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Abstract. We consider multimodal maps with holes and study the evolution of the open
systems with respect to equilibrium states for both geometric and Holder potentials. For
small holes, we show that a large class of initial distributions share the same escape rate
and converge to a unique absolutely continuous conditionally invariant measure; we also
prove a variational principle connecting the escape rate to the pressure on the survivor set,
with no conditions on the placement of the hole. Finally, introducing a weak condition on
the centre of the hole, we prove scaling limits for the escape rate for holes centred at both
periodic and non-periodic points, as the diameter of the hole goes to zero.
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1. Introduction
Dynamical systems with holes arise naturally in the study of systems whose domain
is not invariant under the dynamics. They have been studied in connection with
absorbing states in Markov chains [V, FKMP], metastable states in deterministic systems
[DoW, BV1, GHW] and neighbourhoods of non-attracting invariant sets [Y], as well as
in components of large systems of interacting components in non-equilibrium statistical
mechanics [DGKK].

In the present paper, for a class of multimodal maps with holes in the form of intervals,
we study the escape rates and limiting behaviours of the open systems with respect to
equilibrium states and conformal measures for broad classes of potentials. The systems in
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question have exponential rates of escapet, in which the escape rate and limiting behaviour
of the open system are expressed through the existence and properties of a physical
conditionally invariant measure, absolutely continuous with respect to a given conformal
measure. In this setting, glven amap f:1 O and identifying a set H C I as a hole, one
defines the open system by f Sfle HE where [! = (I\ H)N f~Y(I\ H). A conditionally
invariant measure | is a Borel probablhty measure satisfying

fum(4)
fun(I)

Ww(A) = for all Borel A C 1.

The evolution of measures in the open system is described by the sequence f*” wo/ f;f‘ wo(l)
for initial distributions wg. If the limit of such a sequence exists and is independent of
1o for a reasonable class of initial distributions, we call the resulting measure a limiting
(or physical) conditionally invariant measure. For open systems with exponential rates
of escape, the typical agenda of strong dynamical properties includes a common rate of
escape for natural classes of densities, the convergence of such densities to a limiting
conditionally invariant measure under iteration of the dynamics, and a variational principle
connecting the escape rate to the pressure of the open system on the survivor set, the
(singular) set of points which never enters the hole.

Such results have been obtained primarily for uniformly hyperbolic systems, beginning
with expanding maps [PY, CMS, LM], Anosov diffeomorphisms [CM, CMT], finite [FP]
and countable [DIMMY] state topological Markov chains, and dispersing billiards [DWY,
D2]. Their extension to non-uniformly hyperbolic systems has been primarily restricted to
unimodal and multimodal interval maps [BDM, DT1, PU] and intermittent maps [DT2].

The purpose of the present paper is to prove strong hyperbolic properties for open
systems associated with multimodal maps in greater generality, removing many of the
technical assumptions made in previous works. As such, the present paper represents a
significant simplification and extension of results available in the context of non-uniformly
hyperbolic open systems. Previous works in the setting of unimodal maps with holes have
required strong conditions both on the map (Misiurewicz maps in [D1]; a Benedicks—
Carleson condition in [BDM, DT1]; a topologically tame condition in [PU]) and on the
placement of the hole (slow approach to (see [BDM, DT1]) or complete avoidance of (see
[PU]) the post-critical set by the boundary or centre of the hole).

The principal innovation we introduce to the study of open systems in this paper is the
use of Hofbauer extensions, a type of Markov extension of the original system. Introduced
in [H], they have been used extensively in the study of interval maps. However, to date,
they have not been implemented for systems with holes. In this paper we construct
Hofbauer extensions of our open system, with additional cuts added to our partition
depending on the boundary and centre of our hole. Doing so enables us to consider the
lift of the hole as a union of 1-cylinders in the extension. Leveraging recent estimates
on complexity from [DoT], we proceed to build an induced map and related Young tower

+ For systems with subexponential rates of escape, the results are qualitatively different since there can be no
conditionally invariant limiting distribution [DF]. See [DG, FMS, APT, DR, DT2, BDT] for examples of studies
in the subexponential regime.
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over the Hofbauer extension in order to apply the framework developed in [DT2] for Young
towers with holes.

This two-step approach (rather than simply constructing a Young tower for the open
system directly) allows us to remove many of the technical assumptions needed in previous
works for interval maps with holes, as described above. Indeed, we establish the standard
suite of strong hyperbolic properties for the open system, assuming only that the hole
is a finite union of small intervals (Theorem 3.1), entirely eliminating the need for
previous assumptions on its placement or on the orbits of its boundary points. We also
prove the scaling limits for the escape rate as the hole shrinks to a point under much
weaker assumptions than used previously (Theorems 3.5 and 3.7). In addition, we greatly
broaden the class of potentials we are able to treat in this setting: we treat all Holder
continuous potentials, as well as the geometric potentials ¢ = —t log | Df| for an interval
of ¢ containing [0, 1); if the map satisfies a Collet—-Eckmann condition, we treat > 1 as
well. This is in contrast to [DT1] which restricted ¢ to a small interval around 1, and [PU]
which treated only Ho6lder potentials with bounded variation.

The paper is organized as follows. In §2 we define the class of maps and potentials we
shall study, and recall important definitions regarding pressure and open systems. In §3
we state our main results, and in §4 we carry out our main construction of the Hofbauer
extensions and associated induced maps, proving that they enjoy tail bounds and mixing
properties that are uniform in the size of the hole. In §5 we prove the key spectral properties
for the induced open system, which are then leveraged in §6 for Young towers, and in §7
to establish the small hole asymptotic.

2. Set-up
2.1. Dynamics. For I denoting the unit interval, let 7 denote the class of C> maps
f I — I with:

e all critical points non-flat: there exists a finite set Crit C I such that for each ¢ € Crit
there is a C> diffeomorphism ¢ in a neighbourhood of ¢ with ¢ (c) =0 such that
fx)= j:|¢(x)|d + f(c) for some d > 1, the order of c;

e negative Schwarzian derivative, that is, D? f/Df — 3(D? f/Df)* < 0;

e the locally eventually onto (leo)/topologically exact condition: for any open set U C [
there exists n € N such that f"(U) = I, a form of topological transitivity;

e foreache,

IDf"(f ()] — oo.

Note that it is possible to weaken the conditions listed here, but this would lead to a
significantly more complex exposition.

Sometimes we will require a stronger condition: we say that f satisfies the Coller—
Eckmann condition if there exist C, y > 0 such that for each ¢ € Crit, and alln € N,

IDf"(f ()] = Ce™. (CE)

2.2. Potentials, pressure and equilibrium states. ~ Given f € F, we let M denote the set
of f-invariant probability measures. Then, for a potential ¢ :— [—o00, 00], we define the
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pressure by
P(®) ::sup{hﬂ(f)+/¢d,u:ue/\/land,u(—¢)<oo}. 2.1

A measure u € M is called an equilibrium state for ¢ if h, (f) + f ¢du = P(p).
Given ¢ : I — [—o00, 00], we say that a sigma-finite measure mgy is ¢-conformal if
whenever U is a Borel setand f : U — f(U) is a bijection then

my(F(U)) = fU et dmg,

(For example, Lebesgue measure is —log | Df |-conformal.) Notice that we can iterate this
relation: if f" : U — f(U) is a bijection, then

m¢(f"(U))=/Ue*S”‘” dmg, (2.2)

where S,,¢ = Z;:o] ¢ o fi. We will also be interested in functions v : I — [—00, 00]
cohomologous to ¢; namely, there exists a function & such that ¢ = + h — h o f. These
functions share equilibrium states, though they may produce different, but equivalent,
conformal measures.

We will consider equilibrium states for two types of potentials: Holder continuous
potentials and geometric potentials.

(i) Holder continuous potentials. In [LR-L] it was shown that any Holder potential ¢ is
cohomologous to a Holder potential é with ¢ < P(¢) on I (note that there can be many
such potentials). It is therefore no loss of generality to assume, as we will throughout, that
for our Holder potentials, ¢ < P(¢).

(i) Geometric potentials. We set ¢ = —log |Df| and consider the family {r¢};cr. We
let p; := P(t¢) and denote m; = m;4_p, if this measure exists. For a p-periodic point x,
define its Lyapunov exponent by A(x) := (1/p) log |[Df?(x)|. Asin [PR-L, Appendix A],
for f € F and x € I, it is always the case that A(x) > 0. Then define

Amin = Inf{A(x) : x is periodic} and Amax := sup{A(x) : x is periodic}.

For u € M, let its Lyapunov exponent be defined by A(u) := f log |Df|dw. By [PR-L,
Proposition 4.7], if f € F then

inf{k(l“) VRS M)} = Amin and Sup{)‘(ﬂ) e M} = Amax-
Noting from the definition of pressure that p; > —tAnin, we define
tTi=sup{t eR:p; > —thmn} and 1t :=inf{t e R: p; > —tAmax)-

These are referred to as the freezing point and the condensation point of f, respectively.
It is immediate that 1~ < 0. For f € F, there is always an absolutely continuous invariant
probability measure, which implies that p; =0 and t™ > 1. As in [PR-L], (CE) implies
> 1.

Definition 2.1. We shall call a potential ¢ admissible if either (a) ¢ is Holder continuous
and ¢ < P(¢) on I, or (b) ¢ = —t log |Df| witht € (t~, tT).
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For each admissible ¢,

P(qb):sup{h,i(f)—i-/d)duzue/\/l, u(—ao) <ooandhu(f)>0}, (2.3)

and there is a unique equilibrium state which is exponentially mixing: for geometric
potentials with ¢ € (¢~, tT), this follows for example by [IT1, Theorem A]; in the Holder
case this follows from [LR-L, Theorem A]. Moreover, each equilibrium state is absolutely
continuous with respect to a unique conformal measure, which is shown to exist in, for
example, [IT2, Appendix B]. Throughout, we will denote the normalized potential by
¢ =¢ — P(¢), and say that ¢ is admissible whenever ¢ is. Moreover, we let m, and p,
denote the ¢-conformal measure and the equilibrium state, respectively. We may drop the
¢ when the potential is clear.

2.3. Puncturing the system. Choose z€ I, and let H.=(z —¢,z+¢) CI be an
interval. Denote by I=1 \ Hg, and in general by "= MNizo f —i] , the set of points
that do not enter H; in the first n iterates. The sequence of maps f = f" |;n defines the
corresponding open system.
We define the upper and lower escape rates through H, by
log A := lim sup 1 log ,u(p(IO”) and loga, := lzrgloréf% log ,u(p(IO”).

n—oo N

When the two quantities coincide, we denote them by log A., and call —log A, the escape
rate with respect to fi,.

Given a potential ¢, once a hole H; is introduced, the punctured potential is defined
by ¢Hs = ¢ on I and ¢Hs = —00 on H,. P(¢He) denotes the pressure of the punctured
potential, and it follows from the requirement u(—¢) < oo that the supremum for
this pressure is restricted to f-invariant measures that are supported on the survivor set
0=, In.

We will be interested in establishing convergence for limits of the form f;f‘ w/ f;’u(l )
for measures p which are absolutely continuous with respect to the conformal measure
m,. To this end, define the transfer operator corresponding to the potential ¢ by

Loy (x) = Z Y (1e?D  foryr € L' (m,).
yef—lx
Similarly, the punctured transfer operator for the open system is defined by
Loy Y (x) = Lo(15,9)(x) = Z Y (y)e?D.
vef~lx

Due to the conformality of m,,, we have

/[Egmwdmw:finwdmw foralln > 1,

which relates the escape rate with respect to the measure Y dm,, to the spectral radius of

£ ne.
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3. Results

3.1. Small hole, general placement. Theorem 3.1 proves the standard suite of strong
hyperbolic properties for the open system. As noted in the introduction, it is a significant
improvement over [BDM, DT1] and [PU] which had similar results under much more
restrictive assumptions on the map, the potential and the hole.

THEOREM 3.1. Let f € F and ¢ be an admissible potential, with normalized version
o=¢— P(¢). Let z€l and, for ¢ >0, set H(z) =(z—¢,z+¢). Suppose that
&* > 0 is sufficiently small so that —1og Ae+ < o, where o > 0 is the tail decay rate from

Theorem 4.10. Then the following hold for all 0 < & < min{e}, *}, where &} is from

Lemma 6.2.

(@) The escape rate —log A, exists, and Ae < 1 is the spectral radius of the punctured
transfer operator on the associated Young tower. The associated eigenvector projects
to a non-negative function gz, which is bounded away from zero on I\ Hy and
satisfies Eo(pyg 8e = Aege.

(b) There is a unique (¢ — P(¢pe))-conformal measure m H,.. This is singular with
respect to my and supported on .

(c) The measure vy, := gempy, is the unique equilibrium state for ofe — P(pFe); in
particular,

log 10 = P@™) = P@) = Po™) = huy, (1) + [ " dvn.
Moreover, vy, is supported on 1 and can be realized as the limit
vy, (Y) = lim A" / Vg dmy forall y € CO(I).
n—oo n

(d) The measure ,ug f= gogm(p is a conditionally invariant measure supported on I \ H,
with eigenvalue ), and is a limiting distribution in the following sense. Fix ¢ >0
and let € CS (1) satisfy ¥ > 0, with vy, () > 0. Then

’ Lhy v

|L0m V1L ny)

o

— 8e < CO"'[Yrles 3.1

Ll(my)
for some C > 0 independent of ¥, and ¥ < 1 depending only on ¢.

The techniques also imply that vy, , /Lg ® — g as € — 0. Note that the techniques of
the proof also extend to holes comprised of finitely many intervals as the only condition
required on the hole in [DT2] is —log Ae <. We prove this theorem in §6.2.

Remark 3.2. In fact, we prove convergence to the conditionally invariant measure ,ug ¢ for
a larger class of initial densities than C* (). It only matters that v satisfies vy, () >0
and that it can be realized as the projection of an element in a certain function space on
the related Young tower. So, for example, any function of the form ¢ = v 8y also satisfies
(3.1), where ¢ € CS(I) and g, = di,/dm,.

The following lemma shows that we can always choose £* > 0 small enough so that
—log A¢+ < a, and hence the theorem applies to all small holes.
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LEMMA 3.3. Suppose ¢ is an admissible potential and f € F. For any z € I, and hole
H.(2) = (z — €, 7 + ¢€), we have that lim,_, L =1.

Proof. This is a simple consequence of Corollary 5.5, since the escape rate for the related
induced system, —log A, is continuous in ¢, and by monotonicity, e > A,. For details,
see the verification of property (P2) in §6.1. O

Remark 3.4. (Bowen formula for Hausdorff dimension of I ) If we take ¢ =
—log |Df|, then under the assumptions of Theorem 3.1 and for e sufficiently small,
Hdim(lo %) = t*, where t* is the unique value of  such that P (t¢*¢) = 0. This follows as
in [DT1, Theorem 8.1], using the uniform bounds for 7 close to 1 on the tail of the return
time function from Theorem 4.10 to show that any set of Hausdorff dimension greater than
some constant D < 1 lifts to our inducing scheme. Then Theorem 3.1(c) implies that the

dimension of the equilibrium measure v}ig, corresponding to t = 1, equals 1 + log A, and

so is greater than D for ¢ small. Thus the Hausdorff dimension of 7°° equals that of the
survivor set in our inducing scheme.

3.2. Zero-hole limits. Here we consider the asymptotic scaling limit for the escape rate,
—log A¢ /1y (Hg) as € — 0. This limit was first computed in the context of escape rates for
full shifts in [BY], then extended to (piecewise) uniformly expanding systems in [KL2]
and to more general potentials in the symbolic setting in [FP] (see also [AB, BV2, FFT2]).
Its extension to unimodal and multimodal maps followed with added assumptions on the
centre of the hole z, assuming that the post-critical orbits either approach z slowly [BDM,
DT1], or are bounded away from z [PU].

By contrast, for Holder continuous potentials, we prove our results for all non-periodic
z € I, with an additional assumption required only if z is periodic and lies in the post
critical orbit. For geometric potentials, we require a (generic) slow approach condition
to z, and present an example (§3.4) to show that the scaling limit can fail for geometric
potentials if no condition on z is imposed. The proofs of Theorems 3.5 and 3.7 are in §7.

