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Detection of local mixing in time-series data using permutation entropy
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Mixing of neighboring data points in a sequence is a common, but understudied, effect in physical exper-
iments. This can occur in the measurement apparatus (if material from multiple time points is pulled into a
measurement chamber simultaneously, for instance) or the system itself, e.g., via diffusion of isotopes in an
ice sheet. We propose a model-free technique to detect this kind of local mixing in time-series data using an
information-theoretic technique called permutation entropy. By varying the temporal resolution of the calculation
and analyzing the patterns in the results, we can determine whether the data are mixed locally, and on what scale.
This can be used by practitioners to choose appropriate lower bounds on scales at which to measure or report
data. After validating this technique on several synthetic examples, we demonstrate its effectiveness on data from

a chemistry experiment, methane records from Mauna Loa, and an Antarctic ice core.
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I. INTRODUCTION

In many fields of science, data are measured in gas or fluid
states where mixing can occur: in measurement chambers and
laboratory piping, for instance. If that process has the effect
of intermingling samples from different time points, it can
obfuscate the results. A continuous flow analysis system in
an ice-core laboratory, for example, melts ice from multiple
years into a single bolus, mixing the isotopes from each data
point (e.g., 6000 BCE) with those from surrounding ice (e.g.,
5990-6010 BCE). Similar effects can also be at work in the
system under study, e.g., diffusion of isotopes in the ice sheet,
which mixes climate data from successive years. In the face
of these challenges, choosing an appropriate interval at which
to measure, analyze, or report the data is often an imperfect
balance between time, money, laboratory capabilities, and
scientific need. Frequently, educated guesses are the only way
to make these critical choices.

In this paper, we describe a technique to detect these effects
in a data set; not only their presence, but also the scale on
which they operate, which we term the local mixing scale.
This gives practitioners a way to know precisely where to
draw the line, in terms of sampling the system and reporting

*Also at Santa Fe Institute, Santa Fe, New Mexico 87501, USA.

the data. Critically, our approach is model-free, providing
results without any need for domain-specific knowledge. The
technique is based on a method called permutation entropy,
which provides an estimate of the rate at which new informa-
tion is produced in a data sequence; in effect, a measure of
predictability. By varying the “stride” of this calculation, we
can detect whether or not the data bear the scars of mixing.

The underlying idea is as follows: for most time series,
predictability tends to decrease as one extends the horizon, so
permutation entropy will generally increase with the stride of
the calculation because the data points involved span wider
and wider temporal ranges. If successive data points are
measured on a smaller scale than the mixing scales that are
inherent in the data, though, each measurement is essentially
a single draw from a local distribution composed of the data
points in its local neighborhood. By definition, this added
randomness will raise the entropy rate. Reversal of the normal
pattern of the relationship between the stride of the calculation
and the permutation entropy values, then, is an effective way
to detect local mixing. Used in tandem with bin averaging,
this method also allows one to detect the scale of those mixing
effects and adjust one’s procedures accordingly.

In Sec. II, we describe the techniques involved in our
approach, beginning with some background on permutation
entropy and a description of the metric that we have developed
to capture the effects described in the previous paragraph.

fAuthor to whom correspondence should be addressed: We validate our technique using two synthetic examples
joshua@santafe.edu (Secs. IIT A and IIIB) and explore its utility in the context
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of three real-world time-series data sets: one from a chemistry
experiment involving gas mixtures (Sec. III C), a second from
an Antarctic ice core (Sec. III D), and a third from the Mauna
Loa methane records (Sec. IIIE). We discuss these results
and their implications in Sec. IV and conclude, with some
thoughts about broader applications and future directions, in
Sec. V.

II. MATERIALS AND METHODS

A. Permutation entropy

Permutation entropy [1] is a method for estimating the
Shannon entropy rate [2] of an arbitrary time-series data set.
The calculation focuses on the local relationships among a se-
quence of points by mapping their values to an ordering of the
same length. The three-point sequence [7,3,11], for instance,
would map to the ordering [1,0,2] because 3 < 7 < 11. The
statistics of these ordinal sequences or permutations are calcu-
lated as follows. Let | - | denote set cardinality and Ord define
a function that calculates the ordering of a given sequence
of length ¢, as in the £ = 3 example above. Additionally,
define a time series as the sequence (x;);e;,, where the index
setis Iy = {k € N \ {0} | k¥ < N}. Then the probability of the
appearance in the time series of £ sequences of data points
whose values map to a specific ordering m can be estimated
by

I{n € IN*ZJrl | Ord(xn» Xn41s - - 1-xn+Zfl) = 7T}|

prie] = N—(+1

(1

By calculating the probability of each of the £! orderings

across the whole time series, one constructs the permutation
entropy or PE:

