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ABSTRACT

Graph clustering is a core technique for network analysis problems,
e.g., community detection. This work puts forth a node clustering
approach for largely incomplete adjacency graphs. Under the con-
sidered scenario, instead of having access to the complete graph,
only a small amount of queries about the graph edges can be made
for node clustering. This task is well-motivated in many large-scale
network analysis problems, where complete graph acquisition is pro-
hibitively costly. Prior work tackles this problem under the setting
that the nodes only admit single membership and the clusters are
disjoint, yet multiple membership nodes and overlapping clusters of-
ten arise in practice. Existing approaches also rely on random edge
query patterns and convex optimization-based formulations, which
give rise to a number of implementation and scalability challenges.
This work offers a framework that provably learns the mixed mem-
bership of nodes from overlapping clusters using limited edge infor-
mation. Our method is equipped with a systematic edge query pat-
tern, which is arguably easier to implement relative to the random
counterparts in certain applications, e.g., field survey based graph
analysis. A lightweight scalable algorithm is proposed, and its per-
formance characterizations are presented. Numerical experiments
are used to showcase the effectiveness of our method.

Index Terms— Graph clustering, mixed membership, sampled
edge query, nonnegative matrix factorization

1. INTRODUCTION

Graph clustering (GC) aims at associating the nodes of a graph with
different clusters in an unsupervised manner [1]. GC is a core tech-
nique in data science since network data frequently arise in various
applications, e.g., social network analysis [2], brain signal process-
ing [3], and biological/ecological data mining [4]. GC techniques
are also used as nonlinear dimensionality reduction tools; see e.g.,
spectral clustering [5].

Theory and methods of GC with the full graph observed have
been extensively studied in the past two decades [6–9]. Recently,
GC under partial observation of the graph edges have drawn increas-
ing attention. Notably, many network data have grown prohibitively
large—e.g., social media networks from Facebook and Twitter could
easily contain billions of edges (i.e., user-user links). Edge acquisi-
tion and the subsequent computational tasks at such a scale is highly
nontrivial. In addition, in some networks, edges are intentionally
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removed or hidden (e.g., terrorist networks or radical group net-
works) [10], and the ability to retrieve information from such par-
tially observed graphs is also critical. Under these scenarios, instead
of collecting edge information of the entire network, data analysts
(have to) sample some edges of interest, and use the sampled net-
work to perform graph clustering [11].

A number of works [12–14] have considered the graph cluster-
ing problem under incomplete edge observation. There, the node
membership identification guarantees were established under the as-
sumption that every node is associated with a single cluster. How-
ever, in real-world networks, the nodes often admit mixed member-
ship and the clusters are usually overlapped (e.g., a person in a co-
author network could belong to both the signal processing and ma-
chine learning communities simultaneously). In addition, the edges
were queried randomly in these existing approaches, which may
not be easy to implement in some applications; e.g., in field sur-
vey based network analysis spanning a large geographic area [15]—
surveys are easier to be conducted within local communities, other
than randomly scattered geographically. Random query is also not
suitable for handling networks with hidden or intentionally removed
edges [10]. In terms of computation, the existing works in [12–14]
recast the edge query-based GC task as nuclear norm-based convex
optimization problems, which entailsN2 (whereN is the number of
nodes) optimization variables—making it hard to scale up for real-
world large graphs.

In this work, we offer an alternative framework for learning the
node membership from incomplete graph. Unlike existing random
edge query-based GC methods in [12–14], we propose a carefully
designed systematic edge query principle to enable provable GC. Us-
ing systematic edge query makes the query pattern under control of
the system designer, which can be easily adjusted to accommodate
challenging scenarios in situ. We also model the adjacency graphs
using a mixed membership model, and thus naturally cover the over-
lapping cluster case. In terms of algorithm, we propose a scalable
procedure that only consists of the truncated singular value decom-
position (SVD) of small matrices and a Gram-Schmidt-like greedy
algorithm. We also provide theoretical guarantees, i.e., membership
identifiability and estimation accuracy, to support our design. We
conduct numerical evaluation on synthetic and real-world datasets
to demonstrate the effectiveness of the proposed approach.

