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Abstract—In this paper, we develop a framework for an
autoencoder based transmission strategy for achieving distributed
interference alignment and optimal power allocation in a multi-
user interference channel. The users in the interference channel
have access to the local channel state information only. We
compare the explicit schemes, such as MaxSINR [1], against
the autoencoder schemes. We find that the MaxSINR schemes
outperform the autoencoder networks which are either jointly
or distributively trained from scratch. However, we find that
the autoencoders which are pretrained with the beamforming
vectors and the power allocation obtained from the explicit
schemes outperform the explicit schemes when the interference
gets stronger. The explicit schemes perform well as they are
effective in choosing the set of users which are to be suppressed.
The pretrained autoencoders benefit from this initialization,
and also from the fact that end to end training can improve
their performance even further. We showcase our performance
comparison results for 5 user interference channels with different
levels of interference.

Index Terms—Interference channels, sum rate maximization,
autoencoders

I. INTRODUCTION

Multiuser communication systems suffer from interference,
a challenge that requires the careful design of transmission
schemes to mitigate said interference. Since first introduced
by Ahlswede in 1974 [2], several inner and outer bounds have
been derived for interference channels (ICs), establishing the
capacity region for special classes of two-user ICs [3], [4], [5].
However, the capacity region for ICs is not known in general
for two-user ICs. For ICs with more than two users, very few
results are known beyond interference alignment (IA) [6], [7],
[8]. IA is a coding scheme that utilizes the fact that each user’s
signal is corrupted by the combined interference signal in K-
user ICs. IA aligns the interfering signal to a subset of the
receiver signal space and recovers the desired signal from the
orthogonal space. Several IA schemes were proposed (e.g. [9],
[10], [11]), and it is also shown that they achieve the optimal
degrees of freedom (DoF) of K/2 [9] .

From practical perspectives, IA has two limitations; first,
they assume that all transmitters and receivers have perfect
and global channel knowledge. Second, by focusing on the
DoF, IA ignores the strength of each channel and network
topology [12]. To resolve these limitations, several distributed
coding schemes have been proposed when such channel
knowledge is absent [12], [1], [13], [14]. In general, the
primary explicit strategies with or without full channel state

knowledge are: (a) interference avoidance, where topological
properties of the network are used in order to determine
the best avoidance scheme, known as topological interference
management (TIM), and (b) interference toleration, where
interference is present but the transmission scheme is designed
by treating interference as noise (TIN). With few exceptions,
TIM and TIN make up the majority of explicitly structured
transmission schemes with or without channel knowledge at
finite signal to noise ratio (SNR).

Deep learning has attained huge interest for communications
in general [15], [16], [17], [18], [19], [20], [21], [22] and
for interference channels [23], [24]. Centralized autoencoder
framework for two-user interference channels was first intro-
duced in [23]. They show that neural network based codes,
trained jointly, outperform time-sharing schemes for two-user
interference channels. In [24], the authors propose an adaptive
deep learning algorithm for K-user symmetric interference
channels and show that their algorithm outperforms the con-
ventional system using PSK or QAM. While these results are
promising, very important questions are yet to be answered.
Does deep learning allow one to devise new interference align-
ment scheme that outperforms existing IA schemes, especially
for asymmetric interference channels? Does deep learning
allow us to gain better insight on existing IA schemes? In
this paper, we show that the answers to these questions are
affirmative. Our main contributions are as follows:

o We introduce an autoencoder framework for distributed
interference alignment for K -user interference channels
and empirically show that our autoencoder based dis-
tributed TA scheme outperforms IA schemes in [1], [12]
for asymmetric moderate-to-high interference channels,
establishing new state-of-the-art. (Sections III, V-A)

« We introduce a learning methodology that combines deep
learning harmoniously with established IA schemes. We
empirically find that it is crucial for learning reliable IA
schemes (Section III, V-A).

e« We run interpretation analysis which shows that the
autoencoder-based IA scheme, pre-trained with the beam
vectors from explicit algorithm followed by end-to-end
training, deviates from the explicit scheme and is able
to learn new IA schemes that outperform the original ex-
plicit scheme in strong interference regime. By analyzing
these results, we can also obtain new insight on improving
existing IA schemes (Section V-C).
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II. INTERFERENCE ALIGNMENT