3.2.1. Holder potentials. The asymptotic escape rate depends on whether the chosen
centre z is periodic or not.

THEOREM 3.5. Let f € F, ¢ be Holder continuous and 7 € I.

(a) If z is not periodic, then limg_.o (—log A¢ /ey (H;)) = 1.

(b) If z is periodic with prime period p and {f"(c):c € Crit,n > 1} N {z} =@, then
lim, .o (—log Ae/py(He)) = 1 — €509,

(¢c) Suppose z is periodic with prime period p and {f"(c):c € Crit,n > 1} N {z} #
@. If, in addition, either fP is orientation preserving in a neighbourhood of

z, or limg_o (my(z + &, 2)/my(z, 2 — €)) =1, then limg_,o (—log Ae/py(H,)) =
1 — Sre(@,

Remark 3.6. Even when both conditions in part (c) of Theorem 3.5 fail, we can still
find a subsequence of ¢ — 0 so that the scaling limit converges to 1 — e3¢ Thus we
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expect that the scaling limit holds for all periodic points in the case of Holder continuous
potentials.

3.2.2. Geometric potentials. For the remainder of this section we let ¢ = —log |Df]|.
The geometric case requires a condition on slow approach to the critical set as well as a
polynomial rate of growth of the derivative along the post-critical orbit. For simplicity, for
a given d > 1, we will consider the set F4 C F with the defining property that for each
f € Fy all critical points have order d.

Fort € (t7,t"), let s, :=t + p;/A (1) € (0, 1] denote the local scaling exponent for
My p,; see [DT1, Lemma 9.5]. Define

D, (c)=|Df"(f(c))| foreach c € Crit.

We assume that for each ¢ € Crit,

D, (c) > const.n? for some g > d + and alln > 1. (3.2)

St

With g given as above, we choose 6 € (0, 1) and r € (1/(1 — 0)s;, (¢ — d)/(d — 1)),
and define a sequence y, =n~", n > 1. We make the following assumption on the centre
of the hole, z, in terms of this sequence:

there exists §, > 0 s.t. mcin_ d(f"(c), z) > (Szynlfe for all n € N. 3.3)
ceCrit
In particular, we have ), yn(l_e)(s’_e) < oo for some € > 0, so that condition (3.3) is

generic with respect to the measures mg, ¢ =t¢ — p;, as proved in [DT1, Lemma 9.3].
The value of s; varies continuously with ¢, and is greater than O for each € (+—, t 1),
with 51 = 1, but may tend to zero as ¢ tends to the boundary of (¢, t*). This means that,
in particular when the map f satisfies the (CE) condition, we will restrict to a subinterval
(t~, t1) where t; € (1, t*]is determined by (7.28); if f does not satisfy (CE), we letf; = 1.

THEOREM 3.7. Ford > 1,let f € Fyandt € (t™, t1). Suppose (3.2) is satisfied and z € 1
satisfies (3.3). Then, for ¢ = —t log |Df| — p;:

(a) ifzisnot periodic then limg .o (—log A¢/y(He)) = 1;

(b) ifz is periodic with (prime) period p, then limg .o (—log As /ey (H)) =1 — eSr9(2)

Remark 3.8. [FFT1, §6] shows that there are examples of maps f € F; and periodic
points z satisfying (3.3).

Remark 3.9. 1t is not clear what the optimal condition on z is so that the scaling limits of
Theorem 3.7 hold, but it is clear that the limits can fail without some assumption on z in
the case of geometric potentials. To illustrate this point, we present an example in §3.4
using the map f(x) =4x(1 — x) for which (3.3) does not hold, and the relevant scaling
limit fails.

3.3. Escape rate function. The asymptotics in the previous subsection can be seen as a

type of derivative of the escape rate at ¢ = 0. Our next result addresses the regularity of
the escape rate —log Az from Theorem 3.1 for & > 0.
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THEOREM 3.10. Let f € F and ¢ be an admissible potential. Suppose z € I and let
&* > 0 be from Theorem 3.1. Then & — —log A, is continuous on [0, £*] and forms a
devil’s staircase: that is, (d log \;)/de exists and equals 0 on an open and full-measure
subset of [0, *].

That the escape rate function forms a devil’s staircase has been shown in uniformly
hyperbolic settings, namely, for expanding systems in [KL2], and for Anosov
diffeomorphisms in [DW]. The present result is the first in the setting of non-uniformly
hyperbolic maps. It stands in contrast to Theorems 3.5 and 3.7, which prove that
(d log Ag/dée)|e=0 exists and is non-zero. Once Theorem 3.1 is established, it is a direct
consequence of the continuity of f and the ergodicity of the measure 1y, SO we give this
short proof immediately.

Proof of Theorem 3.10. The continuity of ¢ — — log A, follows from Corollary 5.5 and
(7.2). We proceed to prove the statement about the derivative of this map. Denote the
survivor set by Iof" =Moo /U \ He(2)).

If IZ?O N dH, =, then dist(ifo, dH;) > 0. This follows from the continuity of f and
the fact that H,(z) is open: If IogOo N 0 H, = ¢ then there exists n > O such that f*(z + ¢) €
H,(z); by the continuity of f, there exists a neighbourhood of z + ¢, Ns(z + ¢), such that
f"(Ns(z + €)) C Hg(z). A similar argument holds for z — €.

Thus if [2°N9H, =, then [ N9H, =9 for all & € (e — &, &+3) for some
8’ > 0, that is, the fact that the boundary of the hole falls into the hole is an open
condition. It follows from this that Ii?o = IO;’,o for all ¢’ € (¢ — &', ¢ +6'), and thus that
P(pe) = P(¢p"') and, by Theorem 3.1(c), As = A forall ¢’ € (¢ — §', & + 8').

Thus log A, is locally constant whenever ig@ NoH; =4.

Finally, since y,(H,) > 0, ergodicity implies that generic z & ¢ fall in the hole, so the
condition IOSoo N 0 H, = is generic. Therefore,

/Lq,{xzz—}-eel :e€(0, &% anddlZ—i)\g 7&0} =0,

as required. O

3.4. An example of scaling limit failure.  In this subsection we present an example of a
map in our class F and choice of z such that condition (3.3) is violated and the conclusion
of Theorem 3.7 fails.

Let f: 1 O be defined by f(x) =4x(1 — x). Let X also denote the unit interval, and
T : X Obethe tentmap 7 (x) =2x,x € [0, 1/2],and T'(x) =2(1 —x),x €[1/2, 1].

The well-known conjugacy between f and T is g : X — I, g(x) = sin(;rx/2), so that
foglx)y=goT(x)forall x € X.

Let m denote Lebesgue measure on X, which is T-invariant and the equilibrium state for
the potential —log |DT'|. The absolutely continuous invariant probability measure for f
can then be written as u = g,m, which is the equilibrium state for the potential —log |Df .

We choose z = 0, a fixed point for f, and define H, = [0, ¢). It is clear that (3.3) fails,
since Crit = {%} and fz(%) =0.
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Now g~ (H,) = [0, &), where ¢’ = (2/7) sin~! (\/€). Note that since X = g~ (1), we

have
m(X") := m< (777 x\ g‘l(Hs») = m(ﬂ T g7\ Hs>)>
i=0 i=0
= m(ﬂ g o H8)> = m(g‘ (ﬂ £ H8)>> = (",
i=0 i=0

where X" and I" denote the n-step survivor sets for 7 and f, respectively.

Thus the escape rate —log A, for (f, u, H;) is the same as the escape rate for
(T, m, g~ (He)).

Now applying [BY, Theorem 4.6.1 and §5] (see also [KL2, Theorem 2.1 and §3.1]) to

T, we compute the scaling limit,
—logi, —loghs 1 1

im =lim ————=1-— —_—
e=0 w(Hy)  e—0 m(g—'(Hy)) DT(0) 2
Yet Df (0) = 4, so that the expected scaling limit for f would be 1 — 1/Df(0) = 3 # 1.

Remark 3.11. Although the scaling limit of Theorem 3.7 fails in this case, we note that
an alternate formulation is possible. Indeed, the invariant density for f with respect to
Lebesgue measure has a spike of order x~!/2 at z = 0. So the limit of % that we compute
is compatible with the formula

. —log As 1\ 1\'/? 1 1
lim =1—-(— =1—|- =1-=-=_,
e—0 wu(Hy) Df(0) 4 272

where the scaling exponent of 1/2 matches the exponent in the spike of the invariant
density. Such relations follow from O’Brien’s formula for the extremal index (see [FFT2,
(2.6)] for a dynamical setting of this), and, given the connection between extremal indices
and scaling limits for escape rates established in [BDT], we conjecture that it holds in
greater generality for scaling limits.

4. Construction of extensions and preliminary results

4.1. Distortion and contraction. As is standard in this field, we wish to recover
some uniform expansion and uniform distortion from a system which is non-uniformly
hyperbolic. We will often use versions of the Koebe lemma, so state it here (see [MS,
Theorem 1V.1.2]), recalling that elements of F have negative Schwarzian derivative.

LEMMA 4.1. (Koebe Lemma) Forany € > 0, there exists K (¢) > 1 such that the following
hold. If f € F and U € U’ is suchthat U’ \ U consists of two intervals length at least €|U |
and f": U — f"(U’) is a diffeomorphism, then:
() forx,yelU,

Df"(x)

< K(e);
Dy S K©
(b) forx,yeU,
‘Df (x) _1‘ <k
Df"(y) |U]
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For expansion/backward contraction we use ‘polynomial shrinking’. That is, for 8 > 0,
we have the following property.
e (PolShr)g: there are constants §, C > 0 such that for each x € I and every integer
n > 1, any connected component W of f~"(Bs(x)) has |[W| < Ccn—#.
Combining [R-LS, Theorem A] and [BRSS, Theorem 1], for each f € F this holds for
any B > 0f. Notice that for intervals of size larger than § in our setting, we can simply
chop these up into smaller intervals at the cost of adding a multiplicative constant.

4.2. Hofbauer extensions. Hofbauer extensions are Markov extensions of f:1 O
usually defined by introducing cuts at (images of) critical points, but in fact we can cut
at arbitrary points: in §4.4 we will give a definition of our ‘extended critical set’. So we let
Cr C I be afinite set of points with Crit C Cr. Set Py := I, let P; be the partition defined
by Cr, and define n-cylinders by

n—1
Pui=\/ fPL.
i=0

We will denote the n-cylinder in which x € I lies by Z,[x] (note that if there are two,
then we can make an arbitrary choice). Now define D := {f KZ):ZePr, k>0}). AsD
is a set, each element D € D appears once (i.e. if f k(Z) = fi(Z’) then these elements
are naturally identified as the same set). The Hofbauer extension is defined as the disjoint
union

We call each D a domain of I. There is a natural projection map 7 : [ — I, s0 each point
% € I can be represented as (x, D) where x = %. The map f : I O is defined by f (%) =
f(x, D) = (f(x), D') if there are cylinder sets Z' C Z with Z' € P41 and Z € Py such
that

xe ffz)yc f*<z)y=D and D' = f*1(Z). (4.1)

In this case we write D — D', so (D, —) has the structure of a directed graph. With this
set-up, 7 acts as a semiconjugacy between f and f:

o f =fom.

We can think of points in Cr as ‘cut points’ since if an open interval A= (A, D)cIand
#{ANCr}=k > 1, then A gets cut at each element of Cr (strictly speaking, of 7 ~1(Cr))
so that f (A) lies in k + 1 different elements of D.

Let Dy be the base of I, that is, the copy of [ in the extension. Define ¢ to be the natural
inclusion map sending / to Dg. For D € D, we let level(D) be the length of the shortest
path Dy — - - - — D in (D, —). Then, for L € N, the truncated extension at level L is

f(L) = |_|{D € D :level(D) < L}.

The following lemma and proof are well known in the area, but we include them for
illustrative purposes and for use later.

 In fact, these results imply that to obtain (PolShr)g for a particular 8, one does not need |Df T(f(c))| = oo for
all ¢ € Crit, but rather a specific lower bound for |Df" (f(c))| depending on g suffices.
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LEMMA 4.2. Suppose that £, 9 € I \ 91 have w% = 7§. Then there exists n € N such that

1@ = 6.

Proof. Let w=m%. Observe that since 7 is a semiconjugacy, fX(X), FK($) e
71 f k(w)) for all k > 0. Let D; and Dj; denote the domains of I which contain £
and y, respectively. Then choose n so large that (7'[|D‘£)’1 (Z,[w)]) and (7t|DS_)’1 (Zu[w))
are both compactly contained inside D; and Dj respectively, where Z,[w] denotes the
element of P, containing w. Now notice that f"(Z,[w]) is a domain of the Hofbauer
extension, and indeed it follows from the construction in (4.1) that f n(x) and f " () must
lie in f*(Z,[w]). Since these iterates must also both lie on the fibre 7 ! (f"(w)) by the
conjugacy property, the points must coincide, as required. O

In general, Hofbauer extensions split into a collection of transitive components and a
non-transitive set (see [HR]), but the above lemma and the leo property imply that there
is a unique transitive component. Since any points outside this must map into it and stay
there forever, we will adopt the convention that I(L)is always restricted to the transitive
component.

Given a set A C I, the set A=n"1 (A) is called the lift of A. We now consider how
to lift measures to /. Suppose that u is an ergodic f-invariant probability measure. Set
A0 =g o1 and forn e N,

—1
1% .
Ay . L L0 o k.
2 ”g—ou f

As in [K], if &, (f) > 0, then A" converges in the vague topologyt to fi, which is an
f-invariant ergodic measure with

Also, [K] shows that 1 (f) = h, (f).

We will also be interested in lifting conformal measures. Given a conformal measure
my on I, define sy :=my o w~'. Clearly ity is ¢p-conformal for ¢ := ¢ o on I. Note
that, in general, it could be the case that m¢(f ) = oo.

Remark 4.3. We can define pressure P(¢3) analogously to (2.1). As in (2.3), for admissible
potentials we need only consider measures with positive entropy, so we deduce that
P(qg) = P(¢). This implies that when we lift the normalized potential, ¢ := ¢ o 7, the
relation ¢ = é — P(¢) continues to hold.

4.3. Inducing schemes. We wish to define inducing schemes via first return maps
to truncated domains in the Hofbauer extension, whose partition we will refine further
below: it will also be useful to set this up for our punctured systems, though there will
be a small difference in the structure there. To this end, let 73n be the set of intervals

T Recall that A converges to /i vaguely if i) () converges to (y) for all continuous v with compact
support in /.
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FIGURE 1. A sketch of the first few levels of a Hofbauer extension for a unimodal map. The dashed line shows
where we cut at the critical point c(, a blue arrow shows movement between domains in different levels and a red
arrow shows movement between domains in the same level (the colouring will be most useful when we have extra
cuts, as we will later; see online version for colours). We denote ¢, = f"(c(). We also indicate the boundaries
of the cylinder sets, denoted by ¢*_, in P4, and draw vertical lines to indicate how this lifts to P4 Thick vertical

lines imply these points are doubled. These endpoints are then used to determine I’ (4), as well as the domains Q
of Y, which are drawn with thick black lines.

{(x|p)~"(2): D eD, ZeP,}. For adomain D € D, let Dl{“ be the leftmost interval of
Py in D and DF be the rightmost. Then

I'(L):=1(L)N [ |_| (D\ (DU D,L))] 4.2)

DeD

It follows, for example from [DoT, Lemma 8.2] that, so long as I has more than one
domain, then for all € > 0 there exists L € N such that if 4, (f) > € then ,u(] (L)) > 0.
We further partition I'(L) into the elements of Pr intersecting it and denote this
collection by Q, (i.e. @={Q € PL 0 C I (L)}); see Figure 1. Letting R be the first
return time to Y := [’(L), the map F = f R is the first return map. We denote the domains
of F by {Y;};. These are the maximal sets U such that U C Q and F(U) C Q' for some
Q, Q' € Q, so that F is monotonic and R is constanton U. We set R; = R| v;. The cylinder
structure of Q ensures that the {Y;}; are disjoint and the Markov structure ensures that the
image of such a domain is an interval Q of Q; see [DoT, Lemma 4.9]. We give a short
proof of this fact to explain how the changes we make later will not affect this structure.

LEMMA 4.4. (Markov property of F) If Y; is a domain of F with F(Y;) C Q € Q then
F(Y)=0.