2. PROBLEM STATEMENT

Consider N data entities that are from K clusters. We consider the
case where the clusters have overlaps and the node admits mixed
membership. Assume that the n-th entity belongs to cluster k with



probability mk,n, where
∑K
k=1mk,n = 1, mk,n ≥ 0. Then, the

vector mn = [m1,n, . . . ,mK,n]> is referred to as the membership
vector of entity n. All such vectors together constitute the member-
ship matrix M = [m1, . . . ,mN ] ∈ RK×N . In GC, the entities
are the nodes of the graph, and the relationship between the nodes
are represented by the edges of the graph. In this work, we consider
graphs that are symmetric adjacency matrices, i.e.,A ∈ {0, 1}N×N ,
where each entryA(i, j) encodes the pairwise relationship between
nodes i and j. Our goal is to learn M using a limited number of
edges in A; i.e, the number of edges queried is much smaller than
total number of edges, i.e., N(N − 1)/2.

Our problem setting is motivated by a number of important ap-
plications. The mixed membership learning is a core task in over-
lapped community detection (OCD) [16]. In the OCD frameworks
proposed in [17–19], the mixed membership was provably learned
using a fully observed A. However, OCD under partially observed
edges is of great interest for applications like field survey based
OCD [15] and hidden edge-robust network analysis [10]. In both
cases, one cannot observe the entire A due to various reasons, e.g.,
resource constraints and difficulty of edge acquisition.

To handle GC under partial edge observations, the work in [12–
14] adopted a generative model ofA where every node admits a sin-
gle cluster membership, i.e., the stochastic block model (SBM) [20].
The SBM can be summarized as follows. Each node n belongs to
a single cluster k, i.e., the membership vector mn is the kth unit
vector. Let B ∈ RK×K represent a cluster-cluster interaction ma-
trix, where B(p, q) represents the probability that cluster p con-
nects with cluster q. Then, the probability that A(i, j) = 1 (i.e.,
nodes i, j are connected) is P (i, j) = m>iBmj , i.e., A(i, j) ∼
Bernoulli

(
m>iBmj

)
. In other words, the adjacency matrix A is

sampled from Bernoulli distributions specified by the correspond-
ing entries of P = M>BM . In the random edge query-based
GC methods [12–14], convex optimization based matrix comple-
tion criteria were proposed to impute the unobserved edges, and
the recoverability of A was established under the SBM. The results
from [12–14] are insightful. However, as discussed, in many appli-
cations, mixed membership is of more interest and/or random edge
queries are not easy to implement.

3. PROPOSED APPROACH

Our approach relaxes the single membership assumption in SBM by
allowing the nodes to be associated with multiple clusters, i.e., the
mixed membership case. We assume that the membership matrixM
satisfies

1>M = 1>, M ≥ 0; (1)

i.e., mn resides in the probability simplex, instead of being the unit
vectors as in SBM. Under (1), the Bernoulli model used in SBM,
i.e.,

A(i, j) ∼ Bernoulli (P (i, j)) , (2)

where P (i, j) = m>iBmj , is adopted in our generative model for
the adjacency matrix A. Overall, (1) and (2) present a model that
is reminiscent of the mixed membership stochastic block (MMSB)
model in OCD [21].

3.1. Systematic Edge Query

Our goal is to learnM from systematically sampled edges ofA. To
proceed, we first divide the nodes into L disjoint groups S1, . . . ,SL
such that S1 ∪ · · · ∪ SL = [N ] (where [N ] = {1, . . . , N}). Let
A`,m ∈ R|S`|×|Sm| denote the adjacency submatrix between groups

Fig. 1. Some patterns forA following EQP withN = 1000,K = 5
and L = 10. The shaded blue region represents the blocks queried.