We consider a K-user interference channel with K pairs
of single-antenna transmitters and receivers comprising of
K (K — 1) cross channels. As depicted in Figure 1, each trans-
mitter ¢ has a message intended for the corresponding receiver,
denoted by w; € N(0,1). The i-th encoder maps w; to the
transmitted symbol vector X; € R", where n corresponds to a
symbol extension over multiple orthogonal time slots. The ¢-th
decoder maps Y; € R" to w; € R. The transmitters adhere to
the average power constraint E [[|X;|*] <1 for i € [K].

WI | Alignment X1 Y: Alignment | W1
ENC 1 DEC 1
Interference A
W2 | Alignment X2 Channel ¢ Alignment | W2
— — —

ENC 2 DEC 2

p(y1,Y2,.. VK| X1,X2,..,Xk)

Xk Yk

—

Alignment | WK
DEC K

WK | Alignment
ENC K

Fig. 1. Interference alignment framework for K-user interference channels.
We replace the encoders and decoders by neural networks in Section III.

IA schemes aim to find linear encoder and decoder map-
pings that result in reliable communication, where the reli-
ability is measured by achievable rate or mean square error
(MSE). Formally, the encoder is modeled as X; = v/P;Vw;,
where V; denotes the beamforming vector and P; denotes the
power allocation. The decoder is modeled as )A(l =U;Y;. 1A
schemes find the set of parameters P;, V;, U; for ¢ € [K] that
optimizes achievable rate or MSE.

A. MaxSINR Algorithm [1]

The authors in [1] propose a distributed optimization of the
receive beamforming vectors for coherent combining of the
received vectors for Gaussian interference channels, defined
as

K
Yi =) HiX;+Zx Vkel[K], @)

j=1

where Y}, is the n x 1 received vector, Hy; represents the
channel coefficient between the j** transmitter and the k"
receiver and Zy, ~ N (0, N). We review MaxSINR algorithm,
depicted in Algorithm 1. It makes use of the duality assump-
tion which states that the optimal receive beamformers are
also optimal if the receiver is used as a transmitter for the
reciprocal channel. The power allocation in the transmitter for
the forward communication as P, = SNR'7 while that for the
reverse direction are defined as P, = SNR'7. These power
allocation vectors for the MaxSINR algorithm are computed
based on the finding in [12] and shown to hold true for
reciprocal channels in [25]:

where P, = SNR"* and P, = SNR'* are the power alloca-
tions in the forward direction and the reciprocal directions
of the k*" transmitter respectively. The computed received
beamforming vectors Uy, for user k are given as

-1
U — M @
B v
where
K
By = Y PjHyV;V;" Hy;"” 5)
Jj=1,j#k

Now we provide a distributed algorithm that was presented
in [1] that computes the Uy, and the Vi beamforming vectors
Vk € [K] assuming reciprocity of the interference channel.

Algorithm 1: Distributed MaxSINR

for i < K do
Choose random n x 1 vectors: V4,

Choose random power allocation: Py,

end
for each iteration do
for k in K do
| Compute Uy, Py, from (5), (4) and (2)
end
Vk = U,VEk € [K]
for k£ in K do
| Compute Uy, Py, from (4) and (3)
end
Vi = UpVk € (K]

end

B. TIMTIN [25]

TIMTIN algorithm was proposed as a hybrid algorithm
to compute the IA beamforming vectors and also the power
allocations that are optimal for assuming we treat the in-
terference as noise. Basically, the beamforming vectors are
computed to suppress the strong interferers, and the power
allocation is done to minimize the effect of the remaining
interferers. A distributed solution to the TIMTIN problem was
proposed in [25] where the duality property of the interference
channel was used to obtain the solution vectors. The algorithm
optimizes the minimum interference at the receiver by comput-
ing the received beamforming vectors to cancel the strongest
interference at the receiver. This is repeated reciprocally at the
transmitter end by treating it as the receiver by computing the
newly computed received beamforming vectors at the receiver
as transmit beamformers. The power allocations vectors are
computed as in (2) and (3). For each receiver in the forward
channel Uy, is computed from the nullspace of n — 1 strongest
interferers that are incident upon the receiver k. These vectors

