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Abstract
Unsupervised learning of the Dawid-Skene (D&S)
model from noisy, incomplete and crowdsourced
annotations has been a long-standing challenge,
and is a critical step towards reliably labeling mas-
sive data. A recent work takes a coupled non-
negative matrix factorization (CNMF) perspec-
tive, and shows appealing features: It ensures the
identifiability of the D&S model and enjoys low
sample complexity, as only the estimates of the
co-occurrences of annotator labels are involved.
However, the identifiability holds only when cer-
tain somewhat restrictive conditions are met in the
context of crowdsourcing. Optimizing the CNMF
criterion is also costly—and convergence assur-
ances are elusive. This work recasts the pairwise
co-occurrence based D&S model learning prob-
lem as a symmetric NMF (SymNMF) problem—
which offers enhanced identifiability relative to
CNMF. In practice, the SymNMF model is often
(largely) incomplete, due to the lack of co-labeled
items by some annotators. Two lightweight algo-
rithms are proposed for co-occurrence imputation.
Then, a low-complexity shifted rectified linear
unit (ReLU)-empowered SymNMF algorithm is
proposed to identify the D&S model. Various
performance characterizations (e.g., missing co-
occurrence recoverability, stability, and conver-
gence) and evaluations are also presented.

1. Introduction
Modern machine learning systems, in particular, deep learn-
ing systems, are empowered by massive high-quality labeled
data (Goodfellow et al., 2016; Najafabadi et al., 2015). How-
ever, massive data labeling is an arduous task—reliable data
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annotation requires substantial human efforts with consider-
able expertise, which are costly. Crowdsourcing techniques
deal with various aspects of data labeling, ranging from
crowd (annotators)-based reliable annotation acquisition to
effective integration of the acquired labels (Kittur et al.,
2008). Many online platforms—such as Amazon Mechan-
ical Turk (AMT) (Buhrmester et al., 2011), CrowdFlower
(Wazny, 2017), and Clickworker (Vakharia & Lease, 2013)—
have been launched for these purposes. In platforms such as
AMT, the (oftentimes self-registered) annotators do not nec-
essarily provide reliable labels. Hence, simple integration
strategies such as majority voting may work poorly (Karger
et al., 2011a).

Annotation integration is a long-existing research topic in
machine learning; see, e.g., (Ibrahim et al., 2019; Karger
et al., 2011a; Karger et al., 2011b; Karger et al., 2013; 2014;
Liu et al., 2012; Ma et al., 2018; Snow et al., 2008; Tragani-
tis et al., 2018; Welinder et al., 2010; Zhang et al., 2016).
As an unsupervised learning task, it is often tackled from
a statistical generative model identification viewpoint. The
Dawid-Skene (D&S) model (Dawid & Skene, 1979) has
been widely adopted in the literature. The D&S model as-
sumes a ground-truth label prior and assigns a “confusion”
matrix to each annotator. The entries of an annotator’s con-
fusion matrix correspond to the probabilities of the correct
and incorrect annotations conditioned on the ground-truth
labels. Hence, annotation integration boils down to learning
the model parameters of the D&S model.

Perhaps a bit surprisingly, despite its popularity, the identi-
fiability of the D&S model had not been satisfactorily ad-
dressed until recent years. The model identifiability of D&S
was first shown under some special cases (e.g., binary la-
beling cases) (Dalvi et al., 2013; Ghosh et al., 2011; Karger
et al., 2013). The more general multi-class cases were dis-
cussed in (Traganitis et al., 2018; Zhang et al., 2016), as-
suming the availability of third-order statistics of the crowd-
sourced annotations. A challenge is that the third-order
statistics may be difficult to estimate reliably, especially in
the sample-starved regime. The work of (Ibrahim et al.,
2019) used pairwise co-occurrences of the annotators’ re-
sponses (i.e., second-order statistics) to identify the D&S
model, which substantially improved the sample complexity,
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compared to the third-order statistics-based approaches.

Using second-order statistics is conceptually appealing, yet
the work in (Ibrahim et al., 2019) still faces serious chal-
lenges in handling real large-scale crowdsourcing problems.

1. Identifiability Challenge. The identifiability of the
methods in (Ibrahim et al., 2019) hinges on a number
of restrictive and somewhat unnatural assumptions,
e.g., the existence of two disjoint groups of annotators
that both contain “class specialists” for all classes.

2. Computational Challenges. The main algorithm in
(Ibrahim et al., 2019) is based on a coupled nonneg-
ative matrix factorization (CNMF) approach, which
has serious scalability issues. In addition, its noise
robustness and convergence properties are unclear.

1.1. Contributions

To overcome the challenges, we take a deeper look at the
pairwise co-occurrence (second-order statistics) based D&S
model identification problem and offer an alternative ap-
proach. Our contributions are as follows:

Enhanced Identifiability. We reformulate the pairwise
annotator co-occurrence based D&S model identification
problem as a symmetric nonnegative matrix factorization
(SymNMF) problem in the presence of missing “blocks”—
which are caused by the absence of some annotator co-
occurrences (since not all annotators label all items). We
show that if the missing co-occurrences can be correctly im-
puted, solving the subsequent SymNMF problem uniquely
identifies the D&S model under much relaxed conditions
relative to those in (Ibrahim et al., 2019).

Co-occurrence Imputation Algorithms. We offer two
custom and recoverability-guaranteed co-occurrence impu-
tation algorithms. First, we take advantage of the fact that
annotator dispatch is under control in some crowdsourcing
problems and devise a co-occurrence imputation algorithm
using simple operations like singular value decomposition
(SVD) and least squares (LS). Second, we consider a more
challenging scenario where annotator dispatch is out of
reach and some observed co-occurrences are unreliably es-
timated. Under this scenario, we propose an imputation
criterion that is provably robust to outlying co-occurrence
observations. We also propose a lightweight iterative algo-
rithm under this setting.

Fast and Provable SymNMF Algorithm. To identify the
D&S model from the co-occurrence-imputed SymNMF
model, we propose an algorithm that is a modified version
of the subspace-based SymNMF algorithm in (Huang et al.,
2014). The algorithm in (Huang et al., 2014) is known for

its simple updates and empirically fast convergence, but
understanding to its convergence properties has been elu-
sive. We replace the nonnegativity projection step in the
algorithm by a shifted rectified linear unit (ReLU) operator.
Consequently, we show that the new algorithm converges
linearly to the desired D&S model parameters under some
conditions—while maintaining almost the same lightweight
updates. We also show that the new algorithm is provably
robust to noise. Note that the SymNMF is an NP-hard
problem, and analyzing the model estimation accuracy is
challenging. Our convergence result fills this gap.

Notation. A summary of notations used in this work can
be found in the supplementary material.

2. Background
We focus on the D&S model identification problem in the
context of crowdsourced data annotation. Consider N data
items that are denoted as {fn}Nn=1, where fn ∈ RD is a
feature vector representing the data item. The correspond-
ing (unknown) ground-truth labels are {yn}Nn=1, where
yn ∈ {1, 2, . . . ,K} and K is the number of classes. These
unlabeled data items are crowdsourced to M annotators.
Each annotator labels a subset of the N items, and the sub-
sets could be overlapped. Annotator m’s response to item
n is denoted as Xm(fn) ∈ {1, . . . ,K}. Our interest lies
in integrating {Xm(fn)}m∈In , where In is the index set
of the annotators who co-labeled item n, to estimate the
ground-truth yn for all n ∈ [N ]. Note that naı̈ve integration
methods such as majority voting often work poorly (Karger
et al., 2011a; Salk et al., 2017), as the annotators are not
equally reliable and the annotations from an annotator are
normally (heavily) incomplete.

2.1. Dawid-Skene Model

Under the D&S model, the ground-truth data label and the
M annotators’ responses are assumed to be discrete random
variables (RVs), which are denoted by Y and {Xm}Mm=1,
respectively. A key assumption is that the Xm’s are condi-
tionally independent given Y , i.e.,

Pr(k1, . . . , kM ) =

K∑
k=1

M∏
m=1

Pr(km|k)Pr(k), (1)

where km, k ∈ [K], and we have used the shorthand no-
tation Pr(k1, . . . , kM ) = Pr(X1 = k1, . . . , XM = kM ),
Pr(k) = Pr(Y = k) and Pr(km|k) = Pr(Xm = km|Y =
k). On the right-hand side, Pr(Xm = km|Y = k) when
km 6= k is referred to as the confusion probability of anno-
tator m, and Pr(Y = k) for k ∈ [K] is the prior probability
mass function (PMF) of the ground-truth label. Identify-
ing the D&S model, i.e., the confusion probabilities and
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the prior, allows us to build up a maximum a posteriori
probability (MAP) estimator for yn.