1

E= ~log, ¢! Xn: rrirtos izl ”

This is an estimate of the average rate at which new infor-
mation appears in a time series per observation [1]. With the
1/ log, ¢! normalization, its values range from O to 1. If PE is
low, the observations, on average, contain a significant amount
of information about the past.' This is the case for a simple
sine wave. For a time series created by sampling sin(x) at
a spacing of Ax = 0.0001, for instance, the PE is approxi-
mately 0.024. As PE increases, more of the information in
each observation is new. The PE of the time series in the top
panel of Fig. 1 (the canonical Lorenz system, described at
more length later in this paper) is ~0.28, reflecting the ease of
predicting a noiseless deterministic signal.? If the signal were
wholly random, the PE would be 1. The value of the PE is a
function of the subsequence length ¢ (please see [4,6,7] for
more discussion of this parameter and its implications).

As defined above, PE captures the permutation entropy of
an entire data set in the form of a single value. One can also

'As such, PE has been shown to correlate with predictability (or
lack thereof) [3-5].

2The integration step size used to generate the time series also plays
arole here; if it is very small, successive points are highly correlated
and the PE will be lower.
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FIG. 1. Permutation entropy example. Top: a short segment of a
chaotic signal from the Lorenz system. Bottom: permutation entropy
of the Lorenz time series in the top panel.

perform this calculation in a sliding window across a time
series to increase the temporal resolution of the results. This
can be a good idea, for example, if the dynamics of the system
at hand are nonstationary. In this variant of the calculation,
each PE value captures the statistics of the orderings in a
window around the associated time point. As shown in the
bottom panel of Fig. 1, this windowed analysis brings out
subtle changes in the predictability of the Lorenz time series
in the top panel as the system moves through different parts
of its state space. However, it does introduce another free
parameter into the calculation: the window width w. See [8,9]
for discussion of the associated choices and issues.

All of the calculations reported in this paper use £ = 4 and
w = 5000, which are values chosen following best practices
in the permutation-entropy literature [3,7,8,10]. In a window
of this length, each permutation of length four will have ap-
proximately 200 opportunities to appear at least once, which
should be enough to rule out any forbidden ordinals [11].

B. Permutation entropy at varying temporal resolutions

The examples and equations in the previous section assume
that one always works with ordinal permutations that are
constructed from the values of successive points in a time
series. It can also be useful to coarsen the grain of this pro-
cedure using t-separated points instead, thereby changing the
temporal resolution of the calculation. This variant of the PE
technique, which was introduced in Ref. [8], requires a few
modifications to the first step in the calculations. Specifically,
Eq. (1) becomes

{n € In—e+1)c | Ord(xn, Xpic, - -
N—-W{+ 1)t

s Xng(e—1)r) = 10}

’

3

where 7 defines the spacing between the points in the time
series that are used to construct the ¢-element ordinal per-
mutations. With 7 = 2, for instance, the first permutation
constructed from the sequence [1,4,6,2,5,3] would be [0,2,1]
because 1 < 5 < 6.

The spacing parameter 7 is the focus of the work reported
here, and the central point of leverage for our technique.

Prir]=

022217-2



DETECTION OF LOCAL MIXING IN TIME-SERIES DATA ...

PHYSICAL REVIEW E 103, 022217 (2021)

0.50
0.45

[0 0.40

™ s AV oo,

MM AN W A Y

0.6 0.5
0.30 -
0.4

[ 0.6
a,

0 100000 200000 300000 400000 500000 0

Iteration

(a)

100000 200000
Iteration

(b) (c)

300000 400000 500000 ) 100000 200000 300000 400000

Iteration

500000

FIG. 2. Lorenz permutation entropy. (a) Permutation entropy (PE) of the full version of the Lorenz signal from the top panel of Fig. 1,
calculated with a range of values of 7, the spacing between data points used to construct the permutations. (The trace in the bottom panel of
Fig. 1 is a short segment of the 7 = 1 trace in this image.) (b) If local mixing effects are artificially added to the same signal, the ordering of
the PE traces is reversed. (c) A simple bin-averaging operation removes the local mixing effects, restoring the normal order of the traces.