Proof. Let D € D denote the domain in which ¥; lies and suppose R; = n. By the Markov
structure of the Hofbauer extension there must exist ¥/ C D such that f”(Ylf )y=0. If
Y; # Y/ then the only constraint that ¥; must satisfy which ¥/ need not is that ¥; must
be contained in some Q' € 75L. This means that ¥; must have an element of 875L as a
boundary point: indeed, it must be adjacent to some DL or DL Denote such a point
by a_j, where m(a—;) € f~ ICr. In particular, j < L. So if n > j then in fact f”(a_J)
must be a boundary point of some D € D, which is a contradiction. On the other hand, if
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n < j then f "(a—j) is a boundary point of an element of 75L so in fact f "(Y;) = Q and
Y, = Yi/' O

Remark 4.5. In the construction above, we used 75L = 75L (Cr) to firstly arrange for I (L)
to be trimmed to [ (L) and then secondly to partition the domains of I (L) into Q. We
observe here that if a subset Cr’ C Cr is instead used to produce 75L (Cr’) and this set used
in place of 73L (Cr), the set-up above, and in particular the conclusion of Lemma 4.4, still
holds. We will employ such a construction in §4.4.

Note that the set of domains generate a cylinder structure for F, which we will denote by
{Yi(")} ; for the collection of n-cylinders. The Markov structure of the Hofbauer extension
implies for that each domain of F, if it maps onto D(L) € I’ (L), where D(L) C D €D,
then there is an extension so that F' extends to a map onto D. As in Lemma 4.1, this
extension property gives us bounded distortion for F: there exists K > 1 such that for Y;
a domain of F,if x, y € ¥; then

|IDF (x)]

IDF(y)| ~
(we improve on this estimate in Lemma 4.6). Note that K depends on L since L determines
the constant € in Lemma 4.1.

We also note that by [DoT, Lemma 10.7], F is uniformly hyperbolic, that is, there exist
Cr > 0and of > 1 such that, forx € Y and any n > 1,

|IDF"| > Cpop. 4.3)

Given a potential ¢ : 1 — [—00, 00], and its normalized lift ¢ =@ om as in
Remark 4.3, we define the induced potential

D) =¢@x) +o(f) 4+ +o(fRD ), xel(L).

Asin (2.2), if rﬁ(p is ¢-conformal for f , then it is also ®-conformal for F.
By Kac’s lemma, since F is a first return map to Y, if [ is a f-invariant probability
measure then

A

Ay = ;(l;) is an F-invariant probability measure and 1 (Y) = m 4.4)
We also note that
Ri—1 Ri—1
A(A) = ﬁ(Y)Z Z ay(Yin f7A)= Z Z AY; N f7A) foranyBorel A C I,
i j=0 i j=0
4.5)

where the sum over i is taken over all 1-cylinders Y; for F, and R; = R|y;.
We close this subsection with the following distortion result, which is primarily due to
Lemma 4.1.

LEMMA 4.6.
(@) Suppose that ¢ : I — R is Holder continuous with Holder exponent n < 1. Then
there exists Kr ¢ > 0 such that, for any n-cylinder Yl-(n) andallx, y € Yl-(n),

1S ®(x) = Sn (M| < KF gl F"(x) — F* (D"
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(m)

(b)  There exists Kr > 0 such that, for any n-cylinder of the scheme Y;”” and all x, y €

Y(")’
| ‘DF"(X) 1‘<K () — F(y)
— — 1| < X) — .
DF"(y) F Y
Proof. We prove (a) first. We begin by taking a 1-cylinder ¥; and x, y € Y;. Then
Ri—1 Ri—1
D) =PI < D po ffa) —do ffmI<e ) I @ — o
k=0 k=0
_c ’“Z”(uk(x) - f"(y)|>’7|F(x) _FO)
S UTF0 = FO)l '
Ri—1
— (1) )'7
< KC|F(x) — FO)I" —~ )
|F(x) = F()l ; <|fRf(Yi)|

where K is a distortion constant coming from Lemma 4.1. So for a Holder condition on
the induced potential it suffices to have a bound on Z,f‘:?)] (F5)1/1 R (v D", which
follows from (PolShr)g for 8 > 1/7.

Note that since F is uniformly hyperbolic as in (4.3), this result passes to n-cylinders,
proving (a).

Part (b) is an immediate consequence of Lemma 4.1(b). Note that when considering a
cylinder Y™, the switch from |x — y|/|Y"| to | F" (x) — F"(y)| follows by Lemma 4.1(a)
and that |F"(Y")| < 1. 0

Remark 4.7. The above lemma, Remark 4.3 and the proof of [DT2, Propostion 1.6] imply
that for admissible normalized potentials ¢, the induced potential ® has P(®) = 0, where
pressure for the induced system is defined analogously to (2.1).

4.4. Punctured extensions with uniform images and uniform tails. In order to study
open systems via the Hofbauer extension, once we fix a point z € I to be the centre of our
hole, we will introduce extra cuts during the construction of the extension. Indeed, in order
to compare Hofbauer extensions with different sets of cuts in a neighbourhood of z, we
will construct extensions with uniform images for the induced maps that are independent
of these extra cuts.

Our notation is as follows. For g9 > 0 to be chosen below and 0 < ¢ < g9, we will
construct two related Hofbauer extensions: fz,go introducing cuts at z and z & ¢p; and
IAZ,SO’S introducing cuts at z, z £ g9 and z & ¢. In particular, this means that we will add
f -, f “l(z £ &) and f —l(z £ ¢) to our critical set. The corresponding dynamics is
denoted by fz ¢o and fz ¢o.¢> espectively. A simplified diagram is presented in Figure 2.

We fix z, and at the beginning of §4.5 we will choose the relevant quantities in the
following order. First, we will choose L according to Theorem 4.10, which will provide
uniform control on the complexity of the tail of the Hofbauer extension and will depend
only on the cardinality of the critical set plus 5 deg(f). Next, we will choose &; according
to (4.6), then finally we choose ¢ < 86*, which will fix the return domain Y, and work with
0 < € < g as the variable size of the hole.
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FIGURE 2. The Hofbauer extension based on the same unimodal map as in Figure 1, but with new cuts at points
y0+$, yo and y(;g. These represent one set of preimages of f_1 (z — &9), f_l (z) and f_l (z + &p): adding in
all preimages adds to the complexity of the diagram significantly. Similarly, for simplicity we include only the
preimages of cq at the bottom of the diagram, and omit the preimages of ya' £, yo and Yo ¢ (therefore, unlike in
Figure 1, we do not mark out the domains Q of Y here). In levels above 0 any marked point is a boundary point
of D: thicker markers imply that these points are doubled. Since, in contrast to Figure 1, the number of domains
of a given level can be greater than one, we add in the numbers on the left to clarify the level of each domain.
Note that with & fixed less than s(’;, additional cuts can be introduced at z & ¢ for ¢ < g which do not affect the

structure of the cylinders outside the intervals (yy, yn+ €y and (v, ¢, yn).

I; =1 (Crit;). Let Crit, denote the expanded critical set, that is, CritU {f !z}
Next, consider the partition Pz, = Pr(Crit;) of I into L-cylinders with endpoints at
{f~/(y):y eCrit,, 0 < j < L}. We choose

£y < ———min{lx — y|:x #y,x € 3P, y € f/(Crit;), 0< j < L}. (4.6)
IDf*loc
IAZ,‘eo = IA(CritwO). For 0 < g9 < 8(’)“, we define IAZ,S0 = IA(CritZ,go) as above, where Crit; ¢,
has f ~1(z 4 &) added to Crit;. Let IAMO (L) denote the first L levels of IAZ,EO, and let
fz’ £ (L) denote IAZ, & (L) minus the elements of 73L (Crit; ¢,) adjacent to each boundary
point in IAZ,SO (L), as in (4.2), so that the new boundary points are of the form f~/(y)
for some y € Crit; ¢, and 0 < j < L. Note that by choice of ¢, we completely remove
elements of the form [ fk (2), fk (z 4+ &0)] for 0 < k < L, and analogues, in going from

N

Loy (L) to I, (L).

fzygo,s = IA(CritZ,so,g). For any ¢ € (0, g9), we define Crit; g, to be Crit; g, with
f~ Yz £ ) added. Let I ¢, = I(Crit, ¢, ) and define I} .,.(L) to be the first L levels,

A

I; ¢5,6(L), minus the elements of ﬁL(CritZ,EO,S) adjacent to each boundary point in

I ¢y,¢ (L) so that the new boundary points are of the form f ~J(y) for some y € Crit; g6

s

s
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and 0 < j < L. As above, we completely remove elements of the form [ f*(z), f*(z +

gp)] for 0 < k < L, and analogues, in going from fz,goyg(L) to fz”go‘g(L).

(L) and {

As can be seen from this construction, the domains of I/ 80,6

260 (L) are the
same. We choose O to be the domains of Iz/,, g0, (L) further partitioned by Pr (Crit, ).
We choose this partition rather than P (Crit; ¢, ) to ensure our F-images have size
independent of ¢ and because, as in Remark 4.5, this does not affect the Markov structure
for F since the extra cuts due to ¢ fall within intervals of the form [ f k @, f k (z + &9)] for

0 < k < L, which have already been removed from I Z’ 0, <(L).

Remark 4.8. Here we explain how cutting at f~!(z) and our choice of &, ensure that
the representatives of the holes in the Hofbauer extension are disjoint from our inducing
domains.

(a) If f :U — D, D € D, is ahomeomorphism, then since we cut at f ~1(2), the interior
of U cannot intersect 7w ~!( f ~1(2)), which also implies that the interior of D cannot
intersect 7 ~! (z). Therefore, this fact must be true for any D in the transitive part of
fz. So we conclude that 7 ~1(z) N fz’ (L) = ¥ due to trimming of L-cylinders.

(b) Suppose that fgo (z) € D € D, where level(D) =k {0, ..., L} and 7'[(]2,;0 (2)) C
(z — €0, 2+ 80). By (4.6), (fZ ey (Jey(2))) NI, (L) =0, forall j=0,... L —k.

As a consequence 7~ ((z — €0, 7 + £9)) N fz/ (L) =¥ and there is a one-to-one

€0
correspondence between elements of 12/,,60 (L) and 171501 .(L); indeed, precisely the
same domains appear on each level. Abusing notation slightly, we write IZ oo (L) =

IAZ”EO’S(L), and once L is fixed, simply refer to the common set of domains as

r= || o

QePy (Crit, )
As a result of this construction, ¥ N I:IE =@ for all ¢ < gp, where I:IE =n"1(H,).

Remark 4.9. (Role of ¢ and gg) The cuts at z + ¢ form the boundary of the hole H,, and
defining IAZ, ¢0,¢ With respect to these cuts guarantees that the Markov structure will respect
the hole. The extra cuts at z &+ &g are used to guarantee uniform images and tails for returns
to Y as ¢ — 0. Without loss of generality on H,, we may always choose &g to satisfy

(Y@ e0))esoNCrit, =@ and {f*(2)}e=0 N {z % g0} = 0. 4.7)

In fact, we will only need to invoke (4.7) in §7 to prove convergence to the asymptotic
escape rate in the case where z is periodic (see Lemmas 7.6 and 7.11). All results in §§4.5,
5 and 6 hold for all &g < &.

The size of ¢ > 0 will be further reduced in Corollaries 4.13 and 5.3 and Lemma 6.2
to satisfy & < ¢}, where & < &o guarantees that the corresponding induced maps are
uniformly mixing and the associated transfer operators have a uniform spectral gap.

As defined above, Q denotes the finite partition of Y into its domains. Define the
. "Rz, 3 AR:, 20, € . .
induced maps F; o, = fz’gofo and F; ¢ = fZ,goiOgF acting on the domain Y, where R,,
denotes the first return time to Y in the extension ( f,., I,.), and s stands for either of the
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indices (z, &g) or (z, &9, €). By construction, all images of elements of Q under F,, are
unions of elements of Q. Thus F,, has the finite images property.

We have a natural projection 7, : f% — I which commutes with the dynamics, 7,, o
f% = f o m,.. Note that from here on we will fix /i = 71, for the relevant ¢ = ¢ — P(¢).
As in Remark 4.8, m is the same for all Y = I ! (L); moreover, m is always conformal for
&, under F,, and we obtain F,.-invariant measures as in (4.4) and (4.5).

Define 0 = #Cr + 5 deg(f) > #Crit; ¢, ., and note that, by definition, d does not depend
on ¢ and &g, just on the fact that we have introduced extra cuts at the preimages of the five
points z, 7 £ &9 and z £ ¢. Our first result provides uniform bounds on the tail of the return
time functions R; ¢, and R; ¢ ..

THEOREM 4.10. Suppose that

(a) either g = —tlog |Df|fort e (t—,tT),

(b) or¢: I — Ris Holder continuous.

Then there exist L €N, C >0 and a > 0 such that for all 0 <& < gy < 8(’)‘, F,., the
first return map to IA;t(L), has tails My_pp) (R > n) < Ce™™", where 3 ={z, g0} or
{z, €0, €}. Here L, C, a depend only on (f, ¢, 0).

Proof of Theorem 4.10. For ease of notation, we will drop the subscript s in the proof,
but all statements apply equally well to F; ¢ and F; ¢ ..

As shown in [DoT, Lemma 4.15], for each & > 0 there exist L = L(&) and ng = no(L)
such that #{i : R(Y;) = n} < %" for all n > no. Crucially, these numbers only depend on
0, so are independent of the actual values of € and &g. Thus to prove the theorem, it suffices
to show that there exists some & > & such that, for any 1-cylinder Y; of F, m(Y;) < e *Ri
where R; := Rly;.

In the geometric case (case (a)) we will set

C_( = Pt + t)\min-

The fact that @ > 0 follows immediately from our having set t < t™. In the Holder case
(b) we obtain an analogous @ > 0 using the assumed pressure gap, ¢ < P(¢). In both
cases we now can select & < &, which then fixes L(&) and Q. We will see below that our
estimates on the measures of the domains Y; yieldo = a — &.

We will use the expansion on periodic orbits to estimate the measure of the domains Y;.
The proof of this theorem would be simpler if we had Y; C F(Y;) for all i, since then each
Y; would contain a point of period R;, allowing us to connect & and the measure of ¥;. To
overcome this issue, we will first prove that F' is transitive on elements of Q. Recall that
by Lemma 4.2, if O, O, C IAZ”SO (L) are two open sets such that 7 (O1) N w(03) # @, then
there exists n € N such that F"(O1) N F*(O03) # 0.

Now let Q1, Q2 € Q. Since f is leo, there exists n; € N such that rr(f'” Q1)DID
7 (Q>). By Lemma 4.2, there exists n, € N such that f”1+”2(Q1) N f"z(Qz) # (). Since
Q> is a recurrent element of Q, there exists n € N such that F""(Q1) N Q> # @. Then the
Markov property of F implies that F”*(Q1) D Q», and the claimed transitivity follows.

Since Q is finite, there exist N > 1 and C > 0 such that, for each pair Q, Q> € Q, there
are J C Q1 and n < N such that f” :J — Q3 is a diffeomorphism with |Df”|1| >C.
Therefore, each domain Y; of the inducing scheme contains a periodic point y; with period
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R; < p <R+ N for f. Then |[DF(y;)| = C~ 1D fP(y;)| > e*mnki Throughout we will
treat f R i(Y;) as having uniform size, that is, independent of i.
In case (a), Lemma 4.1 implies

m(fR%Yl-)):/ =Sk, (6= gy = /|DF|f Rivi g < |DF (yo)|' i (Yp)eRiPr. (4.8)

Y;
Therefore, i1 (Y;) < e Ritrmintp) — p=aRi

For the Holder case (b), recall that we have assumed that ¢ < P(¢), and thus, by
Remark 4.3, ¢ < P($) on I. Our value of @ here is inf{P(¢) — (S, (x)/p) : fP(x) =
x} 2 inf{P(¢) — ¢(x) : x € I} > 0. So again, using a slightly more elementary version of
the estimate in (4.8) in conjunction with Lemma 4.6, to give us our requisite distortion
property, the result follows. O

4.5. Uniform mixing for F; ¢, .. Now we choose L large enough so that the conclusion
of Theorem 4.10 is satisfied. Furthermore, we enlarge L if necessary so that
@ e = max{rii (I a0 \ I gy (L), Ly \ I o (L))} < 1/3; and
(b) any ergodic invariant measure v with entropy h,(f) > (log s+ + «)/2 lifts to our
inducing scheme on IZ g (L), where &* is from Theorem 3.1.

