apply. Instead, a new combinatorial converse
proof is presented for Theorem 1 in Section IV. As an
immediate corollary, we settle the corresponding question for
SLDCs as well.

Corollary 1.1.
C*

SLDC

AN
(N, K) = I]\I}g)N(CSLDC(N7 Ka M)

-1

=N(1+1/N+1/N*+---+1/NK)

(18)
The achievability argument for Corollary 1.1 follows from

the capacity achieving PIR schemes in [13] (note that Corol-
lary 2.1, to be presented in the next subsection, also contains



a capacity achieving SLDC). The converse follows from
Theorem 1 as SLDCs are special cases of ULDCs.

As another corollary, the capacity of RIR;,,x is shown to
be the same as the capacity of PIR,.x.

Corollary 1.2.

Chririmax =(1—|-1/N—|—1/N2+ "-I-l/NK*l)_l
= Copppan (N, K) = Copp,,. (N, K).  (19)

The achievability for Corollary 1.2 follows because PIR ;.5
schemes are special cases of RIR;,,x schemes and capac-
ity achieving PIR,,,x schemes are available from [13]. The
converse follows from Observation 1 and Theorem 1. That
is, the rate of any RIR,,,x scheme must be no higher than
Cim,,... (N, K), otherwise by Observation 1 we will have a
ULDC that has a rate higher than C} (NN, K), contradicting
Theorem 1.

B. Optimal Code Length and Upload Cost Results

The next set of results concerns minimum code lengths and
minimum upload costs. We first show that given N, K, the
minimum code length M of ULDCs for which the capacity
takes its maximum value (maximum over all M), is N¥.

Theorem 2.

mln{M | Ouu)c(N) K7 M) CY:LDC

(N,K)} = N¥. (20)

For the converse, we prove that any capacity achieving
ULDCs must have length M > N¥. The proof is presented
in Section V. Since SLDCs are special cases of ULDCs, the
converse also applies to SLDCs. For the achievability, we
provide a construction of a capacity achieving SLDC with
length M = N The proof is presented in Section VI. Since
every SLDC is also a ULDC, the achievability applies also to
ULDCs. Thus, we immediately have the following corollary
for SLDCs.

Corollary 2.1.

min{M | Cye(N, K, M) = C%,.(N,K)} = N, 21)

Corollary 2.2. The minimum upload cost of a capacity achiev-
ing RIR,.x scheme with K messages and N databases is
(K —1)log(N) per database.

Corollary 2.3. The minimum upload cost of a capacity achiev-
ing PIR,.x scheme with K messages and N databases is
(K —1)log(N) per database.

The proofs of Corollaries 2.2 and 2.3 are presented in
Section VII.

It is already known from [13] that the capacity of PIR,ax
is the same as the capacity of PIR,ye. Surprisingly, based on
Corollary 2.3 and the results in [14], it turns out that the
minimum upload cost for PIR,,, is also the same as the min-
imum upload cost of PIR,y.. Note that any capacity achieving,
upload optimal PIR,,,x scheme is also a capacity achieving,
upload optimal PIR4ye scheme. However, the reverse direction
is not true. This is evident from Figure 3 which shows capacity
achieving and upload optimal schemes for both settings.

a 10}
b1 % ay + by
C1 X a1+
a1 +b; +c b1+
X X5
— =
= > < =
Xy >< Xg

= (a1,b1,c1,a2 + b2, a3 + c2,b3 + c3,a4 + by + c4)
(a b6,04,a5—|—b5,a3—|—63,b8+02,a7+b7+cl)
Xg—(a by, g, as + bz, as + ¢, by + cs, a6 + b1 + ¢7)
X47(a bz, c7,a3 + bs, az + cs, bs + ¢5, a1 + b + ¢6)

(CL b2,02,a6+bl,a7+cl,b4+04,a8+b3+03)
X6 = (a bs,c3,a1 + bg, as + c4,b7 + c1,a3 + bg + 02)
X7—(CL b3, c5, a4 + by, a1 + cg, by +C7,a2+b2+03)
Xg = (ag,b8,08,a7 + b7, ag + c7,bg + cg, a5 + bs + 65)

Fig. 3. Shown at the top is a capacity achieving, upload optimal
PIRave scheme for K = 3 messages, N = 2 databases from [14]. At
the bottom is the corresponding capacity achieving, upload optimal
PIRmax scheme from this work. The messages are denoted by Wy =

ag:L,), We = b.r,), Ws = cpi.,), in both cases, with L, = 1
for PIRqyve and L., = 8 for PIRmax. Nodes in the left column are all
possible answers from Database 1, and the nodes in the right column
are all possible answers from Database 2. In both cases, W1 can be
retrieved from pairs of nodes connected by blue edges, Wy from red
edges and W3 from green edges.