Because this parameter controls the “stride” of the calculation,
changing its value allows one to understand the information
dynamics of the system at different resolutions. This can re-
veal some interesting patterns: persistence of features in PE
results across a range of t values, for instance, indicates an
effect in the underlying signal that spans multiple timescales.
In a wide range of data sets, we have observed that increasing
the t value generally raises the PE curves. These data sets
include a number of classic chaotic systems, two of which
are used as examples later in this paper, as well as transient
deterministic dynamics (e.g., the examples used in Ref. [8]),
various paleoclimate records (e.g., [9,12]), various 1-s and 1-
min financial price data sets, computer performance data from
the experiments reported in Refs. [13,14], and experimental
data from a driven damped pendulum, which are available at
[15]. Figure 2(a) demonstrates this in the context of the Lorenz
signal from Fig. 1.

A monotonic increase in the PE values with increasing t
simply reflects decreasing predictability over the longer time
span sampled by each permutation. When there is local mix-
ing in a time series, though, that reasoning no longer applies.
Rather, because the data points used to construct individual
permutations are measured on a smaller scale than the mixing
scales that are inherent in the data, each element of those
permutations is essentially a single draw from a local distri-
bution composed of the data points in the neighborhood of

each individual measurement. By definition, this added ran-
domness will raise the PE. As t increases, though, the points
used to generate the orderings will spread out across those
local distributions. When that point spacing exceeds the local
distribution width (i.e., the largest mixing scale at work in the
data), the extrinsic PE increase [4] caused by that mixing will
be reduced and eventually eliminated. The schematic in Fig. 3
illustrates the mechanism underlying this effect.

The takeaway here is that, when local mixing is at work
in a data set, its PE will not increase monotonically with 7.
Rather, the vertical ordering of the PE curves in a plot like
the ones in Fig. 2 will be reversed, with the low-t traces at
the top and the high-t traces at the bottom, the opposite of
what we expect for a deterministic system. This reversal is
not only a clear indicator of a specific issue in the data. With
some additional experimentation, as described in Sec. IID,
this effect can actually bring out the scale of the mixing.
First, though, we need a metric for assessing the relationships
between permutation entropy curves calculated with different
values of 7.

C. Reversal metric

The purely monotone nature of the vertical orderings of
the different PE traces in Fig. 2 persists across the entire span
of the time series, but that is not always the case; for some

—1t=1 =>£= (xl,x2,X3,X4) m --T =3=>5(\= (x1/x4/x71x10)m
+T=2=%=mxax) OO0

T =4 = R = (%1, %5, %0, ¥13) OO @

FIG. 3. Mixing and permutation entropy. If the values of neighboring points are not independent and the t value is small, then the points
used to construct each permutation are effectively drawn from a single local distribution, schematized here with different shades. In this case,
even though the underlying data may be deterministic, the relationships of these draws will be random and the permutation entropy will be
artificially high. Higher t values widen the span of the calculation beyond the spread of the local distributions, thereby mitigating this effect.
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data sets, the traces will touch, or even cross, at different
points in the time series. In order to assess the overall form
of these patterns, what we want is a measure of how close this
vertical ordering is to a purely monotone-increasing pattern at
different points in the time series. To quantify this formally,
we develop the following metric. Let 7., and 7,,,x denote the
smallest and largest values of t used in the PE calculation,
Wwith Tpyin < Tmax- Additionally, let v; denote the vector of
monotone-increasing values of t:

Tmax]T-

Vi = [Tmin Tmin+1

If Tmin = 1 and 1,4, = 6, for instance, this vector would be

T

vi=[l 2 3 4 5 6].

We construct a focal t-sequence vector, v, that captures the
ordering of the values of PE at a given time n. (For the exam-
ple in Fig. 2, v=[123456]" V n.) We define the reversal
metric R as the distance between this focal T-sequence vector
and the purely monotone-increasing vector v;:

R(v) = llv—vil/x, “4)

where v € &, the set of permutations of order Ti,y, and || - ||
denotes the L1 norm. The scaling term A, which is defined as

k=%mw—wﬂ

with y € S, , normalizes the value of R to run from 0 to
1, where O indicates perfect monotone-increasing order of
the different PE curves with 7. This is the case for every
time point in Fig. 2(a). R = 1, on the other hand, indicates
perfect monotone-decreasing order, as in Fig. 2(b), where
local-mixing effects have been artificially added to the Lorenz
signal via the procedure described in the following section.
One can average these pointwise values of R across the time
series, or over subsequences of it, in order to assess the overall
reversal pattern in the corresponding span. In the examples in
Figs. 2(a) and 2(b), that average value R is identical for all
subsequences of the data. If the reversal patterns vary across
the time series, though, that will not be the case, as will be
shown in Sec. III E.