Item (b) is possible due to [DoT, Lemma 8.2], and the fact that « does not decrease as L
increases.

With L fixed, we define 83 as in (4.6), and for gy < 86", we let Y = 1;280 (L) as in
Remark 4.8.

Our next result proves a necessary mixing property for our return maps.

LEMMA 4.11. For all gy < 86‘ and ¢ < g, the induced maps F, ., and F, ., . are
topologically mixing on Y.

Proof. We write our arguments for F, ¢, , but the same proof holds for F g,.

By the proof of Theorem 4.10, F, . is transitive on the finitely many elements of
Q. The only way it can fail to be mixing is if the images decompose into a periodic
cycle. Let Q € Q. Since f is leo, there exists np such that f" (7 (Q)) D I for alln > ng.
By our choice of L, k = m(IZ e0,e \ ¥Y) < 1/3. Then, since f"omr =m o we have
m(n(fz’feO’g(Q) NY)=>1—«,forn>ng.

Applying thiston =ng and n =ngp + 1, we conclude

1508’

m((Y N f18(Q)Nx(¥ N f"sQo+el(Q))) >1-2k>0.

Thus there must exist intervals Oy C Y N fzrfggo,g(Q) and O, CYnN f;gja (Q) such

that 7(01) N (02) #@. By Lemma 4.2, there exists n; € N such that an,‘lﬂ:o,s(Ol) N
F; 20,6 (02) #¥.  Since Q, O1, 02 CY, there exists kg € N such that sz,go,g(Q) N

Z"%j;(Q) # ), so the period of Q under F_ ., . is 1. Thus F, g, . is aperiodic and
therefore mixing. 0

Our next two lemmas show that the mixing established in Lemma 4.11 is in fact uniform
ine.
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LEMMA 4.12. Fix gy < 86‘ and suppose there exist Q1, Q> € Q and an interval J C Q1
such that F;féo(J) = Q> for some nj € N. Then there exists €1 < &y such that for all
S (0’ 81)) FZn,‘é(),S(J) = Q2'

Proof. Fix gg. Suppose there exist Q1, Q> € Q and an interval J C Q1 and n; € N such
that F'Z,(J) = Q as in the statement of the lemma. Let n; € N be such that £’} (J) =
0>. R

A key property of our construction of ¥ = IZ”SO (L) is that we have ‘trimmed’ the
edges of the domains at returns; that is, the endpoints of Q; and Q», are elements of
0P, = 0P (Crit; 4,) and the Markov property of F; ;, (Lemma 4.4) implies that there
exist domains Q) 2 Q1 and Q) 2 Q> in the extension IAMO (note that Q’, is an element of
D) and an interval J' with J C J' C Q] such that i, = 0.

Let Z and z £ g denote the fibres above z and z =+ &g, respectively. Due to the Markov
property and because we have treated f~'(z) and f fl(z + &p) as cut points during
our construction of fz,go and fz’go’g, it follows that a(ﬂ{EO(J)) N {z, z/:l:?o} =, for all
0<j<ni.

Case 1: Ul;l:o ﬁfao(l) N (z/—?o, Z/—I-?o) = (J. Then introducing new cuts at £~ (z £ &)

in the construction of I, ¢o,¢ does not affect the endpoints of either J' or Q,, and the lemma
holds with g1 = gg.

Case 2: JiLy f1e,(J) N (@ = #0. 2+ #0) # #. Choose

e1 <min{d(3(fL (1), 2 :0< j <ny).

It follows that for all ¢ < &1, fAZ" }20, ¢(J) = Q2. Moreover, there exist an interval J; 2 J and
a domain Q/Z,g D Qs in I, ¢ ¢ such that f;'}, (J)) = Q’2’8. Then, since F; g, ¢ is the first
return map to Y, and Y is independent of ¢, it follows that Fzrf éo, «(J) = 0». O

COROLLARY 4.13. Forall § > 0 there exists €1 € (0, 9) such that for all € € (0, 1),
ME €Y 1 F,ey(R) # Frppe(£)) <8.

Proof. Fix 8§ > 0. By Theorem 4.10, we may choose N such that Mi(R; s > N) <
Ce™*N < 8. Considering the 1-cylinders for F; ¢, there are only finitely many with
R<N.

For each 1-cylinder ¥;, Lemma 4.12 yields an €1 (i) > 0 such that for all ¢ € (0, €1(i)),
Y; is also a l-cylinder for F, ¢, q; moreover, F, . (Y;) = F; ¢ ¢(Y;) and R, ¢ (Y;) =
Rz‘so,e(Yi)

Taking &1 = min{e (i) : R; ¢, (¥;) < N} > 0 completes the proof of the corollary. O

5. A spectral gap for the induced punctured transfer operators

In this section we work with the induced maps F; ¢, and F; ., . defined on the common
domain Y = I;’ 0 (L). Since z and g¢ < 83‘ are fixed throughout this section, for brevity, we
will denote these maps simply by Fy := F ¢, . and Fy := F; ¢,. Related objects will also
be denoted by the subscript € or 0. One of the main points of this section is to show that

certain key properties are uniform for € € [0, g9), where & = 0 is understood to correspond
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to the map F; ,, whose Hofbauer extension is defined by introducing cuts only at z and
z £ gp.

For e € [0, &9), let J, = {Y;}; denote the set of 1-cylinders for F; on which R, = R; ¢ ¢
is constant. As before, denote by Q the finite partition of Y into intervals which comprise
the finite images of ), under F,. It is important that Y and Q are independent of ¢. Indeed,
the uniformity of Q and L allows us to take the constants in (4.3) and Lemma 4.6 uniformly
in ¢. This is formalized in properties (GM2) and (GM3) below.

Let ®, = Sg. ¢ be the induced version of ¢ on Y. Note that as in, for example, [DoT,
Lemma 14.9], the fact that [, (f (L)) > 0 guarantees that P(d,) = 0. Also, the conformal
measure m,, lifted to fzygo,s, and denoted by 7, ¢, depends on both ¢ and ¢. However,
Mg,e Testricted to Y is independent of ¢ since Y is independent of e. Since we will work
exclusively in Y in this section, we suppress the dependence on ¢ and refer to this measure
on Y as simply m. For each ¢ € [0, gg), it is a conformal measure for F, with respect to
the potential ®,.

The key properties of the Gibbs—Markov maps F¢, ¢ € [0, &), are as follows.

(GM1) F.(Y;) e QforeachY; € ).

(GM2) There exist o > 1 and C, € (0, 1] (an expansion constant) such that for all
neN, if ¥ is an n-cylinder for F; and x, y € ¥, then d(F!x, F'y) >
C.o"d(x, y), where d(-, -) is the distance on each interval in [ induced by the
Euclidean metric on /.

(GM3) There exists C; > 0 (a distortion constant) such that for all n € N, if Yi(") is an
n-cylinder for F; and x, y € Yi(n), then

|esn(be(x)*an)8(y) —1I< Cdd(anx, any)ﬂ’

for some 1 > 0.
Note that (GM3) follows from Lemma 4.6, and that the constants in (GM2) and (GM3)
are independent of ¢ by construction of Y. Due to (GM3), conformality and large images,

a"”)  _1+4Ca

eS1P) < (1 4y x = < m(Yl.(")) forall x € Y,-("), (5.1
m(FE(Y; ™)) q

where g :=mingeg m(Q) > 0.
Let C7(Q) denote the set of Holder continuous functions on elements of Q, equipped
with the norm

I ller = sup cho(g) + sup [Y(x) — Y (»ld(x, y>—"> = sup (|¥|cogg) + HY ().
QeQ x,y€Q QeQ

We define the transfer operator £, = Lg, acting on L' (77i.) by
Liy@)= > Y(y)e®Y foreachn > 1.
yeF: " (x)

Analogously, define Ly to be the transfer operator corresponding to the map Fo = F ¢,.
Given a hole H, = (z — &,z + ¢), £ € (0, &p), as in Remark 4.8, its lift I:IE is disjoint
from Y due to our choice of &f. We denote by H, C Y the pre-hole, the set of points in ¥
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which do not return to Y before entering I-Alg. Due to our construction, ﬁg is a (countable)
union of 1-cylinders for Fy,

H! =1{Y; € Yy : f*(¥;) C H, for some n < R, (Y;)}.

We will treat I-AIS/ as our effective hole for F;. Let )o/g =Y\ 1:16’ , and for n > 0 define
n
Y= F(Yo)
i=0

to be the set of points which do not enter I:Is’ in the first n iterates of F,. The dynamics of
the induced open system is defined by F/' = Fs"|;€n, .. Since H/ is a union of 1-cylinders

for F, the punctured map 13“5 has the same finite image property: I%S(Yi) € Q for each
Y; C Y,. The punctured transfer operator for the open system is defined for n > 1 by

Ly =Ll 00 = Y (e, (5.2)
yeF )

The punctured transfer operator is defined only for ¢ > 0. There is no analogous object for
Lo.

5.1. Spectral properties of L.. In this subsection we prove that for sufficiently small ¢,
all the operators £, have a uniform spectral gap.

PROPOSITION 5.1. There exists C > 0 such that for alln > 0,

£ ler < Co MWl +C [ Wwidin forally €C'(@). 53)

!
|E§¢|Ll(ﬁ)<ﬁ ldiiv forally e L' Gi). (5.4)
Yi-

The analogous inequalities hold for LV and Ly with Y g_l replaced by Y.

Proof. Due to definition (5.2), [, Loigw dm = f}ggn,l Y dim, so that (5.4) is immediate. We
focus on verifying (5.3) for Y € C"(Q).

First, we estimate the Holder constant of figw Let Qe Qand x, ye Q. Forn >0,
notice that each u € 12“8_” (x) has a (unique) corresponding v € Iz—” (y) lying in the same
n-cylinder Yl.(") (u) as u. Thus,

LY@ —Lym = Y. @ = ye)es®®

o
ueF; " (x)

+ Y PP — W)
velg;"(y)
14+C
< ) Hﬂ(t//)d(u,v)n%m(yi(n)(u))

o
ueF" (x)

A 14 Cy4
+ > |w<v>|m(Yf”)(v)>Tcdd<x,y)",
Ue;‘;n(}’)
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where we have used the bounded distortion property (GM3) as well as (5.1). Now using
the regularity of ¥ as well as the expanding property (GM2), for any v € F. " (y),

[ ()] — 1| din| < H"(y) diam(Y" (v))" < H'()C; oM.

o
n’)l (Yl(l’l) (U)) Y,'(”) (v)
(5.5)
Putting these estimates together, we obtain

0y () — L2y ()] < Cl0 M H P)d (e, )Y

LtEI*o’E_" (x)

1+ C
> f || din q"cdd<x,y>".

(n) (U)

T4y cpm ™ wy)

veF “(y)
Due to the fact that the hole respects the Markov structure of our inducing scheme, it
follows that U B ) Y(") () C Y "=1 allowing us to evaluate both sums. Now dividing

through by d(x, y)" and taking the appropriate suprema yields the required inequality in
(5.3) for the Holder constant of E”w with C = C. (1 + C4)?/q).

Next, we estimate |£Zt//|oo. Let Q € Qand x € Q. Now

Lymi< Y Wl W< Y

o o
ueF; " (x) ueF; " (x)

my " wy),  (5.6)

where we have used (5.1) for the second inequality. Using (5.5), we estimate

Loy ()] < S H'W)C oMY () + / W] dii

Y ()

Cyq

uelgfﬂ (x)
<Clo MH ()R + f [yl di,
s0 (5.3) holds with C =2C, (1 + C4)?/q), completing the proof of the proposition. O

Define the norm for £, : C"(Q) — L' () by

ILell = sup{lLe ¥ L1y ¥ llen < 1}
LEMMA 5.2. For any § >0, there exists €5 >0 such that for all ¢ € (0, ¢s),
Lo — Ll <6

Proof. Fix § > 0. Define G, ={Y; € ), : fz 20
Note that if ¥; € G,, then &y = &, on ¥;.

Next define B, ={y € Y : ¥; . (y) ¢ G.}, where Y; . (y) is the 1-cylinder with respect to
F, containing y. For ¢ e C(Q) and x € Y,

I(ﬁo—ﬁa)W(xN:‘ D0 v e — 3 y(y)e®

Y;) = (Yi), Vk=1,..., Re(Yp)}.

Zé‘oé‘

yeFO’lx yeF{lx
Cyq . Cq .
<Wleo Y. RO+ [Yloo Y M (Yi(y)).
yeFy 'x yeF lx
YEBe YEB;
(5.7)
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By the proof of Corollary 4.13, the total mass of 1-cylinders where Fj and F; do not agree
can be made arbitrarily small.
Let 8’ =8(q/2(1 + C4g)m(Y)). Choose g5 > 0 such that 7i1(Bg;) < 8’ by Corollary 4.13.

Then L+
L (Be) < [ ]ood /i (Y). (5.8)

(Lo — LY ()] < [¥loc2
Integrating over x € Y proves the lemma: [ [(Lo — Lo)¥| dit < |¥]006. O

COROLLARY 5.3. There exists €1 € (0, go] such that the family of operators L., € €
[0, 1), acting on C"(Q) have a uniform spectral gap. There exists 8 > 0 such that L,
admits the following spectral decomposition for all € € [0, e1). There exist G, € C"(Q), a
linear functional e; : C"(Q) — R and an operator R, : C"(Q) O such that

Le=G, Qe +R, and R.G.=0.

The spectral radius of Ry is at most e P and e, () = fY Y dm for all € C"(Q).
Moreover, Gy — G in L' () and ||Re — Rolll = 0 as ¢ — 0.

We may normalize the above so that m(G¢) = 1, so iy, = G.m is the corresponding
invariant probability measure for Fy.

Proof. The fact that all the operators L, € € [0, &), are quasi-compact on C"(Q) with
essential spectral radius bounded by o ~! follows from Proposition 5.1 and the fact that the
unit ball of C"(Q) is compactly embedded in L' (7i1). Moreover, the spectrum of £, on the
unit circle is finite-dimensional and forms a cyclic group.

Since Fy is mixing by Lemma 4.11, £ has a single simple eigenvalue at 1 and the rest
of the spectrum of L is contained in a disk of radius e=2# > o~ for some g > 0. Next,
by Lemma 5.2 and [KL1, Corollary 1], the spectrum of £, outside the disk of radius o~
can be made arbitrarily close to that of £y by choosing ¢ sufficiently small. Thus we may
choose g1 € (0, &g] such that the spectrum of L, outside the disk of radius e~ P consists
only of a simple eigenvalue at 1, for all € € (0, €1). The closeness of G and R to G and
Ro follows similarly from [KL1, Corollary 1]. Finally, the fact that e, () = m () for all
¥ € C"(Q) follows from the conformality of . O

5.2. Spectral properties of the punctured operators Ecg. Due to the uniform Lasota—

Yorke inequalities provided by Proposition 5.1, it only remains to show that £, and L, are
close in the ||| - [||-norm.

LEMMA 5.4. Forany ¢ € (0, o), ||£e — Lelll < m(H)).

Proof. The proof is immediate using the definition of L, and the conformality of 7,
f(ﬁs — Loy din = / Le(ly ) dift = / Y it < ¥ |oorit(HY), (5.9)
& Hé

since H = Y \ Y. O
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COROLLARY 5.5. There exists ey < &1 such that for all ¢ € (0, &3), the operators L.
have a uniform spectral gap: there exist Ay € (e P/3, 1), G, €C"(Q), a Sfunctional
ée :C"(Q) — R, and an operator R : C"(Q) O such that

Le=AG,®é +Re and R.G,=0. (5.10)

The spectral radius 0f7°€8 is at most e~ *P13 < A,.
Moreover, Ag — 1, Go,s — Go in L' (m) and |||7°€8 —Roll > 0ase— 0.