The PIR,ve scheme shown in Figure 3 uses message size
L,, = 1 bit and achieves an average download of L,, from
Database 1, and %Lw = 3/4 from Database 2, for total
average download of %Lw, so its rate is 4/7, the capacity
for this setting. Note that this is because with probability
1/4 nothing is downloaded from Database 2. However, the
maximum download for this scheme is L,, per database which
is not optimal. Therefore, using the answers from this scheme
directly to produce an LDC would result in an LDC with
L, = L, which is not capacity achieving. On the other
hand, the PIRmax scheme shown in Figure 3 uses message
size L,, = 8§ bits, and achieves constant, maximum, and
average download of Lw = 7 bits from each database, for
a total download of 7Lw, so its rate is also 4/7, same as the
capacity for this setting. This is a stronger capacity achieving
scheme because not only is it capacity achieving and upload
optimal for PIR,,,x but also it is capacity achieving and upload
optimal for PIR,ye. Furthermore, the same scheme gives us a
minimum length capacity achieving ULDC, a minimum length



capacity achieving SLDC, as well as a capacity achieving
and upload optimal scheme for RIR,,,x. Note that the upload
optimal PIR,,,x scheme cannot be obtained simply from a
time-sharing argument that symmetrizes the upload optimal
PIR,ye scheme, because the time-sharing argument increases
the upload cost. Instead, this powerful scheme, which gets
even more sophisticated for larger number of messages and
databases, is obtained by a special construction specified in
Section VL.

IV. CONVERSE PROOF OF THEOREM 1
Let us start with a simple yet extremely useful lemma.
Lemma 1. Let S € Sy be an arbitrary decoding set of Wi.

Consider an arbitrary subset of [1 : K|, denoted by J, such
that k ¢ J. Then for any element X in S, we have

> H(Xi|Wg) > Ly + H(XWigug), VX, €S.
X;es
(22)
Proof:
Y HX:|Wz) > H(S|Wy) (23)
X, el
@ H(S, Wi W) (24)

= H(Wg)+ H(S|Wi, Ws) (25)

L +H(XS|W{k}Uj) (26)

where (a) follows from the fact that S is a decoding set of
Wy, so from S, we may decode Wy. The last step is due to
the assumption that X, € S. |

Remark: Lemma 1 states that the amount of information
contained in any decoding set of a source symbol is no less
than the entropy of that source symbol plus the entropy of
any coded symbol from the decoding set conditioned on that
source symbol (i.e., interference about other source symbols).

The rest of the proof follows from invoking Lemma 1
for a carefully chosen sequence of decoding sets and a
permutation of the K source symbols. Consider an arbitrary
permutation of [1 : K], m such that (1,2,---, K) is mapped
to (m1, T2, , TK)-

The decoding sets and coded symbols involved in the
converse proof are constructed following a full N-ary tree
with depth K (see Figure 4). At depth-k,k € [1 : K], there
are N*~1 decoding sets (not necessarily distinct) of the source
symbol W, . Specifically, we start from the root, where we
pick an arbitrary coded symbol, X;,. Because the LDC is
universal, X;, can be used to decode W, with another N —1
symbols (denoted as X, , - in)- These N symbols form
the depth-1 nodes and this decodlng set is denoted as S[l]
The remaining procedure is similar, where for each node at
depth-(k — 1), we find a decoding set of the source symbol
W, that contains it and these decoding sets appear at depth-
k. Finally, at depth-K, we have N ~! decoding sets of the
source symbol W, . When referring to a node in the full N-
ary tree, we may use either the content (i.e., the entropy term)
or the X; value (called the node label).

Example 1. 7o illustrate the construction of the full N-ary
tree, we consider an example of a ULDC as shown in Figure
5. For one possible construction of the full binary tree, we set
the permutation T as the identity permutation and pick X, as
the root node. To find the depth-1 nodes, we pick any decoding
set of Wy that contains X1, say {X1, X2} = 511]’ so that
the depth-1 nodes are H(X1|Wa, Ws3) and H(Xo|Wy, W3).
Next, we find the depth-2 nodes. Consider the two depth-1
nodes and for each of them, we pick any decoding set of Ws
that contains the coded symbol in the depth-1 node. For the
first depth-1 node H(X1|Wa, W3), we only have 1 decoding
set that contains X1 (note that there must exist one as the
LDC is universal), so S’g] = {X1,Xs}. For the second
depth-1 node H(X5|Wy, W3), we have 2 decoding sets that
contain Xy and we may choose either one, say we choose
{X,, X3} = Sf]. We have now found the 4 depth-2 nodes, as
H(X1 |W3), H(X2|W3), H(X2|W3), and H(X3|W3), where
the first two nodes are from Sg and the last two nodes
are from Sg]. Note that the nodes at the same depth are
not necessarily distinct, e.g., Xo appears twice® at depth-2.
Finally, we consider the depth-K (depth-3) nodes. For each
one of the depth-2 nodes we find a decodmg set of W3 that
contains i, eg S = {Xy1, X3}, S = {Xs, X3}, S

{X2, X4}, S‘3 {X3,Xs2}, then the depth-3 nodes are

H(X1), H(X3), H(X2)7H(X3),H(X2)7H(X4),H(X3),H(Xz),

where sequentially every 2 nodes form a decoding set of Ws.
The construction of the full binary tree is now complete.

Remark: From this example, it is clear that there are
many different ways to generate the full N-ary tree (e.g.,
the permutation can be chosen arbitrarily, the root node can
be chosen arbitrarily, and when there are multiple qualified
decoding sets, any one may be chosen). Interestingly, the
converse proof works for any realization of the full N-ary
tree.

For the converse proof, we start from the N K-1 decoding
sets of the source symbol W, at depth-K and repeatedly
apply Lemma 1 as we ascend the tree, and stop when we
reach the root.