The way of measuring distance that is encoded in Eq. (4),
which is a normalized version of Spearman’s footrule [16,17],
is more appropriate in our application than the Kendall-t
distance [17,18] (which is essentially the number of pairs
on which the relative order of two permutations disagrees)
because a reversal of, say, the T = 1 and t = 6 traces is more
meaningful than a reversal of the T = 3 and T = 4 traces be-
cause of the timescales involved. Other choices are of course
possible for the form of this metric, as discussed in Sec. I'V.

D. Data manipulation techniques

To validate our conjectures about the effect of local mixing
on the 7 orderings of PE traces, we perform a number of
tests using synthetic time-series data sets X = (x,),ez, from
well-known dynamical systems, manipulating them in order
to create Ansdtze that replicate the effects of that process on
those data; specifically, how it causes the interchange of infor-
mation within some “mixing window” that includes k points
before and after each measurement. To do this, we create a

local normal distribution at each point x,, whose mean and
variance are calculated from the points in that mixing window
around that point. To produce the corresponding point of the
Ansatz, X,, we make a random draw from that distribution:

£, ~ Normal(e,, a,,z),

where , and o, are the mean and standard deviation of the
points of x in the window:

[-xn*kv e Xpy e 7xﬂ+k]‘

This is a comparatively simple model of the effects of lo-
cal mixing on a series of data points; it does not capture
long-range effects, for instance. But for a wide range of ex-
perimental situations, this is a useful approximation.

In the following section, we also make use of binned av-
eraging, where one uses groups of j consecutive points of a
time series y to create the elements of a new series y:

et Vo 1yian e Y
yn — (y(n 1)j+1 Y@ 1.)/+2 ynj> . (5)
] nEIN/j

This is not a rolling bin average; rather, the first point of y is
the average of the first j points of y, the second is the average
of [yj+1...¥y2], and so on. This is intended to mimic what
happens in experimental practice when j successive points in
a raw data set are averaged together—in the system, in the
post processing, or in the laboratory apparatus. In the analyses
that follow, this technique serves two purposes: as an extra
validation step in the synthetic examples and as a diagnostic
of mixing scales in the real-world data sets.

III. RESULTS

As validation and demonstration cases for our mixing-
detection technique, we use two synthetic examples: classic
systems from the field of nonlinear dynamics and three real-
world time-series data sets. The synthetic-data examples allow
us to manipulate the time series, as described in Sec. II D, in
order to validate our reasoning about mixing and 7 reversal.
The experimental data sets—chemical sensor measurements
from a gas mixing experiment, water-isotope data from an
Antarctic ice core, measured by a spectrometer, and at-
mospheric methane from the Global Monitoring Laboratory
observatory on Mauna Loa, Hawaii—provide a view into the
utility of this technique in real-world settings. Figure 4 shows
data from the three real-world data sets.

A. Lorenz system

The Lorenz system [19] is defined by the following ordi-
nary differential equations:

x=a(y —x),
y=x(r_Z)_y,
z=2xy—bz.

To create a synthetic data set from this system, we choose
a =16, b =4, and r = 45, parameter values that are known
to produce chaotic behavior, and integrate the ordinary differ-
ential equations using a fourth-order Runge-Kutta method for
500000 steps with a step size of & = 0.005, starting from the
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FIG. 4. Data. The three experimental time-series data sets used as examples in this paper: chemical sensor data from a gas-mixing
experiment, water-isotope data from an Antarctic ice core (WDC), and atmospheric methane records from Mauna Loa (MLO). Insets are
provided for WDC and MLO to see finer details of each time series, e.g., seasonal temperature variation in the WDC signal.

initial condition [xg, Yo, zo] = [—13, —12, 52]. The x coordi-
nate of this trajectory is the baseline time series x for the set
of tests reported in this section.

Using the process described in Sec. II D, we manipulate
this high-resolution trajectory in order to replicate the effects
of local mixing in real experiments. The details are as follows.
At each point x, in the original time series, we calculate
the mean and variance of the points in a window of width
seven, centered on that point (i.e., [x,—3...x,+3]) and then
make a random draw from a normal distribution with those
parameters to obtain the corresponding point of a new time
series X,. We choose a mixing window of width seven for
this first experiment because k = 3 gives us points from many
distributions for each 7.

As discussed previously, this X signal, whose PE is shown
Fig. 2(b), is an Ansatz that is specifically designed to let us
explore the effects of local mixing in a controlled experiment.
As expected, the monotone-increasing vertical order that is
apparent in the PE traces calculated from the original time
series is reversed by the local-mixing operation. The corre-

sponding value of the reversal metric R, computed across
the span of the PE traces in Fig. 2(b), is 1, reflecting the
perfect monotone-decreasing order of those traces with t.
(This would also be the case for R computed across any
subsequence of those traces, since the ordering is reversed
everywhere: i.e., R = 1V n.) The PE values are higher than
in Fig. 2(a). This simply reflects the additional randomness
introduced by the local mixing operation. Careful examination
shows that that effect decreases with t: the 7 = 6 trace in
Fig. 2(b), for instance, has roughly the same mean value as
in Fig. 2(a), but the movement in the smaller-t traces is com-
paratively larger. This is due to the mitigation of the mixing
effects that occurs with larger t values.

