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Abstract
In this paper, we show how the Gordin martingale approximation method fits
into the anisotropic Banach space framework. In particular, for the time-one
map of a finite horizon planar periodic Lorentz gas, we prove that Hölder
observables satisfy statistical limit laws such as the central limit theorem and
associated invariance principles. Previously, these properties were known only
for a restricted class of observables, excluding for instance velocity.

Keywords: smooth ergodic theory, probabilistic limit laws, martingale methods

Mathematics Subject Classification numbers: 37D25, 37D50, 37A50, 60F17,
60G42.

1. Introduction

The traditional approach to proving decay of correlations and statistical limit laws for deter-
ministic dynamical systems, following [7, 44, 45] and continuing with Young [50, 51], involves
symbolic coding. In particular, by quotienting along stable leaves one passes from an invert-
ible dynamical system to a one-sided shift. Decay of correlations is then a consequence of
the contracting properties of the associated transfer operator. In addition, Nagaev perturbation
arguments [24, 25] and the martingale approximation method of Gordin [22] are available in
this setting, leading to numerous statistical limit laws. These results on decay of correlations
and statistical limit laws are then readily passed back to the original dynamical system.

4Author to whom any correspondence should be addressed.
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A downside to this approach is that geometric and smooth structures associated to the under-
lying dynamical system are typically destroyed by symbolic coding. In recent years, a method
proposed by [6] and developed extensively by numerous authors (for recent articles with up-
to-date references see [2, 19]) uses anisotropic Banach spaces of distributions to study the
underlying dynamical system directly. In particular, the method does not involve quotienting
along stable manifolds. This leads to results on rates of decay of correlations and also to various
statistical limit laws via Nagaev perturbation arguments, see especially Gouëzel [23].

However, so far Gordin’s martingale approximation argument has been absent from the
anisotropic Banach space framework. This is the topic of the current paper. The utility of such
an approach is illustrated by the following example.

Example 1.1. The landmark result of Young [50] established exponential decay of corre-
lations for the collision map corresponding to planar periodic dispersing billiards with finite
horizon. The method, which involves symbolic coding, also yields the central limit theorem
(CLT) for Hölder observables, recovering results of [8].

Turning to the corresponding flow, known as the finite horizon planar periodic Lorentz gas,
the CLT follows straightforwardly from the result for billiards [8, 40]. However, decay of cor-
relations for the Lorentz gas and the CLT for the time-one map of the Lorentz gas are much
harder. Superpolynomial decay of correlations was established for sufficiently regular observ-
ables in [35] (see also [36]) using symbolic coding and Dolgopyat-type estimates [20]. This
method also yields the CLT for the time-one map [1, 39], but again only for sufficiently regu-
lar observables. Here, ‘regular’ means smooth along the flow direction, so this excludes many
physically relevant observables such as velocity. The rate of decay of correlations was improved
to subexponential decay [11] and finally in a recent major breakthrough to exponential decay
[3]. Both references handle Hölder observables, suggesting that statistical limit laws such as
the CLT for the time-one map should hold for general Hölder observables.

Currently the Nagaev method is unavailable for Lorentz gases, and as a consequence the
CLT for the time-one map was previously unavailable except for a restricted class of observ-
ables. We show that the Gordin approach is applicable and hence the CLT and related limit
laws are indeed satisfied by Hölder observables for these examples. In particular, observables
such as velocity are covered for the first time.

In the remainder of the introduction, we describe some of the limit laws that follow
from the methods in this paper. For definiteness, we focus on example 1.1. Let X be the
three-dimensional phase space corresponding to a finite horizon planar periodic Lorentz gas,
with invariant volume measure μ, and let T : X → X be the time-one map of the Lorentz
flow. Let φ : X → R be a Hölder observable with mean zero and define the Birkhoff sum
φn =

∑n−1
j=0 φ ◦ T j. It follows from [3, 11] that we can define

σ2 = lim
n→∞

n−1
∫

X
φ2

ndμ =

∞∑
n=−∞

∫
X
φφ ◦ Tndμ.

By [1, theorem B and remark 1.1], typicallyσ2 > 0 (the caseσ2 = 0 is of infinite codimension).
We obtain the following results5.
CLT: n−1/2φn → d N(0, σ2) as n →∞. That is

lim
n→∞

μ(x ∈ X : n−1/2φn(x) � c) = (2πσ2)−1/2
∫ c

−∞
e−y2/(2σ2) dy for all c ∈ R.

5 In what follows, → d denotes convergence in distribution while → w denotes weak convergence.
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Weak invariance principle (WIP): define Wn(t) = n−1/2φnt for t = 0, 1
n , 2

n , . . . and linearly
interpolate to obtain Wn ∈ C[0, 1]. Then Wn →w W where W denotes Brownian motion with
variance σ2.

Moment estimates: for every p � 1 there exists Cp > 0 such that |φn|p � Cpn1/2. Conse-
quently, limn→∞n−p/2‖φn‖p

p = E|Y|p where Y = d N(0, σ2).

Homogenization: now suppose that φ : X → Rk. We continue to suppose that φ is Cη for some
η ∈ (0, 1] and that

∫
Xφdμ = 0. Consider the fast-slow system

x(n + 1) = x(n) + ε2a(x(n)) + εb(x(n))φ(y(n)),

y(n + 1) = Ty(n), (1.1)

where x(0) = ξ ∈ Rd and y(0) is drawn randomly from (X,μ). We suppose that a : Rd → Rd

lies in C1+η and b : Rd → Rd×k lies in C2+η. Solve (1.1) to obtain

xε(n) = ξ + ε2
n−1∑
j=0

a(xε( j)) + ε

n−1∑
j=0

b(xε( j))φ(y( j)), y(n) = Tny(0),

and let x̂ε(t) = xε([t/ε2]). This defines a random process on the probability space (X,μ)
depending on y(0) ∈ X. Then x̂ε→w Z as ε→ 0, where Z satisfies an Itô stochastic differen-
tial equation dZ = ã(Z)dt + b(Z)dW, Z(0) = ξ, where W is a k-dimensional Brownian motion
with covariance matrix Σ and

ã(x) = a(x) +
d∑

α=1

k∑
β,γ=1

Eγβ ∂bβ

∂xα
(x)bαγ(x). (1.2)

Here, bβ is the βth column of b and the matrices Σ, E ∈ Rk×k are given by

Σβγ =

∞∑
n=−∞

∫
X
φβ φγ ◦ Tndμ, Eβγ =

∞∑
n=1

∫
X
φβ φγ ◦ Tndμ.