NK 1
NfL, = ) ) HIX @7
=1 x;esil
(22) NX7
> NETIL,+ YT > H(XG|[Wa28)
n=1 x,est |
(22) K—-1 K—-2
> NE-1L 4+ NE-2L.
NK*IS
+ Y > HXiWee ) (29)
n=1 XESWK ,
> ... (30)

SHowever, for any ULDC to achieve the capacity, the nodes from the same
depth must be distinct. We refer to the proof of Theorem 2 for the justification
of this distinctness property. Therefore, it follows that this ULDC does not
achieve the capacity, verified by noting that the symbol rate is R = L, /Ly =
1 while the capacity is CJjy o (N = 2, K = 2) = 4/3.
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Fig. 4. The full N-ary tree with depth K containing all coded symbols and decoding sets that appear in the converse proof. The indices of
coded symbols are labelled lexicographically from the root to the leaf nodes (they are not necessarily distinct).

[ o Xi =W

Xy =Wy
X3 =Ws

Xy =Wo+ W:
o] L =W,

‘H( X1 |W1,W2,W3)‘

‘H( Xy | Wa, W) H(Xa | Wa, Wa)

N

H(Xi | W) H(X; |Wy) H( X, |Ws) | H( X5 | Wa)

[I—

H(X1)| H(Xs) H(Xa) H(X) H(X) H(Xh) [H(X)|H(%)

Fig. 5. Shown at the top of the figure is a ULDC with locality N = 2 that codes K = 3 binary source symbols, W1, Wo, W3, into M =4
binary coded symbols, X1, X2, X3, X4. The decoding sets for W1, Wa, W3 are shown as pairs of coded symbols connected by blue, red, and
green edges, respectively. At the bottom of the figure is one possible N-ary tree for this ULDC. Node labels are the X; values highlighted
in yellow.

(2>2) NK_ILw 4+ .-+ NL, (i.e., the set of elements that are not in ). We start by defining
o when two coded symbols contain the same information about
+ Z H(Xi[Wr,.ic) 3D a source symbol set.
x,est)
22) o1 Definition 13 (Same information). We say that two coded
> N Ly + -4 NLy + Ly symbols X;, ,X;, contain the same information about
+ H(X:, [Wa.i) (32) a set of source symbols Wi if H(X; |Xi,, We) =
> (NE'4. .4 N+1L, (33)  H(X.,|Xi,, Wi) = 0 and denote it as X;, X,

We obtain the final rate bound by rearranging terms. By definition, the same information operation is symmetric,

. 1% w, )
1 -1 ie., if Xj, ~ Xi,, then X, & X, . Interestingly, the same
G information operation is also transitive. This is proved in the

L 1
R,=— < N(1+—+---+
following lemma.

L. N NE-1

Lemma 2 (Transitivity of same information). If X;, ~ in
V. PROOF OF THEOREM 2: CONVERSE W W
and X;, ~ X;,, then X;, ~ X,,.

We show that a capacity achieving ULDC has length at least
N For a set K C [1: K], denote its complement set as K Proof: We show that H(X;, |X;,, W) = 0, and the proof



of H(X;,|X;,,Wx) = 0 follows by symmetry.
H(X;, [ X, W)
= H(X'Ll |X22 ) Xls ) WE) + I(Xh ; Xig |X13 , WE)(SS)
= H(X; |Xi,, Xiy, Wie) + H(X4, | Xis, W)
— H(X,| X5, X, WE)
= 0

(36)
(37

. . 4%
where in (36), the first term is zero because X, ~ Xi,

(e, H(X;|X;,,Wg) = 0) and adding conditioning can
not increase entropy and the last two terms are zero because
Wic
Xi2 >~ X13 |
Similarly, we define when two coded symbols contain
distinct information about a single source symbol.

2|

Definition 14 (Distinct information). We say that two coded

symbols X;, , X;, contain distinct information about the source

symbol Wk,k S []. : K] lfH(X21|ng7WE) = H(X“‘WE)
1%

and denote it as X;, 1 Xi,.
Next we distill properties of capacity achieving ULDCs.

Lemma 3 (Properties of capacity achieving ULDC). For
capacity achieving ULDCs, we have
1) (Non-zero entropy property) Vi € [1 : M|, Vk € [1: K],
H(X;|Wr) # 0.
2) For an arbitrary decoding set of Wi,k € [1: K], S €
Sk

a) (Same interference property) Viy, iz € S,Vk' # k,
Wi
X, & X,

b) (Distinct desired information property) Yiq,ia € S,
Wi
X, L X,

¢) (Independence of coded symbols) Yiy,ia € S,

H(Xq, | Xi,) = H(X,).
3) (Incompatibility of same and distinct information) There
do not exist coded symbols X;,, X;, and source symbol

W

Wi ke
Wy such that X;, ~ X;, and X;; L X,,.

The proof of Lemma 3 is deferred to Section V-C.

Remark: The idea of using properties on same interference
and distinct information has appeared previously in [14],
albeit within a restricted class of decomposable (e.g., linear)
schemes. Here we develop them in the information theoretic
sense (that works for any non-linear schemes). Further we
treat same and distinct information as general mathematical
operators and establish the transitivity of same information
and incompatibility of same and distinct information.