Our original conjecture was that one could effectively
remove the added local mixing effects in X by taking a
binned average of that signal using the technique described
in Sec. II D, with a bin size j roughly equal to the size of the
mixing window used in the creation of that Ansatz. This con-
jecture can be easily tested using the Ansatz signal, as binning
at that scale should “undo” the t reversal produced by that
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FIG. 5. Bin size and mixing scales. Plots of R versus bin size for
the (a) Lorenz and (b) Mackey-Glass examples.

synthetic mixing manipulation, thereby restoring the normal
ordering.> We propose the following heuristic for choosing
the value of j to remove the local-mixing effects: bin average
the time series using varying bin sizes j, calculating R across
the span of the time series at each one, and choose the first bin
size where R goes to zero; if R never reaches zero, choose
the first minimum of this curve. Figure 5(a) shows such a plot
for the Lorenz Ansatz.

As the bin size increases, the curves start reordering them-
selves, with R reaching zero at j = 3. Beyond that, the
ordering shifts because of the complicated relationships be-
tween the different timescales of the analysis (z, £, the mixing
window, and the bin size), as well as other crucial dynamical
timescales, such as the irrelevance and redundance timescales
[20]. The PE traces in Fig. 2(c), computed from the Lorenz
Ansatz X binned with j = 3, are in clear monotone-increasing
order with 7, consistent with the R value of 0.

These results confirm that the binning process—a data-
manipulation step used to eliminate the simulated effects of
local mixing in the Ansatz—does indeed restore the normal
ordering. The bin size indicated by our heuristic is smaller
than the local mixing window that was used to create the
Ansatz, so our original conjecture was off by a scale factor.
This is discussed further below. Note, too, that the binning
operation does not restore the exact form of the original traces
in Fig. 2(a), just their ordering. The PE values in Fig. 2(c)
are higher because of the residual effects of the added mixing.
The difference in the smoothness of the traces in these two
images is partially due to the altered window size—from the
reduction in the number of points in the X signal—as well as
the difference in the scales of the plots.

This series of experiments validates the conjecture that,
when local mixing occurs in a data set, high sampling rates
can lead to reversal of the normal ordering of permutation
entropy with changing t. This observation is a potentially
useful way to detect the presence of local mixing in exper-
imental data. The bin size that restores the correct ordering
is an indicator of the scale of the effect, and that size can be
chosen from a curve like the one in Fig. 5(a). Our experiments
show that this claim holds for different mixing windows, as
well as for different w and ¢ values. In all cases, that bin size
is smaller than, but on the same order as, the mixing window

3For systems with delays, such as those modeled with delay-
differential equations, a wider binning window may be required
because of the associated temporal propagation of information due
to the delay term.

used in the creation of the Ansarz. The implications of this,
for experimental practice, are that this operation effectively
identifies the order of magnitude of the mixing scale in the
data, though not its specific value.

These results are encouraging, but this is only one system,
and a low-dimensional one at that. In the following section,
we replicate these steps with a more complicated dynamical
system.

B. Mackey-Glass system

The Mackey-Glass system [21] is described by a delay-
differential equation of the following form:

x(t —ty)
1+ x(t —19)?

The delay here makes this system effectively infinite di-
mensional, even though there is only a single state variable.
Like the Lorenz system, Mackey-Glass is known to ex-
hibit deterministic chaos for some values of the parameters
v, B, tp,and g. Using § = 0.2, y =0.1, tc =17, and g =
10, we integrate Eq. (6) with the same Runge-Kutta solver for
1.5 x 10° steps from an initial state of x = 1.2 using a step
size of 0.1 to obtain our test data x.

The procedure for exploring t reversal in this example
is exactly the same as in the Lorenz system in the previous
section. Figure 6 shows PE traces of the x, X, and X signals.

