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Abstract

In this paper, we show how the Gordin martingale approximation method fits
into the anisotropic Banach space framework. In particular, for the time-one
map of a finite horizon planar periodic Lorentz gas, we prove that Holder
observables satisfy statistical limit laws such as the central limit theorem and
associated invariance principles. Previously, these properties were known only
for a restricted class of observables, excluding for instance velocity.
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1. Introduction

The traditional approach to proving decay of correlations and statistical limit laws for deter-
ministic dynamical systems, following [7, 44, 45] and continuing with Young [50, 51], involves
symbolic coding. In particular, by quotienting along stable leaves one passes from an invert-
ible dynamical system to a one-sided shift. Decay of correlations is then a consequence of
the contracting properties of the associated transfer operator. In addition, Nagaev perturbation
arguments [24, 25] and the martingale approximation method of Gordin [22] are available in
this setting, leading to numerous statistical limit laws. These results on decay of correlations
and statistical limit laws are then readily passed back to the original dynamical system.

“#Author to whom any correspondence should be addressed.
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A downside to this approach is that geometric and smooth structures associated to the under-
lying dynamical system are typically destroyed by symbolic coding. In recent years, a method
proposed by [6] and developed extensively by numerous authors (for recent articles with up-
to-date references see [2, 19]) uses anisotropic Banach spaces of distributions to study the
underlying dynamical system directly. In particular, the method does not involve quotienting
along stable manifolds. This leads to results on rates of decay of correlations and also to various
statistical limit laws via Nagaev perturbation arguments, see especially Gouézel [23].

However, so far Gordin’s martingale approximation argument has been absent from the
anisotropic Banach space framework. This is the topic of the current paper. The utility of such
an approach is illustrated by the following example.

Example 1.1. The landmark result of Young [50] established exponential decay of corre-
lations for the collision map corresponding to planar periodic dispersing billiards with finite
horizon. The method, which involves symbolic coding, also yields the central limit theorem
(CLT) for Holder observables, recovering results of [8].

Turning to the corresponding flow, known as the finite horizon planar periodic Lorentz gas,
the CLT follows straightforwardly from the result for billiards [8, 40]. However, decay of cor-
relations for the Lorentz gas and the CLT for the time-one map of the Lorentz gas are much
harder. Superpolynomial decay of correlations was established for sufficiently regular observ-
ables in [35] (see also [36]) using symbolic coding and Dolgopyat-type estimates [20]. This
method also yields the CLT for the time-one map [1, 39], but again only for sufficiently regu-
lar observables. Here, ‘regular’ means smooth along the flow direction, so this excludes many
physically relevant observables such as velocity. The rate of decay of correlations was improved
to subexponential decay [11] and finally in a recent major breakthrough to exponential decay
[3]. Both references handle Holder observables, suggesting that statistical limit laws such as
the CLT for the time-one map should hold for general Holder observables.

Currently the Nagaev method is unavailable for Lorentz gases, and as a consequence the
CLT for the time-one map was previously unavailable except for a restricted class of observ-
ables. We show that the Gordin approach is applicable and hence the CLT and related limit
laws are indeed satisfied by Holder observables for these examples. In particular, observables
such as velocity are covered for the first time.

In the remainder of the introduction, we describe some of the limit laws that follow
from the methods in this paper. For definiteness, we focus on example 1.1. Let X be the
three-dimensional phase space corresponding to a finite horizon planar periodic Lorentz gas,
with invariant volume measure p, and let 7: X — X be the time-one map of the Lorentz
flow. Let ¢ : X — R be a Holder observable with mean zero and define the Birkhoff sum
bn = Z;f;(l) ¢ o T/, 1t follows from [3, 11] that we can define

o2 = lim n’l/qﬁdu = /qsqs o T"du.
n—00 X Z X

n—=—0o0

By [1, theorem B and remark 1.1], typically o> > 0 (the case 0> = 01is of infinite codimension).
We obtain the following results®.
CLT: n~'/2¢,, — 4N(O, 0%) as n — oco. That is

lim pu(x € X : n g0 <o) = (27702)71/2/ e /2o% dy forallc € R.

n—0o0 0

5 In what follows, — 4 denotes convergence in distribution while — ,, denotes weak convergence.
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Weak invariance principle (WIP): define W,(t) = n~'/2¢,, for t = 0,1,2, ... and linearly

interpolate to obtain W, € C[0, 1]. Then W,, —, W where W denotes Brownian motion with
variance o2.

Moment estimates: for every p > 1 there exists C, > 0 such that |¢,|, < C,n'/2. Conse-
quently, lim,,_.cn?/?||¢,||) = E|Y|P where Y = 4 N(0, o).