The remainder of this paper is organized as follows. In section 2, we recall background
material on martingale-coboundary decompositions and statistical limit laws. In section 3, we
state an abstract theorem on obtaining martingale-coboundary decompositions for invertible
systems with stable directions. In section 4, we apply our results to the time-one map of the
Lorentz gas.

2. Martingale approximations

In this section, we review the approach going back to Gordin [22]. This method yields martin-
gale approximations for observables of dynamical systems leading to various limit theorems.
Related references include [4, 5, 17, 18, 26, 31, 47, 48, 49]. Let (X,μ) be a probability space,
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and let T : X → X be an invertible ergodic measure-preserving transformation. Let F0 be a sub-
σ-algebra of the underlying σ-algebra on X such that T−1F0 ⊆ F0. Consider an observable6

φ ∈ L1(X) with
∫

Xφdμ = 0.

Definition 2.1. We say that φ admits a martingale-coboundary decomposition if

φ = m + χ ◦ T − χ,

where m,χ ∈ L1(X), m is F0-measurable, and E[m|T−1F0] = 0.

The conditions on m in definition 2.1 mean that {m ◦ T−n : n ∈ Z} is a sequence of
martingale differences with respect to the filtration {TnF0 : n ∈ Z}.

Proposition 2.2. Let φ ∈ Lp(X) for some p � 1. Suppose that∑
n�1

|E[φ ◦ T−n|F0]|p < ∞,
∑
n�0

|E[φ ◦ Tn|F0] − φ ◦ Tn|p < ∞. (2.1)

Then φ admits a martingale-coboundary decomposition with m,χ ∈ Lp(X).

Proof. This is a standard argument [26, 48]. We give the details for completeness. By (2.1),

χ =
∑
n�0

(E[φ ◦ Tn|F0] − φ ◦ Tn) +
∑
n�1

E[φ ◦ T−n|F0]

converges in Lp(X). Define m = φ+ χ− χ ◦ T ∈ Lp(X). Then

m =

∞∑
n=−∞

(gn − gn ◦ T) =
∞∑

n=−∞
(gn+1 − gn ◦ T), (2.2)

where gn = E[φ ◦ Tn|F0].
Clearly, gn = E[φ ◦ Tn|F0] is F0-measurable. Also, gn ◦ T is measurable with respect to

T−1F0 ⊆ F0. Hence m is F0-measurable.
Next, note that gn ◦ T = E[φ ◦ Tn|F0] ◦ T = E[φ ◦ Tn+1|T−1F0]. Hence

E[gn ◦ T|T−1F0] = E[φ ◦ Tn+1|T−1F0] = E[E[φ ◦ Tn+1|F0]|T−1F0] = E[gn+1|T−1F0],

where we used that T−1F0 ⊆ F0. Substituting into (2.2), we obtain E[m|T−1F0] = 0 as
required. �

2.1. Central limit theorem and invariance principles

Corollary 2.3. Assume that φ ∈ L2(X) and conditions (2.1) hold with p = 2. Then the CLT
and WIP hold with σ2 =

∫
Xm2dμ = limn→∞n−1|φn|22.

Proof. This is a standard application of martingale limit theorems [22]. �

Somewhat surprisingly, by the results of [18], if φ ∈ L∞(X) and conditions (2.1) hold for
p = 1, then automatically m ∈ L2(X) even though proposition 2.2 only gives m,χ ∈ L1(X).
This suffices for the CLT. Related references for this phenomenon whereby m has extra
regularity include [29, 31, 34, 43, 46, 49]. In particular, the following result holds:

6 Most observables in this paper are real-valued, but occasionally in this section we consider observables with values
in Rk . We write L1(X,Rk) to denote vector-valued observables and write L1(X) instead of L1(X,R).
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Theorem 2.4. Assume that φ ∈ L∞(X) and conditions (2.1) hold with p = 1. Then the CLT
and WIP hold.

Proof. The CLT and WIP in reverse time (as n →−∞) is an immediate consequence of
[18, corollary 4]. Passing from reverse time to forward time is standard (see for example [27,
section 4.2]). �

Now let φ be vector-valued with values in Rk. Define càdlàg processes Wn in Rk and Wn ∈
R

k×k:

Wn(t) = n−1/2
∑

0� j<nt

φ ◦ T j, W
βγ
n (t) = n−1

∑
0�i< j<nt

φβ ◦ Tiφγ ◦ T j.

Proposition 2.5 (Iterated WIP). Suppose that T is mixing. Assume that φ ∈ L2(X,Rk) and
conditions (2.1) hold with p = 2. Then

(a) The series Σβγ =
∑∞

n=−∞
∫

Xφ
β φγ ◦ Tndμ, Eβγ =

∑∞
n=1

∫
Xφ

β φγ ◦ Tndμ, converge.
(b) (Wn,Wn)→w(W,W), where W is a k-dimensional Brownian motion with covariance

matrix Σ and Wβγ(t) =
∫ t

0 WβdWγ + Eβγ t.

Proof. By proposition 2.2, φ admits a martingale-coboundary decomposition with m, χ ∈
L2(X,Rk), so the result holds by [27, theorem 4.3]. �

2.1.1. Moments. For optimal moment estimates, the following projective version of condi-
tions (2.1) are better suited:∑

n�1

n−1/2|E[φ ◦ T−n|F0]|p < ∞,
∑
n�0

n−1/2|E[φ ◦ Tn|F0] − φ ◦ Tn|p < ∞. (2.3)

Proposition 2.6. Assume φ ∈ Lp(X) and conditions (2.3) hold for some p > 2. Then
|maxk�n|φk||p = O(n1/2).

If in addition n−1/2φn →dY for some Lp random variable Y, then limn→∞n−q/2|φn|qq =
E|Y|q for all q < p.

Proof. Let An =
∑n

j=1 φ ◦ T− j. Then7 for r � 1,

r−1∑
k=0

2−k/2|E(A2k |F0)|p �
r−1∑
k=0

2−k/2
2k∑

j=1

∣∣E(φ ◦ T− j|F0)
∣∣

p

=

2r−1∑
j=1

r−1∑
k=�log2 j	

2−k/2
∣∣E(φ ◦ T− j|F0)

∣∣
p



2r−1∑
j=1

j−1/2
∣∣E(φ ◦ T− j|F0)

∣∣
p
.