Figure 6(a) demonstrates normal, monotone-increasing or-
der, with R = 0 at all time points and a corresponding value
of R = 0 computed across the span of the time series. For the
locally mixed Ansatz X in Fig. 6(b), which was created with a
mixing window of nine, the order is reversed and R = 1. As
before, bin averaging with a bin size j = 3 chosen at the first
minimum of the R versus j curve for this signal [Fig. 5(b)]
completely restores the monotone-increasing order of the PE
traces, as shown in Fig. 6(c). Again, the form of these results
persists for different mixing windows, as well as for different
values of the parameters of the PE calculations. As in the
Lorenz examples, the bin size needed to fully restore the
normal ordering is always smaller than, but on the same order
as, the mixing window used in the creation of the Ansatz. In
other words, this value provides a useful litmus test for the
scale of that effect, even if it does not indicate the exact value.

These results reaffirm the overall relationship between lo-
cal mixing effects and t reversal. Next, we move to data from
physical experiments.

.Xzﬂ —)/xs yvﬁvq>0' (6)

C. Gas-mixture data

As a first real-world demonstration case for these tech-
niques, we use a data set from the UCI Machine Learning
Repository [22] that was produced during a chemistry exper-
iment involving gas mixing. The values in this time series
were measured by a sensor measuring carbon monoxide and
ethylene mixtures in air under changing concentration condi-
tions [23]. We focus on the ninth sensor in the array, a Firago
TGS-2600 instrument that reports particle concentrations in
parts per million. Calculations on the raw data from this
sensor yielded PE ~ 1 V 7 across the full range of the time
series: values that suggest that the signal is either all noise or
completely obscured by noise. To distinguish between these

022217-6
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two cases, we performed a low-pass filtering step before pro-
ceeding with further analysis. The first plot in Fig. 4 shows
the resulting time series, which is spaced at 0.25 s. PE traces
calculated from this filtered time series demonstrate reversed
7 ordering across the entire span of the data set with R = 1
[see Fig. 7(a)]. This reversed ordering, which was hidden by
the observational noise in the raw signal, suggests that local
mixing was at work during the collection of these data: in the
chamber, perhaps, or the compartment in the sensor. To ascer-
tain whether this was indeed the case, we perform a second
bin-averaging step on the data, as in the synthetic examples in
the previous sections, and observe how that operation affects
the ordering of the PE curves. As in those previous examples,
we can repeat this analysis using varying bin sizes in order to
estimate the scale of the mixing effects.

In this example, the results of that procedure are quite clear,
though the shape of the R versus bin size curve is somewhat
different than in our synthetic examples [see Fig. 8(a)]. As
before, the PE traces move towards normal ordering as the
bin size increases, but R then reaches a broad minimum that
is zero at j = 15 and extends to j = 54 (not shown).* Fig-
ure 7(b) shows that the PE traces for data bin averaged with
Jj =15 (i.e,, 3.75 s) are in fully normal order. These results
not only confirm that local mixing is at work in the raw data,
but also suggest a scale for those effects. This, in turn, has
implications for the resolution at which these data should be
reported.

D. Antarctic ice-core data

Water isotopes in ice cores, which are viewed as climate
proxies [24], can be measured at very high resolution in mod-
ern continuous flow analysis (CFA) equipment [25]. During
this process, the ice is continuously melted and then piped
through tubing into an optical spectrometer that measures the
ratios of heavy to normal variants of oxygen and hydrogen
isotopes in the ice. The CFA apparatus in the Stable Isotope
Laboratory at the Institute for Arctic and Alpine Research at
the University of Colorado can perform these measurements at
submillimeter resolution. Basic fluid dynamics makes mixing

“We do not have enough data to extend the calculation beyond j =
54.

inevitable in the different stages of this analysis pipeline (see
[25] for discussion of the associated issues). Diffusion causes
these isotopes to mix in the ice sheet as well, before the
samples reach the laboratory, so there are at least two potential
sources of mixing in these data, perhaps with different scales.

The West Antarctic Ice Sheet Divide Core (WDC) is
3300 m long, so a data set gathered from this core with
submillimeter spacing contains many million points. Here,
we focus on a short segment of that record: the ice from
1035.4 to 1368.2 m, which captures climate information
from roughly 4500-6500 years ago [10,26]. The second trace
in Fig. 4 shows the hydrogen isotope (§D) data from this
core. These data are reported in delta (§) notation relative
to the baseline Vienna standard mean ocean water (VS-
MOW) and normalized to the standard light Antarctic water
(6D = —428.0) scale. The § value is determined by & =
1000(0sampte/ pvsmow — 1), where p is the isotopic ratio D/H
(i.e., ’H/'H). Please see [9] for more details about these data.