Homogenization: now suppose that ¢ : X — R¥. We continue to suppose that ¢ is C" for some
n € (0, 1] and that [x¢dp = 0. Consider the fast-slow system

x(n 4 1) = x(n) + € a(x(n)) + eb(x(n)d(y(n)),

y(n+1) = Ty(n), (1.1)

where x(0) = £ € R? and y(0) is drawn randomly from (X, 11). We suppose that a : R? — R¢
lies in C'*" and b : RY — R?* lies in C*>*". Solve (1.1) to obtain

n—1 n—1
x(m) = €+ Y a () + €>_ber(GNEOG). ¥ = T")0),
Jj=0 Jj=0

and let %.() = x.([t/€*]). This defines a random process on the probability space (X, i)
depending on y(0) € X. Then X —, Z as ¢ — 0, where Z satisfies an Itd stochastic differen-
tial equation dZ = @(Z)dt + b(Z)dW, Z(0) = &, where W is a k-dimensional Brownian motion
with covariance matrix > and

d k abB
aw =ax+> > E"’Bg(x)b‘"’(x). (1.2)

a=1 =1

Here, b is the Sth column of b and the matrices 3, E € R¥** are given by

287 = Z /¢6 ¢ﬂ/ o Tndu" Eﬂ’y = Z /(258 dﬁ/ o Tnd/’l’
X n=1"%X

n=-—oo

The remainder of this paper is organized as follows. In section 2, we recall background
material on martingale-coboundary decompositions and statistical limit laws. In section 3, we
state an abstract theorem on obtaining martingale-coboundary decompositions for invertible
systems with stable directions. In section 4, we apply our results to the time-one map of the
Lorentz gas.

2. Martingale approximations

In this section, we review the approach going back to Gordin [22]. This method yields martin-
gale approximations for observables of dynamical systems leading to various limit theorems.
Related references include [4, 5, 17, 18, 26, 31, 47, 48, 49]. Let (X, 1) be a probability space,
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and let 7: X — X be an invertible ergodic measure-preserving transformation. Let F be a sub-
o-algebra of the underlying o-algebra on X such that 7~!F, C ;. Consider an observable®
¢ € L'(X) with [x¢du = 0.

Definition 2.1. 'We say that ¢ admits a martingale-coboundary decomposition if
¢p=m+xoT —x,
where m, x € L'(X), m is Fo-measurable, and E[m|T~! F,] = 0.

The conditions on m in definition 2.1 mean that {moT " :n € Z} is a sequence of
martingale differences with respect to the filtration {7"Fy : n € Z}.

Proposition 2.2. Ler ¢ € [7(X) for some p > 1. Suppose that
Y [ElgoT " Foll, <oo, D [ElgpoT"|Fol—¢oT"|,<oo.  (2.1)
n=1 n=0
Then ¢ admits a martingale-coboundary decomposition with m, x € LP(X).
Proof. This is a standard argument [26, 48]. We give the details for completeness. By (2.1),
X=Y [ElpoT"|Fol—¢oTH+ Y ElpoT "|F
n=0 n>1

converges in L”(X). Definem = ¢ + x — x o T € LP(X). Then

m= > (@—8go°T =Y @ —goD), 22)

n=-—oo n=-—oo

where g, = E[¢ o T"| Fol.

Clearly, g, = E[¢ o T"|Fy] is Fo-measurable. Also, g, o T is measurable with respect to
T~'Fy C Fo. Hence m is Fy-measurable.

Next, note that g, o T = E[¢ o T"|Fo] o T = E[¢ o T"!|T~1 Fy]. Hence

Elg, o T|T ' Fo] = E[¢p o T" 1T~ Fy] = E[E[¢p o T" T | Fol|T~' Fol = Elgus1|T ' Fol,

where we used that 7-!'Fy C F,. Substituting into (2.2), we obtain E[m|T~'F;] =0 as
required. (]

2.1. Central limit theorem and invariance principles

Corollary 2.3. Assume that ¢ € L*(X) and conditions (2.1) hold with p = 2. Then the CLT
and WIP hold with 0* = [,m*dp = lim,_.cn™" @[3

Proof. This is a standard application of martingale limit theorems [22]. |

Somewhat surprisingly, by the results of [18], if ¢ € L*°(X) and conditions (2.1) hold for
p = 1, then automatically m € L*(X) even though proposition 2.2 only gives m, y € L'(X).
This suffices for the CLT. Related references for this phenomenon whereby m has extra
regularity include [29, 31, 34, 43, 46, 49]. In particular, the following result holds:

6 Most observables in this paper are real-valued, but occasionally in this section we consider observables with values
in R¥. We write L' (X, R) to denote vector-valued observables and write L' (X) instead of L' (X, R).
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Theorem 2.4. Assume that ¢ € L*°(X) and conditions (2.1) hold with p = 1. Then the CLT
and WIP hold.

Proof. The CLT and WIP in reverse time (as n — —oo) is an immediate consequence of
[18, corollary 4]. Passing from reverse time to forward time is standard (see for example [27,
section 4.2]). O

Now let ¢ be vector-valued with values in R¥. Define cadlag processes W, in R* and W,, €
kak:

W) =n"'?>" goT, W =n" DY ¢ oT¢ 0T

0 j<nt 0<i<j<nt

Proposition 2.5 (Iterated WIP).  Suppose that T is mixing. Assume that ¢ € L*(X, R¥) and

conditions (2.1) hold with p = 2. Then

(@) The series X7 =30 [L.¢7 ¢ o T"dy, EP =% [ 87 ¢ o T"dp, converge.

b) W, W,)—=,(W, W), where W is a k-dimensional Brownian motion with covariance
matrix ¥ and W5 (f) = fot WhAW" + EP s,

Proof. By proposition 2.2, ¢ admits a martingale-coboundary decomposition with m, y €
L*(X,R%), so the result holds by [27, theorem 4.3]. O

2.1.1. Moments. For optimal moment estimates, the following projective version of condi-
tions (2.1) are better suited:

Z nfl/Z‘E[(b ° Tﬁn‘f()”p < o0, Z nfl/z‘E[(;S o Tn|_7:0] —¢o Tn|p < oo. (2.3)

n>1 n=0

Proposition 2.6. Assume ¢ € IP(X) and conditions (2.3) hold for some p > 2. Then
|maxe<a| x|, = on'’?).