2.2. Related Work - From EM to Tensor Decomposition

The work in (Dawid & Skene, 1979) offered an expecta-
tion maximization (EM) algorithm for identifying the D&S
model, while no convergence or model identifiability prop-
erties were understood at the time. Later on, a number of
works considered special cases of the D&S model and of-
fered identifiability supports. For example, under the “one
coin” model, the work in (Ghosh et al., 2011) established
the identifiability of the D&S model via SVD. This work
considered cases with binary labels and no missing anno-
tations (i.e., all annotators label all data items). The work
in (Dalvi et al., 2013) extended the ideas to more realistic
settings where missing annotations exist. Around the same
time, other approaches, e.g., random graph theory (Karger
et al., 2013) and iteratively reweighted majority voting (Li,
2015; Li & Yu, 2014), were also used for D&S model iden-
tification. In (Welinder et al., 2010; Whitehill et al., 2009;
Zhou et al., 2012; 2015), the D&S model was extended by
modeling aspects such as “item difficulty” and “annotator
ability”. However, the identifiability of these more complex
models are unclear.

The work in (Traganitis et al., 2018; Zhang et al., 2016)
addressed D&S model identification with multi-class labels
using third-order statistics of the annotations. The D&S
model identification problem was recast as tensor decom-
position problems. Consequently, the uniqueness of tensor
decomposition was leveraged for provably identifying the
D&S model. The key challenge lies in the sample complex-
ity for accurately estimating the third-order statistics. The
difficulty of accurately estimating the third-order statistics
may make the tensor methods struggle, especially in the
annotation-starved cases. Tensor decomposition may also
be costly in terms of computation; see (Fu et al., 2020a;b).

2.3. Recent Development - Coupled NMF

Our work is motivated by a recent development in (Ibrahim
et al., 2019). The work in (Ibrahim et al., 2019) used only
the estimates of Pr(Xm = km, Xj = kj)’s, which are
much easier to estimate compared to third-order statistics in
terms of sample complexity (Han et al., 2015). Define the
confusion matrix of annotatorm (denoted byAm ∈ RK×K )
and the prior PMF λ ∈ RK as follows: Am(km, k) =
Pr(Xm = km|Y = k) and λ(k) = Pr(Y = k). Then,
by the conditional independence in (1), the co-occurrence
matrix of annotators m, j can be expressed as

Rm,j = AmDA
>
j , (2)

where Rm,j(km, kj) = Pr(Xm = km, Xj = kj) =∑K
k=1 λ(k)Am(km, k)Aj(kj , k) and D = Diag(λ). In

practice, if two annotators m and j co-label a number of
items, then the corresponding Rm,j can be estimated via
sample averaging, i.e.,

R̂m,j(km, kj) =

1

|Sm,j |
∑

n∈Sm,j

I [Xm(fn) = km, Xj(fn) = kj ] ,
(3)

where I[·] is an indicator function, km, kj ∈ [K], Sm,j ⊆
[N ] holds the indices of fn’s that are co-labeled by annota-
tors m and j, and |Sm,j | is the number of items annotators
m and j co-labeled.

Note that not allRm,j’s are available since some annotators
m, j may not have co-labeled any items. Hence, the problem
boils down to estimating Am’s and λ from Rm,j’s where
(m, j) ∈ Ω with m 6= j, where Ω is the index set of the
observed pairwise co-occurrences.

The work in (Ibrahim et al., 2019) considered the following
CNMF criterion:

find {Am}Mm=1,λ (4a)

s.t.Rm,j = AmDA
>
j , (m, j) ∈ Ω, (4b)

Am ≥ 0,1>Am = 1>, 1>λ = 1,λ ≥ 0, (4c)

where the constraints are added per the PMF interpreta-
tions of the columns of Am and λ. The word “coupled”
comes from the fact that the co-occurrences are modeled
byAmDA

>
j with shared (coupled)Am’s andAj’s. It was

shown in (Ibrahim et al., 2019) that under some conditions,
A?
m = AmΠ andD? = DΠ, whereA?

m andD? are from
any optimal solution of (4) and Π is permutation matrix.
Specifically, assume that there exist two subsets of the an-
notators, indexed by P1 and P2, where P1 ∩ P2 = ∅ and
P1 ∪ P2 ⊆ [M ]. Let

H(1) := [A>m1
, . . . ,A>m|P1|

]>,

H(2) := [A>j1 , . . . ,A
>
j|P2|

]>,
(5)

where mt ∈ P1 and j` ∈ P2. The most important condi-
tion used in (Ibrahim et al., 2019) is that both H(1) and
H(2) satisfy the sufficiently scattered condition (SSC) (cf.
Definition 1).

Identifiability Challenge. One of our major motivations
is that the conditions for D&S identification in (Ibrahim
et al., 2019) are somewhat restrictive. To understand this, it
is critical to understand the sufficiently scattered condition
(SSC) that is imposed on H(1) and H(2). SSC is widely
used in the NMF literature (Fu et al., 2015; 2016; 2018;
2019; Gillis, 2020; Huang et al., 2014) and is defined as
follows:
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e1
<latexit sha1_base64="MyJU5Dy7tB516jsB6tLaoeY08kw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCHoMevEYwTwgWcLspDcZMjO7zMwKIeQjPKoX8er3ePBvnCR70MSChqKqm+6uKBXcWN//9gpr6xubW8Xt0s7u3v5B+fCoaZJMM2ywRCS6HVGDgitsWG4FtlONVEYCW9Hobua3nlAbnqhHO04xlHSgeMwZtU5qdSNJsBf0yhW/6s9BVkmQkwrkqPfKX91+wjKJyjJBjekEfmrDCdWWM4HTUjczmFI2ogPsOKqoRBNO5udOyZlT+iROtCtlyVz9PTGh0pixjC4i6ZoltUOzbM/E/7xOZuObcMJVmllUbLErzgSxCZm9T/pcI7Ni7AhlmrtzCRtSTZl1IZVcDsHy16ukeVkN/GrwcFWp3eaJFOEETuEcAriGGtxDHRrAYATP8ApvnvFevHfvY9Fa8PKZY/gD7/MHaYeQDQ==</latexit><latexit sha1_base64="MyJU5Dy7tB516jsB6tLaoeY08kw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCHoMevEYwTwgWcLspDcZMjO7zMwKIeQjPKoX8er3ePBvnCR70MSChqKqm+6uKBXcWN//9gpr6xubW8Xt0s7u3v5B+fCoaZJMM2ywRCS6HVGDgitsWG4FtlONVEYCW9Hobua3nlAbnqhHO04xlHSgeMwZtU5qdSNJsBf0yhW/6s9BVkmQkwrkqPfKX91+wjKJyjJBjekEfmrDCdWWM4HTUjczmFI2ogPsOKqoRBNO5udOyZlT+iROtCtlyVz9PTGh0pixjC4i6ZoltUOzbM/E/7xOZuObcMJVmllUbLErzgSxCZm9T/pcI7Ni7AhlmrtzCRtSTZl1IZVcDsHy16ukeVkN/GrwcFWp3eaJFOEETuEcAriGGtxDHRrAYATP8ApvnvFevHfvY9Fa8PKZY/gD7/MHaYeQDQ==</latexit><latexit sha1_base64="MyJU5Dy7tB516jsB6tLaoeY08kw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCHoMevEYwTwgWcLspDcZMjO7zMwKIeQjPKoX8er3ePBvnCR70MSChqKqm+6uKBXcWN//9gpr6xubW8Xt0s7u3v5B+fCoaZJMM2ywRCS6HVGDgitsWG4FtlONVEYCW9Hobua3nlAbnqhHO04xlHSgeMwZtU5qdSNJsBf0yhW/6s9BVkmQkwrkqPfKX91+wjKJyjJBjekEfmrDCdWWM4HTUjczmFI2ogPsOKqoRBNO5udOyZlT+iROtCtlyVz9PTGh0pixjC4i6ZoltUOzbM/E/7xOZuObcMJVmllUbLErzgSxCZm9T/pcI7Ni7AhlmrtzCRtSTZl1IZVcDsHy16ukeVkN/GrwcFWp3eaJFOEETuEcAriGGtxDHRrAYATP8ApvnvFevHfvY9Fa8PKZY/gD7/MHaYeQDQ==</latexit><latexit sha1_base64="MyJU5Dy7tB516jsB6tLaoeY08kw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCHoMevEYwTwgWcLspDcZMjO7zMwKIeQjPKoX8er3ePBvnCR70MSChqKqm+6uKBXcWN//9gpr6xubW8Xt0s7u3v5B+fCoaZJMM2ywRCS6HVGDgitsWG4FtlONVEYCW9Hobua3nlAbnqhHO04xlHSgeMwZtU5qdSNJsBf0yhW/6s9BVkmQkwrkqPfKX91+wjKJyjJBjekEfmrDCdWWM4HTUjczmFI2ogPsOKqoRBNO5udOyZlT+iROtCtlyVz9PTGh0pixjC4i6ZoltUOzbM/E/7xOZuObcMJVmllUbLErzgSxCZm9T/pcI7Ni7AhlmrtzCRtSTZl1IZVcDsHy16ukeVkN/GrwcFWp3eaJFOEETuEcAriGGtxDHRrAYATP8ApvnvFevHfvY9Fa8PKZY/gD7/MHaYeQDQ==</latexit>