S` and Sm, where |Sm| denotes the cardinality of the set Sm. We
propose an edge query principle as follows:

Edge Query Principle (EQP):
• For every ` ∈ [L], K ≤ |S`| holds.
• Let mr ∈ [L] and {`r}Lr=1 = [L]. For every `r , there exists
a pair of indices mr and `r+1 where `r+1 6= `r such that the
edges from the blocksA`r,mr andA`r+1,mr are queried.

The proposed EQP covers a large variety of query ‘masks’—
some examples are shown in Fig. 1. Since the query pattern can
be by design instead of random, this entails the flexibility to avoid
querying edges that are known a priori hard to acquire, e.g., edges
that may have been intentionally removed to conceal information or
edges that correspond to interactions between groups that are hard
to survey. Furthermore, instead of sampling individual edges, we
sample blocks of edges under the EQP. This allows us to design a
provable and lightweight algorithm for mixed membership learning.

3.2. Main Idea: Block Subspace Stitching

In this section, we propose an algorithm that consists of simple
SVD operations to estimate U ∈ RN×K such that range(U) =
range(M>) and a subsequent structured matrix factorization (SMF)
stage to estimate M . We name this systematic edge query based
SVD procedure as SEQ-SVD, which is presented in Algorithm 1.

To shed some light on how Algorithm 1 identifiesU , let us con-
sider the ideal case where A`,m = P`,m = M>

` BMm. We show
the main idea by analyzing a toy example with L = 3 and the fol-
lowing blocks are queried following the EQP (also see Fig. 2):

P1,2 = M>
1 BM2 , P2,2 = M>

2 BM2 , (3)

P2,1 = M>
2 BM1 , P3,1 = M>

3 BM1 . (4)

Define C1 := [P>1,2,P
>
2,2]> and C2 := [P>2,1,P

>
3,1]>. The trun-

cated top-K SVD ofC1 andC2 can be represented as follows:

C1 = [U>1 ,U
>
2 ]>ΣV >, C2 = [Ũ>2 , Ũ

>
3 ]>Σ̃Ṽ >. (5)

Combining (3)-(5), and under the assumption that rank(M) =
rank(B) = K and K ≤ |S`|, one can express the bases of
range(M>1), range(M>2 ) and range(M>3) as U1 = M>

1 BΘ,
U2 = M>

2 BΘ and Ũ3 = M>
3 BΦ, respectively, where Θ ∈

RK×K and Φ ∈ RK×K are certain nonsingular matrices. Our hope
is to “stitch” the bases above to have

range([U>1 ,U
>
2 ,U

>
3 ]>) = range([M1,M2,M3]>). (6)

with U1 and U2 in (5) and a certain U3. Note that the Ũ3 from (5)
cannot be directly combined with U1 and U2 to attain the above,
since Θ = Φ does not hold in general. To fix this, we define U3 :=

Ũ3Ũ
†
2U2. It is not hard to see that

Ũ3Ũ
†
2U2 = M>

3 BΦ×
(
M>

2 BΦ
)†
×M>

2 BΘ = M>
3 BΘ.
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Fig. 2. An illustrative case for the subspace identifiability analysis.

This estimated U3 can be combined with U1 and U2 to attain (6).
To handle the more general L > 3 case, the “subspace stitching”
idea conveyed by this simple example is recursively applied in Al-
gorithm 1 over the queried blocks A`r,mr and A`r+1,mr for r =
1, . . . , L − 1. Note that we start the iterations from r = bL/2c
and perform the subspace stitching of the blocks in ascending and
descending orders of r, respectively, because this helps reduce the
overall subspace estimation error when noise is present (critical in
the binary observation case in the next subsection). In terms of sub-
space identifiability, we have the following proposition:

Proposition 1. (Ideal Case) Assume that A`,m = P`,m =

M>
` BMm ∈ R|S`|×|Sm| holds true for all `,m ∈ [L] and

rank(M) = rank(B) = K. Suppose that the A`,m’s are queried
according to the proposed EQP. Then, the output Û by Algorithm 1
satisfies range(Û) = range(M>).