If in addition n="/*¢,, —4Y for some LP random variable Y, then lim,_,.on 9/ 2\¢n|Z =
E|Y|? for all g < p.

Proof. LetA, = Z;f:l ¢oT /. Then’ forr > 1,

r—1 r—1 2k
D 2PEAx|F, <Y 27 R T,
k=0 k=0 j=1
| 2!
=3 > 2MPE@eTF)|, <Y i E@ o TR
J=1 k=[logy =

By condition (2.3), > 50,2 M2E(Ax|Fo)|, < oo.  Similarly, > 2, 27F2|Ay —
|E(A2k|T2k}'0)\p < o00. Recalling that T7!'Fy C Fy, it follows from [17, corollary 3.9]
that ‘mangzr ‘Ak| ‘p < 2)./2.

7We use the notation A < B to denote A < const. B, where the constant is independent of the other parameters
present.
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For general n > 1 choose r > 1 so that 2"~! < n < 2’. Then

max|Ag|
k<n

X

< ‘%xAk < 27 < @en)'/2.
X I)

Finally, ¢, = (A, —A,—x) o T" so

= ’max|A,, —Anil
k<n

< 2‘max|Ak|
k<n

‘max¢k| <n'?,
n
P

proving the first statement.
The second statement is an immediate consequence of the first, see for example [41,
lemma 2.1(e)]. O

Now let ¢ be vector-valued with values in R¥ and define SV = > o<i< j<n¢5 oT" ¢ o TV.

Proposition 2.7. Assume that ¢ € LP(X,R¥) and conditions (2.1) hold for some p > 4. Then

‘maxkgn\S‘f“’\‘ . = 0(n).
P

Proof. By proposition 2.2, we have a martingale-coboundary decomposition ¢ = m + y o
T — x withm, y € LP(X, R¥). Write

Sf“/ = Z m‘goTid)')’oTj—F Z (X‘goTj—X‘g)gZ)"’oTj:In%—Jn

0<i<j<n 1< j<n

where I, = Z O<i<j<nm8 o Tm“f o] T] and

= Y moT (o =X 0T+ 3" (o Tl —x g7 o T,

0<i<n—1 1<j<n

Now,

maxli| < 30 o T o T+ o T + 37 (o T+ e o T

= 0<i<n—1 1<j<n

Hence [maxi<ulJil |, < 20 (|m”[,[x7 ], + IX7[5l¢71,)-
Next, we recall the identity

Li=I,— L, coT —(m’ —m’ o T Ym!_,oT"), 0<k<n,
where m? = Y7 m” o T'. Set

m = E m’oT™, I, = E m’ o T 'm0 T,
1<i<n 1< j<i<n

Thenm  oT¢ =m’, oT"and I, o T* = I, o T" for all k < n. Hence
n

Io= (1 =Ly = mf = mpm] ) o 1"
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and so
- B,— —
Imax| T2 < 2Imax|Zy ||y + 2|maxjm || maxm;|,. (2.4)
Now
k i—1
I, = ZXi where X; = m’ o T Zmﬂf oT /| =mlo T 'm]"].
i=2 j=1

Since {mo T ";n > 0} is a sequence of I martingale differences, {X;;i > 1} is a sequence
of 1/? martingale differences. By the inequalities of Doob and Burkholder [9],

S

i=1

Y 1/2)%
—1R2 2 _
|T§’§|Ik [ < <§1 Xi) =

p/2

p/4

(The implied constant depends only on p and is in particular independent of n.) Hence, using
thatp > 4,

n n n
max |1 1, < D7 Xy = D Wil < I’ (Y ol 2
= i=1 i=1 i=1

Applying  Burkholder once more, |maxic,|m; | ’p < n'2lm’|,; in particular
Imaxi<all [],, < njm?|,lm’|,.  Substituting these estimates into (2.4) yields
Imaxi<a|lel|,, < nlm’|,[m"|, and the result follows. O

Remark 2.8. There is an error in [27, proposition 7.1] due to an inaccurate application of
a (correct) result of [38]. (The argument in [27] is fine for nonuniformly expanding maps but
false for nonuniformly hyperbolic maps since the observable ¢ is not adapted to the filtration
for the martingale.)

This error was repeated in the first version of the current paper and was spotted by the
referee. As pointed out to us by the referee, the reference [17] can be used for the ordinary
moments ¢, and this argument is now employed in the proof of proposition 2.6. (Indeed,
proposition 2.6 is an improvement on the previous result [38, equation (3.1)] since it is no
longer required that ¢ € L*>(X).) However, it remains an interesting open problem to obtain
optimal control of the iterated moments S,,.

2.1.2. Homogenization. As shown in [27, 28], rough path theory yields homogenization of
fast-slow systems (1.1) provided the iterated WIP and suitable iterated moment estimates hold.
The iterated moment estimates have been relaxed in [15, 16]. We now apply these results to
the fast-slow system (1.1).

Define the cadlag process X, and the stochastic process Z as in the introduction. We continue
to assume that @ € C' ™ and b € C**" for some ) > 0.