e2
<latexit sha1_base64="NtqLXgAq+E2Xl45riRiymrp7D9M=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8SNgNgh6DXjxGMA9IljA76U2GzMwuM7NCCPkIj+pFvPo9HvwbJ8keNLGgoajqprsrSgU31ve/vbX1jc2t7cJOcXdv/+CwdHTcNEmmGTZYIhLdjqhBwRU2LLcC26lGKiOBrWh0N/NbT6gNT9SjHacYSjpQPOaMWie1upEk2Kv2SmW/4s9BVkmQkzLkqPdKX91+wjKJyjJBjekEfmrDCdWWM4HTYjczmFI2ogPsOKqoRBNO5udOyblT+iROtCtlyVz9PTGh0pixjC4j6ZoltUOzbM/E/7xOZuObcMJVmllUbLErzgSxCZm9T/pcI7Ni7AhlmrtzCRtSTZl1IRVdDsHy16ukWa0EfiV4uCrXbvNECnAKZ3ABAVxDDe6hDg1gMIJneIU3z3gv3rv3sWhd8/KZE/gD7/MHaw6QDg==</latexit><latexit sha1_base64="NtqLXgAq+E2Xl45riRiymrp7D9M=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8SNgNgh6DXjxGMA9IljA76U2GzMwuM7NCCPkIj+pFvPo9HvwbJ8keNLGgoajqprsrSgU31ve/vbX1jc2t7cJOcXdv/+CwdHTcNEmmGTZYIhLdjqhBwRU2LLcC26lGKiOBrWh0N/NbT6gNT9SjHacYSjpQPOaMWie1upEk2Kv2SmW/4s9BVkmQkzLkqPdKX91+wjKJyjJBjekEfmrDCdWWM4HTYjczmFI2ogPsOKqoRBNO5udOyblT+iROtCtlyVz9PTGh0pixjC4j6ZoltUOzbM/E/7xOZuObcMJVmllUbLErzgSxCZm9T/pcI7Ni7AhlmrtzCRtSTZl1IRVdDsHy16ukWa0EfiV4uCrXbvNECnAKZ3ABAVxDDe6hDg1gMIJneIU3z3gv3rv3sWhd8/KZE/gD7/MHaw6QDg==</latexit><latexit sha1_base64="NtqLXgAq+E2Xl45riRiymrp7D9M=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8SNgNgh6DXjxGMA9IljA76U2GzMwuM7NCCPkIj+pFvPo9HvwbJ8keNLGgoajqprsrSgU31ve/vbX1jc2t7cJOcXdv/+CwdHTcNEmmGTZYIhLdjqhBwRU2LLcC26lGKiOBrWh0N/NbT6gNT9SjHacYSjpQPOaMWie1upEk2Kv2SmW/4s9BVkmQkzLkqPdKX91+wjKJyjJBjekEfmrDCdWWM4HTYjczmFI2ogPsOKqoRBNO5udOyblT+iROtCtlyVz9PTGh0pixjC4j6ZoltUOzbM/E/7xOZuObcMJVmllUbLErzgSxCZm9T/pcI7Ni7AhlmrtzCRtSTZl1IRVdDsHy16ukWa0EfiV4uCrXbvNECnAKZ3ABAVxDDe6hDg1gMIJneIU3z3gv3rv3sWhd8/KZE/gD7/MHaw6QDg==</latexit><latexit sha1_base64="NtqLXgAq+E2Xl45riRiymrp7D9M=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8SNgNgh6DXjxGMA9IljA76U2GzMwuM7NCCPkIj+pFvPo9HvwbJ8keNLGgoajqprsrSgU31ve/vbX1jc2t7cJOcXdv/+CwdHTcNEmmGTZYIhLdjqhBwRU2LLcC26lGKiOBrWh0N/NbT6gNT9SjHacYSjpQPOaMWie1upEk2Kv2SmW/4s9BVkmQkzLkqPdKX91+wjKJyjJBjekEfmrDCdWWM4HTYjczmFI2ogPsOKqoRBNO5udOyblT+iROtCtlyVz9PTGh0pixjC4j6ZoltUOzbM/E/7xOZuObcMJVmllUbLErzgSxCZm9T/pcI7Ni7AhlmrtzCRtSTZl1IRVdDsHy16ukWa0EfiV4uCrXbvNECnAKZ3ABAVxDDe6hDg1gMIJneIU3z3gv3rv3sWhd8/KZE/gD7/MHaw6QDg==</latexit>

e3
<latexit sha1_base64="TBeL2VPp2n6syF1M3r1BWEzPj4U=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tFoNgIeFOBS2DNpYRjAkkIext5pIlu3vH7p4QjvwIS7URW3+Phf/GTXKFJj4YeLw3w8y8MBHcWN//9gorq2vrG8XN0tb2zu5eef/g0cSpZthgsYh1K6QGBVfYsNwKbCUaqQwFNsPR7dRvPqE2PFYPdpxgV9KB4hFn1Dqp2Qklwd5Fr1zxq/4MZJkEOalAjnqv/NXpxyyVqCwT1Jh24Ce2m1FtORM4KXVSgwllIzrAtqOKSjTdbHbuhJw4pU+iWLtSlszU3xMZlcaMZXgWStcsqR2aRXsq/ue1UxtddzOuktSiYvNdUSqIjcn0fdLnGpkVY0co09ydS9iQasqsC6nkcggWv14mj+fVwK8G95eV2k2eSBGO4BhOIYArqMEd1KEBDEbwDK/w5hnvxXv3PuatBS+fOYQ/8D5/AGyVkA8=</latexit><latexit sha1_base64="TBeL2VPp2n6syF1M3r1BWEzPj4U=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tFoNgIeFOBS2DNpYRjAkkIext5pIlu3vH7p4QjvwIS7URW3+Phf/GTXKFJj4YeLw3w8y8MBHcWN//9gorq2vrG8XN0tb2zu5eef/g0cSpZthgsYh1K6QGBVfYsNwKbCUaqQwFNsPR7dRvPqE2PFYPdpxgV9KB4hFn1Dqp2Qklwd5Fr1zxq/4MZJkEOalAjnqv/NXpxyyVqCwT1Jh24Ce2m1FtORM4KXVSgwllIzrAtqOKSjTdbHbuhJw4pU+iWLtSlszU3xMZlcaMZXgWStcsqR2aRXsq/ue1UxtddzOuktSiYvNdUSqIjcn0fdLnGpkVY0co09ydS9iQasqsC6nkcggWv14mj+fVwK8G95eV2k2eSBGO4BhOIYArqMEd1KEBDEbwDK/w5hnvxXv3PuatBS+fOYQ/8D5/AGyVkA8=</latexit><latexit sha1_base64="TBeL2VPp2n6syF1M3r1BWEzPj4U=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tFoNgIeFOBS2DNpYRjAkkIext5pIlu3vH7p4QjvwIS7URW3+Phf/GTXKFJj4YeLw3w8y8MBHcWN//9gorq2vrG8XN0tb2zu5eef/g0cSpZthgsYh1K6QGBVfYsNwKbCUaqQwFNsPR7dRvPqE2PFYPdpxgV9KB4hFn1Dqp2Qklwd5Fr1zxq/4MZJkEOalAjnqv/NXpxyyVqCwT1Jh24Ce2m1FtORM4KXVSgwllIzrAtqOKSjTdbHbuhJw4pU+iWLtSlszU3xMZlcaMZXgWStcsqR2aRXsq/ue1UxtddzOuktSiYvNdUSqIjcn0fdLnGpkVY0co09ydS9iQasqsC6nkcggWv14mj+fVwK8G95eV2k2eSBGO4BhOIYArqMEd1KEBDEbwDK/w5hnvxXv3PuatBS+fOYQ/8D5/AGyVkA8=</latexit><latexit sha1_base64="TBeL2VPp2n6syF1M3r1BWEzPj4U=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tFoNgIeFOBS2DNpYRjAkkIext5pIlu3vH7p4QjvwIS7URW3+Phf/GTXKFJj4YeLw3w8y8MBHcWN//9gorq2vrG8XN0tb2zu5eef/g0cSpZthgsYh1K6QGBVfYsNwKbCUaqQwFNsPR7dRvPqE2PFYPdpxgV9KB4hFn1Dqp2Qklwd5Fr1zxq/4MZJkEOalAjnqv/NXpxyyVqCwT1Jh24Ce2m1FtORM4KXVSgwllIzrAtqOKSjTdbHbuhJw4pU+iWLtSlszU3xMZlcaMZXgWStcsqR2aRXsq/ue1UxtddzOuktSiYvNdUSqIjcn0fdLnGpkVY0co09ydS9iQasqsC6nkcggWv14mj+fVwK8G95eV2k2eSBGO4BhOIYArqMEd1KEBDEbwDK/w5hnvxXv3PuatBS+fOYQ/8D5/AGyVkA8=</latexit>