Equipped with the definitions and lemmas presented above,
we are now ready for the proof, i.e., any capacity achieving
ULDC must have length M > N K The proof idea is to
consider a full N-ary tree (refer to Figure 4) that contains
NX coded symbols and show that these coded symbols must
be all distinct (so the length M > N K. To this end, we show
that if any two coded symbols are the same, then the ULDC
can not achieve the capacity (as some properties established
in Lemma 3 are violated). To illustrate the idea in a simpler
setting, let us start from an example with N =2, K = 3.

A. Example: N =2, K =3

We redraw the full binary tree with depth 3 in Figure
6, when the permutation is the identity permutation. There
are N¥ = 8 coded symbols (leaf nodes) involved, i.e.,
Xi,, -+ ,Xi,, and we show that they are all distinct, i.e.,
Xi, # Xi,Vjl € [1 : 8],j # [. This is proved by
contradiction, i.e., if X;, = Xj,, then the ULDC violates some
property that must be satisfied by capacity achieving ULDCs.

We have 3 cases for the 2 leaf nodes X;;, X;;,.

1) X;,,X; are siblings (ie., X;,X; have the same
parent). For example, X;, and XZ are siblings. Now
if X;, = X,,, we have H(X;,|X;,) = 0. Noting
that X; , X;, form a decoding set of W3, we apply
the independence property of coded symbols (Property
2.(c)), and obtain H(X;,) = H(X;,|X;,) = 0, which
contradicts the fact that H(X;,) = L, # 0 (as the
code is capacity achieving). Therefore X, , X;, must be
distinct.

2) X;,, X, are descendants of the same node from depth-1
(i-e., the same depth-1 node is reached from X;,, X;, by
proceeding from child to parent). For example, the leaf
nodes X;. and X,, are descendants of the same depth-
1 node with label X;,. As {X;,, X;.} can be used to
decode W3, we apply the same interference property to

obtain that X;, , X;, contain the same information about
WQ, i.e.,

19

roperty 2.(a w.
(X, X} €8s "R x, WX, (38)

Similarly, {X;,, X;,} can be used to decode W3 so that
they contain the same information about W,

(X Xi} €83 TR x. W x. . (39)

Now suppose X;, = X;,. Applying the transitivity of
the same information operation, we have that X
must contain the same information about Ws.

i1 i3

Wy Wa Lemma 2 Wa
Xi1 ~ AXVZ‘S,AXZ‘5 ~ Xi3 — Xil ~ Xig- (40)

However, {X;,,X;,} can be used to decode W3, so
from the distinct desired information property (Property
2.(b)), they must contain distinct information about W5.

roperty 2. W
{Xi17Xi3} € 82 P"Pgﬂb) Xil LQ Xi3' (41)

Finally, we arrive at the contradiction by invoking the in-
compatibility property of same and distinct information
(Property 3).

Property 3

W-
X, 2 X, Xi, L Xi, T Contradiction.  (42)

Therefore we conclude that X;, and X;, must be dis-
tinct. The proof for other choices of X, X;, is similar.
3) Xi,, X, are descendants of the same node from depth-0.
For example, the leaf nodes X;, and X, are descendants
of the same depth-0 node with label X;,. The remaining
proof is similar to the one above, where we trace X,
to X;, (and X;, to X;,) using decoding constraints of
Ws, W3 and argue that they must contain the same infor-
mation about Wj. Then if X;, = X,, X;, and X, must
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Fig. 6. The full binary tree with locality N = 2 and K = 3 messages.

contain the same information about Wj, contradicting
the fact that they must contain distinct information about
Wi (as X;, and X;, form a decoding set of ).

(Xi Xy} €85 M@ x, Wy, 43)
(X, Xo}es, @ x Wy, @
bemma 2y, W0 x, (45)

(Symmetrically) X, Igl X;,(46)

Suppose X;, = X Femmg 2 X, = Xiy(47)
X Xubes, 2oy Uy )
Pr@ . Contradictiqd9)

The proof for other choices of X, X;, is similar.

The proof for the 3 cases is now complete. To sum up, any
two coded symbols can not be the same, i.e., all Vv K _—3g
coded symbols are all distinct, so the code length for any
capacity achieving ULDC must satisfy M > N¥ = 8. The
converse proof with N = 2, K = 3 is thus complete.

B. General Proof for Arbitrary N, K

The general proof for arbitrary IV, K is a simple generaliza-
tion of that presented in the previous section. Consider a full
N-ary tree with depth K (refer to Figure 4), root node label
X;, and permutation 7. There are N¥ coded symbols that
appear as the leaf nodes. We show that they are all distinct.

To set up the proof by contradiction, let us assume there
exist two coded symbols X;, X,/ such that X; = X;,. We
have two cases.

1) X;, X are siblings. In this case if X; = X, then
H(X;|X;) = 0. However, as X;, X are siblings, they
belong to a decoding set of W, . Applying the inde-
pendence property of coded symbols (Property 2.(c)),
we have H(X;) = H(X,;|X,/) = 0, which contradicts
the fact that H(X;) = L, # 0 (as the code is capacity
achieving). Therefore X;, X;; must be distinct.