As is customary in this field, the raw, high-resolution data
(0.3 mm spacing, in this data set) undergo a number of post-
processing steps: removal of outliers, interpolation to fill gaps
where data are missing, etc. The final step in the Stable Isotope
Laboratory’s postprocessing procedure involves a binned av-
erage of the data, with the bin scale explicitly chosen to reduce
any mixing effects. In this case, the ice-core scientists chose
a bin size of 0.5 cm (i.e., 17 points at a 0.3 mm spacing) to
construct the published version of this data, which is available
at [26].

This provides a unique opportunity for our work: using
permutation entropy, we can not only assess whether local
mixing was indeed at work in the raw data, but also potentially
identify the associated scales, and even validate our results
against expert judgment about those scales. To that end, we
calculate PE and R for the raw 0.3-mm spaced data. Similarly
to the gas mixture data in Sec. III C, the higher-t PE traces are
below the lower-t traces across the full span of the data set
[see Fig. 7(c)]. The corresponding R = 1 value reflects this
consistent reversal of the normal monotone-increasing order
across the entire time series. As in the gas-mixture example,
this suggests that local mixing effects are present in those
data. The t reversal does not identify the mechanics of the
effect, or its source. In this example, there are many potential
culprits: the laboratory apparatus and the physics of the ice
sheet, among other things. See Sec. IV for more discussion.
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FIG. 7. Reversal results in experimental data sets. From top to bottom: PE traces for the gas mixture, WAIS Divide, and Mauna Loa data. In
all cases, the images in the left and right columns show the calculations for the raw and bin-averaged data, respectively. The traces in the latter
are temporally offset by the width of the binning window times the width of the PE calculation window. (This offset is essentially invisible
in the Mauna Loa data because of the number of data points in the time series.) (a) Gas mixture: raw. (b) Gas mixture: binned with j = 15.
(c) WDC: raw. (d) WDC: binned with j = 15. (¢) Mauna Loa: raw. (f) Mauna Loa: binned with j = 4.

Note that we have moved to speaking of spatial scales
and resolutions here (depths in the core) rather than temporal
scales. Over this span of the WDC, there is a linear relation-
ship between depth and age, with 0.5 cm of ice translating to
1/34th of a year of climate record, so these depthwise data
can be viewed as time-series data. This would not be the case
if we were using a longer span of the core; particularly one
that extended to its deeper levels, where the nonlinearity of
the age-depth relationship more strongly affects the temporal
spacing of the data points.

To explore the mixing scales in this ice-core record, we
again use bin averaging, computing R from the raw 0.3-mm
data, binned at a range of bin sizes. The shape of this curve,

which is shown in Fig. 8(b), is similar to the one for the
gas-mixture data, reaching a broad minimum at j = 15 with
R = 0. That is, bin averaging the raw data using j = 15 re-
stores the normal order of the PE traces; this is clearly visible
in Fig. 7(d). As before, this is an indication of the scale of
the mixing effects that are present in the data. In this case,
where we have expert judgment as a point of comparison, that
scale can be corroborated. Recall that the laboratory used a
bin size of 17 to construct the data to be reported on the US
Antarctic Program Data Center website, basing that choice on
expert knowledge about the CFA apparatus. In other words,
our technique not only matches expert reasoning about the
data, but does so in a manner that is completely model-free,
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FIG. 8. R as a function of bin size. (a) Gas mixture, (b) WAIS Divide, and (c) Mauna Loa methane.

requiring no knowledge about the system that produced the
data or the apparatus that was used to measure it.

This analysis brings out the effects of any local mixing
process, of course—not just laboratory effects. Since the iso-
topes mix via diffusion in the ice sheet, there are also potential
scientific implications of these results, as discussed further in
Sec. IV.

E. Mauna Loa methane data

NOAA'’s Global Monitoring Laboratory has been measur-
ing atmospheric composition from Mauna Loa Observatory
in Hawaii (altitude = 3397 m) at high temporal resolution
for decades. Air is pumped continuously at &6 1/min from
two inlets 40 m above the surface to a manifold inside the
laboratory where &~ 100 ml/min of the flows is fed to a cali-
brated analyzer that measures the abundance of atmospheric
CH, at fixed intervals [27]. Over the period on which we
focus in this paper, two well-calibrated analysis methods were
used. In both cases, the analyzer alternates between the two
inlets. From 1996 to 9 April 2019, measurements were by gas
chromatography with flame ionization detection (GC/FID) at
15-min intervals, reported in parts per billion (ppb).’ For each
measurement, a 10-ml (at standard temperature and pressure)
slug of air is injected into the GC/FID system every 15 min.
The response of the detector is compared with bracketing
measurements of standard to quantify CH4. From 11 April
2019 to present, a cavity ring-down spectrometer (CRDS)
was used. This instrument records nine 10-s averages of CHy
every 5 min and averages them into a single “5-min average”
value, also reported in ppb. It is calibrated with a suite of
standards every 4 wk relative to a reference cylinder of natural
air; this reference is measured once per hour during normal
monitoring to track drift in the analyzer.

