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Abstract—The robust principles of treating interference as
noise (TIN) when it is sufficiently weak, and avoiding it when it
is not, form the background of this work. Combining TIN with
the topological interference management (TIM) framework that
identifies optimal interference avoidance schemes, we formulate
a TIM-TIN problem for multilevel topological interference man-
agement, wherein only a coarse knowledge of channel strengths
and no knowledge of channel phases is available to transmitters.
To address the TIM-TIN problem, we first propose an analytical
baseline approach, which decomposes a network into TIN and
TIM components, allocates the signal power levels to each user
in the TIN component, allocates signal vector space dimensions
to each user in the TIM component, and guarantees that the
product of the two is an achievable number of signal dimensions
available to each user in the original network. Next, a distributed
numerical algorithm called ZEST is developed. The convergence
of the algorithm is demonstrated, leading to the duality of the
TIM-TIN problem in terms of generalized degrees-of-freedom
(GDoF). Numerical results are also provided to demonstrate the
superior sum-rate performance and fast convergence of ZEST.

Index Terms—Interference channels, treating interference as
noise (TIN), topological interference management (TIM), gener-
alized degrees-of-freedom (GDoF).

I. INTRODUCTION

T
HE capacity of wireless interference networks is a rapidly

evolving research front, spurred in part by exciting

breakthroughs such as the idea of interference alignment [2]

which provides fascinating theoretical insights and shows

much promise under idealized conditions. The connection

to practical settings however remains tenuous. This is in

part due to the following two factors. First, because of the

assumption of precise channel knowledge, idealized studies

often get caught in the minutiae of channel realizations, e.g.,

rational versus irrational values, that have little bearing in

practice. Second, by focusing on the degrees-of-freedom (DoF)

of fully connected networks, these studies ignore the most

critical aspect of interference management in practice – the

differences of signal strengths due to path loss and fading

(in short, network topology). Indeed, the DoF metric treats

every channel as essentially equally strong (capable of carrying
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exactly 1 DoF). So the desired signal has to actively avoid

every interferer, whereas in practice each user needs to avoid

only a few significant interferers and the rest are weak enough

to be safely ignored. Therefore, by trivializing the topology

of the network, the DoF studies of fully connected networks

make the problem much harder than it needs to be. Non-trivial

solutions to this harder problem invariably rely on much more

channel knowledge than is available in practice. Thus, the two

limiting factors re-enforce each other.

Evidently, in order to avoid these pitfalls, one should

shift focus away from optimal ways of exploiting precise

channel knowledge (which is rarely available), and toward

powerful even optimal ways of exploiting a coarse knowl-

edge of interference network topology. This line of thought

motivates robust models of interference networks where only

a coarse knowledge of channel strength levels is available to

the transmitters and no channel phase knowledge is assumed.

This is the multilevel topological interference management

framework. It is a generalization of the elementary topological

interference management (TIM) framework introduced in [3],

wherein the transmitters can only distinguish between channels

that are connected (strong) and not connected (weak).

A. Robust principles of interference management: Ignore,

avoid

Existing wireless interference networks are mainly based

on two robust interference management principles — 1) ignore

interference that is sufficiently weak, and 2) avoid interference

that is not. In slightly more technical terms, ignoring interfer-

ence translates into treating interference as noise (TIN) [4],

[5], and avoiding interference translates into access schemes

such as TDMA/FDMA/CDMA. Recent work has explored the

optimality of both of these principles.

1) TIN: The optimality of the first principle, treating inter-

ference as noise when it is sufficiently weak, is discussed

extensively. In [6], [7], [8], it is shown that in a so-called

“noisy interference” regime, TIN achieves the exact sum

capacity of interference channels. In [9], for general

 -user interference channels, it provides a broadly ap-

plicable TIN-optimality condition under which TIN is

optimal from a generalized degrees-of-freedom (GDoF)

perspective and achieves a constant gap (of no more than

log(3 ) bits) to the entire capacity region. Remarkably,

this result holds even if perfect channel knowledge

is assumed everywhere. The GDoF-optimality result

of TIN is also generalized to other channel models

(e.g., - channels [10], [11], parallel channels [12],

compound networks [13], MIMO channels [14], and
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cellular networks [15], [16]) and is reformulated from

a combinatorial perspective [17].

2) TIM: The optimality of the second principle, avoidance,

has been investigated most recently by [3], as the TIM

problem. With channel knowledge at the transmitters

limited to a coarse knowledge of network topology

(which links are stronger/weaker than the effective noise

floor), TIM is shown in [3] to be essentially an in-

dex coding problem [18]. TIM subsumes within itself

the TDMA/FDMA/CDMA schemes as trivial special

cases, but is in general much more capable than these

conventional approaches. Remarkably, for the class of

linear schemes, which are found to be optimal in most

cases studied so far, and within which TIM is equivalent

to the index coding problem, TIM is essentially an

optimal allocation of signal vector spaces based on

an interference alignment perspective [19]. Variants of

the TIM problem have also been investigated, such as

those under short coherent time [20], with alternating

connectivity [21], [22], with multiple antennas [23],

with transmitter/receiver cooperation [24], [25], with

reconfigurable antennas [26], with network topology

uncertainty [27], and with confidential messages [28].

B. TIM-TIN: Joint view of signal vector spaces and signal

power levels

The two principles – avoiding versus ignoring interference

– which are mapped to TIM and TIN, respectively, naturally

correspond to interference management in terms of signal vec-

tor spaces and signal power levels. TIM uses the interference

alignment perspective [3], [19] to optimally allocate signal

vector subspaces among the interferers. Note that in order

to resolve the desired signal from interference based on the

signal vector spaces, the strength of each signal is irrelevant.

What matters is only that desired signal and the interference

occupy linearly independent spaces. TIN, on the other hand,

optimally allocates signal power levels among users by setting

the transmit power levels at transmitters and the noise floor

levels at receivers. Thus TIN depends very much on the

strengths of signals relative to each other. Associating TIM

with signal vector space allocations and TIN with signal power

level allocations within the multilevel TIM framework, we

refer to the joint allocation of signal vector spaces and signal

power levels as the TIM-TIN problem.

TIM-TIN Problem: With only a coarse knowledge of chan-

nel strengths available to the transmitters, we wish to carefully

allocate not only the beamforming vector1 directions (signal

vector spaces) but also the transmit powers (signal power

levels) to each of those beamforming vectors. The necessity

of a joint TIM-TIN perspective is evident as follows. In vector

space allocation schemes used for DoF studies, the signal

space containing the interference is entirely rejected (zero-

forced). This is typically fine for linear DoF studies because

1Here we follow the terminology from [3], i.e., the “beamforming" vectors
are in fact the “alignment" vectors that are used to align the signal vector space
of different users. Hereafter, we will use beamforming vectors and alignment
vectors interchangeably.

all signals are essentially equally strong, every substream

carries one DoF, so any desired signal projected into the

interference space cannot achieve a non-zero DoF. However,

once we account for the difference in signal strengths in

the GDoF framework, the signal vector space dimensions

occupied by interference may not be fully occupied in terms

of power levels if the interference is weak. So, non-zero

GDoF may be achieved by desired signals projected into

the same dimensions as occupied by the interference, where

interference is weaker than desired signal. It is this aspect that

we wish to exploit in this work. It is worthwhile noticing that

within the multilevel TIM framework, in general the solution

based on a combination of TIM and TIN is not optimal. For

example, in [29] it has been shown that for  -user symmetric

interference channels, the GDoF optimal solution relies on

rate splitting and superposition encoding at transmitters and

(partial) interference decoding at receivers.2 The appeal of

joint TIM-TIN mainly lies in its implementation simplicity

and wide applicability in existing wireless networks.