By condition (2.3),
∑∞

k=0 2−k/2|E(A2k |F0)|p < ∞. Similarly,
∑∞

k=1 2−k/2|A2k −
|E(A2k |T2kF0)|p < ∞. Recalling that T−1F0 ⊆ F0, it follows from [17, corollary 3.9]
that |maxk�2r |Ak||p 
 2r/2.

7 We use the notation A 
 B to denote A � const. B, where the constant is independent of the other parameters
present.
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For general n � 1 choose r � 1 so that 2r−1 < n � 2r. Then∣∣∣∣max
k�n

|Ak|
∣∣∣∣

p

�
∣∣∣∣max

k�2r
|Ak|

∣∣∣∣
p


 2r/2 � (2n)1/2.

Finally, φk = (An − An−k) ◦ Tn so∣∣∣∣max
k�n

|φk|
∣∣∣∣

p

=

∣∣∣∣max
k�n

|An − An−k|
∣∣∣∣

p

� 2

∣∣∣∣max
k�n

|Ak|
∣∣∣∣

p


 n1/2,

proving the first statement.
The second statement is an immediate consequence of the first, see for example [41,

lemma 2.1(e)]. �

Now let φ be vector-valued with values in Rk and define Sβγ
n =

∑
0�i< j<nφ

β ◦ Ti φγ ◦ T j.

Proposition 2.7. Assume thatφ ∈ Lp(X,Rk) and conditions (2.1) hold for some p � 4. Then∣∣∣maxk�n|Sβγ
k |

∣∣∣
p/2

= O(n).

Proof. By proposition 2.2, we have a martingale-coboundary decomposition φ = m + χ ◦
T − χ with m, χ ∈ Lp(X,Rk). Write

Sβγ
n =

∑
0�i< j<n

mβ ◦ Ti φγ ◦ T j +
∑

1� j<n

(χβ ◦ T j − χβ)φγ ◦ T j = In + Jn

where In =
∑

0�i<j<nmβ ◦ Timγ ◦ Tj and

Jn =
∑

0�i<n−1

mβ ◦ Ti (χγ ◦ Tn − χγ ◦ Ti+1) +
∑

1� j<n

(χβ ◦ T j − χβ)φγ ◦ T j.

Now,

max
k�n

|Jk| �
∑

0�i<n−1

|mβ| ◦ Ti (|χγ | ◦ Tn + |χγ | ◦ Ti+1) +
∑

1� j<n

(|χβ| ◦ T j + |χβ |)|φγ | ◦ T j.

Hence |maxk�n|Jk||p/2 � 2n
(
|mβ|p|χγ |p + |χβ|p|φγ |p

)
.

Next, we recall the identity

Ik = In − In−k ◦ Tk − (mβ
n − mβ

n−k ◦ Tk)(mγ
n−k ◦ Tk), 0 � k � n,

where mβ
n =

∑n−1
i=0 mβ ◦ Ti. Set

mβ,−
n =

∑
1�i�n

mβ ◦ T−i, I−n =
∑

1� j<i�n

mβ ◦ T−imγ ◦ T− j.

Then mβ
n−k ◦ Tk = mβ,−

n−k ◦ Tn and In−k ◦ Tk = I−n−k ◦ Tn for all k � n. Hence

Ik =
(

I−n − I−n−k − (mβ,−
n − mβ,−

n−k)mγ,−
n−k

)
◦ Tn
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and so

|max
k�n

|Ik||p/2 � 2|max
k�n

|I−k ||p/2 + 2|max
k�n

|mβ,−
k ||p|max

k�n
|mγ,−

k ||p. (2.4)

Now

I−k =
k∑

i=2

Xi where Xi = mβ ◦ T−i

⎛⎝ i−1∑
j=1

mγ ◦ T− j

⎞⎠ = mβ ◦ T−imγ,−
i−1.

Since {m ◦ T−n; n � 0} is a sequence of Lp martingale differences, {Xi; i � 1} is a sequence
of Lp/2 martingale differences. By the inequalities of Doob and Burkholder [9],

|max
k�n

|I−k ||2p/2 


∣∣∣∣∣∣
(

n∑
i=1

X2
i

)1/2
∣∣∣∣∣∣
2

p/2

=

∣∣∣∣∣
n∑

i=1

X2
i

∣∣∣∣∣
p/4

.

(The implied constant depends only on p and is in particular independent of n.) Hence, using
that p � 4,

|max
k�n

|I−k ||2p/2 

n∑

i=1

|X2
i |p/4 =

n∑
i=1

|Xi|2p/2 � |mβ|2p
n∑

i=1

|mγ,−
i−1|2p.

Applying Burkholder once more,
∣∣maxk�n|mγ,−

k |
∣∣

p

 n1/2|mγ |p ; in particular

|maxk�n|I−k ||p/2 
 n|mβ |p|mγ |p. Substituting these estimates into (2.4) yields

|maxk�n|Ik||p/2 
 n|mβ|p|mγ |p and the result follows. �

Remark 2.8. There is an error in [27, proposition 7.1] due to an inaccurate application of
a (correct) result of [38]. (The argument in [27] is fine for nonuniformly expanding maps but
false for nonuniformly hyperbolic maps since the observable φ is not adapted to the filtration
for the martingale.)

This error was repeated in the first version of the current paper and was spotted by the
referee. As pointed out to us by the referee, the reference [17] can be used for the ordinary
moments φn and this argument is now employed in the proof of proposition 2.6. (Indeed,
proposition 2.6 is an improvement on the previous result [38, equation (3.1)] since it is no
longer required that φ ∈ L∞(X).) However, it remains an interesting open problem to obtain
optimal control of the iterated moments Sn.

2.1.2. Homogenization. As shown in [27, 28], rough path theory yields homogenization of
fast-slow systems (1.1) provided the iterated WIP and suitable iterated moment estimates hold.
The iterated moment estimates have been relaxed in [15, 16]. We now apply these results to
the fast-slow system (1.1).

Define the càdlàg process x̂ε and the stochastic process Z as in the introduction. We continue
to assume that a ∈ C1+η and b ∈ C2+η for some η > 0.

Theorem 2.9. Suppose that T is mixing. Assume that φ ∈ Lp(X,Rk) and conditions (2.1)
hold with p = 4. Then x̂ε→w Z as ε→ 0.