2) X;, X, are descendants of the same node (denoted as
X,.) from depth-k,k € [0 : K — 2]. We find the
path from X; to X, (by moving from chid to parent
recursively). The path passes K —k+ 1 nodes (one each
from depth-k', k' € [k : K]).

inleth"'*le* j j

Note that due to the construction of the full N-ary tree,
the coded symbol in the parent node is always equal
to the coded symbol in the leftmost child node. The
nodes that appear in the path are initially distinct but
after some steps, the node (nodes) that appear in the
path will be equal to X; (which might be the same as
Xjx if X5 is the leftmost child of X;,). Any two distinct
adjacent nodes in the path belong to a decoding set of
some source symbol Wy, k' € [k+2 : K]. Applying the
same interference property to each such pair of nodes,

we have
Wii1 Wit Wit
Xj = X5, X5 = Xy, Xy = X;
Lemma 2 Wit
X; X (51)

Symmetrically, we consider the path from X/ to Xj,,

- Xji,

Similarly, we apply the same interference property to
distinct adjacent nodes in the path as they belong to a

decoding set of some source symbol other than Wy ;.

Wit Wit Wit
Xy = X, Xy = Xjgyooo s Xy, = X3
Lemma 2 Wit1
Now if X; = X/, then
Wit Wik L a2 Wikt
X; = X5 X; = X; =X 2 X5 (54)

However, this contradicts the fact that X;,X 7 belong
to a decoding set of the source symbol Wy, (as the
two paths overlap at node Xj.).

Wit Wi
+1 Pr
L XX 2 X,

X~ ,
J

rty 3 -
3 22 Contradiction. (55)

Therefore, X; = X;* can not hold and we have N¥ distinct
coded symbols, i.e., M > NX. The proof is thus complete. ll

Remark: Comparing our minimum length proof of capacity
achieving ULDC (and the upload cost proof of PIRyax) to the
upload cost proof of PIRyve [14], we have an additional non-
zero entropy property (Property 1 in Lemma 3) that allows the
proof to work for all non-linear schemes (whereas the result of

Xz— = Xz — Xy, (50) [14] is limited to a restricted class of decomposable schemes).

— X5 — Xj.. (52)



C. Proof of Lemma 3

Let us prove the properties listed in Lemma 3 one at a time.
1) Proof of Property 1: To set up the proof by contradic-
tion, let us assume, for some iy € [1: M|,k € [1: K],

H(X,,|W7) = 0. (56)

Consider a full N-ary tree (see Figure 4) with root node
label X;, and permutation 7 such that m; = k. Thus W, . =
Wr. For a capacity achieving ULDC, all the inequalities from
(28) to (33) must be equalities. Replacing (32) and (33) with
equalities, we have

Ly= Y H(Xi|Wp) (57)
x,est
= H(X;, |Wg) + H( X, |Wg) + -+
+ H (X, |[Wg) + H(Xi W) (38)
= H(Xi,[Wg) + -+ + H(Xi [Wp) (59)

where in (59), we used our assumption (56). Because the sum
of N — 1 non-negative terms is equal to L,,, we must have at

least one term, say corresponding to X, that is not less than
Ly

N-1°
L'IU
N-1
Because the code is universal, there exists a decoding set .S €

S; of message W, j # k that contains X,.

H(X|[Wg) > (60)

NL, = > H(X)) (61)
X;eS
(22)
> Ly, + H(X;+|W;) (62)
> Ly + H(X W) (63)

Plugging in the capacity achieving condition, L, =

C:LDC(N7 K)_le, we have
H(Xq[Wg) < Ly(NCipo(N,K)™' = 1) (64)
1 1 1
1/N L.,
< 2 (66)

Ly =
1—1/N N -1

But (60) and (66) contradict each other. The contradiction
completes the proof of Property 1. ]
2) Proof of Property 2: First let us prove (a), that

k

VXi. X, € 5 € S, and VA’ # k, X;, & Xi,. For this
purpose, let us consider a full N-ary tree (see Figure 4) where
the root has label X;,, the permutation 7 satisfies 7 = k,
and X, , X, appear at depth-K in decoding set .S. Consider
the step from depth-K to depth-(K — 1) of the converse proof
(i.e., (28)). As we assume the ULDC achieves the capacity,
the following equality must hold (refer to (26)).

Y. HX)= ) H(X) (67)
Xq‘,GSﬂ-K X;es

= Ly, + H(X, | W) (68)

= Lw + H(S | Wk) (69)

In (69) we used (26), which must also be an equality for a
capacity achieving ULDC. From (68) and (69) we must have

H(X;,, X, |Wy) = H(X;, [Wy) (70)
= H(Xiz‘Xila Wk) =0 (71)
= H(X,|Xi, W) = 0.k # k. (72)

By symmetry, we can similarly prove H(X; |X;,, W37) =0

so that X, Rl X, and we have proved Property 2(a).

To prove Property 2(b), we consider a full N-ary tree (see
Figure 4) where the root has label X;,, the permutation 7
satisfies m; = k (such that 7. = k), and the label X,
appears at depth-1. Consider the step from depth-1 to depth-0
of the converse proof (i.e., (32)). As the ULDC achieves the
capacity, the following equality must hold (refer to (23)).

w
Therefore we have proved Property 2(b), that X, i Xi,
holds.

To prove Property 2(c), we consider a full N-ary tree (see
Figure 4) where the root label is X;,, the permutation
satisfies mx = k, and the label X, appears at depth-K.
Consider the step from depth-K to depth-(K — 1) of the
converse proof (i.e., (28)). As we assume the ULDC achieves
the capacity, the following equality must hold (refer to (23)).