C. Overview of results

First, to address the TIM-TIN problem, an analytical base-

line approach is presented. Because of the minimal channel

knowledge requirements in the TIM and TIN settings, a robust

combination of the two, denoted as TIM-TIN decomposition

presents itself. Any given network is decomposed into a TIM

component and a TIN component, containing only strong and

weak interferers, respectively, and a direct multiplication of the

signal dimensions available in each is shown to be achievable

in the original network. In other words, the TIM solution

identifies the fraction of the signal space that is available

to each user, and within each of these available signal space

dimensions, the TIN approach identifies the fraction of signal

levels that are available to the same user. A product of the

two fractions therefore identifies the net fraction of signal

dimensions available to each user in this decomposition based

approach. The optimality of this decomposition approach is

also discussed for some non-trivial network settings.

Next, a distributed numerical approach is developed, which

only needs local channel measurements to update transmit

powers and beamforming vectors. The proposed algorithm,

called ZEST, utilizes the reciprocity of wireless networks, and

is guaranteed to be convergent in terms of GDoF. As a byprod-

uct, the duality of the TIM-TIN problem is established. We

also include modest numerical experiments that demonstrate

superior GDoF performance and fast convergence of ZEST.

Notations: For a positive integer / , [/] , {1, 2, ..., /}. For

vectors u and v, we say that u dominates v if u � v, where

� denotes componentwise inequality. For a matrix A, det(A)

denotes its determinant, span(A) represents the space spanned

by the column vectors of A, and A(8, 9) is the entry of A in

the 8-th row and 9-th column. All logarithms are to the base

2.

2Within the multilevel TIM framework, for a  -user interference with
arbitrary channel strengths, the optimal GDoF region is still open.
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II. SYSTEM MODEL

In this work, we consider a  -user complex Gaussian

interference channel, where Transmitter : (: 2 [ ]) intends

to communicate with Receiver : and all the transmitters and

receivers are equipped with one antenna. Following [9], [30],

the channel model is given by

.: (C) =

 ’

8=1

p
%U:8 4 9 \:8-8 (C) + /: (C), 8: 2 [ ], (1)

where at each time index C, -8 (C) is the transmitted symbol

of Transmitter 8 (subject to a unit power constraint, i.e.,

⇢ [|-8 (C) |
2]  1), .: (C) is the received signal of Receiver : ,

and /: (C) ⇠ CN(0, 1) is the additive white Gaussian noise

(AWGN) at Receiver : . In (1), % > 1 is a nominal power value,

U:8 � 0 is called the channel strength level of the link between

Transmitter 8 and Receiver : , and \:8 is the corresponding

channel phase. The definitions of messages, achievable rate of

user : (': ) and channel capacity region (C) are all standard.

The GDoF region is defined as

D ,
n

(31, 32, ..., 3 ) : 38 = lim
%!1

'8

log %
, 88 2 [ ],

('1, '2, ..., ' ) 2 C
o

. (2)

In the multilevel TIM framework, only a coarse knowledge

of channel strength levels is available to the transmitters and

no channel phase knowledge is assumed. The channel strength

level knowledge at transmitters can either be perfect or quan-

tized. We also assume that receivers have perfect channel state

information. Apparently, multilevel TIM is a generalization of

the elementary one in [3]. It also should be noted that unlike

most previous works in pursuit of the coarse DoF metric where

all non-zero channels are essentially treated as approximately

equally strong (i.e., each non-zero channel carries one DoF),

in the multilevel TIM framework, the main challenge lies

in how to leverage the disparate channel strengths, and the

more general GDoF metric is of interest. This progressive

refinement (from DoF to GDoF) has been shown instrumental

for capacity approximation of Gaussian interference networks

in recent works [9], [10], [30], [31], where the GDoF result

usually further serves as a stepping stone for the capacity

characterization within a constant gap.

Below we define the problem of multilevel TIM with

quantized channel strength levels, or quantized multilevel TIM

(QM-TIM) in more details.3 Note that in practice, the desired

signal strength and interfering signal strength usually fall into

different ranges, so it is reasonable to assume that desired

links and interfering links have different quantization schemes.

For direct channels, the channel strength levels are assumed

to be large enough to guarantee a satisfying interference-free

achievable rate. As a result, for direct links the quantized

channel strength levels are always normalized to one ( i.e.,

U88 = 1, 88 2 [ ]) without loss of generality. While for

interfering links, for better interference management, there

3With a little abuse of notations, in QM-TIM, we also use U8 9 to denote
the quantized channel strength level for the link between Transmitter 9 and
Receiver 8, 88, 9 2 [ ].

are ; quantization thresholds C1, C2, ..., C; , where 0  C1 <

C2 < ... < C; < 1. Hereafter, we denote the QM-TIM

problem with the above quantization configuration by QM-

TIM(C1, C2, ..., C;). Apparently, the original TIM problem is

a special case of QM-TIM, which can be denoted by QM-

TIM(0). As another example, the simplest setting of QM-TIM

beyond the elementary one is QM-TIM(C1, C2). One natural

choice for the two quantized thresholds could be C1 = 0 and

C2 = 0.5. In this case, we have the following three kinds

of interfering links: 1) Weak interfering links: the interfering

links that are no stronger than the noise floor; 2) Medium

interfering links: the interfering links whose channel strength

level value falls into the range from 0 to 0.5; 3) Strong

interfering links: the interfering links whose channel strength

level is no less than 0.5.

III. TIM-TIN PROBLEM FORMULATION

In this section, we formulate the TIM-TIN problem within

the multilevel TIM framework formally. As mentioned before,

with only a coarse knowledge of channel strengths available

to the transmitters, in the TIM-TIN problem, we allocate not

only the beamforming vectors but also the transmit powers to

each of those beamforming vectors, in order to jointly optimize

both signal vector space and signal power level allocations.

For a  -user interference channel in (1), over = channel

uses, Transmitter 8 sends out 18 (18  =) independent scalar

data streams, each of which carries one symbol B8,; and is

transmitted along an = ⇥ 1 beamforming vector v8,; , ; 2 [18].

Assume that all symbols B8,; are drawn from independent

Gaussian codebooks, each with zero mean and unit power, and

the beamforming vectors v8,; are scaled to have unit norm.

Over = channel uses, Receiver : obtains an = ⇥ 1 vector

y: =

Õ 
8=1

Õ18
;=1

p
%U:8 4 9 \:8

p
%A8,;v8,;B8,; + z: , where z: is an

= ⇥ 1 zero mean unit variance circularly symmetric AWGN

vector at Receiver : , %A8,; is the transmit power for ;-th data

stream of User 8. Due to the unit power constraint, we require

A8,;  0. For User : , the covariance matrix of the desired signal

is Q⇡
:
=

Õ1:
;=1

(v: ,;v
†
: ,;
)%A:,;+U:: . The covariance matrix of the

net interference-plus-noise is Q#+�
:

=

Õ

8<: Q:8 + I, where I

is an = ⇥ = identity matrix, and Q:8 =
Õ18
;=1

(v8,;v
†
8,;
)%A8,;+U:8

is the covariance matrix of the interference from Transmitter

8 < : . Given the beamforming vectors of each transmitter

and power allocations of all data streams, as in the TIM-TIN

problem the receivers do not attempt to decode interference

from unintended transmitters, for User : 2 [ ] the achievable

rate per channel use is given by 4

': =
1

=
� (B: ,1, B: ,2, ..., B: ,1: ; y: )