Proof. The iterated WIP holds by proposition 2.5. By [15, theorem 4.10], it now suffices to
show that |maxk�n|φk||2q = O(n1/2) and |maxk�n|Sk||q = O(n) for some q > 1. This and more
follows from propositions 2.6 and 2.7. �
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Remark 2.10. The standard WIP and moments are insufficient to determine the limiting
stochastic process Z. By rough path theory [21, 32] the iterated process Wn provides the extra
information required to determine limiting stochastic integrals, and thereby the modified drift
term (1.2). The iterated moment estimate Sβγ

n provides the required tightness.
Note that Wn and Sβγ

n involve summation over i < j. The behaviour of their
symmetrized versions (incorporating i > j terms, equivalently i � j terms) follows
immediately from the ordinary WIP and moment estimate, and hence provides no extra
information. (Indeed the symmetrized version of Wβγ

n is Wβ
n Wγ

n which converges weakly to
WβWγ).

3. Main abstract theorem

Let T : X → X be an invertible ergodic measure-preserving transformation on a probability
space (X,μ). We suppose that X is covered by a collection W s of disjoint measurable sub-
sets, called ‘local stable leaves’, such that TWs(x) ⊆ Ws(Tx) for all x ∈ X, where Ws(x) is the
partition element containing x.

Let F0 denote the σ-algebra generated by W s. Note that Ws(y) ⊆ T−1Ws(x) for all y ∈
T−1Ws(x), so T−1Ws(x) is a union of elements of W s. Hence T−1F0 ⊆ F0. We denote by
L∞(F0) the set of functions in L∞(X) that are F0-measurable.

Theorem 3.1. Let φ ∈ L∞(X) be a mean zero observable. Assume that there exists β > 1
and C > 0 such that for all n � 1,

(a) |
∫

X φ ψ ◦ Tndμ| � C|ψ|∞n−β for all ψ ∈ L∞(F0).
(b)

∫
X diam(φ(TnWs))dμ � Cn−β .

Then the conditions in (2.1) are satisfied for all 1 � p < β, and the conditions in (2.3) are
satisfied for all 1 � p < 2β.

Proof. This is a standard argument. We again give the details for completeness.
Let

ξ = |E[φ|T−nF0]|p−1sgnE[φ|T−nF0] = ψ ◦ Tn,

where

ψ = |E[φ ◦ T−n|F0]|p−1sgnE[φ ◦ T−n|F0] ∈ L∞(F0),

and |ψ|∞ � |φ|p−1
∞ . Then

|E[φ ◦ T−n|F0]|pp = |E[φ|T−nF0]|pp =
∫

X
E[φ|T−nF0]ξdμ

=

∫
X
E[φξ|T−nF0]dμ =

∫
X
φ ξ dμ =

∫
X
φψ ◦ Tndμ.

By assumption (a),

|E[φ ◦ T−n|F0]|pp =
∣∣∣∣∫

X
φψ ◦ Tndμ

∣∣∣∣ � C|ψ|∞n−β � C|φ|p−1
∞ n−β ,

and the first part of conditions (2.1) and (2.3) follows by taking pth roots and using the
restriction on p.
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Next, using the pointwise estimate |E[φ|TnF0] − φ| � diam(φ(TnWs)) and assumption (b),

|E[φ ◦ Tn|F0] − φ ◦ Tn|pp = |E[φ|TnF0] − φ|pp � |diam(φ(TnWs))|pp
� (2|φ|∞)p−1|diam(φ(TnWs))|1 � 2p−1C|φ|p−1

∞ n−β.

The second part of conditions (2.1) and (2.3) follows. �
In the remainder of this section, we show that the conditions in theorem 3.1 are satisfied

in many standard situations. (The verifications below are not needed for our main example in
section 4.)

3.1. Verifying condition (b) in theorem 3.1

Suppose that T : X → X and W s are as above. Let Y ⊆ X be a positive measure subset that is a
union of local stable leaves in W s. Define the first return time R : Y → Z+ and first return map
F : Y → Y,

R(y) = inf{n � 1 : Tny ∈ Y}, F(y) = TR(y)y.

Let hn be the random variable on X given by hn(X) = #{0 � j � n : Tjx ∈ Y}.

Lemma 3.2. Let φ : X → R be measurable. Suppose that μ(y ∈ Y : R(y) > n) = O(n−(β+1))
for some β > 1 and that there are constants C � 1, γ ∈ (0, 1) such that

|diam(φ(TnWs))| � Cγhn(x) for all Ws ∈ W s, n � 1.

Then condition (b) in theorem 3.1 holds.

Proof. We have∫
X

diam(φ(TnWs)) dμ � C
n+1∑
k=0

γk

∫
X

1{hn=k}dμ � C
n+1∑
k=1

γk

∫
Y
1{hn=k}R dμ.

If y ∈ Y ∩ {hn = k}, then
∑k−1

j=0 R ◦ F j > n, and so R ◦ F j > n
k for some j = 0, . . . , k − 1.

Hence ∫
Y
1{hn=k}R dμ �

k−1∑
j=0

∫
Y
1{R◦F j� n

k}R dμ.

It follows from the tail assumption on R that there is a constant C1 > 0 such that μ(y ∈
Y : R(y) > n) � C1n−(β+1) and

∫
Y1{R>n}Rdμ � C1n−β . Write R = 1{R�n}R + 1{R>n}R. Then∫

Y
1{R◦F j� n

k}R dμ �
∫

Y
n1{R◦F j� n

k}dμ+

∫
Y
1{R>n}R dμ = nμ

(
R � n

k

)
+

∫
Y
1{R>n}R dμ

� C1kβ+1n−β + C1n−β � 2C1kβ+1n−β.

Therefore,
∫

Y1{hn=k}R dμ � 2C1kβ+2n−β , and∫
X

diam
(
φ(TnWs)

)
dμ � 2CC1n−β

∞∑
k=1

γkkβ+2 = O(n−β),

as required. �
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3.2. Verifying condition (a) in theorem 3.1

For completeness, we show that theorem 3.1 includes examples that fit within the Cher-
nov–Markarian–Zhang setup [13, 14, 33] (in the summable decay of correlations regime, so
β > 1) for Hölder mean zero observables φ : X → R. In particular, we recover limit theorems
that have been obtained previously for such invertible examples [27, 37, 41, 42]. Since there
are no new results here, we only sketch the construction from [13, 33].