H(Xil) +H(X12) = H(Xiniz) (75)

Therefore the desired claim is proved. |
3) Proof of Property 3:

X’i1 méf Xi2 = H(Xll |Xi27WE) =0 )

Wi
Xy, L X5y = H(Xi1|Xi2>WE> = H<XZ1|Wf78)

which contradicts the non-zero entropy property (Property
1). So same and distinct information conditions can not be
simultaneously satisfied and the proof is complete. |

VI. PROOF OF THEOREM 2: ACHIEVABILITY

In this section, we present the construction of a capacity
achieving SLDC with length M = N Before proceeding to
the general proof, we first consider two examples.

A. Example 1: N =2, K =2

When N = 2, K = 2, the capacity is C (N =2, K =
2) = £= = 2(1+3)~! = 3. We present an SLDC with length
4, where each source symbol is comprised of L,, = 4 bits and
each coded symbol has L, = 3 bits.

Denote W1 = (a1, a2, as,as), Wa = (b1, ba, b3, by), where
a;, b; are i.i.d. uniform bits. The code is as follows.

X, | X% | X | X

[ a a; + by b1

as 1] bo as + by (80)
bg as + b3 as (Z)

aq —+ b4 b4 @ a4



We have 2 decoding sets for each source symbol.

S1 = {{X1, Xo}, { X5, Xu}}
Sy = {{X17X4}’ {XQ»XS}}

Correctness is easy to verify (i.e., from any decoding in Sy, we
can decode Wy). Perfect smoothness is also easily verified, as
each coded symbol appears once and only once in the decoding
sets for any message.

Inspecting the code in (80), we see that each row forms a
feasible sub-code and the rows are some permutations of each
other (note however, this is a highly-structured permutation
that preserves the same upload cost and is particularly distinct
from time-sharing). This is in fact the key idea of our SLDC
and we will further develop it in the following example and
in the general proof.

(81)
(82)

B. Example 2: N =3, K =3

When N = 3, K = 3, the Capacity is Clpo(N =3,K =
3) = = = 3(1 4§ + )" = 3 = 55. We present an
SLDC with length 27 where each source symbol is comprised
of L,, = 54 bits and each coded symbol has L, = 26 bits.

Each source symbol is divided into 27 sub-source-symbols
and each sub-source-symbol has 2 bits. Denote W; as the
collection of (a§71’72’73),aé”l’"’z”?’)) for all 1,72, v3, where
Y1,72,73 € [0 : 2] are indices for sub-source-symbol. Simi-
larly, W5 is the collection of (b(ﬁy1 12:73) b(;Yl ’72’73)) and W3
is the collection of (c{7*7273) (71’72’73)). a;,bj,c are iid.
uniform bits. a7 ) A = 73) 7273) gre set to 0.

To simplify the notation, we denote the N¥ = 27 coded
symbols as X, ,, p, Where p; € [0 : 2],7 € [1 : 3]. These
27 coded symbols are divided into 3 groups depending on
the value of p; + pa + p3, so that xp, ,, p, belongs to Group
p1+p2+ps (modulo 3), and each group has 9 coded symbols.

Each coded symbol is similarly comprised of 27 sub-
coded-symbols, denoted as X, ,(,Yf,;;yfl;?). When there will be no
confusion from the context, we simply denote X 75727 as
Tpy,ps.ps- 1O determine the value of x,,, p, p,, We use py + i
as the bit sub-script for the (71,72,73) sub-source-symbol
of Wi,k € [1 : 3L and take the sum of all 3 bits, ie.,
P = 00017 4D ). For example,
the symbol denoted as g 12 = @y, + biyy, + Coyqy, 1S
comprised of 27 sub-coded-symbols corresponding to all 27
values of (71,72,73) € [0 : 23, such as a; + by + ¢; when
(71,72,73) = (1,2,2). All these symbols belong to Group 0
because p;1 +p2 +p3 =041+ 2 =0 mod 3.

The decoding constraints are as follows (easy to verify from
the table above).

From Lp1,pa,ps> Lp1+1,p2,p3s Lp142,p2,p3-

we can decode ay, , Gp, 41, Ap, 42 (84)
From Ty, ,p, pss Tp1pa+1,p5> Tp1 p2-+2,p55
we can decode by, , by, 11, bp,+2. (85)
From Lp1,p2,p3s Lp1,p2,p3+1> Tp1,pa,ps+29
we can decode ¢y, , Cpy11, Cpyt2- (86)

That is, if we pick one coded symbol from each group such
that their subscripts only differ in the k*" digit, then we
can decode Wj. Further, this claim remains valid for any
realization of (71, y2,7s). As a result, for each source symbol,
we have 9 decoding sets and each coded symbol appears once
and only once in the decoding sets, leading to correctness and
perfect smoothness.

Finally, we note that each coded symbol contains 26 bits,
although it contains 27 sub-coded-symbols (each sub-coded-
symbol is one equation, thus at most 1 bit). This follows
from the observation that for any pi, ps, p3, there exists one
and only one realization of (v1,72,73) such that p; +v; =
0 (modulo 3),Vi € [1: 3], X$7:7273) = ag+ by +co = 0 and
nothing needs to be stored. For all other cases, the sub-coded-
symbol is 1 bit. Therefore, L, = 26 and the SLDC achieves
the capacity.