=

1

=

h

⌘(y: ) � ⌘(y: |B: ,1, B: ,2, ..., B: ,1: )
i

=

1

=

⇢

log
h

det(Q⇡
: + Q#+�

: )
i

� log
h

det(Q#+�
: )

i
�

,

4Note that here the number of channel uses = is an integer number no less
than 1.
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and the achievable GDoF value 3: is

3: = lim
%!1

':

log %

= lim
%!1

log
h

det(Q⇡
:
+ Q#+�

:
)
i

� log
h

det(Q#+�
:

)
i

= log %
. (3)

Next, we simplify the achievable GDoF expression into a

more intuitive form. Consider a term of the type log
h

det(I +
Õ<
8=1 %

^8v8v
†
8
)
i

, where v8 (8 2 [<]) is an =⇥ 1 vector. Without

loss of generality, assume ^1 � ^2 � ... � ^< � 0. Consider

the vectors v8’s one by one. For v1, we relabel it as v⇧(1)

and correspondingly its power exponent ^1 as ^⇧(1) . For v2,

if it falls into span(v⇧(1) ), we remove it and then proceed to

v3; otherwise, we relabel it as v⇧(2) and correspondingly ^2

as ^⇧(2) . We repeat this operation for each vector. In other

words, for v8 , if it falls into span(v⇧(1) , ..., v⇧(;) ) (i.e., the

space spanned by all previous linearly independent vectors

obtained from {v1, ..., v8�1}), we remove it and then proceed to

v8+1; otherwise, we relabel it as v⇧(;+1) and correspondingly its

power exponent ^8 as ^⇧(;+1) . Finally, we have W  = linearly

independent beamforming vectors V⇧ = {v⇧(1) , ..., v⇧(W) } and

their associated power exponents P⇧ = {^⇧(1) , ..., ^⇧(W) }. With

those definitions, we have the following lemma.

Lemma 1: Suppose that v8 , 8 2 [<] are = ⇥ 1 vectors, and

^1 � ^2 � ... � ^< � 0. We have

log
h

det(I +

<’

8=1

%^8v8v
†
8
)
i

=

W’

8=1

^⇧(8) log % + >(log(%)). (4)

The proof of Lemma 1 is given in Appendix A. Now we can

proceed to the following lemma.

Lemma 2: In the TIM-TIN problem, given the beamforming

vectors and the power allocations for each user, zero-forcing

with successive cancellation (ZF-SC) achieves the maximal

GDoF value of each user given by (3).5

The proof of Lemma 2 is deferred to Appendix B. With

Lemma 2, to maximize the achievable GDoF in the TIM-TIM

problem, the remaining challenge is choosing beamforming

vectors and their powers for each user judiciously. To address

this problem, in the following we develop two approaches,

i.e., an analytical decomposition approach and a numerical

distributed approach.

Example 1: To help understand Lemma 1 and 2, consider a

3-user interference channel, in which over 2 channel uses User

1, 2 and 3 deliver 2, 2 and 1 data streams, respectively. Given

the beamforming vectors, the transmitted power allocated to

each symbol and channel strength levels for each link, the

received signal at Receiver 1 is depicted in Fig. 1, where v2,1

and v3,1 are aligned along one direction. The length of the

vector represents the received power of the carried symbol.

We have A1,1 + U11 > A1,2 + U11 > A3,1 + U13 > A2,1 + U12 >

A2,2 + U12 > 0. Define 3 0
:

= lim%!1
log[det(Q⇡

:
+Q#+�

:
) ]

log %
and

3 00
:

= lim%!1
log[det(Q#+�

:
) ]

log %
. Following Lemma 1, we have

5Note that with the ZF-SC receiver, each user only successively decodes and
cancels the (possible multiple) desired data streams from its own transmitter,
but does not decode interfering signals from others.

3 0
1
= A1,1 + U11 + A1,2 + U11 and 3 00

1
= A3,1 + U13 + A2,2 + U12. So

the achievable GDoF value of User 1 is

31 =

3 0
1
� 3 00

1

2

=

[(A1,1 + U11 + A1,2 + U11) � (A3,1 + U13 + A2,2 + U12)]

2
. (5)

Fig. 1: The received signal at Receiver 1, where the length of the
vector represents the received power of the carried symbol. Here the
number of channel uses = is 2.

Next, we illustrate how to achieve this GDoF value via a ZF-

SC receiver. To decode B1,1, we first zero force the strongest

interference B1,2 and then treat all the other interference as

noise. The achievable GDoF value of data stream B1,1 is

31,1 =

(A1,1 + U11 �max{A3,1 + U13, A2,1 + U12, A2,2 + U12})

2

=

1

2
(A1,1 + U11 � A3,1 � U13).

After recovering B1,1, we subtract it off from the received

signal and then decode B1,2. Similarly, we first zero force

the strongest interference B3,1 (and its aligned counterpart

B2,1) and then treat the remaining interference B2,2 as noise.

The achievable GDoF value of data stream B1,2 is 31,2 =

1
2
(A1,2 +U11�A2,2�U12). The achievable GDoF value for User

1 is the sum of 31,1 and 31,2, which equals (5). Also note that

the achievable GDoF value does not depend on the decoding

order, i.e., if we reverse the decoding order of B1,1 and B1,2,

we still achieve the same GDoF value for User 1. ⌅

IV. AN ANALYTICAL DECOMPOSITION APPROACH

In this section, for the TIM-TIN problem we present an

analytical baseline approach, denoted by TIM-TIN decompo-

sition. The basic idea is as follows. Any given network can be

decomposed into a TIM component and a TIN component,

each containing all the desired links and non-overlapping

interfering links, such that in total, these two components

cover all the interfering links. In other words, denote the

sets of all interfering links in the original network, TIM

component, and TIN component by I, ITIM, and ITIN, re-

spectively. We have ITIM \ ITIN = q and ITIM [ ITIN = I.

First, consider the TIM component only. Assume that all
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the links are equally strong. Applying the TIM solution

yields an achievable GDoF tuple (31,TIM, ..., 3 ,TIM), which

identifies the fraction of the signal space available to each user.

Next, consider the TIN component only. Applying appropriate

power control at each transmitter and treating interference

as noise at each receiver, we obtain an achievable GDoF

tuple (31,TIN, ..., 3 ,TIN), which identifies within the available

signal space dimensions assigned to each user, the fraction

of signal levels that are available to each of them. Finally,

the product of the two above fractions, i.e., the GDoF tuple

(31,TIN⇥31,TIM, ..., 3 ,TIN⇥3 ,TIM), is achievable, identifying

the net fraction of signal dimensions available to each user by

this decomposition approach. Note that the decomposition is

quite flexible, i.e., any interfering link can be considered in

either TIM or TIN component (but not both simultaneously).

Therefore, for one interference channel, we have multiple

possible decompositions. For this TIM-TIN decomposition

approach, we have the following theorem.6

Theorem 1: For one specific TIM-TIN decomposition in a

general  -user interference channel, let DTIM be the achiev-

able GDoF region of the TIM component via signal space

approach (i.e., interference alignment and ZF), and DTIN

be the achievable GDoF region of the TIN component via

signal level approach (i.e., power control and TIN). Then, the

following GDoF region is achievable in the original  -user

interference channel,

D̄ =

n

(31,32, ..., 3 ) : 38 = 38,TIM ⇥ 38,TIN, 88 2 [ ],

8dTIM = (31,TIM, ..., 3 ,TIM) 2 DTIM,

8dTIN = (31,TIN, ..., 3 ,TIN) 2 DTIN

o

. (6)

The whole achievable GDoF region based on the TIM-

TIN decomposition approach is given by DTIM�TIN =

Convex Hull
⇣
–

TIM�TIN D̄
⌘

, where TIM � TIN de-

notes the set of all the possible TIM-TIN decompositions and

the convex hull operation comes from time-sharing.