Theorem 2.9. Suppose that T is mixing. Assume that ¢ € LP(X,R¥) and conditions (2.1)
hold with p = 4. Then x.-—., Z as € — Q.

Proof. The iterated WIP holds by proposition 2.5. By [15, theorem 4.10], it now suffices to
show that [maxi<,| ||, = O(n'/?) and |max<,|Si||, = O(n) for some g > 1. This and more
follows from propositions 2.6 and 2.7. |
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Remark 2.10. The standard WIP and moments are insufficient to determine the limiting
stochastic process Z. By rough path theory [21, 32] the iterated process W, provides the extra
information required to determine limiting stochastic integrals, and thereby the modified drift
term (1.2). The iterated moment estimate S°7 provides the required tightness.

Note that W, and Sf”’ involve summation over i <j. The behaviour of their
symmetrized versions (incorporating i>j terms, equivalently i>j terms) follows
immediately from the ordinary WIP and moment estimate, and hence provides no extra
information. (Indeed the symmetrized version of W7 is W/W? which converges weakly to
WOIW).

3. Main abstract theorem

Let T: X — X be an invertible ergodic measure-preserving transformation on a probability
space (X, ;). We suppose that X is covered by a collection WW* of disjoint measurable sub-
sets, called ‘local stable leaves’, such that TW*(x) C W*(Tx) for all x € X, where W*(x) is the
partition element containing x.

Let 7, denote the o-algebra generated by WW*. Note that W*(y) C T~ 'W*(x) for all y €
T-'W(x), so T"'W*(x) is a union of elements of W*. Hence T~' Fy C F,. We denote by
L>*(Fy) the set of functions in L>(X) that are Fy-measurable.

Theorem 3.1. Let ¢ € L*(X) be a mean zero observable. Assume that there exists 5 > 1
and C > 0 such that for alln > 1,

@] [x ¢ ¢ oT'dp| < Cliploen™” for all o € L(F),
(b) [x diam(¢(T"W*))dp < Cn ",

Then the conditions in (2.1) are satisfied for all 1 < p < (, and the conditions in (2.3) are
satisfied for all 1 < p < 20.

Proof. This is a standard argument. We again give the details for completeness.
Let

€ = |E[¢|T " Fol|" 'sgnE[¢|T " Fo] = o T",
where
¥ = [E[¢p o T™"|Fol|P~'sgnE[¢ o T"|Fo] € L™ (Fo),

and || < |¢|75!. Then
[Bl6 o 77| Fully = [BOIT " Folly = [ BloiT " Pl
X
— [Eor R = [o¢du= [svoran
X X X
By assumption (a),
Boo 71l = | (60 0 T < Cloln < clolis '
X

and the first part of conditions (2.1) and (2.3) follows by taking pth roots and using the
restriction on p.
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Next, using the pointwise estimate |E[¢|T" Fy] — ¢| < diam(¢(T"W*)) and assumption (b),
[EL) o T"|Fol — ¢ o T"[2 = [E[G|T"Fo] — 62 < |diam((T" W)
< 2|¢l0)” " |diam(p(T" W), < 27 Clo|5 'n 7.
The second part of conditions (2.1) and (2.3) follows. O

In the remainder of this section, we show that the conditions in theorem 3.1 are satisfied
in many standard situations. (The verifications below are not needed for our main example in
section 4.)

3.1. Verifying condition (b) in theorem 3.1

Suppose that 7: X — X and W* are as above. Let Y C X be a positive measure subset that is a
union of local stable leaves in WW*. Define the first return time R : ¥ — Z7 and first return map
F: Y=Y,

R(y) =inf{n > 1:T"y € Y}, F(y) = TR0y,
Let h, be the random variable on X given by h,(X) = #{0 <j < n:Tx € Y}.

Lemma 3.2. Let ¢ : X — R be measurable. Suppose that ju(y € Y : R(y) > n) = O(n~ D)
for some 3 > 1 and that there are constants C > 1, v € (0, 1) such that

|diam(a(T"W*))| < CY"  for all W* € W, n > 1.
Then condition (b) in theorem 3.1 holds.

Proof. We have

n+1 n+1

[ diam(oa W dn < €3 [ 1t < €304 [ 1R
X k=0 X k=1 Y

If y € YN {h, =k}, then Z§;5R0F1>n, and so Ro F/ > % for some j=0,...,k— 1.
Hence

k—1
L —aRdp < go mion Rdp.

It follows from the tail assumption on R that there is a constant C; > 0 such that p(y €
Y:R(y) >n) < Cin D and [ ylpe,qRdp < Cin?. Write R = 1(g<,yR + 1{g>pR. Then

n
Lo om R < [ 0l ioand LpomRdp = (R>—) Lo Rd
/Y{Ro[r./gk} H /Yl’l {ROF"’>E} U"’/Y {R>n}NA[ = NfL X +/Y {R>n} VAN
< Ck P 4 o ? <20k P
Therefore, [, 1, - Rdp < 2C k7207, and

/ diam ($(T"W) du < 2CCin 7>~ Ak = 0™,
X k=1

as required. ([
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3.2. Verifying condition (a) in theorem 3.1

For completeness, we show that theorem 3.1 includes examples that fit within the Cher-
nov—Markarian—Zhang setup [13, 14, 33] (in the summable decay of correlations regime, so
B > 1) for Holder mean zero observables ¢ : X — R. In particular, we recover limit theorems
that have been obtained previously for such invertible examples [27, 37, 41, 42]. Since there
are no new results here, we only sketch the construction from [13, 33].