C
<latexit sha1_base64="iPC5A3pzAIXiSj2kyC78A4MACkA=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYBA8SNgVQY/BXDxGMA9IljA7mSRDZmaXmV4hLPkJj+pFvPo7HvwbJ8keNLGgoajqprsrSqSw6Pvf3tr6xubWdmGnuLu3f3BYOjpu2jg1jDdYLGPTjqjlUmjeQIGStxPDqYokb0Xj2sxvPXFjRawfcZLwUNGhFgPBKDqpnXUZlaQ27ZXKfsWfg6ySICdlyFHvlb66/ZilimtkklrbCfwEw4waFEzyabGbWp5QNqZD3nFUU8VtmM3vnZJzp/TJIDauNJK5+nsio8raiYouI+WaFcWRXbZn4n9eJ8XBbZgJnaTINVvsGqSSYExm/5O+MJyhnDhCmRHuXMJG1FCGLqWiyyFY/nqVNK8qgV8JHq7L1bs8kQKcwhlcQAA3UIV7qEMDGEh4hld489B78d69j0XrmpfPnMAfeJ8/kQqQvg==</latexit><latexit sha1_base64="iPC5A3pzAIXiSj2kyC78A4MACkA=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYBA8SNgVQY/BXDxGMA9IljA7mSRDZmaXmV4hLPkJj+pFvPo7HvwbJ8keNLGgoajqprsrSqSw6Pvf3tr6xubWdmGnuLu3f3BYOjpu2jg1jDdYLGPTjqjlUmjeQIGStxPDqYokb0Xj2sxvPXFjRawfcZLwUNGhFgPBKDqpnXUZlaQ27ZXKfsWfg6ySICdlyFHvlb66/ZilimtkklrbCfwEw4waFEzyabGbWp5QNqZD3nFUU8VtmM3vnZJzp/TJIDauNJK5+nsio8raiYouI+WaFcWRXbZn4n9eJ8XBbZgJnaTINVvsGqSSYExm/5O+MJyhnDhCmRHuXMJG1FCGLqWiyyFY/nqVNK8qgV8JHq7L1bs8kQKcwhlcQAA3UIV7qEMDGEh4hld489B78d69j0XrmpfPnMAfeJ8/kQqQvg==</latexit><latexit sha1_base64="iPC5A3pzAIXiSj2kyC78A4MACkA=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYBA8SNgVQY/BXDxGMA9IljA7mSRDZmaXmV4hLPkJj+pFvPo7HvwbJ8keNLGgoajqprsrSqSw6Pvf3tr6xubWdmGnuLu3f3BYOjpu2jg1jDdYLGPTjqjlUmjeQIGStxPDqYokb0Xj2sxvPXFjRawfcZLwUNGhFgPBKDqpnXUZlaQ27ZXKfsWfg6ySICdlyFHvlb66/ZilimtkklrbCfwEw4waFEzyabGbWp5QNqZD3nFUU8VtmM3vnZJzp/TJIDauNJK5+nsio8raiYouI+WaFcWRXbZn4n9eJ8XBbZgJnaTINVvsGqSSYExm/5O+MJyhnDhCmRHuXMJG1FCGLqWiyyFY/nqVNK8qgV8JHq7L1bs8kQKcwhlcQAA3UIV7qEMDGEh4hld489B78d69j0XrmpfPnMAfeJ8/kQqQvg==</latexit><latexit sha1_base64="iPC5A3pzAIXiSj2kyC78A4MACkA=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYBA8SNgVQY/BXDxGMA9IljA7mSRDZmaXmV4hLPkJj+pFvPo7HvwbJ8keNLGgoajqprsrSqSw6Pvf3tr6xubWdmGnuLu3f3BYOjpu2jg1jDdYLGPTjqjlUmjeQIGStxPDqYokb0Xj2sxvPXFjRawfcZLwUNGhFgPBKDqpnXUZlaQ27ZXKfsWfg6ySICdlyFHvlb66/ZilimtkklrbCfwEw4waFEzyabGbWp5QNqZD3nFUU8VtmM3vnZJzp/TJIDauNJK5+nsio8raiYouI+WaFcWRXbZn4n9eJ8XBbZgJnaTINVvsGqSSYExm/5O+MJyhnDhCmRHuXMJG1FCGLqWiyyFY/nqVNK8qgV8JHq7L1bs8kQKcwhlcQAA3UIV7qEMDGEh4hld489B78d69j0XrmpfPnMAfeJ8/kQqQvg==</latexit>