Proof : The key is to prove (6). In a specific TIM-TIN

decomposition, for User : , denote the set of its interferers

in the TIM component by I: . To achieve the GDoF tuple

(31,TIM ⇥ 31,TIN, ..., 3 ,TIM ⇥ 3 ,TIN) in the original channel,

the beamforming vectors of each user are the same as those

yield the GDoF tuple dTIM in the TIM component, and the

power allocation for (all the data streams of) each user follows

from the solution that yields the GDoF tuple dTIN in the TIN

component. Receiver : zero-forces the interference from the

users in I: and treats the remaining interference as noise,

which achieves the GDoF value 3: ,TIM ⇥ 3: ,TIN. ⌅

Example 2: Consider a 5-user interference channel within

the QM-TIM(0,0.5) framework in Fig. 2(a). The network is

decomposed into a TIN component and a TIM component as

shown in Fig. 2(b) and Fig. 2(c), respectively. For the TIN

component, which contains all the medium interfering links

and satisfies the TIN-optimality condition of [9], according to

Theorem 1 in [9] we obtain that its optimal symmetric GDoF

value is 0.6. In the TIM component, which contains all the

6Interested readers are referred to examples and discussions in [32] to help
understand results in Section IV and V.

strong interfering links, the symmetric GDoF value is 0.5 [3].

Therefore, through this decomposition, in the original network

the symmetric GDoF value 0.6 ⇥ 0.5 = 0.3 is achievable.

The achievable scheme is given explicitly in Fig. 2(d). In this

scheme, = = 2 and 18 = 1, 88 2 {1, ..., 5}. More specifically,

the achievable scheme uses a 2 dimensional space and 4

beamforming vectors, where any two of them are linearly

independent and ,2 and ,5 are aligned along the same

vector. The transmit power allocations are A1 = 0, A2 = �0.1,

A3 = �0.2, A4 = �0.3 and A5 = �0.4. It is easy to verify that

every user achieves a GDoF value 0.3.

• Receiver 1 first zero forces the interference from Trans-

mitter 4 (to simplify notations, in the following for each

Receiver : we denote the interference from Transmitter

8 < : by �8). Then, in the remaining signal dimension,

it treats the interference �2 as noise. Therefore, the

achievable GDoF value for Receiver 1 is (1�0.4)/2 = 0.3.

• Receiver 2 zero forces �1 and treats �3 and �5 as noise to

get (0.9 � 0.3)/2 = 0.3 GDoF.

• Receiver 3 zero forces �2 and �5 and treats �4 as noise to

get (0.8 � 0.2)/2 = 0.3 GDoF.

• Receiver 4 zero forces �1 and treats �5 as noise to get

(0.7 � 0.1)/2 = 0.3 GDoF.

• Receiver 5 zero forces �4 to get 0.6/2 = 0.3 GDoF.

⌅

As mentioned before, within the multilevel TIM framework,

in general the solution based on a combination of TIM and TIN

(including the decomposition approach presented in this sec-

tion) is not optimal from an information theoretic perspective.

However, this robust decomposition approach works rather

well when the quantized channel strength levels for cross links

are concentrated around the bottom half of the signal levels,

where it characterizes the symmetric GDoF value to a constant

factor that is no larger than 2.

Theorem 2: For QM-TIM(C1, C2, ..., C;) where C;  0.5, the

TIM-TIN decomposition approach characterizes the symmetric

GDoF value 3sym within a factor of 1
1�C;  2.

The proof of Theorem 2 is relegated to Appendix C.

Remark 1: The setting of QM-TIM(C1, C2, ..., C;) where C; 
0.5 is justified by the conjecture that the optimal allocation

of limited quantization bins for interfering links would be

more concentrated near the noise floor. Intuitively, this is

because the opportunities to communicate exist only where

the desired signal significantly dominates noise/interference

strengths, especially for settings with channel uncertainties

where one might be forced to treat interference as noise.

Although in general the optimal channel quantization is still

an interesting open problem (which is beyond the scope of this

paper), the above conjecture is partially settled for the 2-user

Z interference channel in [33].

Finally, we show that TIM-TIN decomposition may achieve

the optimal GDoF for certain network settings. Here we con-

sider a class of multilevel neighboring interference channel,

which is a generalization of the cellular blind interference

alignment problem (or wireless index coding problem) in

[19]. In order to limit the number of parameters while still

covering broad classes of network setups, here we mainly

study symmetric cases, i.e., where relative to its own position,
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(a) (b)

(c) (d)

Fig. 2: (a) A 5-user interference channel. The red solid lines and
dashed blue lines represent strong and medium interfering links,
respectively. The weak interfering links are omitted to avoid cluttering
the graph. (b) The TIN component with all medium interfering links.
(c) The TIM component with all strong interfering links. (d) The
achievable scheme to achieve the symmetric GDoF value 0.3 in the
original network.

each receiver has the same set of strong and medium inter-

fering links. More specifically, consider the channel depicted

in Fig. 3, which is a locally connected interference channel

with an infinite number of users within the QM-TIM(0,0.5)

framework. For each receiver : , there are 2(( + ") + 1

transmitters connected to it with channel strength level no

less than the effective noise floor. One of them is the desired

Transmitter : . The 2( transmitters with indices {:�(, ..., :�1}

and {: + 1, ..., : + (} are connected to Receiver : with

strong interfering links, and the 2" transmitters with indices

{: � ( � " , ..., : � ( � 1} and {: + ( + 1, ..., : + ( + "} are

connected to Receiver : with medium interfering links. For

such networks, we have the following result.

Theorem 3: For the above symmetric multilevel neighboring

interference channel, the symmetric GDoF value is

3BH< =

⇢
1

(+"+1
, "  (

1
2((+1)

, " > (
(7)

which is achievable by TIM-TIN decomposition.

The proof details are provided in Appendix D. It is no-

table that for the symmetric neighboring interference channel,

the signal space approach (with one-to-one alignments, see

Appendix D) always achieves 1/(( + " + 1) GDoF. When

" > ( + 1, according to Theorem 3, the decomposition

Fig. 3: The symmetric multilevel neighboring interference channel
with an infinite number of users. To avoid cluttering the figure, only
the direct links for users with indexes { �(�"�1, ..., +(+"+1}
and the interring links for Receiver : are shown. The red solid lines
and blue dashed lines represent strong and medium interfering links,
respectively.

approach outperforms the pure signal space approach in terms

of GDoF, and with " increasing the gap between these two

strictly increases.

Remark 2: The result in Theorem 3 can be extended to

some asymmetric cases directly. For instance, suppose that

the number of strong interferers for each user : is still 2(,

whose indices are still {: � (, ..., : � 1} and {: + 1, .., : + (}.

However, different users have different numbers of medium

interferers. For User : , the indices of the medium interferers

are {: �(�"*: , ..., : �(�1} and {: +(+1, ..., : +(+"⇡: }.

If 8: , "*: > ( and "⇡: > (, the symmetric GDoF value for

such asymmetric multilevel neighboring interference channels

remains as 1
2((+1)

. The converse and achievability arguments

both follow from the proof of Theorem 3.

V. A DISTRIBUTED NUMERICAL APPROACH

The TIM-TIN decomposition approach is a centralized

analytical method, which requires the coarse channel strength

information of all links in the network together for joint signal

vector space and signal power level allocation. In this section,

we devise a distributed numerical algorithm to address the

TIM-TIN problem, which only requires local measurements

on the signal strengths at each user. The proposed algorithm

is built upon a distributed power control algorithm based on

the duality of TIN [34], whose key ingredient is restated below.
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Lemma 3: (Lemma 1 in [34]) In a general  -user in-

terference channel, assume that a valid power allocation

(A1, ..., A ),
7 A8  0, 88 2 [ ], achieves a GDoF tuple

(31, ..., 3 ). In its reciprocal channel using the power allo-

cation (Ā1, ..., Ā ), where

Ā: = � max
9: 9<:

{0, U: 9 + A 9 }, 8: 2 [ ], (8)

the achieved GDoF tuple (3̄1, ..., 3̄ ) dominates (31, ..., 3 ),

i.e., 3̄: � 3: , 8: 2 [ ].