Proof. Lemmas 5.2 and 5.4 together with the triangle inequality show that L, and Lo are
close in the ||| - [||-norm. The uniform Lasota—Yorke inequalities given by Proposition 5.1
together with [KL1, Corollary 1] imply that the spectrum (and corresponding spectral
projectors) of L, outside the disk of radius e~# are close to those of £o. Without requiring
a rate of approach, we may choose &3 > 0 with the stated properties. O

We may normalize G, and &, so that m(G,) =1 and é.(G;) =1, so that Eegég =
A:G,.

6. Young towers and proof of Theorem 3.1
The Markov structure of the return map F, = F, . . to Y immediately implies the
existence of another, related extension, called a Young tower. These have been well studied
in the context of open systems, so we will recall their structure in order to apply some
results in our setting.

Asin §5, let R, = R ¢ . Define the Young tower over Y with return time R by

A={(y,0)eY xN:<R.(y)).

We view A as a tower with Ay = {(y, n) € Y x N:n = £} as the £th level. The dynamics
on the tower is defined by fao(y, ) =(y, £+ 1) when £+ 1 < R.(y), and fa(y, {) =
(F:(y), 0) otherwise. Thus Ag corresponds to ¥ and F; = f f ¢ can be viewed as the first
return map to Ag. With this definition, there is a natural projection A : A — I satisfying
A O fA= fs o 7a. Then also defining mpo =7 o Tp : A — I, we have

JTAOfAZfOTL’A.

Clearly, A = A(z, €9, ¢) depends on z, g9 and ¢ through the construction of IAZ‘SO, o
Y = fz/ 0, <(L) and F,. However, since we fix these three parameters in this section, we
will drop explicit mention of this dependence in the notation we use for objects associated
with A.

The map fa inherits a Markov structure as follows. On Ag, we use the elements of
the finite partition Q as our partition elements, labelling them by Ag;. On Ay, £ > 1,
we define Ay ; = fﬁ (Y;), Y; € Ve. The collection {Ag ;}¢,i>0 forms a countable Markov
partition for fa. Since, at return times to Ag, fa maps the image of each 1-cylinder Y;
to an element of the finite partition Q of ¥ = Ag, we will view (fa, A) as a Young tower
with finitely many bases. The partition {A,;} is generating since {Y;}; is a generating
partition for F,. Moreover, the first return time R, to A under fa is the same as the first
return to Y under fg.
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We make A into a metric space by defining a symbolic metric based on the Markov
partition. Let R} (x) denote the nth return time of x to Ag. Define the separation time on
Ag by

s(x,y) =minfn >0: £ (x) and £ (y) lie in different elements of V).

We extend the separation time to all of A by setting s(x, y) = s(f;ex, f;ﬁy) forx,y e
Ay. It follows that s (x, y) is finite almost everywhere since {A; ;} is a generating partition.
For 6 > 0, define a metric on A by dj(x, y) = e ?*¥) We will choose 6 according to
property (P3) in §6.1.

Given our (normalized) potential ¢ on I, and @-conformal measure 7 =1y, We
define a reference measure ma on A by setting ma =m on Ag, and mala, 1=
(fa)e(maly, npetn)-

Similarly, we lift the potential ¢ to a potential ¢o on A as follows. For x € Ay, let
X" =fu £(x) denote the pullback of x to Ag. Then

pa(x):=Sg.¢(x7) forxe fA_l(Ao), and Ao =0 onA\ fA_l(Ao).
With this definition, m o is a ¢ -conformal measure.
We may also define a related invariant measure on A. Let G, € C"(Q) be the invariant
density from Corollary 5.3. Define

ga=G, onAg and ga(x)=G.(x7) forxe A, 221, 6.1)

where x~ is defined as above.

It follows that the measure dua = gadma/ f A &admp is an invariant probability
measure for fo. Moreover, we have (7a)«fta = fls. And since myfls = 1y, We have
also that (;ma)«pa = iy Note that here /i, is defined on IAZ,SO,E and depends on &, while
e does not.

We lift the hole H = H(z, €) to A by setting Hp := nng =7%XII:I. Due to the
construction of fz,so,g, Ha comprises a countable collection of elements of the Markov
partition Ay ;, which we shall denote by Hy ;. Set A=A \ Ha, and define the open
system fa = fal,.

LEMMA 6.1. Define A" = ('_y fx' (A). Then

log A, := lim sup l log M(p(f”) = lim sup 1 log ua (A™) = lim sup l log ma(A™).
n—oo N n—oo N n—oo N

Proof. The first equality follows immediately from the fact that (ra)«pta = ptp and wa o

fa = f oma, so that MA(A(")) = /Lw(i") for each n. The second equality follows from

the fact that up = gama, and ga is bounded (uniformly in €) away from 0 and co on A

by (6.1) and Lemma 7.1 below. O

Our next lemma says that the open system fA is mixing} on partition elements under
our assumptions on f* and our construction of f ¢ ..

Let ef =min{e1(Q1, Q2) : Q1, Q2 € Q} > 0, where £1(Q1, Q2) is from Lemma 4.12.
F Mixing for an open system is not generally defined, and topologically transitivity does not hold unless we
restrict to the survivor set A(%) = ﬂ?,o:o A®M Tn the open systems context, a mixing property can be formulated

in terms of transitions between elements of the Markov partition {A, ;}, after removing those elements which lie
above components of Ha in A.
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LEMMA 6.2. For all ¢ € (0, 8]"), the open system (fA, A) is transitive and aperiodic on
elements of {Ag, ;) that do not lie above a component of Hn.

Proof. Transitivity of fa on elements of the Markov partition is guaranteed by the
transitivity of F; ¢, ., proved in Lemma 4.11. That this property carries over to the open
map fa follows from Lemma 4.12. Considering case 2 in the proof of that lemma, we see
that for ¢ € (0, €1), the orbit of the desired interval J connecting Q1 to Q3 is disjoint from
H,. Thus the connection holds for the open system ( fa, A).

Next, we show that foA is aperiodic. Due to the structure of the tower map, it suffices
to show that there exists ng € N such that for all n > n, f A(Ap) D Ap. Since returns to
Ao must be to one of the finitely many elements of the partition Q, this property is in turn
implied by the following claim: for all Q € Q, there exists np € N such that fOZQ Q>0
and fOZQH (Q) D Q. We proceed to prove the claim, which is a refinement of the proof of
Lemma4.11.

Let Q € Q. Since f is leo, there exists n € N such that f" (7 (Q)) D I for all n > n.
Thus, as in the proof of Lemma 4.11, my,(mwa(fx(Q) N Ag)) > 1 — «, by choice of L.
Applying this to n =n and n = n + 1, and recalling that we identify ¥ = I;’ g With Ao,
we obtain

My(Ta(Ag N FR(0) Nra(Ao N fATHQ))) =126 > 0.

Thus there must exist intervals O C Ag N fg(Q) and O, C ApN ZH(Q) such that
7(01) N7(07) # §. By Lemma 4.2, there exists n; € N such that /"' (01) N ' (02) #
¢, and we can choose this time 7 so that this intersection occurs in ¥ = Ag. This implies
that also fx'(01) N fx'(02) # 0.

Now using the transitivity of Fg, as well as its Markov property, there exists k € N such
that ng( fZ' (0N fZ' (02)) D Q. Let ri denote the number of iterates of fa contained
in F¥ on this set. This implies that both fZ‘+"1+ﬁ(Q) D Q, and f£k+"‘+ﬁ+l(Q) D 0.

As a final step, we invoke Lemma 4.12 as earlier. We have constructed two times k1
and k, for which Fglc'/(Q) D Q, j=1,2. By case 2 of the proof of Lemma 4.12, for
e <¢e1(Q, Q), these connections still occur in the open system. Thus we conclude that
both fEF"H(0) 5 @, and fET" () 5 Q, as required. 0

6.1. Transfer operator on A and a spectral gap. In order to study the dynamics on the
open tower, we define the transfer operator associated with the potential g,

Lay= ) v(yer?,

yefy'x

and its usual punctured counterpart for the open system, L AV =LA - 150)). We also
define the corresponding punctured potential on the tower by (pfs = ¢a on A and (pgg =
—oo on Ha.

We will prove that for sufficiently small holes H,, the transfer operator Lahasa spectral
gap on a certain Banach space B3, using the abstract result [DT2, Theorem 4.12]. Note
that this result is not perturbative, but rather relies on checking four explicit conditions
(P1)-(P4) from [DT2, §4.2]. They are as follows.
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(P1) Exponential tails. This follows from Theorem 4.10, since by definition of ma,
ma(Ap) =ma(Ag N{Re > n}) =my(Y N{R: >n}) < Ce™ ™",
where C and « are uniform for ¢ < gg.

(P2) Slow escape: —log A, < . This can be guaranteed by noting that A, > A, where
Ay <1 is from Corollary 5.5. This inequality is due to the fact that the escape from
the induced system cannot be slower than the escape from the uninduced system. The
requirement on the upper escape rate in [DT2] is defined in terms of ma, which in our
case is equal to log A, by Lemma 6.1. Again using Corollary 5.5, there exists * > 0 such
that A, > e~ ® for all ¢ € (0, £*). This guarantees (P2).

(P3) Bounded distortion and Lipschitz property for e¢®2. The potential ¢ =0 on
AN fo '(Ag) so we need only verify this property at return times. This follows from
Lemma 4.6 and the following estimate linking the Euclidean metric on I with the
separation time metric on A. If s(x, y) =n, then F!(a(x)) and F!(a(y)) lie in the
same element of ), foreachi < n, and F/' (7 (x)) and F}' (7 a(y)) lie in the same element
of Q. Then, since DF}' > C.0" > 1,

|Za(x) = 7AW" FA) = FaWI? _ Clo™™

by e mGy S g 6.2)

Choosing 6 < nlog o guarantees that a n-Holder continuous function on / (and IAZ,SM)
lifts to a Lipschitz function on A. Then Lemma 4.6(a) implies the required bounded
distortion for @A .

(P4) Subexponential growth of potential. For each § > 0, there exists C > 0 such that
ISR, 0a ()| < Ce®Re) forall x € A.
This is immediate for Holder continuous potentials since ¢ is bounded so
ISR, oA ()| < Re(X)|ploo  forall x € Ag.

For geometric potentials, ¢ = —¢ log |Df| — p;, (P4) is guaranteed by the uniform
expansion of F; at return times, noting that

SR,9A(x) = SR, @(7TA(x)) = —t log [DFe (7 (x))| — Re(x) .
By (GM2), C,o < |DF,| < (sup |Df|)®e, and since sup | Df| < oo, we have
ISR, oA (X)| < Re(x)| pr| + ¢ max{| log(Ceo)|, Re(x) log [Df |}, forall x € Ao.

With (P1)-(P4) verified, we are in a position to study the action of LA onan appropriate
function space. Using (P2), choose f such that —log A, < 8 < a. Define a weighted L™
norm on A by

¥ lloo = sup e PE sup{|y(x)] : x € Ay},
Y4
as well as the weighted Lipschitz norm,

¥ |Lip = sup e PE supfe™ Dy (x) — ()| 1 x, y € Ag).
L
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Then define B={y € L' (ma) : |¥|lg < oo}, where |V ]| = |V loo + [ |Lip. We define
Bp C B to be the set of bounded functions on A whose Lipschitz constant is also bounded,
that is, By uses the same definition as B, but with 8 = 0. Recall sj‘ > 0 from Lemma 6.2
and ¢* > 0 from the verification of (P2).

THEOREM 6.3. [DT2, Theorem 4.12] Since the open system (fa, A; Hp) is mixing on

partition elements and satisfies properties (P1)—(P4), we conclude that LA hasa spectral

gap on B for all ¢ < min{e*, e7}. Let A; denote the largest eigenvalue of LA and let $5

denote the corresponding normalized eigenfunction.

(a) The escape rate with respect to m a exists and equals —10g A.

(b) log ke = sup{hy (fa) + [ oRed® 19 € My, 0(—@k) < 00}, where My, is the
set of fa-invariant probability measures on A.

(c) The following limit defines a probability measure v, supported on ﬂflio A

va(p) = lim A" Y gandmpa  forall W € By.
n—oo & &(n)

Moreover, the measure v is the unique measure in M g, that attains the supremum
in (b), that is, it is the unique equilibrium state for (pgg.
(d) There exist constants D > 0 and o¢ < 1 such that for all € B,

IA;" LR — d(Y)galls < DIV lgol,

where d (V) = nlingo rg" /:( ) Y dma < 00.
e A"

Also, for any W € B withd(¥) > 0,
Loy

—_ < Dy lBag-
LAV L) °

—8&n

Li(ma)

6.2. Proof of Theorem 3.1. In this subsection we will prove the items of Theorem 3.1
using Theorem 6.3. The following lemma will allow us to lift Holder continuous functions
on I to Lipschitz functions on A.

LEMMA 6.4. Suppose 6/logo < ¢ < 1, where o > 1 is from (GM2). Let € CS(I) and

define yr on A by ¥ = o wa. Then |¥|oo < |¥ oo and Lip(¥) < Cl¥|cs 1y for some
constant C depending on the minimum length of elements of Q.

Proof. The bound |1ﬁ|oo < |¥|eo is immediate. To prove the bound on the Lipschitz
constant of 1/7, suppose x, y € Ay ; and estimate

W@ =) _ [W@at) =y @aO)l  |mal) —ma®

dy(x, y) ENOEEINOIE la(fRex) = maCffey)s

Re Re
RN RNV
e—05(x.y) '

The first ratio above is bounded by ||c< (7). The second ratio is bounded due to bounded
distortion and the backward contraction condition (PolShr)g at return times to Y. For the
third ratio, we use (6.2), recalling that the separation time only counts returns to Ao, and
that 0 < ¢ logo. O

Downloaded from https://www.cambridge.org/core. 02 Sep 2021 at 16:24:09, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

Asymptotic escape rates and limiting distributions for multimodal maps 1685

In order to project densities from A to I, for i € L'(mp) and x € I, define

Y (y)

Pavx)= ) ENOL

YET, X

(6.3)

where Jra is the Jacobian of A with respect to the measures m, and m . Note that for
y € Ay, withy = fﬁ (z) for z € Ay, the conformality of m,, implies

1 _ dma(y) . dma(y) _ dm(p(”AZ) _ Ste(maz)

= = = = (6.4)
Jaa(y)  dmy(may)  dmy(na(fiz))  dme(fi(waz))

Then the proof of Lemma 6.4 implies that 1/J/m is Lipschitz continuous on each Ay ;
with Lipschitz constant depending only on the level €.

It follows from the definition of ma that Pay € L! (my) and f, Pay dmy =
JA ¥ dma. Moreover,

£y, (Pay) =Pa(LAy) foreachn e N. (6.5)
The final step in translating Theorem 6.3 to Theorem 3.1 is the following lemma.
LEMMA 6.5. CS(I) C PaBy forall ¢ > 6/logo.

Proof. Let Q € Q and note that by the leo property there exists N € N such that
V(@@ (Q)) =1. This implies that 7 (I, ¢, (N)) = I, where I ¢ ¢(N) denotes the first
N levels of fz,go,g as in §4.4. This in turn implies that JTA(UegN Ay¢) =1 (mod 0 with
respect to my,).

Next, we select a collection X of Ay ;, £ < N, such that JTA(UAL,-EIC Ay i)=1 and
TA(Agi) Na(Ag ;) =¥ except for at most finitely many pairs Ag;, Ay ; € K. Such a
collection exists since £ has at most finitely many intervals of monotonicity, so that when
the images of two branches overlap, we may eliminate all the A, ; in one branch from our
set IC. The only time when we may be forced to retain two overlapping A, ; occurs at the
end of one of the branches of monotonicity. In this way, we are guaranteed the existence
of a set KC with the property that only finitely many elements have projections that overlap.

With the set K established, the rest of the proof follows along the lines of [BDM,
Proposition 4.2]. Essentially, it amounts to inverting the projection operator Px defined in
(6.3).

Let ¥ € CS(I) be given. Define & =0on A\ UA“eIC Ag ;. Next, if Ag; € K and
A (Ag,;) does not overlap the projection of any other Ay ; € K, then for x € Ay ; we may
define &(x) =y (max)Jma(x). It follows that PMZ(x) =Y (wx) for x € Ag;, and by
(6.4) and Lemma 6.4, v/ is Lipschitz with norm depending on the level .