Remark 3.3. When treating examples falling within the Chernov–Markarian–Zhang setup,
a significant (over) simplification is to suppose that there is exponential (or rapid) contraction
of stable leaves under the underlying dynamics. For billiards with subexponential decay of
correlations, such a condition fails since on average stable directions contract as slowly as
unstable directions expand. In general, one should assume that there is an inducing set (called
Y below) such that expansion and contraction occurs only on visits to Y. This general point of
view is the one adopted here, as codified by the random variable hn in lemma 3.2.

It is part of the setup that X is a metric space and T : X → X is the canonical billiard map
corresponding to the first collision with the boundary of the billiard table. It is assumed (and
for many classes of billiards explicitly constructed) that there is a set Y ⊂ X and a first return
map F = TR : Y → Y such that F is uniformly hyperbolic and the return time has tail bounds
satisfying μ(R > n) = O(n−(β0+1)), where we assume that β0 > 1 (see [13, section 4]). More-
over, Y is modelled by a Young tower with exponential tails [50]. A standard argument (see for
example [13, theorem 4]) shows that T : X → X is modelled by a Young tower f : Δ→Δ with
polynomial tails [51], with tail rate O(n−(β+1)) for all β < β0. In particular, there is a measure-
preserving semiconjugacy π : Δ→ X, so we can work with f : Δ→Δ instead of T : X → X
and observables φ̂ = φ ◦ π : Δ→ R where φ : X → R is Hölder.

The final part of the set up that we require is that Δ is covered by stable leaves W s satisfying
T(W(x)) ⊆ W(Tx), for all x ∈ Δ, where W(x) is the element of W s containing x. Due to the uni-
form hyperbolicity of F = TR, the contraction condition in lemma 3.2 holds [13, section 4.2].
Hence f : Δ→Δ satisfies condition (b) of theorem 3.1 and it remains to verify condition (a).

Let f̄ : Δ̄→ Δ̄ denote the quotient (one-sided) Young tower obtained by quotienting along
stable leaves. Consider observables φ̄ : Δ̄→ R that are Lipschitz with respect to a symbolic
metric on Δ̄, with Lipschitz norm ‖φ̄‖. By [51, theorem 3], there is a constant C > 0 such that

∣∣∣∣∫
Δ̄

φ̄ ψ̄ ◦ f̄ n dμ̄Δ −
∫
Δ̄

φ̄ dμ̄Δ

∫
Δ̄

ψ̄ dμ̄Δ

∣∣∣∣ � C‖φ̄‖|ψ̄|∞n−β, (3.1)

for all φ̄ : Δ̄→ RLipschitz, ψ̄ ∈ L∞(Δ̄), n � 1. (The dependence on ‖φ̄‖ and |ψ̄|∞ is not stated
explicitly in [51, theorem 3] but follows by a standard argument using the uniform boundedness
principle. Alternatively, see [30] for a direct argument).

Returning to the two-sided tower f : Δ→Δ and the lifted observable φ̂ = φ ◦ π : Δ→ R, it
follows for instance from [30, proposition 5.3] that there exists a choice (depending only on the
Hölder exponent of φ) of symbolic metric on Δ̄ and a sequence of observables φ̃� ∈ L∞(Δ),
� � 1, such that

(i) φ̃� is F0-measurable and hence projects down to an observable φ̄� : Δ̄→ R.
(ii) sup��1‖L�φ̄�‖ < ∞.

(iii) lim�→∞|φ ◦ f � − φ̃�|1 = 0.
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Here, F0 is the σ-algebra generated by W s and L is the transfer operator corresponding to
f̄ : Δ̄→ Δ̄.

Let ψ ∈ L∞(F0) with projection ψ̄ ∈ L∞(Δ̄). Following [30, proof of corollary 5.4],∫
Δ

φψ ◦ f n dμΔ =

∫
Δ

φ ◦ f � ψ ◦ f �+n dμΔ = I1 + I2 + I3,

where

I1 =

∫
Δ

(φ ◦ f � − φ̃�)ψ ◦ f �+n dμΔ, I2 =

∫
Δ

φ̃� dμΔ

∫
Δ

ψ dμΔ,

I3 =

∫
Δ

φ̃� ψ ◦ f �+n dμΔ −
∫
Δ

φ̃� dμΔ

∫
Δ

ψ dμΔ.

Now |I1| � |φ ◦ f � − φ̃�|1|ψ|∞. Also, I2 =
∫
Δ(φ̃� − φ ◦ f �) dμΔ

∫
Δψ dμΔ, so |I2| � |φ ◦

f � − φ̃�|1|ψ|1. By (iii), lim�→∞Ij = 0 for j = 1, 2. By (i),

I3 =

∫
Δ̄

φ̄� ψ̄ ◦ f̄ �+n dμ̄Δ −
∫
Δ̄

φ̄� dμ̄Δ

∫
Δ̄

ψ̄ dμ̄Δ

=

∫
Δ̄

L�φ̄� ψ̄ ◦ f̄ n dμ̄Δ −
∫
Δ̄

L�φ̄� dμ̄Δ

∫
Δ̄

ψ̄ dμ̄Δ,

so by (3.1) and (ii), |I3| � C‖L�φ̄�‖|ψ̄|∞ n−β 
 |ψ|∞ n−β . Together, these estimates establish
condition (a) in theorem 3.1.

4. Application to Lorentz gases

In this section, we use the results of [3] to show that the hypotheses of theorem 3.1 (with
β > 1 arbitrarily large) are satisfied for the time-one map corresponding to a finite horizon
planar periodic Lorentz gas for all Hölder observables φ. Hence the results of section 2 hold
for all p � 1, establishing the results listed in the introduction.

4.1. Setting and main result for Lorentz gases

Let T2 = R2/Z2 denote the two-torus, and let Bi ⊂ T2, i = 1, . . . , d, denote open convex sets
such that their closures are pairwise disjoint and their boundaries are C3 curves with strictly
positive curvature. We refer to the sets Bi as scatterers. The billiard flow Φt is defined by the
motion of a point particle in Q = T2\

⋃d
i=1 Bi undergoing elastic collisions at the boundaries

of the scatterers and moving at constant velocity with unit speed between collisions. Hence Φt

is defined on the three dimensional phase space

X = Q × S
1, S

1 = [0, 2π]/ ∼,

where ∼ indicates that 0 and 2π are identified.
Between collisions,Φt(x1, x2, θ) = (x1 + t cos θ, x2 + t sin θ, θ), while at collisions the point

(x, θ−) becomes (x, θ+) where θ− and θ+ are the pre- and post-collisions angles, respectively.
Defining X0 = X/ ∼, where we identify (x, θ−) ∼ (x, θ+) at collisions, we obtain a continuous
flow Φt : X0 → X0.