Remark 3.3. When treating examples falling within the Chernov—Markarian—Zhang setup,
a significant (over) simplification is to suppose that there is exponential (or rapid) contraction
of stable leaves under the underlying dynamics. For billiards with subexponential decay of
correlations, such a condition fails since on average stable directions contract as slowly as
unstable directions expand. In general, one should assume that there is an inducing set (called
Y below) such that expansion and contraction occurs only on visits to Y. This general point of
view is the one adopted here, as codified by the random variable %, in lemma 3.2.

It is part of the setup that X is a metric space and 7: X — X is the canonical billiard map
corresponding to the first collision with the boundary of the billiard table. It is assumed (and
for many classes of billiards explicitly constructed) that there is a set ¥ C X and a first return
map F = TR : Y — Y such that F is uniformly hyperbolic and the return time has tail bounds
satisfying (R > n) = O(n~%+D) where we assume that 3y > 1 (see [13, section 4]). More-
over, Y is modelled by a Young tower with exponential tails [50]. A standard argument (see for
example [13, theorem 4]) shows that 7: X — X is modelled by a Young tower f: A — A with
polynomial tails [51], with tail rate O(n=*+) for all 5 < B. In particular, there is a measure-
preserving semiconjugacy 7 : A — X, so we can work with f: A — A instead of T: X — X
and observables (;AS =¢om:A— Rwhere ¢: X — R is Holder.

The final part of the set up that we require is that A is covered by stable leaves WW* satisfying
T(W(x)) C W(Tx), forall x € A, where W(x) is the element of JJ* containing x. Due to the uni-
form hyperbolicity of F = T¥, the contraction condition in lemma 3.2 holds [13, section 4.2].
Hence f: A — A satisfies condition (b) of theorem 3.1 and it remains to verify condition (a).

Let f : A — A denote the quotient (one-sided) Young tower obtained by quotienting along
stable leaves. Consider observables ¢ : A — R that are Lipschitz with respect to a symbolic
metric on A, with Lipschitz norm ||#||. By [51, theorem 3], there is a constant C > 0 such that

< Cll @l |]sen”, (3.1)

/f@of”dm—/ﬁ&dm/ﬁ@dm

forall ¢ : A — R Lipschitz, ) € L*(A),n > 1.(The dependence on ||¢|| and |1, is not stated
explicitly in [51, theorem 3] but follows by a standard argument using the uniform boundedness
principle. Alternatively, see [30] for a direct argument).

Returning to the two-sided tower f: A — A and the lifted observablquS =¢gom:A—=R,it
follows for instance from [30, proposition 5.3] that there exists a choice (depending only on the
Holder exponent of ¢) of symbolic metric on A and a sequence of observables b € L¥(A),
¢ > 1, such that

(i) ¢y is Fo-measurable and hence projects down to an observable ¢y : A — R.
(ii) supys|[[L 0] < 0.
(iii) limgoo|@ 0 f* = de|y = 0.
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_ Here, Fy is the o-algebra generated by WW* and L is the transfer operator corresponding to
f:A—=A. - B
Let ¢ € L*(Fy) with projection ¢ € L*(A). Following [30, proof of corollary 5.4],

/¢¢Ofnd“A:/¢°fg¢0ff+"dMA:11+Iz+13,
A A
where

I =/A<¢off—¢3[>wof“"dum Izz/AézduA/AwduA,
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Now || < [po f' = dihi[v]s. Also, I = [5(d¢ = do fduafatdua, so L] <o
£C= @dli|eblr. By (i), limeool; = 0 for j = 1,2. By (i),
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so by (3.1) and (ii), |I3| < C||L ¢¢|||1)]0e n™? < |1)]oe n~7. Together, these estimates establish
condition (a) in theorem 3.1.

4. Application to Lorentz gases

In this section, we use the results of [3] to show that the hypotheses of theorem 3.1 (with
B > 1 arbitrarily large) are satisfied for the time-one map corresponding to a finite horizon
planar periodic Lorentz gas for all Holder observables ¢. Hence the results of section 2 hold
for all p > 1, establishing the results listed in the introduction.

4.1. Setting and main result for Lorentz gases

Let T? = R?/Z? denote the two-torus, and let B; C T2, i = 1,...,d, denote open convex sets
such that their closures are pairwise disjoint and their boundaries are C* curves with strictly
positive curvature. We refer to the sets B; as scatterers. The billiard flow ®, is defined by the
motion of a point particle in Q = ’]I‘Z\Uf':l B; undergoing elastic collisions at the boundaries
of the scatterers and moving at constant velocity with unit speed between collisions. Hence @,
is defined on the three dimensional phase space

X=0xS§S', St =10,27]/ ~,

where ~ indicates that O and 27 are identified.

Between collisions, ®,(x1, x2, 0) = (x; + £ cos 6, x, + ¢ sin 6, ), while at collisions the point
(x,07) becomes (x, /") where #~ and @ are the pre- and post-collisions angles, respectively.
Defining Xy = X/ ~, where we identify (x,#”) ~ (x, #") at collisions, we obtain a continuous
flow @, : Xy — Xjp.