Once U is estimated, the second stage boils down to estimating
M from the following model:

U>= GM , M ≥ 0, 1>M = 1>, (7)

where G ∈ RK×K is nonsingular. Learning M from the model
(7) is the so-called simplex-structured matrix factorization (SSMF)
problem [22–25]. Algorithm 1 employs a Gram-Schmidt-like scal-
able algorithm known as successive projection algorithm (SPA) [23]
for this task. From the model in (7), SPA can provably identify M
in K steps, ifG is nonsingular and if there exists

Λ = {n1, . . . , nK} (8)

such that M(:, nk) = ek, where ek ∈ RK is the kth unit vector.
The existence of Λ translates to the existence of the so-called pure
nodes (i.e., nodes belong to a single cluster) [18, 19]. This assump-
tion is considered reasonable when the graph is large.

3.3. Performance Characterization under Binary Observations

Proposition 1 presents the identifiability claims under the ideal
case, i.e., A`,m = P`,m. However, in practice, P`,m’s are not
observed. Instead, one observes A`,m’s such that A(i, j) ∼
Bernoulli(P (i, j)). The Bernoulli observations can be consid-
ered as a noisy data acquisition process. To characterize the per-
formance in this case, let us recall the degree of node i is the
number of “similar nodes” it has in the adjacency graph; i.e.,
degree(i) =

∑N
j=1A(i, j) [6]. Using this notion, we have the

following proposition:

Proposition 2. (Binary Observation Case) Assume that rank(M) =
rank(B) = K, the matrixA is generated following (1) and (2), and
A`,m’s are queried following the EQP. Let ρ := maxi,j P (i, j).
Suppose that ρ = Ω(L log(NK/L)/N) and L = O(ρN/d) where

Algorithm 1: Proposed Algorithm

input : {Am,`}, L, K
1 divide the blocks as {A`r,mr}Lr=1, {A`r+1,mr}L−1

r=1

(where `r 6= `r+1, {`r}Lr=1 = [L], mr ∈ [L];
2 T ← bL/2c;
3 CT ← [A>`T ,mT

, A>`T+1,mT
]>;

4 [U>`T ,U
>
`T+1

]>ΣV > ← svdK(CT );
5 Uref ← U`T+1 ;
6 for r = T + 1 : 1 : L− 1 do
7 Cr ← [A>`r,mr

, A>`r+1,mr
]>;

8 [Ũ>`r , Ũ
>
`r+1

]>ΣrVmr
> ← svdK(Cr);

9 U`r+1 ← Ũ`r+1Ũ
†
`r
Uref ;

10 Uref ← U`r+1 ;
11 end
12 Uref ← U`T ;
13 for r = T : −1 : 2 do
14 Cr ← [A>`r,mr

, A>`r−1,mr
]>;

15 [Ũ>`r , Ũ
>
`r−1

]>ΣrVmr
> ← svdK(Cr);

16 U`r−1 ← Ũ`r−1Ũ
†
`r
Uref ;

17 Uref ← U`r−1 ;
18 end
19 Û ←

[
U>1 , . . . ,U

>
L

]>;
20 apply SPA on Û to estimate M̂ .

output: Estimated membership matrix M̂ .

d is the maximal degree of all the observed sub-blocksA`,k. Also as-

sume that N = Ω
(
LKρκ2(B)

σ2
min(B)

)
. Then, the output Û by Algorithm 1

satisfies the following with probability of at least 1−O(L2/N):

‖Û −UO‖F = O

(
KL/4κ(B)

√
ρ

σmin(B)
√
N/L

)
, (9)

where U is an orthogonal basis of range(M>) and O ∈ RK×K is
an orthogonal matrix.