Let M =
⋃d

i=1 ∂Bi × [−π/2, π/2]. The billiard map F : M → M is the discrete-time map
which maps one collision to the next. Parametrizing each ∂Bi by an arclength coordinate r
(oriented clockwise) and lettingϕ denote the angle that the post-collision velocity vector makes
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with the normal to the scatterer (directed inwards in Q), we obtain the standard coordinates
(r,ϕ) on M.

For x ∈ X, define the collision time τ (x) to be the first time t > 0 that Φt(x) ∈ M. Since the
closures of the scatterers are disjoint, there exists τmin > 0 such that τ (x) � τmin for all x ∈ M.
In addition, we assume that the billiard has finite horizon so that there exists τmax < ∞ such
that τ (x) � τmax for all x ∈ X.

It is well known (see [12, section 3.3]) that the flow preserves the contact form

ω = cosθ dx1 + sinθ dx2,

so that the contact volume is ω ∧ dω = dx1 ∧ dθ ∧ dx2. We denote by μ the normalized
Lebesgue measure on X, which by the preceding calculation is preserved by the flow.

The main result of this section is the following.

Theorem 4.1. Let T be the time-one map corresponding to a finite horizon Lorentz gas as
described above, and let φ : X → R be a mean zero Hölder observable. Then conditions (a)
and (b) of theorem 3.1 hold with n−β replaced by e−cn for some c > 0.

As a consequence, conditions (2.1) and (2.3) hold for all p � 1, and all the results described
in section 2 apply in this setting.

We remark that the observableφ is assumed to be Hölder continuous only on X, not X0. Thus
φ is allowed to be discontinuous at the boundary of X, i.e. at collisions. In particular, theorem
4.1 applies to the velocity.

4.2. Proof of theorem 4.1

The remainder of this section is devoted to the proof of theorem 4.1, which consists of veri-
fying the conditions of theorem 3.1. First we recall some of the essential properties and main
constructions used in [3].

4.2.1. Hyperbolicity and singularities. The singularities for both the collision map and the
flow are created by tangential collisions with the scatterers. Let S0 =

{
(r,ϕ) ∈ M : ϕ = ± π

2

}
.

Away from the setS1 = S0 ∪ F−1S0 (resp.S−1 = S0 ∪ FS0) the map F (resp. F−1) is uniformly
hyperbolic: letting

Λ = 1 + 2τminKmin, (4.1)

where Kmin denotes the minimum curvature of the scatterers, there exist stable C̄s and unstable
C̄u cones in the tangent space of M such that stable and unstable vectors in these cones undergo
uniform expansion and contraction at an exponential rate given by Λ. Flowing C̄s backward
and C̄u forward between collisions allows us to define two families of stable Cs and unstable
Cu cones for the flow that lie in the kernel of the contact form. (Hence they are ‘flat’ two-
dimensional cones in the tangent space of the flow; see [3, section 2.1] for an explicit definition
of these cones.)

Let P± denote the projections from X onto M under the forward and backward flow. Then Cu

is continuous on X away from the surface S−
−1 = {x ∈ X : P+(x) ∈ S−1}, and Cs is continuous

on X away from the surface S+
1 = {x ∈ X : P−(x) ∈ S1}. To maintain control of distortion, we

define the standard homogeneity strips

Hk =

{
(r,ϕ) ∈ M :

π

2
− 1

k2
� ϕ � π

2
− 1

(k + 1)2

}
, k � k0,
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for some k0 � 1 which is determined to ensure a one-step expansion condition. A similar set
of homogeneity strips H−k, k � k0, is defined for ϕ near − π

2 .
Following [3], we define a set of admissible stable curves As for the flow. A C2 curve W

belongs to As if the tangent vector at each point of W belongs to Cs, and W has curvature
bounded by B0 and length |W| bounded by δ0. Here, δ0 > 0 is chosen to satisfy a complex-
ity bound (see [3, lemma 3.8]) and B0 is chosen large enough that the family As is invariant
under Φ−t, t � 0 (once long pieces are subdivided according to the length δ0). We call W ∈ As

homogeneous if P+(W) lies in a single homogeneity strip.
We define W s to be the family of maximal C2 connected homogeneous stable manifolds for

the flow. Note that W s forms a partition of X (mod μ-measure 0). Moreover, each element of
W s (up to subdivision due to the length δ0) belongs to As. When we define a homogeneous
stable manifold W ∈ W s, we take into account cuts introduced at the boundary of the extended
singularity set, which includes the boundaries of the homogeneity strips. Thus P+(ΦtW) lies
in a single homogeneity strip for all t � 0.8 Let F0 denote the sigma algebra generated by
elements ofW s. Since W s forms a partition of X, it follows thatF0 comprises countable unions
of elements of W s.

4.2.2. Norms and Banach spaces. With the class of admissible stable curves defined, we can
now describe the Banach spaces used to prove decay of correlations in [3].

Let α ∈ (0, 1
3 ]. For W ∈ As, let Cα(W) denote the closure of C1 functions in the Holder

norm defined by

|ψ|Cα(W) = sup
x∈W

|ψ(x)|+ sup
x,x′∈W
x�=x′

|ψ(x) − ψ(x′)| dW(x, x′)−α,

where dW is arclength distance along W. Define the weak norm of φ ∈ C0(X) by

|φ|w = sup
W∈As

sup
ψ∈Cα(W)
|ψ|Cα(W)�1

∫
W
φψ dmW ,

where mW denotes arclength measure on W. The weak space Bw is defined as the completion
of the set {φ ∈ C0(X0) : |φ|w < ∞}.

The strong norm ‖φ‖B is defined as in [3, section 2.3]. The space B is similarly defined
as the completion of a class of smooth functions on X0 in the ‖ · ‖B norm. Since we do not
need the precise definition of ‖ · ‖B here, we omit its definition; however, the following lemma
summarizes some of the important properties of these spaces.