"e= f}?ﬁ;ﬁ {0, o + 75} 2) were then used as transmit beamformers in the reciprocal
i = — max {0, ajx + 7} 3) direction and the process was repeated over many iterations
Jg#Fk to converge to the optimal set of vectors for V;, and Ug.
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III. AUTOENCODER FOR INTERFERENCE CHANNELS

The neural encoders and the decoders replace the alignment

encoders and decoders to generate the alignment vectors at the
transmitter and the receiver along with the power allocation.
The autoencoder network for the K-user interference chan-
nel was constructed by placing K independent autoencoders
trained separately and simultaneously. Each autoencoder neu-
ral network has two components, the encoder and the decoder
network.
Encoder architecture: The implemented encoder architecture
is shown in Fig. 2. The encoder network model is constructed
with two fully connected layers with ReLU activation fol-
lowed by a normalization layer and a scaling layer. Each fully
connected layer has 32 nodes. The input vector consists of a
single scalar symbol which is projected to a n dimensional
power constraint transmit vector at the output of the scaling
layer. The encoders of each of the users are separate and do not
share any weights between themselves. The fully connected
layer implements the function

o(x) = o (WTz +b) ©)

where W € REXN are the parameters of the L neurons of
the concerned layer, b € R” is the biasing and o (-) is the
activation function.

Fully Connected
Scaling Layer

Fully Connected

Normalization Layer

Neural Encoder

Fig. 2. The architecture of neural encoder %

Z,thjJrZ; —

Fully Connected

ReLU Activation

Neural Decoder

Fig. 3. The architecture of neural decoder ¢

Power scaling layer: The output of the fully connected layers
are normalized through batch normalization in order to have a
fixed power constraint. The scaling layer weights each compo-
nent of the alignment vectors through trainable parameters in
order to rearrange the weight of different components of the
align. This operation can be represented through the following
equation

Q5

Yi = ——=—s i
V2o azz

where z; and y; are the componentwise input and output
while «; is the scaling factor for each component of the

)

output vector. In addition, another trainable variable € [0, 1] is
introduced for power management across all the users in the
network by optimizing the final output from an encoder.
Decoder architecture: The decoder neural network is shown
in Fig. 3. It has two fully connected layers with ReLU activa-
tion followed by the output layer. Each fully connected layer
has 32 nodes. The output layer produces a single scalar as the
received symbol. Ideally, the sent and the estimated symbols
should be identical. A loss function is used to compute the
MSE between the sent and the estimated messages and the
weights of the encoders and decoders are trained.

Joint and Distributed training. The neural architecture con-
sists of an encoder and a decoder that are trained through
a loss function. The output of the encoder and the targeted
value, i.e. the input to the autoencoder, are passed into a loss
function in order to compute the MSE. The encoder decoder
pair of each user computes an MSE value corresponding to its
input and output and the interference from the other pairs. In
joint training the MSE from each of these pairs are averaged
and are used to train the weight parameters of all the pairs
simultaneously. Adam optimizer is used for optimizing the
weights based on the gradients computed with the MSE loss
function. In case of distributed training, it is ensured that the
losses of the users are not shared between themselves. In the
process the loss function which is typically the MSE between
the input and the output symbols is minimized. The whole
operation can be summarized as

1X = g (H (f (X, wene)) , waee)|* (8)

W* =arg min
Wenec,Wdec
where W* = {Wene, Waee} are the parameters of the autoen-
coder for user 7. This is separately and simultaneously repeated
at all users of the network to get an optimal solution.

In case of K user interference channel, the set of parallel
acting autoencoder setup is prepared. Each of the autoencoders
tries to solve the equation in (8). The coupling between the
users is captured in the channel action where the channel
vector and the Gaussian noise are applied on the output
from the encoder along with the interference from other users
before passing it through as input to the decoder. For training
the autoencoder, a set of Gaussian distributed symbols were
organized into n; batches of batch size b;. A batch size of
2000 was chosen with the number of batches as 2. A learning
rate of .001 was used over 200 epochs.