The proof can be found in a longer version1. The key idea be-
hind the proof is the fact that the principal components of the binary
adjacency sub-graphs return the target range space up to bounded er-
rors [26]. Leveraging this result, and combining with the proposed
recursive “subspace stiching” technique (with extensive care to man-
age error propagation among iterations), one can show (9). Nev-
ertheless, Proposition 2 has some important practical implications.
First, the number of blocks L plays a critical role. On one hand, L
cannot be too large since then the EQP condition K ≤ |S`| will be
violated. In addition, larger L also makes the error bound looser. On
the other hand, larger L means that only fewer queries need to be
made, and thus less resource consuming.

Remark 1. Note that the estimated Û can be represented as Û>=
GM +N where M satisfies (1), G ∈ RK×K is nonsingular and
N represents the noise which is shown to be bounded by Proposition
2. In order to extractM from the estimated Û , Algorithm 1 employs
SPA which is provably robust to bounded noise [23]. Hence, lever-
aging Proposition 2 and the noise robustness of SPA, one can show

1http://people.oregonstate.edu/ ibrahish/graphclusteringicassp2021.pdf



Table 1. The subspace distance between Û and U and MSE of M
for ideal case and binary observation case.

Graph Size Ideal Case Binary Observation Case
Proposed Proposed GeoNMF CD-MVS

N Dist Dist MSE MSE MSE
1× 104 7.34×10−13 0.342 0.0475 0.0554 0.0839
2× 104 2.80×10−13 0.209 0.0198 0.0386 0.0943
4× 104 1.22×10−13 0.194 0.0123 0.0341 0.0955
8× 104 1.12 ×10−13 0.101 0.0066 0.0261 0.0924

that the estimated M̂ by Algorithm 1 is not far away fromMΠ for
a certain permutation matrix Π.

Remark 2. Under the EQP, another solution for estimating M is
to apply existing mixed membership learning algorithms, e.g., those
in [17–19] on the small blocksA`,m and individually learn the cor-
responding parts of M . Then, the entire M can be recovered by
unifying the intrinsic column permutation ambiguity between blocks
of M . This is doable, but may have relatively poor identifiability
guarantees. The reason is that learningM` fromA`,m via the meth-
ods in [17–19] requires that the convex hull ofM>` to be well spread
in the probability simplex (e.g., the existence of pure nodes [18, 19]
implies conv{M>} = {x ∈ RK |1Tx = 1,x ≥ 0})—see de-
tailed discussion in [27]. When the methods are applied on small
subblocks A`,m, this assumption is less likely to hold by the corre-
sponding submatrixM` orMm [28]. Hence, this seemingly natural
approach is less preferable—as one will see in the next section.

Remark 3. Algorithm 1 only consists of top-K truncated SVD on
small blocks which has a complexity of O((N/L)K2) flops, assum-
ing |S`| = N/L for all ` and the per-iteration complexity of SPA is
also of similar order, i.e., O(NK2) operations. In terms of mem-
ory, the matrices involved are of size N × K and K � N often
holds. Instead, the convex optimization approaches for single mem-
bership learning in [12–14] use O(N2) memory to instantiate the
optimization variable, which is heavily memory consuming.

4. EXPERIMENTS AND CONCLUSION

Baselines. We employ two state-of-the-art mixed membership learn-
ing algorithms, namely, GeoNMF [19] and CD-MVS [17] as base-
lines. For real data experiments, we additionally use the normal-
ized spectral clustering algorithm (denoted as SC-Norm) [7]. The
baseline algorithms are not designed to directly handle the queried
adjacency matrix. We use a procedure that applies these baselines
to each block and aligns the estimated block membership matrices,
i.e., M`’s, as mentioned in Remark 2. The details of this alignment
procedure can be found in the longer version of this submission.
Synthetic Data. We consider N nodes (where N ∈ [1 × 104, 8 ×
104]) and K = 5 clusters. The membership vectors mn are drawn
from the Dirichlet distribution with parameters being (1/K)1,
where 1 is a K-dimensional all-one vector. The entries of matrix
B are drawn from 0 to 1 uniformly at random. We first test the
identifiability claims under the ideal case (i..e,A = P ). The blocks
of the adjacency matrix with the leftmost query pattern in Fig. 1 is
used. We fix the number of groups L = 10. The results are averaged
over 20 random trials. Table 1 shows the averaged subspace estima-
tion accuracy of our method measured using the subspace distance
measure (denoted as Dist) (see definition in [29]) under different
N ’s. One can see that the proposed method estimates the subspace
of the membership matrix M very accurately, which verifies our
subspace identifiability analysis in Proposition 1.