Lemma 4.2 ([3, lemmas 3.9 and 3.10]). We have the inclusions

C1(X) ∩ C 0(X0) ⊂ B ⊂ Bw ⊂ (Cα(X))∗,

where the first two inclusions are injective. Moreover, | · |w � ‖ · ‖B � C| · |C1(X) and the unit
ball of B is compactly embedded in Bw.

When we refer to functions φ ∈ C0(X) as elements of B or Bw, we identify φ with the
measure φdμ. With this identification, the two definitions of Ltφ given in the next section are
reconciled.

8 Due to our definition of Cs, if W ∈ As, then P+(W) is a stable curve for the map; and if W ∈ W s, then P+(W) is a
local homogeneous stable manifold for the map.
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The following lemma is central to our verification of condition (a) in theorem 3.1, and is a
strengthening of [3, lemma 2.11]. Let Cα(W s) denote those functions which are in Cα(W) for
all W ∈ W s with |ψ|Cα(Ws) = supW∈Ws |ψ|Cα(W) finite.

Lemma 4.3. There exists C > 0 such that for φ ∈ Bw and ψ ∈ Cα(W s),

|φ(ψ)| � C|φ|w|ψ|Cα(Ws).

Again, due to our identification, when φ ∈ C0(X), we intend φ(ψ) =
∫

Xφψdμ. Lemma 4.3
is proved at the end of this section.

4.2.3. Transfer operator. We define the transfer operator Lt, for t � 0, by Ltφ = φ ◦ Φ−t, for
φ ∈ C0(X0). This can be extended to any element of Bw, and more generally a distribution of
order α by

Ltφ(ψ) = φ(ψ ◦ Φt), for allψ ∈ Cα(As), φ ∈ (Cα(As))∗.

By [3, lemma 4.9], the map (t,φ) �→ Ltφ from [0,∞) × B toB is jointly continuous, so {Lt}t�0

is a semi-group of bounded operators on B.
Define the generator of the semi-group by Zφ = limt↓0

Ltφ−φ
t for φ ∈ C1(X). While Z is not a

bounded operator on B, the strong continuity of Lt implies that Z is closed with domain dense
in B. Indeed, by [3, lemma 7.5] the domain of Z contains all φ ∈ C2(X) ∩ C0(X0) such that
(∇φ) · η̂ ∈ C0(X0), where η̂ denotes the flow direction, and there is a constant C > 0 such that

‖Zφ‖B � C|φ|C2(X) for all such φ. (4.2)

4.2.4. Condition (b) of theorem 3.1. Recall that T and F denote the time-one map for the flow
and the collision map, respectively. By the finite horizon condition, any W ∈ W s must undergo
k � �n/τmax� collisions after n iterates by T. By [3, lemmas 3.3 and 3.4],

diam(TnW) = |ΦnW| � C|Fk−1(P+(W))| � CΛ−(k−1)|P+(W)| � C′Λ−n/τmax |W|,

where Λ > 1 is the hyperbolicity constant defined in (4.1). We have used here that the lengths
of P+(W) and W are bounded multiples of one another (indeed the Jacobian of this map is C

1
2 ,

see [3, lemma 3.4]).
Let φ : X → R be Cη . Then diam(φ(TnW)) � |φ|ηdiam(TnW)η � CΛ−nη/τmax . Hence condi-

tion (b) holds with n−β replaced by Λ−nη/τmax .

4.2.5. Condition (a) of theorem 3.1. By [3, theorem 1.4], Z has a spectral gap on B and,
using results of [10], Lt admits the following decomposition: there exists ν > 0, a finite rank
projector Π : B → B and a family of bounded operators Pt on B satisfying ΠPt = PtΠ = 0,
and a matrix Ẑ : Π(B) → Π(B) with eigenvalues 0, z1, . . . , zN ∈ C satisfying Rezj < −ν for
j = 1, . . . , N, such that

Lt = Pt + et̂ZΠ for all t � 0. (4.3)

Moreover, there exists Cν > 0 such that for all φ in Dom(Z) ⊂ B,

|Ptφ|w � Cνe−νt‖Zφ‖B for all t � 0. (4.4)
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Now suppose φ ∈ C2(X) ∩ C0(X0) is of mean zero with (∇φ) · η̂ ∈ C0(X0), and ψ ∈
Cα(W s). By (4.3),∫

X
φψ ◦ Φt dμ =

∫
X
Ltφψ dμ =

∫
X
Ptφψ dμ+

∫
X

et̂ZΠφψ dμ.

Hence by lemma 4.3,∣∣∣∣∫
X
φψ ◦ Φt dμ

∣∣∣∣ � C
{
|Ptφ|w + |et̂ZΠφ|w

}
|ψ|Cα(Ws). (4.5)

LettingΠ0 denote the projector corresponding to the simple eigenvalue 0, we see thatΠ0φ =∫
φdμ = 0 since μ is the conformal probability measure with respect to Lt. Hence by lemma

4.2,

|et̂ZΠφ|w = |et̂Z(Π−Π0)φ|w � Ce−νt|φ|w � C′e−νt|φ|C1(X).

By (4.2) and (4.4),

|Ptφ|w � Cνe−νt‖Zφ‖B � C′e−νt|φ|C2(X).

Substituting these estimates in (4.5),∣∣∣∣∫
X
φψ ◦ Tn dμ

∣∣∣∣ = ∣∣∣∣∫
X
φψ ◦ Φn dμ

∣∣∣∣ � Ce−νn|φ|C2(X)|ψ|Cα(Ws) for all n � 0.

The result extends to φ ∈ Cη(X) as in [3] by a standard mollification argument. (Exponential
contraction persists with a rate dependent on η.) In particular, there are constants c, C > 0 such
that ∣∣∣∣∫

X
φψ ◦ Tn dμ

∣∣∣∣ � Ce−cn|φ|Cη (X)|ψ|Cα(Ws) for all n � 0,

for all φ ∈ Cη(X), ψ ∈ Cα(W s).
Let K(W s) denote the set of bounded functions on X that are constant on elements of W s,

and let | · |C0(Ws) = supW∈Ws | · |C0(W). Note that these functions are F0-measurable. Moreover,
K(W s) ⊂ Cα(W s) and |ψ|C0(Ws) = |ψ|Cα(Ws) for ψ ∈ K(W s). Hence∣∣∣∣∫

X
φψ ◦ Tn dμ

∣∣∣∣ � Ce−cn|φ|Cη (X)|ψ|C0(Ws) for all n � 0,

for all φ ∈ Cη(X), ψ ∈ K(W s).
Finally, let φ ∈ Cη(X), ψ ∈ L∞(F0). Recall that L∞(F0) is the set of functions in L∞(μ)

which are F0-measurable, so there exists a pointwise representativeψ′ in the equivalence class
of ψ in L∞(μ) that is constant on local stable manifolds and such that sup|ψ′| = |ψ|∞. In
particular, ψ′ ∈ K(W s) with |ψ′|C0(Ws) = |ψ|∞ and

∫
X|ψ − ψ′|dμ = 0. Hence∣∣∣∣∫

X
φψ ◦ Tn dμ

∣∣∣∣ = ∣∣∣∣∫
X
φψ′ ◦ Tn dμ

∣∣∣∣ � Ce−cn|φ|Cη (X)|ψ|∞.