C. General Proof for Arbitrary N, K

The general proof follows from the ideas presented in pre-
vious sections. For any NV, K, the capacity is CF (N, K) =

Lu = N(14+ 4+ )= M

K 11) We present an
SLDC with length M = N, where each source symbol is
comprised of L,, = N¥(N — 1) bits and each coded symbol
has L, = N¥ — 1 bits.

Each source symbol is divided into N* sub-source-symbols

—

and each sub-source-symbol has N — 1 bits. Define 7 =

(717’727"' 77K>
Wk _ (WIEO,O,'-',O)’W]EO,O,W,l) 7I/VIEN—LN—LW,N—l))7
Vk e [l: K]. (87)
W,;’ = (Wllovwlz,pwl:,w'” ’le,N—l)v
Vie[l:K],Vy €0: N —1]. (88)
Wi, & o0 (89)

Define p = (p1,p2,--- ,px). The N¥ coded symbols are
denoted as X, where ¢ € [1 : K|,p; € [0 : N — 1]. These
N& coded symbols are divided into N groups depending on
the value of ZiK:lpi (modulo N), so that X belongs to
Group Zfil p; (modulo N) and each group has N¥~1 coded
symbols.
K

VYn €[0: N —1], Group n = {Xﬁ: Zpi (modulo N) = n} 90)
i=1

Each coded symbol is similarly comprised of N* sub-

coded-symbols and each sub-coded-symbol is designed as
follows.

0,0,---,0 0,0,---,1 N—-1,N—1,--,N—1
X; = Wl,p1+71 + W27~,p2+w +oeet W%,PK+’YK7VP7 ©2)

For each message, we have N*~! decoding sets. For given

P1s Pk—1,Pkt1, ", PK, define pf = N — (py + -+ +
Pk—1 + Pk+1 + -+ + pr) (modulo N). The subscripts below
are understood modulo N.
VEe[l:K|,Vie[l:k—-1U[k+1: K],
Vp, € [0: N —1], (93)



Group 0 Group 1

Group 2

T0,0,0 = Ay, + b’Yz t Cys

L1110 = Aty T D1gyy + Clpqg
T2,2,2 = A24~; + D21y, + Cotry
T0,1,2 = Gy + D14y + Cogry
T0,2,1 = Aoy + D2y + Clprg
1,02 = Gl T byy + Cotry
L2,0,1 = A24~y; T by + Clpqy
L1,2,0 = Qg F b2gryy + Copy
L2,1,0 = Q24+, F D14y, + Coy

Sk = U {Xpla""pk—l,sz)k-%—ls“'aPK’
Vpi,iFk
X

P, Pk—1,Ppt1,Pkt1, ks "7
Xph"' Pk—1,Pp+N—=1,prq1, 7101(} (%94)

where each decoding set is comprised of one and only one
coded symbol from each group.

We verify that the code is correct, perfectly smooth and
capacity achieving.

First, to show that the code is correct, we verify that from
any coding set in Sg, we can decode Wy,Vk € [1 : K].
Consider any realization of py, -+ , pg—1,Pk+1, -+ , PK. From
(92), we consider the NV coded symbols and obtain that V¥,

X’Y

P11y sPk—1:P5sPk+1,""" sPK

K
_ v 5
- Z Wj,pj+7j + Wk,p;+7k

95)
Jj=1g#k
;/’
P10 Pk—1,P5+1,Pk41, DK
K
_ 2l gl
- Z ijj +7; + WkaPZ"!‘l-‘r’}’k (96)
j=1,j#k
: o7
Z{’
P11, s Pk—1,P+N—1,ppt1, ,PK
K
_ v gl
= > Wit T Weprt N—147 (98)

j=1,j#k
Note that the interference about source symbols W7 is the
same in the above N equations and the desired sub-source-
symbol has NV — 1 bits. So we can decode all N — 1 desired
bits, W,/ |, W,l,,--- , W, ;. Repeating the same decoding
procedure for all 7, we decode all L,, = N¥(N — 1) bits in
W),. Therefore the LDC is correct.

Second, the code is perfectly smooth because from (94), we
note that for any source symbol W}, and for any Group n € [0 :
N — 1], any coded symbol X (from Group n) appears once
and only once. Therefore, the definition of perfect smoothness
(refer to Definition 4) is satisfied.

Finally, we prove that the code achieves the capacity. To this
end, we verify that H(Xz) = L, = N¥ —1,Vp. Note that each
coded symbol contains N sub-coded-symbols, and there
exists one and only one sub-coded-symbol that is constantly
zero. That is, for any given p, when

vk = —pg (modulo N),Vk € [1: K], (99)

20,01 = @y, + bay + Criny
0,1,0 = Ay b1y + 0y
T1,0,0 = Q14 + by +Cyy
T0,2,2 = Gy + bagyy + Copry
T2,0,2 = A24y; F by, + Copry
£2,2,0 = G24~; + b2+72 + Cys
T1,1,2 = Q1gy; + D14y + Cory
T1,2,1 = Q14 + D24, + Clin,
T21,1 = Q24 + b1y, + Cling