Pretraining: We have discussed that the MaxSINR algo-
rithm has been proven to be optimal in weak interference
regime, where treating interference as noise is a reasonable
assumption. This is extended to a distributed algorithm dis-
cussed in the Algorithm 1. However, the MaxSINR does not
perform very well for strong interference regime. In a similar
fashion, TIMTIN algorithm was considered to be performing
better for strong and hybrid interference regimes but fails to
perform in finite SNR regimes, as it focuses on the suppressing
interference over maximizing signal to noise and interference
ratio (SINR). In a bid to improve the training mechanism for
auto encoders and to ensure that we get a better solution, we
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use the alignment vector Vj, Vk € [K| obtained from explicit
algorithms to train the encoders of the autoencoder networks;
we train the k-th encoder of the autoencoder networks via
supervised training with pairs of (Wy, Vi, Wy) for k € [K].
We use a training set consisting of 2 batches of 2000 samples
and run it for 100 epochs with a learning rate of .001. It
is followed by decoder training which is done in the usual
way, by minimizing the MSE, and finally we do end to end
training to get finer results. As we can see in Figures 4 and 6,
pretraining is crucial in learning reliable IA schemes.

IV. EXPERIMENT SETUP

The channel coefficients hy;, which form the diagonal
elements of the channel matrix Hy; in (1) are assumed to
be scalar constants. We let the noise spectral density of the
Gaussian noise to be N = 1 and the channel coefficients were
chosen according to the different interference parameters.

o — v SNR if k=1, ©)
T (VSNR)OR i K £ 4,
where «,; denotes the level of interference.
0.9 w.p.
i = P B (10)
0 wp 1-5,

A mixture of strong and weak interference was considered for
the interference channel. A series of channels were simulated
for each value of /3. The interference channel coefficients were
set through SNR, « and /3 parameters. Different intermediate
interference regimes were simulated by varying the value of 3
from 0.5 to 1.0. For simplicity purposes, two different strength
of interference parameter are used. The cross channels that
have strong interference, « for that channel was chosen to be
as = 0.9 while the the weak interference channels have «,, =
0. We specifically implement a 5 user interference channel and
obtained the MSE for Gaussian signaling employing various
algorithms to mitigate the interference. The parameters that
we have implemented for simulation are shown.

Parameter Value Type
K 5 fixed
n 2 fixed
Qg 0.9 fixed
Qg 0 fixed
15} 0.5 - 1.0 | variable

V. RESULTS AND DISCUSSION

A. Performance Evaluation

The performance of the algorithms is dependent on /3 which
is the probability of any cross channel having strong interfer-
ence. The expected number of possible cross channels which
have strong interference is given as SK (K — 1). The users
transmit their information through a single dimension and
project the interference into the remaining n — 1 dimensional
spaces. Thus, cumulatively the users can effectively cancel a

maximum of K (n — 1) strong interferers. Thus the number of
strong interferers which are not zero-forced is given as

n=max{0,8K(K —1)— K(n—1)} (11)

The greater the value of 7 the greater is the intensity of
interference at the receivers. It is also worth noting that the ex-
plicit algorithms such as MaxSINR are effective in cancelling
the interference for smaller values of 7 but under perform
with higher values. In our simulations, we keep K = 5
and n = 2 as constant and vary 3 in order to compare the
performance. The performance comparisons between different
schemes are done with the MSE in dB between the sent and
the estimated symbols as there is a strong correlation between
the achievable rate and the MSE between the symbols when
the input symbols are Gaussian distributed. We find that the
superior performance of the MaxSINR algorithms in weak and
intermediate interference regimes could be leveraged to have
better performance in strong interference channels through
pretraining.

-8 MaxSINR
AEEND
—4— AEEND DIST
—»— AEPRE
5| —& AETIMTIN PRE

06 07 08 09 10
Channel Interference, 3

Fig. 4. MSE comparison between the MSE in dB for different algorithm for
different interference regimes characterized by the interference parameter 3.
AE PRE and AE TIMTIN PRE are the autoencoders which are pretrained
using MaxSINR and TIMTIN respectively. AE END and AE END represent
conventional autoencoder with joint and distributed training respectively

30

AE, -MSE(dB)
°
0

-5 0 5 10 15 20 % 30
MaxSINR,-MSE(dB)

Fig. 5. Different MSE values for all simulated channels with size of the
markers defined by the interference parameter 3.