The proposed TIM-TIN distributed numerical algorithm,

called ZEST, is specified at the top of the right column in

this page.8 The convergence of the ZEST algorithm is given

in Theorem 4.

Theorem 4: In the ZEST algorithm,
�!
3

(<)

⌃
converges.

The proof of Theorem 4 is presented in Appendix E, where

we show that

�!
d (<) 

 �
d

(<)

switch

 �
d (<) 

�!
d

(<)

switch

�!
d (<+1)

. (9)

Remarkably, the proof of Theorem 4 leads to the duality of

the TIM-TIN problem naturally.

Theorem 5: (Duality of TIM-TIN) In the TIM-TIN problem,

any  -user interference channel and its reciprocal channel

have the same achievable GDoF region.

Proof : Through (9), one can find that for any channel with

arbitrary beamforming vectors and power allocations, in its

reciprocal channel, we can always construct some beamform-

ing vectors and their associated power allocations, such that

the obtained GDoF tuple in the reciprocal channel dominates

that achieved in the original channel. Since in the TIM-TIN

problem, the achievable GDoF region for any interference

channel must be upper-bounded, the original channel and its

reciprocal channel have the same achievable GDoF region. ⌅

A. Numerical Validations

To further validate the GDoF performance of the proposed

ZEST algorithm, we consider a random 5-user interference

channel. We assume that the channel strength levels of all

direct links are always equal to 1. Motivated by cellular net-

works where users suffer strong interference from neighboring

cells, we assume that at Receiver 8, the interference from

Transmitter 8�1 and 8+1 are strong interference, and the others

are weak.9 For the strong interference, we assume that their

channel strength levels fall into a uniform distribution of [G, 1],

and the channel strength levels of the weak interfering links

fall into a uniform distribution of [0, 1 � G], where G � 0.5.

Following [13], [17], [34], we keep the channel strength levels

7In the TIN scheme, assume that the allocated power to User 8 2 [ ] is
%A8 , A8  0. From the GDoF perspective, we refer to the power exponent
vector (A1, ..., A ) as the power allocation.

8Note that in steps 3) and 5) of the ZEST algorithm, when the beam ; 2
[1: ] of User : 2 [ ] updates its power allocation following Lemma 3, it
treats all the remaining received beams after ZF and SC (including the other
desired beams of User :) as interference. Also note that since in steps 2)
and 4) a successive cancellation is adopted in the lexicographic order, the
beam ; of User : does not receive interference from beam s of User :, where
B, ; 2 [1: ] and B < ;.

9Here we consider a cyclic setting, i.e., when 8 = 1, 8 � 1 = 5 and when
8 = 5, 8 + 1 = 1.

Algorithm 1 ZEST: ZEro-forcing with Successive cancella-

tion and power control for TIM-TIN

1) Let < = 1. Set = and 1: , and randomly choose unit-norm

beamforming vectors
�!
v

(<)

: ,;
and power allocations �!A (<)

: ,;
that

satisfy the unit power constraint, : 2 [ ], ; 2 [1: ].

2) In the original channel, update the receiving vectors
�!
u

(<)

: ,;
to the unit-norm ZF-SC receiving vectors that achieve

the maximal GDoF value for each user (See Lemma 2.

Without loss of generality, the cancellation is taken in the

lexicographic order). Compute the achievable GDoF tuple
�!
d (<) and the achievable sum-GDoF value

�!
3

(<)

⌃
.

3) Reverse the direction of the communication. Calculate

the power allocation  �A (<)

: ,;
for each data stream in the re-

ciprocal channel following (8), and set the beamforming and

receiving vectors
 �
v

(<)

: ,;
and
 �
u

(<)

: ,;
following

 �
v

(<)

: ,;
=
�!
u

(<)

: ,;
,

 �
u

(<)

: ,;
=
�!
v

(<)

: ,;
, 8: 2 [ ], 8; 2 [1: ]. Compute the

achievable GDoF tuple
 �
d

(<)

switch
and the achievable sum-

GDoF value
 �
3

(<)

⌃,switch
(using receivers with the reverse

lexicographic cancellation order).

4) In the reciprocal channel, update the receiving vectors
 �
u

(<)

: ,;
to the unit-norm ZF-SC receiving vectors that achieve

the maximal GDoF value for each user (Again, the can-

cellation is taken in the lexicographic order). Compute the

achievable GDoF tuple
 �
d (<) and the achievable sum-GDoF

value
 �
3

(<)

⌃
.

5) Reverse the direction of the communication. Calculate

the power allocation �!A (<+1)

: ,;
for each data stream in the

original channel following (8), and set
�!
v

(<+1)

: ,;
=
 �
u

(<)

: ,;
,

�!
u

(<+1)

: ,;
=
 �
v

(<)

: ,;
, 8: 2 [ ], 8; 2 [1: ]. Compute the

achievable GDoF tuple
�!
d

(<)

switch
and the achievable sum-

GDoF value
�!
3

(<)

⌃,switch
(using receivers with the reverse

lexicographic cancellation order). Then let < = < + 1.

6) Repeat steps 2) through 5) until the achievable sum GDoF

value (i.e.,
�!
3

(<)

⌃
) converges or < reaches a predefined

threshold.

U8 9 fixed and scale the parameter % in each random channel

realization, and we always assume that every transmitter is

subject to a unit peak power constraint and the noise variance

at each receiver is normalized to one. Since all the direct

channels are with channel strength level 1, % in fact denotes

the SNR of the desired link for each user.

We compare the achievable sum-GDoF of the proposed

ZEST algorithm, the well-known distributed interference

alignment algorithm Max-SINR [35],10 the state-of-the-art

power control algorithm SAPC (i.e., SINR approximation

power control) [36], TDMA (i.e., the orthogonal scheme

with equal time sharing among all users) and the full power

transmission (i.e., every user always utilizes full power to

transmit its own signal). It is notable that Max-SINR and

SAPC optimizes the signal space allocation and signal level

10The Max-SINR algorithm is originally proposed for MIMO interference
channels. Here we adopt the algorithm for SISO interference channels with
multiple channel uses.
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allocation, respectively. Among all the schemes considered

here, only ZEST jointly optimizes the signal space and signal

level allocation for data transmission. For both ZEST and

Max-SINR, we set the number of channel uses = as 2 and

the number of scalar data streams for each user 3: as 1,

8: 2 {1, ..., 5}. We also note that for both ZEST and Max-

SINR, different initializations may yield different sum-rates,

particularly for ZEST in low and medium SNR regimes.11 In

our experiment, for both ZEST and Max-SINR, in each chan-

nel realization we start from multiple random initializations

and pick the largest yielded sum-rate as the final solution.

When the SNR value % is less than 30 dB, we set the number

of random initializations as 30, and 10 otherwise. How to

smartly choose the initialization of ZEST to improve sum-

rate in low and medium SNR regimes is an interesting open

question.