Finally, for elements of KC whose projections overlap, we proceed as follows. Suppose
TA(Agi) Na(Ap ;) #0. Let A =ma(Agi) Uma (A, ;) and choose a partition of unity
{p1, p2} for the interval A such that py, p2 € C<(A), and p1 =1 onmwa(Ag ;) \ Ta(Ap ),
while py =1 onma(Ay ;) \ Ta(Ag;).

Define 1} forx € Ay i by

U (x) = Y (max) I (x)p1 (),
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and similarly define ¥ on Ag j using pp. It is clear that Par(y) =¥ (y) for y € A.
This construction using partitions of unity p; can be modified to account for finitely may
overlaps in w(Ay,;), Ag,; € K, while keeping a uniform bound on the C*-norm of p;.

In this way, we define 1} on Ay; for all Ay; € K. Since JTA(UAMEK Agi)=1, we
have Pa¥ = v (mod 0). And since K contains only elements on level at most N, by (6.4)
and Lemma 6.4, 1/~/ € By. O

We proceed to prove the items of Theorem 3.1.

Recall that n € (0, 1] is the relevant Holder exponent for ¢. For geometric potentials,
we take n = 1 due to Lemma 4.6(b). Fix ¢ € (0, n]. Then we may choose 0 < ¢ log o,
so that Lemma 6.5 holds. Then also 6 < nlog o as required by (P3). Choosing § such
that —log A < B < « then fixes the appropriate Banach space B for Theorem 6.3. In what
follows, we assume & < min{g*, Sik}.

(a) The existence of the escape rate —log A, follows from Theorem 6.3(a) and Lemma 6.1.
Define

8e =Paga.
By (6.5), we have g, € L! (my) and, for each n,
L0y & = Pa(Lhgn) = Pa(hign) = 1,

so that g.dm, defines a conditionally invariant probability measure on I with
eigenvalue A;.

(b) We define the required conformal measure m g, , using the by now standard procedure,
mp, () == nll)rgo A" /in Y dm, fory e CS(I). (6.6)
Using Lemma 6.5, we find IZ € By such that ?A& = . Then, by (6.5),
~Ydmy =/£°;H€1ﬁdm(p =/ E”AIZ dma = | U dma,
in 1 A A

so that the limit in (6.6) exists by Theorem 6.3(d), using the spectral gap enjoyed by L.
Indeed, d (1}) =mp, (). The fact that mpy, defined in this way is ¢-conformal follows
from the same calculation as in the proof of [DT2, Theorem 1.7]. The fact that mpy, is
supported on [ follows from its definition in (6.6).

(c) Defining vy, 1= g.mp,, we see that
vy, (Y) = lim ke_”ﬁ gew dmy foryr € C*(1), (6.7)
n—00 in

since Pa(ga) = gV, and ga¥ € B by Lemma 6.5. This extends to ¥ € C(I) by
approximation: for each € > 0, we may choose 5 € CS(I) such that |y — Vslcoy S €
and |¥5|csr) <67°. (This can be accomplished, for example, through convolution of
Y with a C* mollifier.) Then vy, (Y5 — ¥s) < 2¢ for each 8’ < 8, so that (va, (¥s))s=0
forms a Cauchy family as § — 0. Moreover,

lim 2. / ge¥ dmy = lim K;"ﬁ &e(f — ¥s) dmy + vy, (Ys) = vi, (¥s) + O(e),
in n—o0 in

n—oo
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since A" fi" ge dmy =1 for each n € N. Since € > 0 was arbitrary, vy, () exists and is
given by the limit in (6.7).

Next, again using the commutativity given by (6.5), we see that vy, = (A ).V, Where
v is from Theorem 6.3(c). It follows that

log)»a=huA(fA)+/</)A dvA=th£(f)+/€0dVH5, (6.8)

since wa : A — [ is at most countable-to-one, so that vy, achieves the supremum in the
variational principle among all invariant probability measures on [°° that lift to an invariant
probability measure on A, and vy, is unique in this class.

In order to conclude that in fact vy, achieves the supremum over all invariant probability
measures v with v(—¢) < oo, that is, that are supported on [, we note the following
inequality, taking our notation from Theorem 4.10:

P(¢)—/¢dV=/(P(¢)—¢)dV>5t=ot+E>a, (6.9)

for any such measure v, which follows from the proof of Theorem 4.10 for all classes of
our admissible potentials. Note also that [ ¢ dv = [ ¢ dv whenever v(—¢ ") < co.

By choice of L in §4.5, any ergodic invariant measure v with entropy h,(f) >
(log Ag= + «)/2 lifts to our inducing scheme. For an f-invariant measure v with
v(—¢H£) < 00, define the pressure of v to be P,,(qué‘) =hy,(f) —i—fd)dv. Now if
P,(¢) > P, (¢™), then

hv(f)+/¢dv_P(¢)>th€(f)+/¢dVH5 — P(¢) =log A

by (6.8), so that h,(f) >logAs + a > log Agx + o, using (6.9), and so v lifts to our
inducing scheme by our choice of L. Thus P, (pFe) < Py, (¢He), and vy, achieves the

supremum among all invariant measures v satisfying v(—¢*) < 0o (so in fact v = vp,).
Thus, vy, is the unique equilibrium state for ¢, proving item (c) of the theorem.

(d) The characterization of the limit proving item (d) now follows from Theorem 6.3(d),
again using Lemma 6.5 to lift any ¢ € C¢ (I) to a function ¥ € By, and then evolving
that function according to (6.5). The convergence extends to any ¥ € CS (1) since in one
iterate, ﬁowygw is supported on [ so the values of Y on Ho =1\ [ are irrelevant to the
value of the limit.

To justify Remark 3.2, note that the convergence in (d) holds for any ¥ € PaBy
with vy, (¥) > 0, due to (6.5). In particular, since the invariant density g, = du,/dm,
satisfies g, = Paga for some ga € By, for any ¢y € C5(/) we may define v=1yo
A, and then conclude that IngA € By by Lemma 6.4. Thus g, € PaBp, and so
L2 (o) /|0 (W8)| 11,y cONVerges 1o ge as n — oo.

7. Zero-hole limit

In this section we will focus on the limit limg_o —log A¢/uy(H;), the content of
Theorems 3.5 and 3.7. We assume throughout that ¢ € (0, &3), so that the conclusions
of Corollary 5.5 hold. Indeed, we will use the spectral gap for L, to construct a canonical

o

invariant measure b, for F,, supported on the survivor set, Y° = ﬂzozo F7'(Y).
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For ¢ € C"(Q), define

De(¥) := lim A;"/ v G, din. (7.1)
n—oo Y"vgn—l
The limit exists since
A" ¥ G, din =/ AMLE W Go) din —— é.(¥ o).
?5171 Y n—oo

where é. is from Corollary 5.5. Since |De ()| < De(1)|¥|00, Ve extends to a bounded
linear functional on C°(Q), that is, D, is a Borel measure. Moreover, 7, (1) = 1, so 7, is a
probability measure, clearly supported on 10/800.

Let CiJE denote the punctured version of the induced potential ®, that is, CTDg = ®, on
Y\ I-Alg/, and &, = —o0o on I-Alg/ Recall P(®,) =0 by Remark 4.7. According to [DT2,
§6.4.1], V. is an equilibrium state for the potential CiDS — log Ag; on the other hand, by
[BDM, Lemma 5.3], 7 is a Gibbs measure for the potential o ¢ — R log A, with pressure
P,;E(&)g — R log A;) = 0. We conclude

log A, = (/ R df)g) log Ag. (7.2)

Recalling that iy, = G.m is the invariant probability measure for F; g ., supported
on Y, Kac’s lemma in (4.4) implies [, (H)) = [iy,«(H])/ [ Re dfiy,. So putting these
together yields

log A _ log A ) ﬂe(ﬁg/) _ log A .fRs d/lY,s ) /:LE(I:IS/)

——— = ——— ——— = — = - ——. (7.3)
e (He) Ms(Hé) e (Hy) :U“Y,S(Hg/) f Re dve e (He)
Therefore to prove Theorems 3.5 and 3.7 we must show that as ¢ — 0,
log A R. dji Qe (H/
Jdoefe Ly [Redive g B see g4
fiy,e(H) J Re dd, fie(H,)

(we take e~Sr?®@) = ( when z is aperiodic). These are Theorem 7.2, Proposition 7.3 and
then Lemmas 7.5 and 7.6 in the Holder case and Lemmas 7.10 and 7.11 in the geometric
case.

7.1. An asymptotic for A,. In this subsection we obtain a precise asymptotic for A, in
terms of the quantity fiy, 8(1-7[8’), proving the first limit in (7.4).

We remark that we are not able to apply the results of [KL2] in our setting since it does
not fit into the assumptions of that paper. In [KL2], it is assumed that there is a sequence
of operators P,, with a decomposition similar to that given by Corollary 5.5 and having
largest eigenvalue p,. These operators approach a fixed operator Py with eigenvalue 1, and
the derivative of log p; is expressed in terms of the size of the perturbation Py — P;.

In our setting, the only candidate for Py is our transfer operator Lo = £, ¢, the transfer
operator corresponding to F; ., which does not depend on . However, the relation
between 6 and ¢ given by Lemma 5.2 is not explicit, so that a good asymptotic expression
for A, is not available starting from Ly (indeed, the relation between ¢ and § depends
in part on the rate of approach of the orbit of z to itself, which is not guaranteed to be
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proportional to the measure of I-Als’). Instead, as suggested by Lemma 5.4, the difference
between L, and £, has the correct order for the asymptotic we want. In order to exploit
this, we consider then two sequences of operators, (L¢).~0 and (Eog)€>o, and use their
uniform spectral properties to prove the required asymptotic for the maximal eigenvalues
A, of the latter sequence in terms of the maximal eigenfunctions of the former sequence.

We begin by establishing the following improved regularity for the functions G,
and G,.

LEMMA 7.1. Forall ¢ € (0, &3), where g2 > 0 is from Corollary 5.5,
H"(log G,) < Cy; and H"(log G) < Cy. (7.5)
As a consequence, there exists co > 0 such that for all ¢ € (0, &3),
co <inf Ge < [Gellen <cp ' (7.6)
and similar bounds hold for G,.

Proof. Suppose ¥ € C" satisfies H" (log ¥) < K. Then v (x) /v (y) < eXK4)" for any
x, y belonging to the same element of Q.

We follow the notation in the proof of Proposition 5.1. Letx, y € Q € Q. Forn > 0 and
uek s t(x), let Y, i(n) (u) denote the n-cylinder containing u. For each u, there is a unique
ve () ny™ ).

Using the log-Holder regularity of i as well as the bounded distortion property (GM3),
we estimate

Liy@= > y@es™@ < Y gk S P01 4 Cudx, y))

ueF;7"(x) ueF7 (x)
< Ly ()X (| 4 Cd (x, y)T).

where, for the last inequality, we have used property (GM2). Now taking logs, and using
the inequality log(1 + 7) < ¢ for all # > 0, we have

H"(log £y) < KC; "o " H"(log ¥) + C4, foralln > 1. (7.7)

This implies that for n large enough, cg preserves the set of functions {{» € C"(Q) :
H"(log ¥) <1+ Cg4}. Thus C°}€ must belong to this set. Since /:’5(035 = A (o;s, substituting
(0;5 into (7.7) and taking n — oo implies that H"(log (o?e) < Cy, proving (7.5).

By a nearly identical argument, (7.7) applies to L, as well, and so its fixed point G,
satisfies (7.5).

Finally, we show how (7.5) implies (7.6). The uniform upper bounds on IGoglcn
and |G¢|cn follow immediately from Proposition 5.1; we can set cl_1 = C from that
proposition, so we focus on the lower bounds.

Since f (Q;s dm =1, there exists Qg € Q such that SUPyeg, Gos(x) > 1. By (7.5),
infyeg, ég(x) > ¢~C4. Now by the mixing property of F, together with Lemma 4.12,
there exists ng € N, independent of ¢ € (0, €1), such that fsno(Qo) D Y. Thus, for any
y € Y, there exists n(y) < ng such that R")(y) = ng. Then

Ge(n) = A"V LIV Ge(y) = A" e inf &S0 —. oo
xeQonfs "0 (¥)
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Let ¢ := min{cy, c3}. Note that, by our assumptions on f, we have

inf 5109 5
xeQonfe "O(¥)
even when ¢ is of the form —zlog|Df|— P(—tlog|Df|) because the orbit
x, f(x), ..., f 1 (x) avoids a neighbourhood of Crit for any x € Q¢ N fe_""(Y) since
no is a return time to Y on this set. Thus ¢y is strictly positive and is also independent
of ¢ by Lemma 4.12. This proves (7.6) for G, and an identical argument can be used

for G.. O
THEOREM 7.2.
1—Ag
lim ——— =1.
e—>0 lLY S(H )
Proof. We assume ¢ € (0, ¢7) since we are interested in the limit ¢ — 0. Iterating (5.10)

forn>1,

L1Ge = AN"6.(Ge) Ge + RIGe = G, = (A;"LGe — AJ"RIGY).

é:(Ge)
Using this identity and (5.9), we estimate

l—Aszfégdﬁl—/fségdn%:/(ﬁg—fis)(o;gdn%zfA G, dim

1 e R
eg(G ) (A ”E”G‘9 — A"REG,) dm
1 . .
= - / G.dm — (1 —=A"LHG, dim — / A"REG: dm ).
¢:(Ge) H! H! 7!
(7.8)
Using Corollary 5.5, we estimate the third term on the right-hand side of (7.8) by
1AL REGellen < e P"PAT"Gellen < e Gellen.
Due to (7.6), [|Gellen < ¢ Vand G, > co uniformly in &. Thus
f~ A"RIG, dint| = / Ge diit - O(e™P1/3). (7.9)
Hy H

Next, the second term on the right-hand side of (7.8) can be rewritten as
(L= A"LGe din = (1 — AJ™) / Gedin+ A" | (L8 — LG, din,
H; H; H;

recalling that Lo is the transfer operator corresponding to F; ., which also has m as a
conformal measure. Now the maps F; ¢, and F 2.¢0.¢ differ on the 1 cylinders contained in
B, U H/, where B is defined in the proof of Lemma 5.2. Thus F, F7?,, and an e,¢ differ on

the n-cylinders contained in B, := (J'—y F. i (B: U H)) U(U;Zy Fii o(Be U HY)).
Now following (5.7) and (5.8), we have

o 14+ Cy
[(Ly — L£)Geloo <

21(By ,)|Geloc-
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Then the second term on the right-hand side of (7.8) can be bounded by

(1= A"LMGe din
H;

=/A Gediit - O((1 — A;™) + A" (BL,)),  (1.10)
A;

using (7.6) again to estimate [, |Ge|oo diit < c(;z [z Ge din.
Putting (7.9) and (7.10) together with (7.8) and dividing through by f i Ge dm =
,&y’S(I-AIS’) yields,
1-A, 1
ye(H])  é(Ge)

(1+0((1 = A" + A;"m(BL,) + e P1/3)).

The quantity é.(G,) can be made arbitrarily close to eg(G.) = 1 by Corollary 5.5.

Now fix 8 > 0 and first choose n sufficiently large that e #"/3 < 5. Next choose &
sufficiently small so that |é,(G¢) — 1] <6, |1 — A;"| < é and A" < 2 by Corollary 5.5,
and n%(B,’L ¢) < & by Corollary 4.13. Then the error term is O(§), and, since § was arbitrary,
the theorem follows. O

7.2. Convergence of the integral of the return time. In this subsection we prove the
convergence of the second limit in (7.4), regarding the integral of the return time. As
before, we assume ¢ € (0, &2), so that the conclusions of Corollary 5.5 hold.

Recall the invariant measure v, from (7.1) supported on Y °°, and that iy, = G¢m is
the invariant measure for F, given by Corollary 5.3. The main result of this subsection is
the following proposition.