C
<latexit sha1_base64="iPC5A3pzAIXiSj2kyC78A4MACkA=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYBA8SNgVQY/BXDxGMA9IljA7mSRDZmaXmV4hLPkJj+pFvPo7HvwbJ8keNLGgoajqprsrSqSw6Pvf3tr6xubWdmGnuLu3f3BYOjpu2jg1jDdYLGPTjqjlUmjeQIGStxPDqYokb0Xj2sxvPXFjRawfcZLwUNGhFgPBKDqpnXUZlaQ27ZXKfsWfg6ySICdlyFHvlb66/ZilimtkklrbCfwEw4waFEzyabGbWp5QNqZD3nFUU8VtmM3vnZJzp/TJIDauNJK5+nsio8raiYouI+WaFcWRXbZn4n9eJ8XBbZgJnaTINVvsGqSSYExm/5O+MJyhnDhCmRHuXMJG1FCGLqWiyyFY/nqVNK8qgV8JHq7L1bs8kQKcwhlcQAA3UIV7qEMDGEh4hld489B78d69j0XrmpfPnMAfeJ8/kQqQvg==</latexit><latexit sha1_base64="iPC5A3pzAIXiSj2kyC78A4MACkA=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYBA8SNgVQY/BXDxGMA9IljA7mSRDZmaXmV4hLPkJj+pFvPo7HvwbJ8keNLGgoajqprsrSqSw6Pvf3tr6xubWdmGnuLu3f3BYOjpu2jg1jDdYLGPTjqjlUmjeQIGStxPDqYokb0Xj2sxvPXFjRawfcZLwUNGhFgPBKDqpnXUZlaQ27ZXKfsWfg6ySICdlyFHvlb66/ZilimtkklrbCfwEw4waFEzyabGbWp5QNqZD3nFUU8VtmM3vnZJzp/TJIDauNJK5+nsio8raiYouI+WaFcWRXbZn4n9eJ8XBbZgJnaTINVvsGqSSYExm/5O+MJyhnDhCmRHuXMJG1FCGLqWiyyFY/nqVNK8qgV8JHq7L1bs8kQKcwhlcQAA3UIV7qEMDGEh4hld489B78d69j0XrmpfPnMAfeJ8/kQqQvg==</latexit><latexit sha1_base64="iPC5A3pzAIXiSj2kyC78A4MACkA=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYBA8SNgVQY/BXDxGMA9IljA7mSRDZmaXmV4hLPkJj+pFvPo7HvwbJ8keNLGgoajqprsrSqSw6Pvf3tr6xubWdmGnuLu3f3BYOjpu2jg1jDdYLGPTjqjlUmjeQIGStxPDqYokb0Xj2sxvPXFjRawfcZLwUNGhFgPBKDqpnXUZlaQ27ZXKfsWfg6ySICdlyFHvlb66/ZilimtkklrbCfwEw4waFEzyabGbWp5QNqZD3nFUU8VtmM3vnZJzp/TJIDauNJK5+nsio8raiYouI+WaFcWRXbZn4n9eJ8XBbZgJnaTINVvsGqSSYExm/5O+MJyhnDhCmRHuXMJG1FCGLqWiyyFY/nqVNK8qgV8JHq7L1bs8kQKcwhlcQAA3UIV7qEMDGEh4hld489B78d69j0XrmpfPnMAfeJ8/kQqQvg==</latexit><latexit sha1_base64="iPC5A3pzAIXiSj2kyC78A4MACkA=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYBA8SNgVQY/BXDxGMA9IljA7mSRDZmaXmV4hLPkJj+pFvPo7HvwbJ8keNLGgoajqprsrSqSw6Pvf3tr6xubWdmGnuLu3f3BYOjpu2jg1jDdYLGPTjqjlUmjeQIGStxPDqYokb0Xj2sxvPXFjRawfcZLwUNGhFgPBKDqpnXUZlaQ27ZXKfsWfg6ySICdlyFHvlb66/ZilimtkklrbCfwEw4waFEzyabGbWp5QNqZD3nFUU8VtmM3vnZJzp/TJIDauNJK5+nsio8raiYouI+WaFcWRXbZn4n9eJ8XBbZgJnaTINVvsGqSSYExm/5O+MJyhnDhCmRHuXMJG1FCGLqWiyyFY/nqVNK8qgV8JHq7L1bs8kQKcwhlcQAA3UIV7qEMDGEh4hld489B78d69j0XrmpfPnMAfeJ8/kQqQvg==</latexit>
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Figure 1. Illustration of Z satisfying the SSC and violating the
SSC, respectively. The dots are the rows of Z; the circle is the
second-order cone C; and the blue region is the conic hull of Z>.
To make Z satisfy the SSC, the blue region should cover the circle.

Definition 1 (SSC) Any nonnegative matrix Z ∈ RI×K+

satisfies the SSC if the conic hull of Z> (i.e., cone(Z>))
satisfies (i) C ⊆ cone{Z>} where C = {x ∈ RK | x>1 ≥√
K − 1‖x‖2} and (ii) cone{Z>} 6⊆ cone{Q} for any or-

thonormalQ ∈ RK×K except for the permutation matrices.

The SSC reflects how spread are the rows of Z in the non-
negative orthant. The illustration of the SSC is shown
in Fig. 1. To satisfy the SSC, some rows of H(i) need
to be not too far away from the extreme rays of non-
negative orthant (i.e., the unit vectors e1, . . . , eK). This
means that some rows of certain Am’s are close to be
unit vectors. If ‖Am(k, :) − e>k‖2 is small, it means that
|Am(k, k)− 1| = |Pr(Xm = k|Y = k)− 1| is small; i.e.,
annotatorm rarely confuses data from other classes with the
ones from class k and is a “class specialist” for class k. In
other words, bothH(1) andH(2) satisfying the SSC means
that the disjoint P1 and P2 both contain “class specialists”
for all K classes—which may not be a trivial condition to
fulfil in practice.

Computational Challenges. The work in (Ibrahim et al.,
2019) recast the problem in (4) as a Kullback-Leiber (KL)
divergence based model fitting problem with constraints.
The iterative algorithm there often produces accurate inte-
grated labels, but some major challenges exist. First, the
method is hardly scalable. When the number of annotators
grows, the runtime of the CNMF algorithm increases signif-
icantly. Second, due to the nonconvexity, it is unclear if the
algorithm converges to the optimal ground-truthAm andD,
even if there is no noise. Third, when there is noise, it is un-
clear how it affects the model identifiability, since the main
theorem of (Ibrahim et al., 2019) for CNMF was derived
under the ideal case where no noise is present. The work
in (Ibrahim et al., 2019) offered a fast greedy algorithm for
noisy cases. However, the conditions for that algorithm to
work is much more restrictive, and the greedy algorithm’s
outputs are less accurate, as will be seen in the experiments.

3. Proposed Approach
Because of the appeal of its sample complexity, we offer an
alternative way of using pairwise co-occurrences, while cir-
cumventing the challenges in the CNMF approach. Assume
that allRm,j = AmDA

>
j are available (including the cases

where m = j). Then, one can construct

X =

R1,1 . . . R1,M

...
. . .

...
RM,1 . . . RM,M

 = HH>, (6)

where H = [A>1, . . . .A
>
M ]>D1/2. Note that the above is

a symmetric NMF model since H ≥ 0 by the physical
meaning of theAm’s andD. It is known that the model is
unique ifH satisfies the SSC (Huang et al., 2014). Hence,
we have the following:

Proposition 1 Assume that H in (6) satisfies the SSC,
rank(H) = K, and that X in (6) is available. Then, all
the confusion matrices and the data prior in the D&S model
can be identified uniquely by SymNMF of X up to com-
mon column permutations; i.e.,A?

m = AmΠ , ∀m ∈ [M ],
λ? = Π>λ, where Π is a permutation matrix and A?

m

denotes the mth column-normalized (w.r.t. the `1 norm)
block inH? that is any solution satisfyingX = H?(H?)>

withH? ≥ 0.

The proof is a straightforward application of Theorem 4 in
(Huang et al., 2014).

Improved Identifiability Conditions. Unlike in the
CNMF approach, in Proposition 1, the SSC condition is
imposed on H ∈ RMK×K instead of H(i) ∈ R|Pi|K×K

for i = 1, 2. Consequently, one only needs one set of class
specialists from all the annotators instead of two sets of spe-
cialists from disjoint groups of the annotators. In addition,
since H is potentially much “taller” than H(i) (since it is
often the case that |Pi| � M ), the probability that it at-
tains the SSC condition is also much higher than that of the
H(i)’s. In fact, it was shown that, under a certain probabilis-
tic generative model, for a nonnegative matrix Z ∈ RI×K

to satisfy the SSC with ε-sized error (see the detailed defi-
nition in (Ibrahim et al., 2019)) with probability of at least
1 − µ, one needs that I ≥ Ω

(
(K−1)2
κ2(K−2)ε2

log
(
K(K−1)

µ

))
,

where κ > ε is a constant—which also asserts thatH has a
better chance to attain the SSC compared to theH(i)’s.

Missing Co-occurrences. The rationale for enhancing
the D&S model identifiability using the SymNMF model in
(6) is clear—but the challenges are also obvious. In particu-
lar, many blocks (Rm,j’s) inX can be missing for different
reasons. First Rm,m = AmDA

>
m for m = 1, . . . ,M do

not have physical meaning and thus cannot be observed or
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directly estimated from the data through sample averaging.
Second, if annotators m, j never co-labeled any items, the
corresponding co-occurrence matrixRm,j is missing.

Note that when MK � K,X = HH> is a low-rank fac-
torization model. Imputing the unobservedRm,j’s amounts
to a low-rank matrix completion (LRMC) problem (Candés
et al., 2011). Nonetheless, existing LRMC recoverabil-
ity theory and algorithms are mostly designed under the
premise that the entries (other than blocks) are missing
uniformly at random—which do not cover our block miss-
ing case. In the next two subsections, we offer two co-
occurrence imputation algorithms that are tailored for the
special missing pattern in the context of crowdsourcing.