Fig. 4 shows the performance of the MaxSINR algorithm
compared to other algorithms in different interference regimes.
In addition, it also shows the effectiveness of the pretrained
algorithms to perform better in strong interference regimes.
Specifically, the autoencoders that is trained to the alignment
vectors from TIMTIN algorithm shows consistent performance
even when compared to a jointly trained autoencoder and
a distributed autoencoder. It is seen that the performance

2617
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 16:47:55 UTC from IEEE Xplore. Restrictions apply.



&~ MaxSINR
AE PRE

—— AE TIMTIN PRE

—»— AEEND

—<& AEEND DIST

Mutual Inforamation per User

05 06 07 08
Channel Interference, 3

Fig. 6. Mutual Information per user compared across different algorithms for

channels with different channel interference parameter 3.

e Usero o Usert
MaxSINR

e User2
AE PRE

e User3 ® Users
AE TIMTIN PRE

Fig. 7. Constellation Diagram showing the transmitted symbols for different
users for the indicated algorithms for a channel with 5 = 0.8. Left: MaxSINR,
Middle: AE pretrained with MaxSINR. Right: AE pretrained with TIMTIN

501 —e— MaxSINR
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|
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Fig. 8. MSE for different algorithms when they are trained and tested on
different channels.

of the MaxSINR for weaker interference regimes is better
evident from a lower MSE value but with the increase in
B or the amount of interference in the system, MaxSINR
starts to underperform. In that respect, the pretraining algo-
rithms although do not match the MaxSINR performance for
weaker interference, but at higher interference the average
performance in terms of MSE is better. The same behavior
is evident in the scatter plots in Fig. 5 where all the channel
simulation results are portrayed. The linear plot represents the
equal performance. The marker size represents the 3 value,
therefore, higher 3 implies better performance when compared
to the MaxSINR algorithm.

B. Robustness

In order to check the robustness of our networks, a different
interference channel matrix was used for training and testing.
The strength of the crosschannel was perturbed such that it
remained in the same interference regime but its value was
changed while the overall channel 8 was maintained. Fig. 8
plots the MSE when the algorithms were tested for these
perturbed channels different than channels that were used for
training. When compared to the plots in Fig. 4 we see that the
pretrained algorithms are more robust compared to MaxSINR
algorithm as the degradation in the MSE is less.

C. Results Interpretation

The superior performance of the MaxSINR algorithm is
evident in the weaker interference regimes for smaller values
of 3. With the increase in the value of [ the performance
deteriorates as it is not able to effectively cancel all the strong
interferers with just n = 2 DoF. Fig. 7 shows the output
constellation of each of the users. We can see that one of
the user is arranged orthogonal to all the other users and thus
has the best performance but the performance of all the other
users is affected. If we contrast it with the constellation of the
pretrained autoencoders, we see that the alignment operation is
no more perfectly linear which gives the autoencoders ability
to better manage the interference. Therefore, we conclude,
pretrained autoencoders show a significant improvement with
the increase in the interference as compared to the explicit
schemes. We conjecture that the ability of pretrained autoen-
coders to induce non-linearity in the representation of the
symbols helps them improve performance over the explicit
schemes through end to end training.
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VII. CONCLUSIONS

In this paper, we propose a framework for implicitly de-
veloping transmission strategies for multi-user interference
channels with finite SNR, where the users only have local
channel information. We leverage the effectiveness of the
explicit algorithms like MaxSINR and TIMTIN to compute the
alignment vectors and the power allocations, and use them to
pretrain the autoencoder. We then perform end to end training
on top of that to get a better performance when compared
to the explicit schemes. We show that with the increase in
the degree of interference, the performance of the MaxSINR
algorithm deteriorates, but the pretrained autoencoders are able
to outperform in these strong interference scenarios. In future
work, we intend to extend it to other settings of n with
higher number of users. Analyzing the bit error rate (BER)
performance with modulated schemes and developing short
blocklength codes for interference channels are also left as
interesting future work.
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