In our experiments, we consider two specific G values,

i.e., G = 0.5 and G = 0.75, where the latter models the

settings with more diverse channel strengths between strong

and weak interfering links. For the two different G values, the

averaged sum-rate of all algorithms over 200 random channel

realizations are given in Fig. 4(a) and 4(b), respectively. It

can be seen that in both cases ZEST achieves the largest sum-

GDoF value (i.e., the steepest slope in the high SNR regime)

among all the schemes. More interestingly, ZEST outperforms

SAPC, TDMA and the full power transmission almost over

the entire SNR range. Compared with Max-SINR, ZEST

is particularly favorable in the settings with more disparate

interference strengths (e.g., when G = 0.75), and in both cases

ZEST only suffers slight sum-rate degradation when the SNR

value is relatively low.

Next, we consider the convergence of the ZEST algorithm.

In general, the numerical results show that in all channel

realizations and in all SNR regimes, ZEST exhibits a much

faster convergence rate than Max-SINR and SAPC. In our

experiment, a few iterations are usually sufficient for ZEST’s

convergence. A representative example is given in Fig. 5 when

G = 0.5 and SNR = 30 dB. Note that as shown in Fig. 5, the

convergence of Max-SINR is not always monotone, which has

been reported in [37] as well.

While our numerical experiments are modest in scale and

scope, they are indicative of the following strengths of ZEST:

1) with proper initialization and choice of parameters (e.g.,

the numbers of channel uses and data streams), ZEST appears

capable of achieving superior GDoF performance compared

with the conventional schemes which only optimize the alloca-

tion of signal vector space or signal power levels individually,

11We point out that the convergence of Max-SINR is still open. In our
experiment, we note that for Max-SINR, with a sufficient number of iterations,
different initializations usually converge to the same sum-rate. In practice,
when the number of iterations is limited, different initializations may lead to
different final solutions though. In [37] a convergent Max-SINR algorithm is
developed, which in fact jointly optimizes the signal vector space and signal
power level allocations. However, the proposed algorithm in [37] is based
on the duality of SINR in multiuser MIMO networks under an artificial sum

power constraint. While in ZEST, the convergence is guaranteed under the
practical individual user power constraint. But due to the non-convexity of
the problem, the convergent point depends on the initialization. For SAPC,
following [36] we always set the initial power of each user as its maximal
transmit power.

(a)

(b)

Fig. 4: Sum-rate performance of ZEST, Max-SINR, TDMA, SAPC,
and the full power transmission, when (a) G = 0.5, and (b) G =

0.75, where the latter models the settings with more diverse channel
strengths between strong and weak interfering links.

especially for the cases where the interference strengths are

disparate; 2) ZEST exhibits a fast convergence rate. More

elaborate numerical experiments that study the performance

of ZEST at a larger scale remain an interesting topic for

future work. Advances in the ability to efficiently find good

initialization points for ZEST in large networks are likely to be

particularly impactful. Ongoing efforts along these lines, that

compare and contrast MaxSINR, and TIMTIN, and combine

them with autoencoders based on deep learning principles are

notable in this regard [38]. Evidently, this research avenue

remains an active area with much potential for progress.

VI. CONCLUSION

In this paper, we formulate a joint signal vector space

and signal power level allocation problem (i.e., the TIM-TIN

problem) under the assumption that only a coarse knowledge

of channel strengths and no knowledge of channel phases is

available to the transmitters. A decomposition of the problem

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 16:34:12 UTC from IEEE Xplore.  Restrictions apply. 



0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2021.3102623, IEEE

Transactions on Communications

9

Fig. 5: A representative example for the convergence behavior of
ZEST, max-SINR, and SAPC.

into TIN and TIM components is proposed as a baseline. A

distributed numerical algorithm called ZEST is developed as

well. The convergence of the ZEST algorithm leads to the

duality of the TIM-TIN problem. The joint TIM-TIN approach

is promising as a building block for existing and future

wireless networks, due to its robustness to channel uncertainty

at the transmitters, implementation simplicity (e.g., no need

to decode any interference, and being implemented in a

distributed fashion) and its potential for superior performance.

However, this line of research is still in its early stages. It

is hoped that this work could inspire more future research in

this area. Future directions include, e.g., translating theoretical

insights obtained in this work into the design of practical large-

scale wireless networks, such as device-to-device networks and

heterogeneous cellular networks.

APPENDIX A

PROOF OF LEMMA 1

Let G8 ⇠ CN(0, %^8 ) be independent Gaussian variables.

Denote by z an = ⇥ 1 zero mean unit variance circularly

symmetric Gaussian vector. When < > W, denote the = ⇥ 1

vectors v8 * V⇧ as v⇧0 ( 9) , 9 2 [< � W]. We have

log
h

det
⇣

I +

<’

8=1

%^8v8v
†
8

⌘i

= ⌘
⇣ <’

8=1

v8G8 + z
⌘

+ >(log(%)) (10)

= ⌘
⇣ W’

8=1

v⇧(8)G⇧(8) +

<�W’

9=1

v⇧0 ( 9)G⇧0 ( 9) + z
⌘

+ >(log(%)) (11)

= ⌘
⇣ W’

8=1

v⇧(8)G⇧(8) + z
⌘

+ >(log(%)) (12)

= log
h

det
⇣

I +

W’

8=1

%^⇧(8) v⇧(8)v
†

⇧(8)

⌘i

+ >(log(%)), (13)

where (12) is due to the facts that v⇧0 ( 9) , 8 9 2 [< �
W] is a linear combination of the vectors in V⇧ =

{v⇧(1) , v⇧(2) , ..., v⇧(W) }, and the term
Õ<�W
9=1

v⇧0 ( 9)G⇧0 ( 9) be-

comes insignificant when % approaches infinity. More specif-

ically, as % ! 1, for the term v8 (G8 + G 9 + ... + G: )

(8 < 9 < ... < :), only the symbol G8 with the dominant power

exponent ^8 matters, implying that for the vector v8 we can

ignore all the other independent symbols with equal or smaller

power exponents in the limit of % ! 1. The following is

essentially the same as the proof of Lemma 1 in [39]. Define

V⇧ , [v⇧(1) v⇧(2) ... v⇧(W) ] with size =⇥W, and the diagonal

matrix P⇧ , diag[%^⇧(1) %^⇧(2) ... %^⇧(W) ] with size W ⇥ W. We

have

log
h

det(I +

W’

8=1

%^⇧(8) v⇧(8)v
†

⇧(8)
)
i

= log
h

det(I + V⇧P⇧V
†
⇧
)
i

(14)

= log
h

det(I + V
†
⇧

V⇧P⇧)
i

(15)

= log
h

det(P⇧)
i

+ log
h

det(P�1
⇧

+ V
†
⇧

V⇧)
i

(16)

=

W’

8=1

^⇧(8) log % + O(1) (17)

APPENDIX B

PROOF OF LEMMA 2

Recall that in Section III, from vectors V = {v1, ..., v<}

and their associated power exponents R = {^1, ..., ^<}, we

obtain W  = linearly independent beamforming vectors V⇧ =

{v⇧(1) , v⇧(2) , ..., v⇧(W) } and their associated power exponents

P⇧ = {^⇧(1) , ^⇧(2) , ..., ^⇧(W) }. Define these operations as NE

and N^ , respectively, i.e., NE (V,R) = V⇧ and N^ (V,R) =

P⇧. Denote by ^⌃,N^ (V ,R) the sum of all entries in N^ (V,R).

To prove lemma 2, without loss of generality, we only need

to consider User 1 and assume that the successive cancellation

is taken in the lexicographic order. According to the chain rule,

we have

'1 =

1

=
� (B1,1, B1,2, ..., B1,11

; y1) =

11’

8=1

1

=
� (B1,8; y1 |B1,1, ..., B1,8�1)

|                            {z                            }

,'1,8

(18)

Let 31,8 = lim%!1
'1,8

log %
, 88 2 [11]. We have

31 =

11’

8=1

31,8 (19)

For Receiver 1, denote the sets of the beamforming vectors

and associated power exponents for all the received data

streams as V1 and R1, respectively. Consider each term in the

right hand side of (19). Start with 31,1. We have the following

two cases.