3.1. Designated Annotators-based Imputation

In crowdsourcing, annotators can sometimes be dispatched
by the label requester. Hence, some annotators may be des-
ignated to co-label items with other annotators. To explain,
consider the case whereRm,n = AmDA

>
n is missing, i.e.,

(m,n) /∈ Ω. Assume that two annotators (indexed by `
and r) can be designated to label items that were labeled by
annotators m and n. This way,Rm,r,Rn,` andR`,r can be
made available (if there is no estimation error). Construct
C = [R>m,r,R

>
`,r]
>. Consider the thin SVD of C, i.e.,

C = [U>m,U
>
` ]>Σm,`,rV

>
r . (7)

When rank(Am) = rank(D) = K for all m ∈ [M ], it is
readily seen that Um = AmD

1/2Θ and U` = A`D
1/2Θ,

where Θ ∈ RK×K is nonsingular. Hence, one can estimate
Rm,n via

Rm,n = UmU
−1
` R>n,`. (8)

This simple procedure also allows us to characterize the
estimation error ofRm,n when only a finite number of co-
labeled items are available:

Theorem 1 Assume that R̂m,n is estimated by (7)-(8) us-
ing the sample-estimated R̂m,r, R̂n,` and R̂`,r [using (3)
with at least S items]. Also assume that κ(Am) ≤ γ and
rank(Am) = rank(D) = K for all m ∈ [M ]. Let % =

min
(m,j)∈Ω

σmin(Rm,j). Suppose that S = Ω
(
K2γ2 log(1/δ)

%4

)
for δ > 0. Then, for any (m,n) /∈ Ω, with probability of at
least 1− δ, we have:

‖R̂m,n −Rm,n‖F = O

(
K2γ3

√
log(1/δ)

%2
√
S

)
,

whereRm,n = AmDA
>
n is the missing ground-truth.

The proof can be found in the supplementary material in Sec.
D. Note that the designated annotator approach can also es-
timate the diagonal blocks inX , i.e.,Rm,m = AmDA

>
m,

by asking annotators `, r to estimateRm,`,Rm,r, andR`,r.
The diagonal blocks can never be observed, even if every
pairwise annotator co-occurrence is observed, sinceRm,m

does not have physical meaning. Hence, being able to im-
pute the diagonal blocks is particularly important for com-
pleting the matrixX .

Remark 1 If Rm,r, Rn,` and R`,r are observed, then
Rm,n can be imputed using (7)-(8) no matter if designated
annotators exist. As will be seen, this method works rea-
sonably well even in the absence of designated annotators,
especially when the number of missing co-occurrences is
not large. Nonetheless, having designated annotators guar-
antees that every missing co-occurrence is estimated.

3.2. Robust Co-occurrence Imputation

In some cases, designated annotators may not exist. More
critically, the estimated co-occurrences may not be equally
reliable—since the estimation accuracy of R̂m,j depends
on the number of items that annotators m and j have co-
labeled [cf. Eq. (3)], which may be quite unbalanced across
different co-occurrences. Under such circumstances, we
propose a robust co-occurrence imputation criterion, i.e.,

minimize
Um,Uj , ∀(m,j)∈Ω

∑
(m,j)∈Ω

‖R̂m,j −UmU>j ‖F (9a)

subject to ‖Um‖F ≤ D, ‖U j‖F ≤ D, ∀m, (9b)

where D is an upper bound of ‖Um‖F—which is easy to
acquire in our case, as Um ∈ R(AmD

1/2) andAm’s and
D are bounded. Our formulation can be understood as a
block `2/`1-mixed norm based criterion, which is often used
in robust estimation for “downweighting” outlying data; see
e.g., (Fu et al., 2016; Nie et al., 2014; Xu et al., 2012).

Stability Under Finite Sample. Our formulation is remi-
niscent of matrix factorization based LRMC (see, e.g., (Sun
& Luo, 2016)), but with a special block missing pattern and
a co-occurrence level robustification. The existing literature
of LRMC and its recoverability analysis do not cover our
case. Nonetheless, we show that the proposed criterion in
(9) is a sound criterion for co-occurrence imputation:

Theorem 2 Assume that the R̂m,j’s are estimated using
(3) with Sm,j = |Sm,j | for all (m, j) ∈ Ω. Also assume
that each R̂m,j is observed with the same probability. Let
{U∗m,U∗j }(m,j)∈Ω be any optimal solution of (9). Define
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L = M(M − 1)/2. Then we have

1

L

∑
m<j

‖U∗m(U∗j )>−Rm,j‖F ≤ C
√
MK2 log(M)

|Ω|
(10)

+

(
1

|Ω| +
1

L

) ∑
(m,j)∈Ω

1 +
√
M√

Sm,j
,

with probability of at least 1− 3 exp(−M), where C > 0.

The proof can be found in the supplementary material in
Sec. E. Naturally, the criterion favors more annotators
and more observed pairwise co-occurrences. A remark is
that the second term on the right hand side of (10) is pro-
portional to

∑ ‖Nm,j‖F where Nm,j = R̂m,j − Rm,j .
Unlike

∑ ‖Nm,j‖2F, this term is not dominated by large
‖Nm,j‖F’s—which reflects the criterion’s robustness to
badly estimated R̂m,j’s. Also note that the result in The-
orem 2 does not include the diagonal blocks Rm,m’s.
Nonetheless, theRm,m’s can be easily estimated using (7)-
(8) if every otherRm,j is (approximately) recovered.

Iteratively Reweighted Algorithm. We propose an iter-
atively reweighted alternating optimization algorithm to
tackle (9). In each iteration, we handle a series of con-
strained least squares subproblem w.r.t. Um with an up-
dated weight (wm,j) associated with R̂m,j indicating its
reliability; i.e.,

wm,j ←
(
‖R̂m,j − ÛmÛ

>
j‖2F + ξ

)− 1
2

, (11)

Ûm ← arg min
‖Um‖F≤D

∑
j∈Sm,j

wm,j‖R̂m,j −UmÛ
>
j‖2F,

for all (m, j) ∈ Ω, where ξ > 0 is a small number to pre-
vent numerical issues. The procedure in (11) is repeatedly
carried out until a certain convergence criterion is met. This
algorithm is reminiscent of the classic `2/`1 mixed norm
minimization (Chartrand & Yin, 2008). Note that the sub-
problems are fairly easy to handle, as they are quadratic
programs; see the supplementary material in Sec. B for
more details.

3.3. Shifted ReLU Empowered SymNMF

Assume thatX = HH> is observed (after co-occurrence
imputation) with no noise. The task of estimating Am for
all m and D boils down to estimating H from X , i.e., a
SymNMF problem, as the Am’s can be “extracted” from
H easily (cf. Proposition 1). The work in (Huang et al.,
2014) offered a simple algorithm for estimating H ≥ 0.
Taking the square root decompositionX = UU>, one can
see that U = HQ> with an orthogonal Q ∈ RK×K . It

was shown in (Huang et al., 2014) that in the noiseless case,
solving the following problem is equivalent to factoringX
toX = HH>withH ≥ 0:

minimize
H,Q

‖H −UQ‖2F (12a)

subject to H ≥ 0, Q>Q = I. (12b)

The work in (Huang et al., 2014) proposed an alternating
optimization algorithm for handling (12). The algorithm
is effective, but it is unclear if it converges to the ground-
truth H—even without noise. To establish convergence
assurances, we propose a simple tweak of the algorithm in
(Huang et al., 2014) as follows:

H(t+1) ← ReLUα(t)

(
UQ(t)

)
(13a)

W(t+1)Σ(t+1)V
>
(t+1) ← svd

(
H>(t+1)U

)
(13b)

Q(t+1) ← V(t+1)W
>
(t+1), (13c)

where ReLUα(·) : RMK×K → RMK×K is an elementwise
shifted rectified linear activation function (ReLU) and is
defined as

[ReLUα(Z)]i,k =

{
Z(i, k), if Z(i, k) ≥ α,
0, o.w.,

where α ≥ 0. The step in (13a) is orthogonal projection of
each element of UQ(t) to [α(t),+∞). The two steps (13b)
and (13c) give the optimal solution to the Q-subproblem,
which is often referred to as the Procrustes projection. The
key difference between our algorithm and the original ver-
sion in (Huang et al., 2014) is that we use a shifted ReLU
function (with a pre-defined sequence {α(t)}) for the H
update, while (Huang et al., 2014) always uses α(t) = 0.
The modification is simple, yet it allows us to offer desirable
convergence guarantees. To proceed, we make the following
assumption onH:

Assumption 1 The nonnegative factor H ∈ RMK×K
+

satisfies: (i) rank(H) = K and ‖H‖F = σ; (ii)
‖H(j,:)Θ‖22
‖HΘ‖2F

≤ ζ, ∀j, ∀Θ ∈ RK×K; (iii) the locations
of the nonzero elements ofH are uniformly distributed over
[MK] × [K], and the set ∆ = {(j, k) : [H]j,k > 0} has
the following cardinality bound

|∆| = O

(
MKγ20

(1 +MKζ)σ4

)
; (14)

and (iv) 0 < γ0 ≤ min1≤k≤K{β2
k − β2

k+1}, where βk is
the kth singular value ofH and βK+1 = 0.