Let M = |, OB; x [—n/2,7/2]. The billiard map F: M — M is the discrete-time map
which maps one collision to the next. Parametrizing each 0B; by an arclength coordinate r
(oriented clockwise) and letting ( denote the angle that the post-collision velocity vector makes
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with the normal to the scatterer (directed inwards in Q), we obtain the standard coordinates
(r,) on M.

For x € X, define the collision time 7(x) to be the first time > 0 that ®,(x) € M. Since the
closures of the scatterers are disjoint, there exists 7, > 0 such that 7(x) > 7y, forall x € M.
In addition, we assume that the billiard has finite horizon so that there exists 7. < 00 such
that 7(x) < Thmax forall x € X.

It is well known (see [12, section 3.3]) that the flow preserves the contact form

w = cosf dx; + sinf dx,,

so that the contact volume is w A dw = dx; A df A dx,. We denote by p the normalized
Lebesgue measure on X, which by the preceding calculation is preserved by the flow.
The main result of this section is the following.

Theorem 4.1. Let T be the time-one map corresponding to a finite horizon Lorentz gas as
described above, and let ¢ : X — R be a mean zero Holder observable. Then conditions (a)
and (b) of theorem 3.1 hold with n=" replaced by =" for some ¢ > 0.

As a consequence, conditions (2.1) and (2.3) hold for all p > 1, and all the results described
in section 2 apply in this setting.

We remark that the observable ¢ is assumed to be Holder continuous only on X, not X;,. Thus
¢ is allowed to be discontinuous at the boundary of X, i.e. at collisions. In particular, theorem
4.1 applies to the velocity.

4.2. Proof of theorem 4.1

The remainder of this section is devoted to the proof of theorem 4.1, which consists of veri-
fying the conditions of theorem 3.1. First we recall some of the essential properties and main
constructions used in [3].

4.2.1. Hyperbolicity and singularities. The singularities for both the collision map and the
flow are created by tangential collisions with the scatterers. Let Sy = {(r,p) € M : o = +1}.
Away fromthe set S} = Sy U F~' Sy (resp. S_| = Sy U FSp) the map F (resp. F~ ') is uniformly
hyperbolic: letting

A=1 + 27}nh1K:min, (4'1)

where KCpmin denotes the minimum curvature of the scatterers, there exist stable C® and unstable
C" cones in the tangent space of M such that stable and unstable vectors in these cones undergo
uniform expansion and contraction at an exponential rate given by A. Flowing C® backward
and C" forward between collisions allows us to define two families of stable C* and unstable
C" cones for the flow that lie in the kernel of the contact form. (Hence they are ‘flat’ two-
dimensional cones in the tangent space of the flow; see [3, section 2.1] for an explicit definition
of these cones.)

Let P~ denote the projections from X onto M under the forward and backward flow. Then C"
is continuous on X away from the surface S_; = {xeX: PT(x) € S_1}, and C° is continuous
on X away from the surface S;” = {x € X : P~(x) € S;}. To maintain control of distortion, we
define the standard homogeneity strips

e L k> k
kz\so\z (k—|—1)2 ’ = RO,
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for some ky > 1 which is determined to ensure a one-step expansion condition. A similar set
of homogeneity strips H_y, k > ko, is defined for ¢ near —7.

Following [3], we define a set of admissible stable curves A* for the flow. A C? curve W
belongs to A* if the tangent vector at each point of W belongs to C°, and W has curvature
bounded by By and length |W| bounded by d,. Here, §p > 0 is chosen to satisfy a complex-
ity bound (see [3, lemma 3.8]) and By is chosen large enough that the family A* is invariant
under ¢_,, ¢ > 0 (once long pieces are subdivided according to the length dy). We call W € A4°
homogeneous if P (W) lies in a single homogeneity strip.

We define W* to be the family of maximal C> connected homogeneous stable manifolds for
the flow. Note that VV* forms a partition of X (mod p-measure 0). Moreover, each element of
W?* (up to subdivision due to the length §y) belongs to A°. When we define a homogeneous
stable manifold W € W9, we take into account cuts introduced at the boundary of the extended
singularity set, which includes the boundaries of the homogeneity strips. Thus P*(®,W) lies
in a single homogeneity strip for all # > 0.3 Let Fy denote the sigma algebra generated by
elements of YW*. Since W* forms a partition of X, it follows that F, comprises countable unions
of elements of W*.

4.2.2. Norms and Banach spaces. With the class of admissible stable curves defined, we can
now describe the Banach spaces used to prove decay of correlations in [3].

Let a € (0, %]. For W € A%, let C*(W) denote the closure of C' functions in the Holder
norm defined by

Y] coew) = SUVI;WJ(X)\ + sup [(x) — V()| dw(x, x') 77,

xx ew
x#£x

where dy is arclength distance along W. Define the weak norm of ¢ € C°(X) by

o= supsup [ G am.
WeAs eCyv(W) JW
[lcaw)<1

where my denotes arclength measure on W. The weak space B,, is defined as the completion
of the set {¢ € C°(Xp) : |p|w < o0}

The strong norm ||¢||s is defined as in [3, section 2.3]. The space B is similarly defined
as the completion of a class of smooth functions on X in the || - ||z norm. Since we do not
need the precise definition of || - || 3 here, we omit its definition; however, the following lemma
summarizes some of the important properties of these spaces.