• A1,1 + U11 2 N^ (V1,R1): In this case, we have v1,1 2
NE (V1,R1). From Lemma 1, we have

'1,1 =

1

=

h

⌘(y1) � ⌘(y1 |B1,1)
i

=

1

=

h

^⌃,N^ (V1 ,R1) � ^⌃,N^ (V1\v1,1 ,R1\{A1,1+U11 })

i

log %
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+ >(log(%))

Therefore, in the GDoF sense, we have 31,1 =

^⌃,N^ (V1 ,R1 )
�^⌃,N^ (V1\v1,1 ,R1\{A1,1+U11})

=
, which is achievable

by zero-forcing all the data streams falling into

span(NE (V1,R1)\v1,1) and treating the remaining inter-

ference as noise.

• A1,1 + U11 8 N^ (V1,R1): In this case, v1,1 8 NE (V1,R1).

We have '1,1 = >(log(%)) and 31,1 = 0, which is trivially

achievable (by ZF and TIN).

After decoding B1,1, we subtract it out from the received signal

and then consider the second term in the right hand side of

(19), i.e., 31,2. Similarly, we can argue that by zero-forcing

certain interfering data streams for B1,2 and treating others as

noise, 31,2 is achievable. Repeating this subtract-and-decode

argument until all the desired data streams for User 1 are

decoded, we establish that 31 is achievable via the ZF-SC

receiver and complete the proof.

APPENDIX C

PROOF OF THEOREM 2

In the achievability, the original network is decomposed

into a TIN component containing all the interfering links

with channel strength levels no stronger than C; and a TIM

component containing all the other interfering links. First,

consider the TIN component. When C;  0.5, the TIN

component satisfies the TIN-optimality condition identified in

[9] (recall that the channel strength level of the direct link is

normalized to 1). Following Theorem 1 in [9], its symmetric

GDoF value 3TIN
sym � 1 � C; . Next, for the TIM component,

assume that given the optimal signal space solution, the

optimal symmetric GDoF value is denoted by 3TIM
sym . Finally,

according to Theorem 1 in this paper, the symmetric GDoF

value 3TIM
sym ⇥ 3TIN

sym is achievable.

For the converse, 3TIM
sym and 3TIN

sym are both outer bounds for

the original network, since removing interfering links from the

channel does not decrease GDoF. Therefore, min{3TIM
sym , 3TIN

sym}

can serve as an outer bound for the symmetric GDoF value

of the original network. We have 3TIN
sym ⇥ 3TIM

sym  3sym 
min{3TIN

sym , 3TIM
sym }, and the symmetric GDoF value 3sym can

be characterized to a factor

V =

min{3TIM
sym , 3TIN

sym}

3TIN
sym ⇥ 3TIM

sym


min{3TIM

sym , 1}

(1 � C;) ⇥ 3TIM
sym

=

1

1 � C;
, (20)

which is no larger than 2.

APPENDIX D

PROOF OF THEOREM 3

First, consider the achievability. When " is no larger than

(, the achievable scheme is to treat all the medium interfering

links as strong interfering links and apply the one-to-one

alignment (see Theorem 6 of [19]). Note that this scheme

falls into the category of TIM-TIN decomposition, where the

TIN component contains no interfering links and the TIM

component contains all the medium and strong interfering

links. Otherwise, when " is larger than (, we use the

following decomposition to achieve the optimal symmetric

GDoF value: let the TIN and TIM component contain all

the medium interfering links and all the strong interfering

links, respectively. For the TIN component, the achievable

symmetric GDoF value is 1
2
, and for the TIM component,

the achievable symmetric GDoF value is 1
(+1

[19]. Therefore,

in the original network, the symmetric GDoF value 1
2((+1)

is

achievable.

Next, consider the converse. We start with a useful lemma.

Lemma 4: Consider a 3-user interference channel within the

QM-TIM(0,0.5) framework, where 8, 9 , : 2 {1, 2, 3}, 8 < 9 ,

9 < : , and 8 < : . Denote by ;8 9 the link between Transmitter

9 and Receiver 8, M the set of all medium interfering links,

and S the set of all strong interfering links. If ;8 9 2 S, and

;:8 , ;8: , ;: 9 , ; 9: 2 {S [M}, then the sum GDoF value of this

channel is 1.

Proof: The achievability is straightforward. In the following

we only consider the converse. Without loss of generality, we

assume 8 = 1, 9 = 2, and : = 3. To obtain the desired outer

bound, we first set U21 = 0. This does not hurt the sum capacity

because regardless of the channel strength level of the cross

link ;21, we can always provide the message ,1 to Receiver

2 through a genie and remove this interfering link.

Without perfect channel knowledge at transmitters, the

channel can be regarded as a compound channel (with an

infinite number of channel states), and its capacity is upper

bounded by the capacity of any possible channel state [13].

By definition, in QM-TIM(0,0.5) for both strong and medium

interfering links, their channel strength levels can be set as the

threshold value 0.5. Consider a specific channel realization

where U11 = U22 = U33 = U12 = 1, U13 = U31 = U23 =

U32 = 0.5, and all the links have the same channel phase. The

capacity of the original channel is upper bounded by this case.

For any reliable decoding scheme, Receiver 1 can always

decode its own message ,1. After decoding ,1, Receiver

1 can subtract it from its received signal and has the same

signal as Receiver 2. So Receiver 1 can also decode ,2. Now

consider Transmitters 1 and 2. We find that they have the same

channel vectors to Receiver 1 and 3. It implies that the sum

capacity of the original channel is upper bounded by that of

a 2-user interference channel with transmitters {)1,2,)3} and

receivers {'1, '3}, where )1,2 is a combination of Transmitter

1 and 2. The sum-GDoF value of this 2-user interference

channel (where both desired links have channel strength level 1

and both cross links have channel strength level 0.5) is known

to be 1 [30]. Therefore, we establish the desired outer bound.

⌅

As mentioned before, for the compound channel setting,

the capacity of any possible channel state serves as a capacity

upper bound. To complete the converse proof, the main task

is to identify the channel state providing the tightest upper

bound. For both cases discussed below, the proof follows

three steps: (1) picking up the target subnetwork with a

certain number of users, (2) identifying the specific channel

realizations which provide the desired outer bound, and (3)

completing the proof by reducing the obtained channel to a

relatively simple equivalent channel with known sum-GDoF

result.
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(a)

(b)

Fig. 6: For the converse, when "  ( and " > (, we consider
the (( + " + 1)-user interference channel in (a) and the 2(( + 1)-
user interference channel in (b), respectively. In both channels, the
channel strength levels of the red solid lines and blue dashed lines
are 1 and 0.5, respectively.

Case I ("  (): Consider any consecutive ( +" + 1 users.

Without loss of generality, assume that the user indices range

from 1 to ( + " + 1. For these users, we intend to prove the

outer bound 31 + 32 + ... + 3(+"+1  1.

Towards this end, first remove all the users other than the

considered ( + " + 1 users, which does not hurt the sum

capacity of users 1 to (+"+1. Next, in the remaining network,

divide the ( + " + 1 users into three subgroups as shown in

Fig. 6(a):

• G1: this subgroup includes users 1 to ";

• G2: this subgroup includes users " + 1 to ( + 1;

• G3: this subgroup includes users ( + 2 to ( + " + 1.

To derive the desired outer bound, consider the channel

realization below. Assume that all the links have the same

channel phase. For the direct links, recall that their channel

strength levels are all equal to 1. For the medium interfering

links, we set their channel strength levels to be exactly 0.5.