Hence condition (a) holds with n−β replaced by e−cn.
As promised, we end this section by proving lemma 4.3.

Proof of lemma 4.3. By density of C0(X0) in Bw, it suffices to prove the lemma for
φ ∈ C0(X0) and ψ ∈ Cα(W s).
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The normalized Lebesgue measure μ on X projects to the measure μ̄ =
(2|∂Q|)−1 cos ϕ drdϕ on M; this is the unique smooth invariant probability measure
for the billiard map F. Let W s denote the set of maximal connected homogeneous stable
manifolds for F. Note that P+(W s) = Ws. Indexing elements of W s, we write W s = {Vξ}ξ∈Ξ,
which defines a (mod 0) partition of M. We disintegrate μ̄ into conditional measures μ̄ξ on Vξ ,
ξ ∈ Ξ, and a factor measure λ on Ξ. Indeed, the conditional measures are smooth on each Vξ ,
and we can write

dμ̄ξ = ρ̄ξ dm̄ξ dλ(ξ),

where m̄ξ is arclength measure along Vξ (in M), and

| log ρ̄ξ |
C

1
3 (Vξ )

� C, |ρ̄ξ |C0(Vξ ) � C|Vξ |−1, (4.6)

for some C > 0 depending only on the table Q (see [12, corollary 5.30]). The exponent 1
3 comes

from the definition of the homogeneity strips. This is the standard decomposition of μ̄ into a
proper standard family9 (see [12, example 7.21]). We further subdivide Ξ =

⋃d
i=1 Ξi, where

Ξi is the index set corresponding to each component Mi = ∂Bi ×
[
− π

2 , π
2

]
of M.

Write X =
⋃d

i=1 Xi where Xi = {x ∈ X : P+(X) ∈ Mi}. On each Xi, we represent Lebesgue
measure as dμ = ccosϕdrdϕds, where c is a normalizing constant, (r,ϕ) range over Mi, and s
ranges from 0 to the maximum free flight time under the backwards flow, which we denote by
ti � τmax.

Next, for each ξ ∈ Ξi, the flow surface V−
ξ = {x ∈ Xi : P+(x) ∈ Vξ} is smoothly foliated

by elements of W s, which are simply flow translates of one another. For each s and Vξ , let
Wξ,s = Φ−t(s)Vξ , where t(s, Z) is defined for z ∈ Vξ so that Wξ,s lies in the kernel of ω, i.e. it
is an element of W s. Note that for s < δ0, some points in Vξ may not have lifted off of M.
For such small times, Wξ,s denotes only those points that have lifted off of M. Similarly, for
s > τmin, some part of Φ−t(s)Vξ may have collided with a scatterer. For such times, Wξ,s only
denotes those points which have not yet undergone a collision. Thus

⋃
s∈[0,ti]

Wξ,s = V−
ξ .

Using this decomposition, we may represent Lebesgue measure on each Xi by

dμ(x) = ρξ(x) dmWξ,s (x) dλ(ξ) ds,

where ρξ is smooth along each Wξ,s, satisfying analogous bounds to (4.6), since the contact
form is C∞ on Xi and the projection P+ is sufficiently smooth (see [3, lemma 3.4]), so that the
arclength of Wξ,s varies smoothly with that of Vξ .

Using the fact that each Wξ,s ∈ W s can be subdivided into at most Cδ−1
0 elements of As, we

are ready to estimate∣∣∣∣∫
X
φψ dμ

∣∣∣∣ �
d∑

i=1

∣∣∣∣∫
Xi

φψ dμ

∣∣∣∣ �
∑

i

∣∣∣∣∣
∫ ti

0

∫
Ξi

∫
Wξ,s

φψ ρξ dmWξ,s dλ(ξ) ds

∣∣∣∣∣
�

∑
i

∫ ti

0

∫
Ξi

Cδ−1
0 |φ|w|ψ|Cα(Wξ,s)|ρξ |Cα(Wξ,s) dλ(ξ) ds

� Cδ−1
0 τmax|φ|w|ψ|Cα(Ws)

∫
Ξ

|Vξ |−1dλ(ξ).

9 Standard families in [12] are standard pairs defined on local unstable manifolds, while here we use local stable
manifolds. The decompositions of μ have equivalent properties due to the symmetry of the map F under time reversal.
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This last integral is finite by [12, exercise 7.15] since our decomposition of μ̄ constitutes a
proper standard family, yielding the desired estimate for φ(ψ).

For completeness, we finish by proving [12, exercise 7.15]. For x ∈ Vξ , let rs(X) denote the
distance measured along Vξ from x to the nearest endpoint of Vξ . By [12, theorem 5.17], there
exists C0 > 0 such that

sup
ε>0

μ̄(x ∈ M : rs(x) < ε)
ε

� C0.

We claim this quantity provides an upper bound on the relevant integral. To see this, we use
the decomposition (4.6) to write,

C0 = sup
ε>0

μ̄(x ∈ M : rs(x) < ε)
ε

= sup
ε>0

∫
Ξ

μ̄ξ(rs(x) < ε)
ε

dλ(ξ)

� sup
ε>0

∫
Ξ

C
|Vξ |

|Vξ ∩ {rs < ε}|
ε

dλ(ξ)

� sup
ε>0

2C
∫
{ξ:|Vξ |>2ε}

1
|Vξ |

dλ(ξ) = 2C
∫
Ξ

1
|Vξ |

dλ(ξ),

where we have used the fact that |Vξ | > 0 for λ-a.e. ξ, and the bound |Vξ ∩ {rs(X) < ε}| = 2ε
if |Vξ | > 2ε. (One can also prove a reverse inequality, but we do not need this here.) �
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