PROPOSITION 7.3. Let R = R; ¢ .. Then

. f R, dﬁ«Y,a
lim ——

=1.
e—0 f R; d{}g

Proof. First we show that for ¢ € C7(Q), |V:(¥) — iy, 0(¢¥)| — 0 as ¢ — 0. Let I1, be
the projector defined by Ge ® é,, that is,

[ (¥) = é:(¥) G forall € C"(Q),

and similarly for I1p. Recall that we have normalized the eigenvectors so that rﬁ(ég) =
m(Go) = 1.
Notice that, since L{m = 1, eo(y) is simply i (y). Thus iy o(¥) = eo(¥ Go). Now

1De(¥) — fiy.o(W)] < 18:(Y Ge) — eo( Ge)| + leo(¥ Ge) — eo(¥rgo)|
< ’/ (Y Ge) — oY G.) diin +’/ V(G — Go) din
Y Y

< IMTe = Tolll 1Y Gellen@) + 1¥loolGe — Gol 1 iy

and both terms go to zero as ¢ — 0 by Corollary 5.5 (which in turn uses [KL1]).

It also follows from Corollary 5.3 that iy .(¥) — iy o(¥) as € = 0. Thus, by the
triangle inequality, |Ds (V) — Ay, (¥)| — 0 as ¢ — 0, for all ¥ € C"(Q).
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This does not immediately imply the proposition since R, ¢ C"(Q). However, we claim
that L. (R,) € C"(Q). First, L, (R;) is bounded for all x € Y by

LRm= Y R@e®@ <P SN ppmian, @1

ueF N (x) ueF 1 (x)
by (5.1), where Y;(u) is the 1-cylinder containing u. The last sum is simply bounded
by m(R;) = m¢(lg), since F is a first return map to Y in the Hofbauer extension. This

is uniformly bounded in & by Theorem 4.10. Next, since R, is constant on 1-cylinders
Y; € Ve, using (GM3), the Holder constant of L. (R;) is bounded by

LeRe(x) — LoRe(y) = Z R (1) (eP2) — @)y
uek ' (x)
< Cyd(x, y)" Z Re ()@@
uekF: ! (x)

forallx, y € Q € Q, where each v € Ij“s_l(y) is paired with u € Ij“g_l(x) lying in the same
1-cylinder. The sum is again uniformly bounded in € as in (7.11), proving the claim.
It follows that £, (R.G,) € C"(Q) and, by Lemma 7.1, also L¢(R.G¢)/Gs € C"(Q).

Now by (7.1),

. Lo(R:Ge) - Le(R:G
lim A;"/ Re G: dit = lim A;"/ MGSM 95( (R 8)>.
n—o0 an n—o0 f,snfl G‘€ n—oo Ang

Thus, D¢ (R,) exists and is defined by (7.1).

For N € N, define the truncation RéN) =min{R,, N}. For Ry = R;¢,, define R(()N)
similarly. By the above arguments, it follows that fg(RéN) G,) € C"(Q) and that f)g(RéN))
exists and is defined by (7.1). Similarly, for the complementary function, £°8(1 Re>N
R:) € C"(Q), and D¢ (1g,~n - Re) exists and is defined by (7.1).

Next, we claim that R, is uniformly integrable with respect to D,; in particular,
De(1g, >N - Rg) = 0 as N — oo uniformly in €. To see this, note that, by (7.1),

ey R = fim A7 [ £k R Go) di
Y

n—o00

< lim ‘Ag_n;ég_l(ég(le>N “Re Gy))

o0

< C|£os(1Rg>N ' Re ée)|t>o,

where we have used (5.6) for the last inequality, together with the fact that A;"ﬁz(?g"—l)
is bounded uniformly in € and n by Corollary 5.3. Then, estimating as in (7.11),

1Le(ron - Re G)@)<C Y Rewyi(Yiw) <C Y k(R =k) < C'e™V,
MGIZ_I (x) k>N
R:(u)>N
by Theorem 4.10, and the claim is proved.
It follows from the proof of Corollary 4.13 that for each N > 0 there exists ey > 0 such
that, for ¢ < ey, all 1-cylinders Y; for F; with R;(Y;) < N are also 1-cylinders for Fjy with
the same return time. This implies that R§N) = R(()N) fore < gy.
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Let § > 0 be arbitrary. Choose N such that D,(R, > N) < 3§, iy (R, > N) <§ and
y.0(Ro > N) < 8, forall ¢ < &1, which is possible by the claim and Theorem 4.10. Then,
for ¢ < ey, we have

De(Re) = De(RYV) + O(5) —2 fiyo(RM) + O©) = fiy.o(Ro) + OG).
Similarly,
fiy,e(Re) = [y« (R)) + O() — v o(RM) + O©) = fiy.o(Ro) + OO).

Since § was arbitrary, this proves the proposition. O

7.3. Final step of the proof of Theorem 3.5: the Holder continuous case. In the next
two subsections we prove the third limit in (7.4) in both the periodic and non-periodic
cases. In the present subsection we address the case where ¢ is Holder continuous, and in
§7.4 we will address the case where ¢ is a geometric potential. As a preliminary result, we
prove the following lemma.

LEMMA 7.4. For f € F and a Holder potential ¢, we have infyep (dpy/dmy)(x) > 0,
where |1, and my are the relevant invariant and conformal measures.

Proof. For simplicity we write g(x) = (dy/dmy)(x) and note that m,, is a ¢-conformal
measure so L,g =g, where L, is the transfer operator associated to ¢ and f (not
the induced dynamics), defined in §2.3. Since m. [l = 1, (We take any ¢ € (0, £2)),
Lemma 7.1 implies that there is an open set U such that infycy g(x) > 0. By leo, there is
some n € N such that f”(U) = I. Hence, for any x € I we can estimate

g)=Ligr)= > gme¥ > Y g(y)eSrD). (7.12)
yesf=mx) ye{/7"(inu
So we conclude by noting that inf S,,¢ > —o0. O

We first address the case in which z is aperiodic.
LEMMA 7.5. Let z be an aperiodic point for f and suppose ¢ is Holder continuous. Then

i e (D)
m T
e=0 1. (H)

=1.

Proof. Recall from (4.4) and (4.5) that iy, and fi. are related by iy, = fLe|y/fte(Y) and

Ri—1

fe(A)=> """ f1.(Y; N f~7A) forany Borel A C I. (7.13)
i j=0

We will apply the above expresswn to A = H,. Note that, due to our construction of
I 6.6, for each j, if fiY) N H, 9, then f9(Y;) C H,. Thus each term in the above
sum is either O or ft.(Y;). Define, for k >

H(k)=1{Y; C H:Y; enters I:IE exactly k times before time R;}. (7.14)
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Now using (7.13) and our observation about Y;,

fe(H) =" Y k(Y =pe(HD+ Y > (k=Dic(¥p). (715

k21y,e Al (k) k22 y,e A (k)

We proceed to estimate the double sum over k and Y;.

By (7.13), since F; is the first return map to Y in I, the invariant density G, from
Corollary 5.3 is also the density for i, on Y, up to a normalizing constant. Applying the
uniform bounds on G, from Lemma 7.1, we replace ji.(Y;) with m(Y;) in (7.15), up to a
uniform constant. For ¥; C I:Ié (k), let T; denote the time of the kth entry of ¥; to I:Ig under
iteration of f. By the conformality of /i = g,

e (Yi) < CeSP00 5, (FT'v) < Ce @i (fTiYy), (7.16)

for any y; € Y;, where & > 0 is from the proof of Theorem 4.10.

Fixing Y; € I:Ié(k), we wish to estimate #{Y; € I-Alg/(k) :T; =T, and fliy;n £ Y; #
@}. Due to our construction of the Hofbauer extension, such a Y; is contained in a set
Zje 75T,-+L, such that 7/ maps Z ;j injectively into a connected component of H.. Z [
can be associated with a word of length 7} + L, the first symbol of which lies in ¥, while
the remaining symbols lie in I 2.¢0.¢ \ Y. We divide this word into blocks of length L, and
note there are |T;/L| of them. They are all external blocks according to the terminology
of [DoT]. According to [DoT, Lemma 4.6], there are at most 1602L3 external blocks of
length L. In addition, since f7iZ i C H,, we may choose ¢ sufficiently small that any
remaining symbols between |7 /L]L and T; also belong to an external block of length
L. Finally, there are at most (20L)? choices for the first symbol of Z ;j since this is an
upper bound on the number of elements in IAZ” eo.¢ (L) Putting these estimates together, we
conclude that

#Y; € H.(k): Tj =Ty and fTiy; 0 fTiy; # 0} < Q0L)* (160> L3) Ti/E+ < €T,
(7.17)

where £ < a (by choice of L) is the same as in the proof of Theorem 4.10.

Next, due to the aperiodicity of z and the continuity of f, for each ¢ > 0 there exists
N = N(e) € N such that f/H, N H, = for all j <N and N(¢) — oo as ¢ — 0. This
implies, in particular, that if ¥; € 1:18/ (k),thenT; > (k — 1)N.

We organize our estimate for ¥; C H/(k) by considering H!(k) = Ursw-nwtYi €
H/(k) : T; = t}. Then, using (7.16) and (7.17),

Yo k=Da¥n < Y Cl—De @i (f'(¥)
Y;eH (k) YieH (k)
T;=t T;=t

<Ck—1e @ (¢ + L) my,(He),

where, for the last inequality, we have used the fact that f (Y;) lies in a component of H,
on level at most 7 + L in the Hofbauer extension. Since there are at most 9¢2 connected
components on level ¢ according to the proof of [DoT, Lemma 4.6], we obtain that,
projecting I-Lhevelg down to H,, we have (I:Ishevelf) < Dﬁzmw(HS) and summing over
£ < (t + L) yields the required bound.
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Using this estimate in the double sum in (7.15), we obtain

YooY k=D <Y Y. Y Ce®k— D (f'Y)

k>2 YiCl‘AIé(k) k>2t>Nk—1) Y,'Elflg/(k)
T=t

<Y Y Ce @I k= 1)(t + L)’my(H,)
k=2 1=N(k—1)
<C'my(He) Y e N Dk — 1) < C"py(He)e ™™V,
k>2
(7.18)

where in the last step we have used Lemma 7.4. Combining this estimate with (7.15) and
dividing through by (i, (H,) (using that i, (Hs) = ue,(H;)) yields,

A I:I/
HelHe) _ 1 _ ey
e (He)
Since N (¢) — 0o as € — 0, this completes the proof of the lemma. O

Our next lemma addresses the case in which z is periodic with prime period p.

LEMMA 7.6. Suppose 7 is a periodic point for f of prime period p, and that ¢ is Holder
continuous.

@ If{f"c):ceCrit,n>1}N{z} =0, then

m ﬁ =1 eSP(p(Z).
e—>0 fuy(Hy)
(b)  Suppose { f""(c) : c € Crit, n > 1} N {z} £ @. If; in addition, either fP is orientation
preserving in a neighbourhood of z, or limg_.o (my(z + ¢, 2)/my(z, 2 —€)) =1,
then limg o ((—log A¢) /e (He)) =1 — S,

Proof. Fix Ny arbitrarily large. Due to (4.7), we may choose ¢’ > 0 sufficiently small so

that for all ¢ < ¢/, the following properties hold.

(i) IfyeHg(z),thenforall j=1,..., pNo, ff(y) € H.(z) only if j = kp for some
k=1,...Np.

(ii) If y € Hy(z) and there exists k| < Np such that f¥17(y) € H,, then f*P(y) € H,(2)
forallk=1, ..., k.

(iii)) Each 1-cylinder Y; C I-AIbf whose first entry time £ to ﬁe is less than Ny is contained
in an interval Z; C Q € Q such that f Yz j) maps injectively onto a connected

component of I-}s, which we will denote by I:IS(Z i)
@iv) f PNo is injective and continuous on each connected component of H. N f ’pNO(I-AIE)
that occurs below level Ny in IAZ, €06+
Properties (i) and (ii) follow from the periodicity of z and the uniform continuity of f”
for each orbit segment of length n < pNy. To deduce property (iii), since f*(z & &9) =z
is not allowed by choice of &g in (4.7), it suffices to choose

¢/ < 3 min{d(z, fF(w)):w e Crit, . f5(w) # 2z, k < No}.
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With this choice of &/, no boundary points of IAZ, eo.e Tor & < ¢’ may fall in the interior of
a connected component of H, with a first entry time less than Ny. Finally, property (iv)
holds since the orbit of z must be disjoint from Crit; otherwise f would have an attracting
periodic orbit, which is forbidden in our class of maps F. Thus, we may choose

g <|DFPNoI Y min{d(f*(z), Crit) : k=0, ..., p— 1},

in order to guarantee (iv).

Starting from (7.13), we group the 1-cylinders ¥; C I—AIS’ as follows. Let ¢; € N denote the
greatest £ << Np such that fﬁf’(Yi) C I-AIE. By (i) and (ii) above, if j < pNp, then fj(IG) C
H, if and only if j = ¢€p for some £ < ¢;. Recalling (7.14), we let H/(k, No) denote
the set of ¥; C I:IS’ (k) such that the first entry of ¥; to FAlg occurs before time Ng, while
A/ (k, ~) = H](k) \ H/(k, No). Moreover, H/(x, No) := ;> H.(k. Np). Then

No
Re(H) =" Y (¥ + > > (k= L)ps(Y)
=1y, cH!(+,No) k>No y;e B! (k,No)

=

+ 03T k). (7.19)

k2yieH(k~)

Since the entry times to H, are greater than Ny for each of the sets counted in the second
and third sums above, we may use (7.16) and (7.18) to estimate that these two sums are of
order O(e~*M . (H,)). It remains to estimate the first sum above. We rewrite (7.19) as

No
Pe(H) =" > e(¥) + O “n.(He)). (7.20)
=1y, cH(+,No)
>l

For ¢ = 1, we have simply

D0 (Y = e (H) + O(e M i, (H,)).
Y; CH. (%, Np)
61
since any Y; C I-}S’ not counted in the sum for £ =1 has first entry time to H, greater
than Ny.

To estimate the contribution for the terms corresponding to £ = 2, we use property (iii)
above. If Y¥; C ﬁg (*, No) with £; > 2, then Y; is contained in an interval Z; such that
f kz ;j) maps injectively onto a connected component of H, (for the first time) at some
time k =k(Z;) < No. Let us denote this component of I:IS by I:IS (Zj). Let A denote
those indices i for which ¥; C Z;. Then

N . e (Yi)

Do (Y=Y fe(Z)) Yy

4 : — [e(Zj)
YiCHé(*,N()) Z] lEAJ

;=22

Notice that, since £ =2, for each i € Aj, fk(zf)(Yi) - I-AIS(ZJ') N f‘l’(ﬁg). Recalling

Lemma 7.1 and the conformality of 71, (recall that i = . depends on & on i 2e0.e \ Y),
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we estimate}

Sk(ﬁof;.*k d’ﬁs

Z e (Yi) _ Z oE2Cqdiam(Z)" ff"(Y» ¢

Q ; bo f K A
iea) 12D i, Jjriay 70 dite (7.21)
_ e:t2Cddiam(Zj)'7PS(Sk()a(Zj)):EZmE(HEA(Zj)Am 7P (Hy))
e (He(Z))

where f j_k is the inverse branch of f¥|, ; and

Pe(Skp(Z))) = sup eSkP)=Skp(y)
X,y€Zj

Recall that, since we cut at £~ (z) and f~!(z + ), during our construction of fz,go,g,
H.(Z;) must satisfy either 7(H:(Z;)) = (z, z + ) or (H:(Z;)) = (z — &, 7). Let us
denote these intervals above half the hole by I-AI‘9 z j)ﬂL or I-}g (Z;)~, accordingly. Since
f” is continuous and injective on I:IS (Zj) by (iv), fP(I:Ig(Zj) N f’P(I-Alg)) contains a full
interval in the fibre above half the hole (possibly different from I—L(Z 7)), which we can
also denote by 4 or — as appropriate. Note that the conformal measure of all the lifts of
the right half hole (z, z + ¢) have the same measure, and so do all the lifts of the left half
hole.

We proceed to prove item (b) of the lemma first. If f7 is orientation preserving at z
then, using conformality and bounded distortion, we have, on either half of the hole,

me(He(Z)E N f7P(He)) = Po(Spo(He (2)) T eSOt (Ho(Z)), (1.22)

where we have used the fact that § p([)(z) = S,¢(z). On the other hand, if f7 is orientation
reversing at z, then we are left with, for example, the right half hole mapping onto the left
half,

e (He(Z))F 0 f77 (He)) = Pe(Spp (He ()T %@ (He (2))7),

and so, to conclude the desired cancellation in (7.21), we use the assumption
limg o (my(z, z+&)/my(z —¢,2)) = 1.
Thus, under either alternative in item (b), we combine the estimates in (7.21) to write
DoAY =) fe(Z))e RN P (8,G(Z )P (S pp (He (2))) ™ e57¢)

Y CHL(+,No) Zj
;=2

= F2Camax; dam(Z))'p (5. 6(Z 1)) 2P (S (He (2))) €579 @ e (HY)
+ O ™M1 (H,)).