Assumption (ii) means that the energy of the range space
ofH is well spread over its rows. Assumption (iii) means
that the nonzero support ofH is not too dense. This reflects
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the fact that sparsity of the latent factors is often favorable
in NMF problems, for both enhancing model identifiability
and accelerating computation (Fu et al., 2019; Huang &
Sidiropoulos, 2014; Huang et al., 2014). Assumption (iv)
means that H’s singular values are sufficiently different,
which is often useful in characterizing SVD-based opera-
tions when noise is present [cf. Eq. (13b)]. With these
assumptions, we show the following theorem:

Theorem 3 Under Assumption 1, consider Û = HQ>+
N , where Q ∈ RK×K is orthogonal, and apply (13). De-
note ν = ‖N‖F, h(t) = ‖H(t) − HΠ‖2F and q(t) =
‖Q(t) − QΠ‖2F, where Π is any permutation matrix.
Suppose that ν ≤ σmin{(1 − ρ)

√
ηq(0), 1} for ρ :=

O(Kησ
4
/γ2

0) ∈ (0, 1), where η = (|∆|/MK2)(1 + MKζ),
and that

2σq(0) + 2ν < min
(j,k)∈∆

[H]j,k. (15)

Then, there exists α(t) = α > 0 such that with probability
of at least 1− δ, the following holds:

q(t) ≤ ρq(t−1) +O
(
Kσ2ν2

/γ2
0

)
, (16a)

h(t) ≤ 2ησ2q(t−1) + 2ν2, (16b)

where δ = 2 exp
(
−2|∆|/K2(1− |∆|−1

MK2 )
)
.

The proof is relegated to the supplementary material in
Sec. F. Theorem 3 can be understood as that the solution se-
quence produced by the algorithm in (13) converges linearly
to neighborhoods of the ground-truth latent factors (up to
a column permutation ambiguity)—and the neighborhoods
have zero volumes if noise is absent. Specifically, Eq. (16a)
means that, with high probability, the estimation error of
Q decreases by a factor of ρ after each iteration—which
corresponds to a linear (geometric) rate. Consequently, by
Eq. (16b), the estimation error of H also declines in the
same rate.

The theorem is also consistent with some long-existing em-
pirical observations from the NMF literature. For example,
the parameter η is proportional to the number of nonzero
elements in the latent factorH . Apparently, a sparserH in-
duces a smaller η, and thus a smaller ρ—which means faster
convergence. The fact that NMF algorithms in general are in
favor of sparser latent factors was previously observed and
articulated from multiple perspectives (Gillis, 2012; Huang
& Sidiropoulos, 2014; Huang et al., 2014).

A remark is that the convergence result in Theorem 3 holds
if the initialization is reasonable [cf. Eq. (15)]. Neverthe-
less, our experiments show that simply using Q(0) = I
works well in practice. We also find that using a diminish-
ing sequence of {α(t)} often helps accelerate convergence;
see more discussions in the supplementary material in Sec.
C.1.2.

Convergence analysis for (Sym)NMF algorithms is in gen-
eral challenging due to the NP-hardness, even without any
noise (Vavasis, 2010). Provable NMF algorithms without
relying on restrictive conditions like “separability” (see def-
inition in (Donoho & Stodden, 2003)) are rarely seen in the
literature. Notably, the work in (Li & Liang, 2017; Li et al.,
2016) also used ReLUα(·) for guaranteed NMF—but their
algorithms are not for SymNMF and the analyses cannot be
applied to our orthogonality-constrained problem.

Complexity. The steps in (13a) and (13b) and the Pro-
crustes projection in (13c) both cost O(MK3) flops. The
SVD in (13b) requires O(K3) flops. Note that in crowd-
sourcing, K is the number of classes, which is normally
small relative to M (the number of annotators). Hence, the
algorithm often runs with a competitive speed.

4. Experiments
Baselines. We denote the proposed robust co-occurrence
imputation-assisted SymNMF algorithm as RobSymNMF
and the designated annotators-based imputation-based Sym-
NMF as DesSymNMF. To benchmark our methods, we
employ a number of crowdsourcing algorithms, namely,
MultiSPA, CNMF (Ibrahim et al., 2019), TensorADMM
(Traganitis et al., 2018) Spectral-D&S (Zhang et al.,
2016), KOS (Karger et al., 2013), EigenRatio (Dalvi
et al., 2013), GhoshSVD (Ghosh et al., 2011), and
MinimaxEntropy (Zhou et al., 2014). We also em-
ploy EM (Dawid & Skene, 1979) initialized by majority
voting (denoted as MV-EM) as a baseline. Note that CNMF
is the state-of-the-art, which uses pairwise co-occurrences
as our methods do. We also use our proposed methods to ini-
tialize EM (RobSymNMF-EM and DesSymNMF-EM). For
all the D&S model-based algorithms, we construct an MAP
predictor for yn after the model is learned.

Synthetic Data Experiments. The synthetic data experi-
ments are presented in the supplementary material in Sec.
C.1.

UCI Data Experiments. We consider a number of UCI
datasets, namely, “Connect4”, “Credit” and “Car”. We
choose different classifiers from the MATLAB machine
learning toolbox, e.g., support vector machines and decision
tree; see Sec. C.2 of the supplementary material for details.
These classifiers serve as annotators in our experiments. We
partition the datasets randomly in every trial, with a training
to testing ratio being 1/4—which means that the annotators
are not extensively trained. Each classifier (annotator) is
then allowed to label a test item with probability pm ∈
(0, 1].

Tables 1 and 2 show the performance of the algorithms on
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Table 1. Classification error (%) and runtime (sec.) on the UCI
Connect4 dataset (N = 20, 561, M = 10, K = 3). The
“SymNMF” family are the proposed methods.

Algorithms pm = 0.3
pm ∈ (0.3, 0.5),

pd = 0.8
pm ∈ (0.5, 0.7),

pd = 0.8
Time(s)

RobSymNMF 33.26 33.06 32.16 0.142
RobSymNMF-EM 34.27 33.20 32.11 0.191
RobSymNMF (wm,j = 1) 33.14 34.60 33.91 0.132
DesSymNMF 33.45 32.18 31.42 0.061
DesSymNMF-EM 33.94 32.50 31.40 0.128
SymNMF (w/o imput.) 34.87 35.71 32.00 0.052
MultiSPA 47.78 42.24 49.54 0.020
CNMF 36.26 39.55 34.70 4.741
TensorADMM 36.20 34.34 35.18 5.183
Spectral-D&S 64.28 66.95 71.97 20.388
MV-EM 34.14 34.17 34.19 0.107
MinimaxEntropy 36.20 36.17 35.46 27.454
KOS 54.55 43.21 39.41 12.798
Majority Voting 37.76 36.88 36.75 -

Connect4 and Credit, respectively. In the first column of the
tables, pm is fixed for all M annotators. In the second and
third columns, we designate two annotators ` and r, and let
them label the data items with higher probabilities (i.e., pd).
This way, the designated annotators can co-label items with
many other annotators—which can help impute missing
co-occurrences using (7)-(8). The designated annotators `
and r are chosen from the M annotators randomly in each
trial. The probability pm is also randomly chosen from
a pre-specified range as indicated in the tables. We use
this setting to simulate realistic scenarios in crowdsourcing
where incomplete, noisy, and unbalanced labels are present.
The results are averaged from 20 trials.

From Tables 1 and 2, one can observe that the proposed
methods show promising classification performance in all
cases. The proposed methods exhibit clear improvements
upon the CNMF—especially in the more challenging case
in Table 1. The proposed methods also outperform the
the third-order statistics-based ones (TensorADMM and
Spectral-D&S) under most settings, articulating the ad-
vantages of using second-order statistics. In terms of the
runtime performance, the proposed SymNMF family are also
about 20 to 50 times faster compared to CNMF in these two
tables. There are 10% of co-occurrences missing in the
cases corresponding to the first columns of Tables 1 and 2.
DesSymNMF using (7)-(8) is able to impute all the missing
ones, although we did not assign any designated annota-
tor. In both tables, RobSymNMF slightly (but consistently)
outperforms DesSymNMF when there is no designated an-
notators, showing some advantages in such cases. In the
above experiments, our robust imputation algorithm in (11)
offers labeling errors that are smaller than or equal to its
non-robust version (with wm,j = 1) in 5 out of 6 settings.