Lemma 4.2 ([3, lemmas 3.9 and 3.10]). We have the inclusions
C'(X) N C°(Xy) € B C B, C (C*(X))",

where the first two inclusions are injective. Moreover, | - |, < || - |5 < C| - |¢1(x) and the unit
ball of B is compactly embedded in 1B,

When we refer to functions ¢ € C%(X) as elements of B or B,,, we identify ¢ with the
measure ¢dyu. With this identification, the two definitions of £;¢ given in the next section are
reconciled.

8 Due to our definition of C*, if W € A, then PT (W) is a stable curve for the map; and if W € W*, then PT(W)isa
local homogeneous stable manifold for the map.
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The following lemma is central to our verification of condition (a) in theorem 3.1, and is a
strengthening of [3, lemma 2.11]. Let C*(/*) denote those functions which are in C*(W) for
all W € W* with "l[)‘ca(WS) = SupWeWs"Il)‘Ca(W) finite.

Lemma 4.3. There exists C > 0 such that for ¢ € By, and ) € C*ONV®),

|p()| < Clolw||coows).

Again, due to our identification, when ¢ € C°(X), we intend ¢(1)) = [ x¢pdp. Lemma 4.3
is proved at the end of this section.

4.2.3. Transfer operator. We define the transfer operator L,, forz > 0, by L, = ¢ o ®_, for
¢ € C%(Xo). This can be extended to any element of 3,,, and more generally a distribution of
order a by

Lip(p) = ¢(th o @y),  forallyy € C*(A), ¢ € (C(AY))".

By [3, lemma4.9], the map (¢, ¢) — L,¢ from [0, 00) x Bto Bis jointly continuous, so { £, } ;>0
is a semi-group of bounded operators on 5.

Define the generator of the semi-group by Z¢ = lim, @ for ¢ € C'(X). While Zis nota
bounded operator on B, the strong continuity of £, implies that Z is closed with domain dense
in B. Indeed, by [3, lemma 7.5] the domain of Z contains all ¢ € C*(X) N C°(X,) such that
(Vo) -1 € C°(Xy), where 7 denotes the flow direction, and there is a constant C > 0 such that

1Z¢||5 < Clo|c2y for all such ¢. 4.2)

4.2.4. Condition (b) of theorem 3.1. Recall that T and F denote the time-one map for the flow
and the collision map, respectively. By the finite horizon condition, any W € W*® must undergo
k > |n/Tmax| collisions after n iterates by 7. By [3, lemmas 3.3 and 3.4],

diam(T"W) = |®,W| < C|F*'(PT(W))| < CA~ D IpH(W)| < C' AW,

where A > 1 is the hyperbolicity constant defined in (4.1). We have used here that the lengths

of PT(W) and W are bounded multiples of one another (indeed the Jacobian of this map is C %,
see [3, lemma 3.4]).

Let ¢ : X — Rbe C". Then diam(¢(T"W)) < |¢|,diam(T"W)" < CA "™ Hence condi-
tion (b) holds with n~? replaced by A"/ Tmax_

4.2.5. Condition (a) of theorem 3.1. By [3, theorem 1.4], Z has a spectral gap on 5 and,
using results of [10], £, admits the following decomposition: there exists v > 0, a finite rank
projector I : B — 5 and a family of bounded operators P, on B satisfying IIP, = P,II = 0,
and a matrix Z : II(B) — II(B) with eigenvalues 0, zy, ..., zy € C satisfying Rez; < —v for
j=1,...,N, such that

L, =P, +e?Il forallt>0. 4.3)
Moreover, there exists C,, > 0 such that for all ¢ in Dom(Z) C B,

|Pig|lw < Coe™||Zo||p  forallr > 0. 4.4)
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Now suppose ¢ € C2(X) N C°(Xp) is of mean zero with (V¢) -7 € C°(Xp), and 1 €
C*(WV®). By (4.3),

/X¢wo¢>tdu=/Xﬁtcbwdu:/XP,¢¢du+/Xef7H¢¢du.

Hence by lemma 4.3,

[ovora < c{pol. + oL} Wlerom @5)

Letting 11 denote the projector corresponding to the simple eigenvalue 0, we see that [y =
| ¢dp = 0 since  is the conformal probability measure with respect to £,. Hence by lemma
4.2,

eIl = [eZ(IL — To)ply < Ce ™ [¢ly < C'e™ |0y
By (4.2) and (4.4),
|Piolw < Coe™ || Zo||s < Cle_m‘ﬁi)‘@o{)-

Substituting these estimates in (4.5),

‘/gﬁw oT" d/_,l,‘ = ‘/(]ﬁ’lﬂ o @ndu‘ < Ceilm|¢|C2(X)|w|Cu(WS) for alln 2 0.
X X

The result extends to ¢ € C"(X) as in [3] by a standard mollification argument. (Exponential
contraction persists with a rate dependent on 7).) In particular, there are constants ¢, C > 0 such
that

‘/gﬁw oT" d/J,‘ < Ceicn|¢|cn(x)"lﬂ‘ca(WS) for alln > O,
X

forall ¢ € C'(X), € C*ONV®).