0,02 = Gy +bap +Cotng
0,2,0 = Gy F b2iny +Cyy
22,00 = G24~, + by, +Cyy
L0,1,1 = Gy + D14y, + Crpny
T1,0,1 = Gty + byy + Cliyg
T1,1,0 = A1gryy T 014y, + oy
L2211 = Q24ryy + b2ty + Clpqy
21,2 = 24~y + 014y, + Cogry
L1,2,2 = Q1pryy T b24q, + Cogry

(83)

we have X;: = Zszl le,o = 0 (refer to (92), (89)). The
proof is thus complete. |

Remark: One might wonder if our SLDC (and the corre-
sponding upload optimal PIR,.x scheme) can be constructed
from the upload optimal PIR e scheme in [14] by symmetriza-
tion (e.g., as described in Section 5 of [14]), as one sub-code
in our scheme is similar to the PIR,y. scheme in [14]. This
does not work because general symmetrization techniques will
increase the upload proportional to the number of concatena-
tions of sub-codes, while in our PIR.,.x scheme, the upload
cost of the concatenated code remains the same as that of one
sub-code (i.e., (K — 1)log(N) per database). Therefore, our
code is is not constructed by generic symmetrizations. Instead,
the specific sub-code has a permutation-invariant property that
allows us to shift the symbol indices while retaining the same
decoding structure (refer to (92)).

VII. PROOF OF COROLLARIES 2.2 AND 2.3

For the converse, it suffices to provide the proof for RIR 4,
which automatically implies the converse for PIRy.x. The
converse proof for RIR,,x is as follows.

To set up the proof by contradiction, suppose on the contrary
that we have a capacity achieving RIR,,,x scheme such that
the upload cost from some database is strictly less than (K —
1)1log(N), i.e., there exists a set of answers X" from one
database such that |X[")| < NK=1 Then by Observation I,
we have a capacity achieving ULDC such that there exists at
least one group of strictly fewer than N ~! coded symbols
(this group corresponds to the set of answers X[ from the
database in PIR) such that any decoding set must contain one
coded symbol from this group (as any decoding set in PIR
must contain one answer from each database, including the one
with answer set X)), Note that for any full N-ary tree (refer
to Figure 4), the N¥ leaf nodes form N*~1 decoding sets. As
any one of these N ~! decoding sets must contain one coded
symbol from X" (where |X!"| < NX-1), the leaf nodes
must have at least two identical coded symbols. Then from
the converse proof of Theorem 2, it follows that the ULDC
can not achieve capacity and we arrive at the contradiction.

For the achievability, it suffices to provide the proof for
PIR,ax, Which automatically implies the achievability for
RIR,,.x. The achievable scheme for PIR,, .. is based on the
SLDC from Theorem 2. The SLDC has an N-partite property,
that any decoding set is comprised of one symbol from each



group. Group n,n € [0 : N — 1] maps to answer set X["+1),
i.e., the coded symbols from Group n,n € [0: N — 1] of the
SLDC (refer to (90)) form the answers from the (n + l)th
database in PIR,.x. The decoding supersets 8[1: K] of PIR,,ax
are chosen to be the same as the decoding supersets Sj;.x of
the SLDC. Now if the user wishes to retrieve Wy, the user
simply asks for one of the decoding sets for W}, of the SLDC,
uniformly over all N¥~! choices of decoding sets (refer to
(94)). Thus, the user downloads exactly N answers, one from
each database. The correctness and perfect smoothness of LDC
translate to the correctness and privacy of PIR .« directly. B

VIII. DISCUSSION

We introduce the notion of capacity for LDC,
and show that the capacity of ULDCs and
SLDCs with K source symbols and locality N is
C* = NOA+1N+1/N* 4. +1/NE-D T We

further show that the minimum length of capacity achieving
ULDCs and SLDCs is N¥. The results are translated into
the context of PIR,,., and RIR,.., where we show that
the capacity of RIR,ax is equal to that of PIR;, ., and the
minimum upload cost of both PIR,,,x and RIR,,.x is equal
to (K —1)log N.

In this work, we have focused on the capacity achieving
regime for LDCs. That is, the number of bits in each coded
symbol is equal to 1/C* times the number of bits in each

— Ly _ Lu(-1/N™) L
source symbol, L, = Z% = =51 < 74 In other
words, the size of each coded symbol is (sometimes much)
smaller than the size of each source symbol, a regime that
is rarely studied in classical coding theory or theoretical
computer science. Specifically, when the coded symbol has
the smallest size (capacity achieving), the code length M must
be exponential, i.e., M > N K in order to preserve either
universality or perfect smoothness. It is an interesting avenue
for future work to study other rate regimes. In particular, the
minimum symbol rate for which the code length is polynomial
remains an interesting question.

As a final remark, we note that in the PIR.x problem
formulation of this work, we have defined the max to be over
all queries and all databases, as this formulation is the one
that connects to LDCs and is consistent with most scenarios.
Essentially, we restrict the downloads to be symmetric and
constant over all databases. An alternative formulation could
be defining the max to be only over all queries, e.g., this
formulation was adopted in [15], where the downloads are
constant for one database, but could be asymmetric across the
databases. These two formulations have the same capacity,
but could behave differently in terms of other metrics, such
as message size, upload cost etc. It is an interesting question
to compare these models and identify their similarities and
differences.
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