Analogous estimates follow for each £ > 3. Then, using that eSw?@ = oS e estimate
(7.20):

No

fe(He) =) " e2Cam WmZDT p(§.6(Z)) 5 Pe(Sepp(He () e 599 fi (HY)
=1
+ O(Noe™*™ fic (HL)). (7.23)

T We use the notation a = CElptomean C~ b < a < Cb for some constant C > 1.
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Since Ny is fixed, Z; C Y and the first entry of Z; to I:Ig occurs before time Ny, we
have max; diam(Z;) — 0 as ¢ — 0. In addition, both Py (Sx¢(Z;)) and P, (S¢p@(He(2)))
approach 1 as ¢ — 0 since the lengths of the orbit segments are uniformly bounded by
pNp and ¢ is continuous along each orbit segment. Dividing by fi.(H,) and taking the
limit ¢ — 0 yields, for each No >0,

1= Ze“p‘ﬂ@ lim 2 fue (H) + O(Noe Moy, (7.24)
e—>0 Hs(Hs)
Finally, taking Ny — oo proves item (b) of the lemma.

The proof of item (a) proceeds similarly, starting from (7.21). Now, however, since z is
disjoint from the post-critical orbit, we may choose ¢ > 0 sufficiently small that f"(c) ¢
H, for all n < pNg and c¢ € Crit. Then the interval Z; from (iii) can be chosen so that
n(fk(z-i)(Zj)) =(z—¢,z7+¢), thatis, fk(z-/)(Zj) covers a level of the fibre above the
full hole. Thus we may combine the left and right halves of the hole to obtain the analogue
of (7.22) in this case,

e (He(Zj) N f 77 (Hp) = Pe(Spo (He () 579 i (Ho (Z)), (7.25)
and the orientation-preserving character of f7 at z is irrelevant. The proof of item (a) of
the lemma is then complete, following (7.23) and (7.24) precisely as written. O

Now Lemmas 7.5 and 7.6, together with Theorem 7.2 and Proposition 7.3, complete the
proof of Theorem 3.5, via (7.3).

7.4. Final step of the proof of Theorem 3.7: the geometric case. In this subsection
we prove the third limit in (7.4) in the case where ¢ = —¢log |Df| — p;, t € (t7, 1),
where 71 is defined by (7.28). We assume the slow approach condition (3.3) as well
as the polynomial growth condition on the derivative along the post-critical orbit (3.2),
formulated in §3.2.2.

We first prove an analogue of Lemma 7.4 in this case.

LEMMA 7.7. If f € F, ¢ = —t log |Df| — p; and 7 satisfies (3.3) with t € (t—, t), then
there exists { > 0 such that for all ¢ > 0 sufficiently small, infyep, ;) (diry/dmy)(x) = ¢
where y, and my, are the relevant invariant and conformal measures.

Proof. The proof is nearly identical to that of Lemma 7.4. While for the geometric

potential with # < 0 it may be that inf,c; S,¢(x) = —o0, the slow approach condition
(3.3) ensures that for x € H, there is a finite lower bound on S, ¢(x) that is uniform in &,
since n is fixed and independent of ¢ in (7.12). O

In order to prove the required convergence for geometric potentials, we will use the
set-up and notation of [BLS]. It follows from (3.2) and our choice of y,, that
Z Yn <00 and Z(yf_an(c))_l/d < oo forall ¢ € Crit.
n n>1
This is precisely the conditionf required of f in [BLS].
+ Indeed, this condition is equivalent to the simpler condition Zn>1 Dy, (c)_l/ @Qd=1) < o0 [BLS, Lemma 2.1],

but we use the formulation above in order to directly apply the results of [BLS]. Our condition (3.2) is slightly
stronger and generalizes the exponent to values of s; < 1.
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We will not need the full strength of the results from [BLS]; rather, we will use the
estimates on the recovery times for expansion for orbits that pass close to the set Crit. To
this end, for a value of § > 0 to be specified later, we define B (Crit) = |, ccyic(c — 8, ¢ +
8), for § > 0. A key estimate of [BLS] is given by the following lemma.

LEMMA 7.8. [BLS, Lemma 2.4] For § > 0 sufficiently small, there exist constants
Cs, Bs > 0 such that for every orbit segment {fi(x)}f.‘:_g such that {fi(x)}f.‘:_(} N
Bs (Crit) = @, we have

IDF} ()] = CsePot.

If. in addition, f*(x) € Bs(Crit), then there exists k > 0 independent of § such that
Df*(x)] > max{k, Cse").

Next, we define the notion of binding period, recalling the sequence (y;,), N from (3.2).
If x € Bs(Crit), then

b(x) = max{b € N: | f*(x) — fX(e)| <yl f¥(c) — Crit| Yk < b — 1},

and b(x) =0 if x ¢ Bs(Crit). Let I, = {x € I : b(x) = b} denote the level sets of b. The
binding period will be useful in estimating the important quantity

Dfb. (¢) :=min{|Df’(x)| : x € I, N Bs(c)},

min
defined for each c € Crit, which governs the minimum rate of growth in expansion along
orbit segments.

Note that b = min{b(x) : x € Bs(Crit)} tends to co as § — 0. This fact is used in [BLS]
to make D ffl‘;n (c) arbitrarily large by choosing § > 0 sufficiently small.

Each orbit of length n is assigned an itinerary (v, by), (v2, b2), ..., (v, bx), where
each v; = v;(x) represents the first time larger than v;_; 4 b;_1 such that the orbit of
x € I makes a return to Bs(Crit). Each return i is called a deep return and placed in a set
Sq = Sa(x) if the orbit enters Bs(Crit) at time v;; it is called a shallow return and placed
in a set Sg(x) if the orbit does not enter Bs(Crit) at time v;, but is part of a dynamically
defined interval that intersects Bs(Crit).

The key estimates from [BLS] using the information from binding periods are as
follows.

LEMMA 7.9. [BLS, Lemmas 2.5 and 3.2]
(@) There exists Co > 0 independent of § > 0 such that for all ¢ € Crit and b > bs with
I # 9,
Dfpin(e) = Colyy =" Dyp(ene.
(b) There exist Ko >0 and p € (0, 1), independent of 6, such that for an orbit
{fi(x)}?;()l with a given sequence (vi, by), ..., (Vk, by) at time n > vi + by, we
have

#Sq
# kb K _ bi
|Df"(x)| >max{casdeﬁ6(n Zz:Obz)’ (K()) 0 #SS} 1_[ Dfmin(ci)7
ieSy

where c; is the critical point associated to the return at time v;.
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With these key estimates recalled, we are ready to begin our proofs of the relevant limits.
As in §7.3, we begin with the aperiodic case.

LEMMA 7.10. Suppose f € Fy and ¢ = —tlog |Df| fort € (t—, t1) satisfies (3.2). Let 7

be an aperiodic point for f satisfying (3.3). Then
lim ME(H)
£~>0 .us(H )

=1.

Proof. We will follow the strategy of the proof of Lemma 7.5, using the same notation
defined there. Following (7.15), we must show as before that

Do k= Dae(Yy) = o(Re (He)). (7.26)
k22 yich (k)
However, the estimate in this case is not so simple since the analogous expression to (7.16)
does not enjoy uniform exponential contraction in 7;. Rather, we split ¥; C I-Alg/(k) into
those cylinders which are ‘bound’ (i.e. in the midst of a binding period) at the time 7; of
their kth entry to I:IE, and those cylinders which are not bound, which we call ‘free’.

As before, we fix N € N and choose ¢ sufficiently small that f J (1:18) N ﬁg =), for all
Jj<N.

Estimate on free pieces. To estimate the contribution to (7.26) from cylinders that are
free at time T;, we begin as in (7.16):

Pe (V) = € (1)) = eS80, (fTiv) = DT () e P Tirie (1Y),
(7.27)

We estimate the above expression differently depending on whether t <1 or¢ > 1. In
all cases, we fix § > O sufficiently small that D frflfn(c, > 2Ky /k.

If + <1, then we consider the following two cases, depending on the itinerary
(v1, b1), ..., (v, bi,) associated to y; from time O until time 7;. Since f Ti(Y;) is free,
we have T 2 v + by;, so we may apply Lemma 7.9. Choose € > 0 sufficiently small that
e <min{}, —Bsbs/(4log Cs)}.

Case 1. Z];l: 0 bj > €T;. Using the second estimate in Lemma 7.9(b), we have, by choice
of 4,
IDfTi (yi)| > 2% = 2k,

Case 2. Zl;i:() bj < €T;. It follows that #S4(y;) = k; < €T;/bs. Thus, using the first
estimate in Lemma 7.9(b), we have, by our choice of €,

|DfT[ ()| = CgTi/baeﬂ,ng(l—e) > ePsTi/2
In either case, our estimate in (6.6) for r < 1 becomes,
m(Y) < Ce T (fiyy).

In the statement of Theorem 3.7 we only consider the case ¢ > 1 under a (CE) condition
along the critical orbits:

there exist C, y > 0 such that D, (c) > Ce"".
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In this case, it suffices that y, >e —yn/Qd=1) " 5o that be (€) = Cpe??/@d) by

min
Lemma 7.9(a). For this range of ¢ > 1, we consider two slightly dlfferent cases. Using the

same choice of § as above, we choose € = —f/log(CsCy), where § = mln{ﬂ,g y/2d)}.

Case 1. ki =#S4(y;) = €T;. Using the second estimate in Lemma 7.9(b) and our choice
of §,

|Dfﬂ<yi>|>(1§0> [T priep =2

J€Sa(yi)

Case 2. k; < €T;. Using the first estimate in Lemma 7.9(b), we have, using our choice of
65
A _ ki . ki 3T
|Dsz (yl)l > CgTzeﬂS(Tz Zj:() bJ)CGTIeV ijo bj/(2d) > eﬁT, )

In either case, our estimate in (6.6) for > 1 becomes
(Y < CemPrinli(fTiyy,

where et = min{e'g, 2¢).
To unify notation, set & = p; when ¢t < 1 in all cases, and & = ¢8] + p; in the (CE) case
when ¢ > 1. Recall that we defined #; = 1 in the non-(CE) case; in the (CE) case set
ty:=sup{t e (1,¢t7) 1By + p, > 0}, (7.28)

noting that, since p; = 0, such a #; > 1 exists by continuity of p;.
Now the above estimates in conjunction with the complexity estimate (7.17) yield, by

(7.18),
DY k=D)<Y Y Ce @ik — 1)(j + L) my(H,)
k=22y,c Al (k) k=2 j=N(k—1)

Y; free
< C'fte(Hp)e @=9N, (7.29)

where we may choose L sufficiently large that & < @, and in the second inequality we have
used Lemma 7.7 and the fact that [t (H,) = py(Hg).

Estimate on bound pieces. Next we estimate the contribution to (7.26) from cylinders Y;
which are undergoing a bound period at time 7;. Let v; denote the time that ¥; enters this
bound period. By assumption, v; < T; <v; + b;. Let x € f”" (Y;) C Bs(c). Then, using
the slow approach condition (3.3) and the definition of b,

FTe) — 2 < 1TV = I @l + 1T @) — 2l
VIi—v + 31 He (2.

1-6
8¥r—y S
<

This implies that
8, <2max{yq ., 31 He@)ly ), ).

We consider the ways in which this can be satisfied. First,

8. <2, = yr—u = 6/
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Since y;, is summable, this condition can be satisfied by only finitely many values of
T; — v;, that depend only on y,, §, and 6. Indeed, we can render this set empty since
(3.3) implies { f"(c)}n>0 N {z} =@. So, by choosing ¢, § > 0 sufficiently small, we can
make f¥(B;(Crit)) disjoint from H, for these finitely many iterates.

The second possibility is that

1/(1-6)

8
Recall from §3.2.2 that we defined y,, =n~" for some r > 1/s,(1 —0). Then (7.30)

implies
5 1/r(1-6)
T, —v; > < )
Y <|H5(z>|)

This implies that the return time to Y for Y; satisfies

8. <IHe@lyf -, = v1i—u < (

1 5, 1/r(1-6)
Ri >max{(k — DN, T;} > - (k—1)N + =T,
X = DN T 2<( ) (IHs(Z)I) ) B

where the first condition comes from the fact that ¥; C I:Ié (k) and N comes from the
aperiodicity condition on z. Thus, using Theorem 4.10,

YooY k=D)<Y Y DY k= Die(Yi)

k22 y,c A (k) k=22 j>te Ri=j
Y; bound
<3 X Chk—ne
k=2 j>Te
<> k- 1)’ e~ k=DN/2 ,=(@/2)(8: /| He @)D/ 17
k>2
=0(e™ N Hy (2)|°) = o(f1e (He)), (7.31)

where s > 0 represents any positive power, and the switch to i, (H,) is possible due to the
scaling exponent s; for the conformal measure m,, as well as Lemma 7.7.

Combining (7.29) and (7.31) proves (7.26), which by (7.15) completes the proof of the
lemma. O

Next, we address the case where z is periodic with prime period p. We continue to
assume the slow approach condition (3.3).

LEMMA 7.11. Suppose f € F4g and ¢ = —tlog |Df| fort € (t—, t1) satisfies (3.2). Let z
be a periodic point for f of prime period p satisfying (3.3). Then
~ U
lim M =1 — 9@
£=0 i (H)
Proof. We follow the proof of Lemma 7.6, which needs few modifications now that we
have recorded the relevant estimates over free and bound pieces.

Fix Nog > 0 and choose ¢ > 0 sufficiently small that properties (i)—(iv) enumerated at the
start of the proof of Lemma 7.6 hold. We expand (1. (H;) precisely as in (7.19). First, we

Downloaded from https://www.cambridge.org/core. 02 Sep 2021 at 16:24:09, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

Asymptotic escape rates and limiting distributions for multimodal maps 1703

must show that the second and third sums in that expression are the error terms in the
expansion.

As in the proof of Lemma 7.10, we call each Y; bound or free depending on whether
f Ti(v;) is undergoing a bound period at time 7; or not. When summing over the free
pieces, (7.29) implies that both sums are of order O(ji, (ﬁg)e_(&_S)NO) since the entry
time for each such Y; at H, is greater than Ny. Similarly, we estimate the second and third
sums in (7.19) over bound pieces Y; using the slow approach condition (3.3) so that, by
(7.31), these sums are O(ﬂg(ﬁg)e_“%/z). We thus arrive at equation (7.20) as before.

Next, we derive (7.21) as before since that uses only property (iii) and the uniform
log-Holder property of the invariant density g, (Lemma 7.1); we thus obtain the same
expressions with the same definition of P, (Sx@(Z;)).

Since the slow approach condition (3.3) implies that z is disjoint from the post-critical
orbit, we may choose ¢ sufficiently small such that f*(c) ¢ H,(z) for k < pNy and all
¢ € Crit. Thus we may follow the proof of the simpler item (a) of Lemma 7.6, without
having to consider the left and right halves of the hole separately. We use (7.25) to estimate
the ratio in (7.21) and so arrive at (7.23) precisely as before.

Now ¢ = —t log |Df| ot — P(—t log |Df|). Although ¢ is not continuous on IAZ,EO,E,
it is still true on each Y; and for each orbit segment of length at most pNy, that Sy is
continuous with bounded ratio on Y; and each component of I:IS’ on level at most p Ny. This
follows since we have trimmed L-cylinders in our construction of ¥ = I’ (L). This extends
to Z; since f’PNO(E) N Z; = for each Z; by choice of ¢, and so P;(Sy$(Z;)) — 1 as

e — 0.
We thus arrive at (7.24) with error term O(Nge %Mo) and & = min{& — &, a/2}, and
taking Ng — oo completes the proof of the lemma. O

Finally, Lemmas 7.10 and 7.11 together with Theorem 7.2 and Proposition 7.3 complete
the proof of Theorem 3.7, using (7.3).
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