Table 3 presents the performance of the algorithms on
the Car dataset under different proportions of missing co-
occurrences; see Sec. C.2 of the supplementary material for
the details of generating such cases. In this experiment, we

Table 2. Classification error (%) and runtime (sec.) on the UCI
Credit dataset (N = 540, M = 10, K = 2). The “SymNMF”
family are the proposed methods.

Algorithms pm = 0.3
pm ∈ (0.3, 0.5),

pd = 0.8
pm ∈ (0.5, 0.7),

pd = 0.8
Time(s)

RobSymNMF 16.31 13.99 13.74 0.152
RobSymNMF-EM 16.76 13.96 14.06 0.160
RobSymNMF (wm,j = 1) 16.32 13.99 13.72 0.062
DesSymNMF 16.37 13.83 13.67 0.052
DesSymNMF-EM 16.80 14.07 13.77 0.059
SymNMF (w/o imput.) 16.51 13.94 13.85 0.039
MultiSPA 16.74 14.28 14.60 0.003
CNMF 16.74 14.24 14.40 3.273
TensorADMM 16.70 14.31 13.87 3.405
Spectral-D&S 16.98 14.24 14.00 1.790
MV-EM 44.54 26.20 14.00 0.007
MinimaxEntropy 17.50 17.00 16.78 0.728
KOS 17.28 14.22 14.89 0.009
GhoshSVD 17.07 14.76 14.80 0.009
EigenRatio 17.17 14.43 14.44 0.003
Majority Voting 18.22 15.95 14.83 -

Table 3. Classification error (%) and runtime (sec.) on the UCI Car
dataset (N = 1, 352, M = 10, K = 4). The “SymNMF” family
are the proposed methods.

Algorithms Miss = 70% Miss = 50% Miss = 30% Time (s)
RobSymNMF 24.01 23.17 22.05 0.108
RobSymNMF-EM 24.93 23.71 22.03 0.123
RobSymNMF (wm,j = 1) 24.01 23.40 22.16 0.100
DesSymNMF 24.50 23.41 23.00 0.048
DesSymNMF-EM 24.91 24.59 23.45 0.060
SymNMF (w/o imput.) 24.43 24.03 24.40 0.031
MultiSPA 47.12 47.14 33.84 0.002
CNMF 43.65 41.49 30.55 3.666
TensorADMM 36.67 39.32 37.38 4.900
Spectral-D&S 31.20 29.67 29.14 47.800
MV-EM 30.27 29.96 29.65 0.013
MinimaxEntropy 28.22 25.73 24.68 12.664
KOS 48.87 49.87 41.83 0.104
Majority Voting 43.88 43.08 42.40 -

do not assign designated annotators. IfRm,n cannot be com-
pleted by observed co-occurrences using (7)-(8), we leave
it as an all-zero block. Using (7) and (8), DesSymNMF still
improves the missing proportions to 17%, 9% and 0% for
the columns from left to right, respectively. One can see
that the proposed method largely outperforms the baselines,
especially in the cases where 70% of the Rm,j’s are not ob-
served. However, CNMF is not able to produce competitive
results in this experiment.

AMT Data Experiments. We also evaluate the algo-
rithms using various AMT datasets, namely “Bluebird”,
“Dog”, “RTE” and “TREC”, which are annotated by human
annotators. The AMT datasets are more challenging, in the
sense that we have no control for annotation acquisition and
no designated annotators are available. Similar as before,
for DesSymNMF, we leave the co-occurrences that cannot
be recovered by (7)-(8) as all-zero blocks. In the AMT ex-
periments, we include two additional baselines based on
tensor completion, namely, PG-TAC (Zhou & He, 2016)
and CRIAV (Li & Jiang, 2018)—both of which reported
good performance over AMT datasets.
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Table 4. Classification error (%) and runtime (sec.) on the AMT
datasets “Bluebird” and “Dog”.The “SymNMF” family are the
proposed methods.

Algorithms Bluebird
(N = 108, M = 39, K = 2)

Dog
(N = 807, M = 52, K = 4)

Error (%) Time (s) Error (%) Time (s)
RobSymNMF 11.11 0.72 16.10 0.41
RobSymNMF-EM 11.11 0.79 15.86 0.48
RobSymNMF (wm,j = 1) 11.11 0.38 16.10 0.38
DesSymNMF 10.18 0.15 16.35 0.11
DesSymNMF-EM 10.18 0.19 15.86 0.16
SymNMF (w/o imput.) 10.18 0.12 16.72 0.10
MultiSPA 13.88 0.10 17.96 0.09
CNMF 11.11 6.76 15.86 17.14
TensorADMM 12.03 85.56 18.01 613.93
Spectral-D&S 12.03 1.97 17.84 43.88
MV-EM 12.03 0.02 15.86 0.06
MinimaxEntropy 8.33 3.43 16.23 4.6
KOS 11.11 0.11 31.84 0.17
GhoshSVD 27.77 0.02 N/A N/A
EigenRatio 27.77 0.03 N/A N/A
PG-TAC 24.07 0.04 18.21 21.11
CRIAV 24.07 0.05 17.10 18.48
Majority Voting 21.29 N/A 17.91 N/A

Table 4 and 5 present the evaluation results over the AMT
datasets. The TensorADMM algorithm could not run with
large M due to scalablity issues. The results are consistent
with those observed in the UCI experiments. The proposed
methods’ labeling accuracy is either comparable with or
better than that of CNMF, but is order-of-magnitude faster.
The proposed methods are also observed to most effectively
initialize the EM algorithm (Dawid & Skene, 1979). An ob-
servation is that there are 2.5%, 14.0%, 90.68%, and 96.57%
of the pairwise co-occurrences missing in Bluebird, Dog,
RTE and TREC, respectively. DesSymNMF is able to bring
down the missing proportions to 0.00%. 11.34%, 50.15%,
and 92.18%, respectively. The DesSymNMF imputation can
sometimes improve the final accuracy significantly; see the
Dog and RTE columns. In addition, our robust imputation
criterion (9) and the algorithm in (11) often exhibit visi-
ble improvements upon the equally weighted (non-robust)
version, as in the UCI case.

Comparison with Deep Learning-based Methods. We
present an additional experiment and compare the proposed
approaches with two deep learning (DL)-based crowdsourc-
ing methods in (Rodrigues & Pereira, 2018). The details
can be found in the supplementary material in Sec. C.3.

5. Conclusion
We proposed a D&S model identification-based crowd-
sourcing method that uses sample-efficient pairwise co-
occurrences of annotator responses. We advocated a
SymNMF-based framework that offers strong identifiability
of the D&S model under reasonable conditions. To real-
ize the SymNMF framework, we proposed two lightweight
algorithms for provably imputing missing co-occurrences
when the annotations are incomplete. We also proposed a

Table 5. Classification error (%) and runtime (sec.) on the AMT
datasets “RTE” and “TREC”. The “SymNMF” family are the pro-
posed methods.

Algorithms RTE
(N = 800, M = 164, K = 2)

TREC
(N = 19, 033, M = 762, K = 2)

Error (%) Time (s) Error (%) Time (s)
RobSymNMF 7.25 2.31 30.68 64.99
RobSymNMF-EM 7.12 2.4 29.62 67.39
RobSymNMF (wm,j = 1) 7.37 1.35 33.23 62.33
DesSymNMF 13.87 3.32 36.75 71.31
DesSymNMF-EM 7.25 3.43 29.36 72.13
SymNMF (w/o imput.) 48.75 0.23 35.47 57.60
MultiSPA 8.37 0.18 31.56 51.34
CNMF 7.12 18.12 29.84 536.86
TensorADMM N/A N/A N/A N/A
Spectral-D&S 7.12 6.34 29.58 919.98
MV-EM 7.25 0.09 30.02 3.12
MinimaxEntropy 7.5 6.4 30.89 356.32
KOS 39.75 0.07 51.95 8.53
GhoshSVD 49.12 0.06 43.03 7.18
EigenRatio 9.01 0.07 43.95 1.87
PG-TAC 8.12 50.41 33.89 917.21
CRIAV 9.37 49.04 34.59 900.34
Majority Voting 10.31 N/A 34.85 N/A

computationally economical SymNMF algorithm, and ana-
lyzed its convergence properties. We tested the framework
on UCI and AMT data and observed promising performance.
The proposed algorithms are typically order-of-magnitude
faster than other high-performance baselines.
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