Table 2. Averaged SRC and runtime in seconds for MAG1 (N =
37680,K = 3) and MAG2 (N = 19457,K = 3) fixing L = 10.

Datasets Proposed GeoNMF CDMVS
SRC Time(s.) SRC Time(s.) SRC Time(s.)

MAG1 0.125 0.26 0.122 1.79 0.089 0.59
MAG2 0.441 0.23 0.240 4.66 0.249 0.53

Table 3. Clustering accuracy (%) of MAG2. N = 19457, K = 3.
Alorithms L = 10 L = 25 L = 50 L = 75 L = 100

Proposed 78.70 77.19 67.81 61.85 56.98
GeoNMF 58.16 57.87 56.88 52.68 52.33
CDMVS 53.45 21.82 14.57 13.53 11.71

SC-Norm 64.80 67.29 59.80 52.70 55.90

Next, we consider the rightmost pattern in Fig 1 to evaluate the
proposed algorithm and the baselines in the binary observation case
(i.e.,A(i, j) ∼ Bernoulli(P (i, j))). The results can also be found in
Table 1, which shows the subspace distance and mean squared error
(MSE) of the estimated M (see definition in [25]) averaged over
20 random trials. One can see that, the subspace estimation error
of the proposed algorithm gets smaller as N grows, as Proposition
2 indicates. In all the cases, the proposed method outperforms the
baseline methods in terms of MSE ofM .
Real Data. We test the algorithms using the co-authorship network
data from Microsoft Academic Graph (MAG) [30]. We use MAG1
and MAG2 versions from [19]. The networks are provided with the
ground-truth mixed membership of the nodes. In MAG, the nodes
represent the authors of research papers published in different fields
(clusters). Some authors publish in more than one fields and thus
have mixed membership. From the original dataset, we select nodes
that admit a degree at least 5. Consequently, the MAG1 and MAG2
networks under test have 37,680 and 19,457 authors, respectively.
All the authors are from 3 different fields (K = 3). We let all the
algorithms access only part of the network under the diagonal query
pattern in Fig. 1. We randomize the node order in each of the 20
trials and present the averaged result.

In Table 2, the proposed method and the baselines are evaluated
using the averaged Spearman’s rank correlation coefficient (SRC)
(see definition in [19]) for L = 10. The SRC takes values between
−1 and 1; SRC has a higher value if the ranking of the entries in two
vectors are more similar—which is desired. From Table 2, it can be
observed that the proposed algorithm outperforms the baselines for
both datasets. In addition, the runtime of the proposed algorithm is
appealing, considering the large scale of MAG1 and MAG2.

Table 3 shows the clustering accuracy (see definition in [24] and
reference therein) of the algorithms under different L’s on MAG2.
The clustering accuracy is measured via applying k-means to the
learned membership vectors. One can see that the performance de-
creases when L increases—which is consistent with our analysis in
Proposition 2. Notably, when L = 50, i.e, only 5.25% of A is
observed—but the proposed method still outputs a reasonable clus-
tering accuracy, which demonstrates a promising balance between
query sample complexity and clustering accuracy.

To conclude, we proposed a graph query scheme that enables
provable graph clustering with partially observed binary edges.
Unlike previous works which rely on random edge query and com-
putationally heavy convex programming, our method features a
lightweight algorithm and works with systematic edge query pat-
terns that are arguably more realistic in some applications. Our
method also learns mixed membership of the nodes with provable



guarantees, while existing graph query methods do not offer per-
formance characterizations beyond the single membership case.
Our method was tested on real co-author networks and exhibited
promising performance.
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