Let K(OW?) denote the set of bounded functions on X that are constant on elements of WV*,
and let | - |coys) = SUPweyys| - |cow)- Note that these functions are Fy-measurable. Moreover,
KOWV®) € C*(W?) and [1)]coys) = || caows) for i € K(OV®). Hence

/Q&Qﬂ oT" d/J,’ S Ce_”"|¢|cu(x)\¢\co(yv5) for alln 2 O,
X

forall ¢ € C'(X), v € K(W?).

Finally, let ¢ € C"(X), 1 € L*(Fp). Recall that L*(Fp) is the set of functions in L*(y)
which are Fy-measurable, so there exists a pointwise representative )’ in the equivalence class
of ¢ in L>(u) that is constant on local stable manifolds and such that sup|¢/| = |¢]w. In
particular, ¢' € KOV®) with [t/ coys) = |1]oc and [x]tp — ¢'|dp = 0. Hence

‘/qﬁz/; oT" d”’ - ’/(M’/ oT" d,u‘ < Ce "Bl en [Yoo-
X X

cn

Hence condition (a) holds with n~" replaced by e~“".
As promised, we end this section by proving lemma 4.3.

Proof of lemma 4.3. By density of C°(Xy) in B,, it suffices to prove the lemma for
6 € C°(Xp) and ¥ € CE(ONV®).
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The normalized Lebesgue measure p on X projects to the measure 1=
(2|0Q))~" cos ¢ drdp on M; this is the unique smooth invariant probability measure
for the billiard map F. Let J* denote the set of maximal connected homogeneous stable
manifolds for F. Note that P+ (W) = WV, Indexing elements of W, we write W* = {V }¢ccz,
which defines a (mod 0) partition of M. We disintegrate zi into conditional measures ji¢ on Vg,
& € E, and a factor measure A on Z. Indeed, the conditional measures are smooth on each V¢,
and we can write

djig = pe dimg dA(E),
where ¢ is arclength measure along V, (in M), and

- - -1
|log p£|c%(v£) <G, ‘Pﬁ‘c"(vf) < CVe| ™, (4.6)

for some C > 0 depending only on the table Q (see [12, corollary 5.30]). The exponent % comes
from the definition of the homogeneity strips. This is the standard decomposition of j into a
proper standard family® (see [12, example 7.21]). We further subdivide = = ULI =i, where
E; is the index set corresponding to each component M; = 0B; x [—3, %] of M.

Write X = Uf.jzl X; where X; = {x € X: P"(X) € M;}. On each X;, we represent Lebesgue
measure as du = ccosepdrdeds, where ¢ is a normalizing constant, (r, ) range over M;, and s
ranges from 0 to the maximum free flight time under the backwards flow, which we denote by
i < Tmax-

Next, for each £ € =;, the flow surface Ve = {x € X;: P*(x) € V¢} is smoothly foliated
by elements of V°, which are simply flow translates of one another. For each s and V¢, let
Wes = ®_y Ve, where 1(s, Z) is defined for z € V¢ so that W lies in the kernel of w, i.e. it
is an element of WW*. Note that for s < dy, some points in V, may not have lifted off of M.
For such small times, W, denotes only those points that have lifted off of M. Similarly, for
$ > Tmin, some part of ®_, Ve may have collided with a scatterer. For such times, W, ; only
denotes those points which have not yet undergone a collision. Thus (J;¢ (o, Wes = Vi -

Using this decomposition, we may represent Lebesgue measure on each X; by

dp(x) = pe(x) dmy, (x) dAE) ds,

where p¢ is smooth along each W¢, satisfying analogous bounds to (4.6), since the contact
form is C*° on X; and the projection P is sufficiently smooth (see [3, lemma 3.4]), so that the
arclength of W varies smoothly with that of V.

Using the fact that each W, € W* can be subdivided into at most Cd;, ' elements of A%, we
are ready to estimate

d
[ovan <>
X i=1

1
< Z/O /_C551|¢|m|¢|0a(wm)\pg\ca(was) d)\(g) ds

/X_Md’“" S Z ’ /Oti /: Sy B edmu, OXE) ds

i

< C(SO_leaXM)‘w‘w‘C“(WS)/_‘Vg‘_ldA(E).

9 Standard families in [12] are standard pairs defined on local unstable manifolds, while here we use local stable
manifolds. The decompositions of 1 have equivalent properties due to the symmetry of the map F under time reversal.
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This last integral is finite by [12, exercise 7.15] since our decomposition of ji constitutes a
proper standard family, yielding the desired estimate for ¢(2)).

For completeness, we finish by proving [12, exercise 7.15]. For x € V¢, let 7*(X) denote the
distance measured along V, from x to the nearest endpoint of V. By [12, theorem 5.17], there
exists Cp > 0 such that

Go.

nxeM:rix) <
sup Alx r*(x) <€) <

e>0 €

We claim this quantity provides an upper bound on the relevant integral. To see this, we use
the decomposition (4.6) to write,

L M:r fe(r®
Co= Supu(x EM:ri)<e _ Sup/ pe(ri(x) <€) dAE)
e>0 £ e>0J= €
> Sup/iw dA©)
>0z | Vel €
1 1
> supZC/ —dX\(§) =2C | — dA(©),
>0 J{gvesaey | Vel = | Vel

where we have used the fact that |Ve| > 0 for A-a.e. £, and the bound |V N {r(X) < e}| = 2¢
if |V¢| > 2e. (One can also prove a reverse inequality, but we do not need this here.) O
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