For the strong interfering links, we set their channel strength

levels to be either 1 or 0.5 as follows. For all the transmitters

in G1, we assume that the cross links between them and the

receivers in G1 and G2 are all with channel strength level 1,

while the cross links between them and the receivers in G3 are

all with channel strength level 0.5. Next, for the transmitters

in G2, the cross links between them and all the receivers are

with channel strength level 1. Finally, for the transmitters in

G3, the cross links between them and the receivers in G2 and

G3 are all with channel strength level 1, while the cross links

between them and the receivers in G1 are all with channel

strength level 0.5.

Now, note that in this network, all the receivers in the same

subgroup G8 8 2 {1, 2, 3}, are equipped with the same received

signal. Thus removing all of them but one cannot hurt the sum

capacity. Also note that for all the transmitters in the same

subgroup G8 , 8 2 {1, 2, 3}, they have the same channel vectors

to all the remaining three receivers. Thus combining all the

transmitters in each subgroup into one transmitter does not hurt

the sum capacity either. Therefore, the network is reduced to a

3-user interference channel where U13 = U31 = 0.5 and all the

other links are with channel strength level value 1. According

to Lemma 4, the sum-GDoF value of this network is 1, which

establishes the desired outer bound.

Case II (" > (): Consider any consecutive 2(( + 1) users.

Without loss of generality, assume the user indices range from

1 to 2(( +1). For these users, we intend to show 31 + 32 + ...+

32((+1)  1. Similar to the previous case, we first remove all

the other users. In the remaining network, divide the 2(( + 1)

users into two subgroups as shown in Fig. 6(b):

• G1: this subgroup includes users 1 to ( + 1;

• G2: this subgroup includes users ( + 2 to 2(( + 1).

Again, assume that all the links have the same channel

phase. For the direct links, their channel strength levels are

all 1. For the medium interfering links, we set their channel

strength levels to be exactly 0.5. Next, we set the channel

strength levels of the strong interfering links to be either 1 or

0.5 as follows. For transmitters in each subgroup G8 , the cross

links between them and the receivers in the same subgroup

G8 are all with channel strength level 1, and the cross links

between them and all the receivers in the other subgroup G 9
are with channel strength level 0.5, where 8, 9 2 {1, 2} and

8 < 9 . Removing all the receivers but one in each subgroup

G8 , 8 2 {1, 2}, cannot hurt the sum capacity. Combining all

the transmitters in each subgroup G8 , 8 2 {1, 2}, into one

transmitter cannot hurt the sum capacity either. Finally, we

end up with a 2-user interference channel with U11 = U22 = 1,

U12 = U21 = 0.5 and sum-GDoF value 1 [30], which leads to

the desired outer bound.

APPENDIX E

PROOF OF THEOREM 4

As the sum-GDoF of an interference channel must be

upper bounded by a finite value, to prove this theorem, we

only need to show that the achievable sum-GDoF via the

ZEST algorithm monotonically increases after each update,

i.e.,
�!
3

(<)

⌃

 �
3

(<)

⌃,switch

 �
3

(<)

⌃

�!
3

(<)

⌃,switch

�!
3

(<+1)

⌃
.

Towards this end, we show that the GDoF tuple obtained in

each step satisfies

�!
d (<)

(0)

 �
d

(<)

switch

(1)

 �
d (<)

(2)

�!
d

(<)

switch

(3)

�!
d (<+1)

, (21)

where (b) and (d) follow from Lemma 2 directly, as in these

two steps, the receiver is updated to the ZF-SC receiver that

achieves the maximal GDoF.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 16:34:12 UTC from IEEE Xplore.  Restrictions apply. 



0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2021.3102623, IEEE

Transactions on Communications

12

Next, consider (a). Let ⌫ =

Õ 
:=1 1: . In the <-th iteration,

define an indicator function

I
{ |
�!
u

(<)†

:,;

�!
v
(<)
9,B

|<0}
=

(

1, |
�!
u

(<)†

: ,;

�!
v

(<)
9 ,B

| < 0

0, |
�!
u

(<)†

: ,;

�!
v

(<)
9 ,B

| = 0
(22)

Next, define ⌧
9 ,B

: ,;
= U: 9 I{ |�!u (<)†

:,;

�!
v
(<)
9,B

|<0}
, which is the effective

channel strength level from data stream B of User 9 to data

stream ; of User : in the original channel. Also define a ⌫⇥⌫

matrix G

✓

Õ:�1
==1 1= + ;,

Õ 9�1

<=1
1< + B

◆

= ⌧
9 ,B

: ,;
.

Recall that a successive cancellation procedure is adopted

at each receiver. According to the ZEST algorithm given in

Section V, without loss of generality, we have assumed that

the cancellation is taken in the lexicographic order. Therefore,

for Receiver : 2 [ ], the effective channel strength level from

data stream ? of User : to data stream @ of User : is 0, for

?, @ 2 [1: ] and ? < @. Set the corresponding entries of G as

0, i.e.,

G

✓ :�1’

==1

1= + @,

:�1’

==1

1= + ?

◆

= 0,8: 2 [ ], 8?, @ 2 [1: ], ? < @,

(23)

and denote the obtained matrix by
�!
G. Next, for the  -

user original channel in the <-th iteration with beamforming

vectors
�!
v

(<)
9 ,B

and ZF-SC receiving vectors
�!
u

(<)

: ,;
, we construct

a counterpart ⌫-user interference channel with the channel

strength level matrix
�!
G, which is denoted by IC>. For IC>,

�!
G ( 9 , 8) denotes the channel strength level from Transmitter 8

to Receiver 9 . Assume that in IC>, the allocated power to

Transmitter 8 is �!A 8 = �!A (<)
9 ,B

where 8 =
Õ 9�1

;=1
1; + B. By treating

interference as noise at each receiver, we obtain the achievable

GDoF tuple of IC> (31,>, ..., 3⌫,>) and
Õ809
8=8 9

38,> = =⇥
�!
3

(<)
9

,

where 8 9 =
Õ 9�1

;=1
1;+1, 809 =

Õ 9

;=1
1; , and

�!
3

(<)
9

is the 9-th entry

of
�!
d (<) .

Similarly, for the reciprocal channel in the <-th iteration

with beamforming vectors
 �
v

(<)
9 ,B

=
�!
u

(<)
9 ,B

and receiving vectors
 �
u

(<)

: ,;
=
�!
v

(<)

: ,;
, we construct a counterpart ⌫-user interference

channel with the channel strength level matrix
 �
G =

�!
G) ,

which is the reciprocal channel of IC> and denoted by ICA .12

Assume that in ICA , the allocated power to Transmitter 8 is
 �A 8 = �A (<)

9 ,B
where 8 =

Õ 9�1

;=1
1; + B. By treating interference as

noise at each receiver, we obtain the achievable GDoF tuple

of ICA (31,A , ..., 3⌫,A ) and
Õ809
8=8 9

38,A = = ⇥
 �
3

(<)

9 ,switch
, where

 �
3

(<)

9 ,switch
is the 9-th entry of

 �
d

(<)

switch
. According to Lemma

3, we have
Õ809
8=8 9

38,> 
Õ809
8=8 9

38,A )
�!
3

(<)
9

 �
3

(<)

9 ,switch
,

8 9 2 [ ], and hence prove (a). The proof of (c) follows

similarly. Therefore, we establish (21) and complete the proof.

12Note that the new channel ICA with the channel strength level matrix
�!
G) corresponds to the reciprocal channel in the <-th iteration where the
successive cancellation for each user is taken in the reverse lexicographic
order.
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