Because PE calculations require data with a constant tem-
poral spacing, we first downsampled the 5-min segment of the
data to produce an 826 633 point time series at an even 15-min
spacing, beginning at 0007 on 1 January 1996 and ending at
2350 on 7 June 2020. We then scanned the data for missing
or damaged values, replacing each of them with the last good
value. The third plot in Fig. 4 shows this record beginning in
March of 1996.

The ordering of the PE traces of this important data set,
which are shown in Fig. 7(e), is more complex than in the
previous two examples. The overall pattern is reversed, but
not perfectly, with R = 0.907, rather than 1.0, as in all of

510~° mol CH,4 per mol dry air.

the previous examples. In other words, local mixing effects
are almost certainly in play here, but the indication is not
as clear as in the gas-mixture and ice-core examples, where
R =1 at every point in time (and R = 1 for the whole
span). Moreover, nonstationarity is obviously an issue, viz.,
the downward spikes in PE values, especially at t = 1 (e.g.,
in 2004), for instance, and the short regions where the 7 or-
dering of the traces changes (e.g., in 2010 and from 2019 on).
Some of these issues can be traced back to the data-cleaning
and quality-control processes; many of the dips, for instance,
correspond to regions where a large fraction of the data are
missing or damaged. Replacing those points with the last good
value effectively creates a constant signal which, by definition,
obeys normal t ordering. This is a well-known challenge in
the permutation entropy literature; one that causes problems
for all data-cleaning strategies, including ours [4,28,29].

As before, we can repeat the R calculation for a range of
bin sizes in order to confirm the presence of local mixing
and estimate the associated scale. In this case, as Fig. 8(c)
shows, the first minimum of R falls at j = 4. The R value at
this point is O, indicating that a binning operation at a scale
of 1 h eliminates the local mixing effects. This is reflected
in the ordering of the resulting traces, shown in Fig. 7(f),
which are in monotone-increasing order with t. Again, our
results are in good alignment with standard practice in this
field, which prescribes a 1-h reporting cadence. As in the gas-
mixture and ice-core examples in the previous section, this
has implications for both analysis and reporting. Unlike those
examples, though, the curve in Fig. 7(f) rises strongly for
J > 5. This behavior, which more closely resembles the two
synthetic examples in Fig. 5, is likely due to the timescales
involved, in the systems and in the calculations, as well as
to data limitations, which precluded a broader span on the
horizontal axes of Figs. 7(d) and 7(e).

When one suspects nonstationarities, it can be informative
to perform a more focused analysis; specifically, to compute
R over windows of the PE traces, rather than over their entire
temporal extent. Figure 9 shows the results of this calculation
for the raw and binned MLO methane data that uses a window
size of 5000 points. This plot brings out the nonstationarities
of the data very clearly. From 1996 through early 2019, R
oscillates between 1.0 and 0.7, with occasional drops to 0.6
and one even lower, in 2010. These results confirm that the
mixing effects in this segment of the time series vary across
the time series: the ordering of the curves is largely reversed
across most of the span of the data, but the magnitude of
that reversal varies with time. Many of these nonstationarities
are due to the quality-control and data-cleaning processes,
as described above. Between June 2009 and May 2010, for
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FIG. 9. Windowed R analysis for the Mauna Loa data. Each
point corresponds to the value of R over the previous 5000 points.

instance, at the time of the obvious spike in the middle
of the curve, 5066 of the 31 000 points were missing or
damaged. Standard interpolation strategies for filling these
gaps—a necessary step because PE calculations require data
that are evenly spaced in time—employ smooth functions:
lines, curves, etc. Data spaced in this manner are inherently
predictable, so the PE values in the repaired spans will be low
and the 7 ordering will be monotone increasing, hence the
drop in R. These effects are visible in PE traces themselves
[Fig. 7(e) and the magnified views that appear in the Supple-
mental Material [30], which zoom in on the time spans around
2000 and 2009], but they really stand out in the windowed
R plot in Fig. 9. The same effects are also at work in many
of the smaller dropouts in R, e.g., a temporary ten times
increase in analyzer noise that occurred in June 2003, causing
many of the points in this time span to be flagged during the
quality-control process as suspicious, and therefore removed
in the data-cleaning process.

One of the most interesting features of Fig. 9 is the pre-
cipitous drop in R in the spring of 2019. Recall that the
Observatory switched from a gas chromatograph to a cavity
ring-down spectrometer at 0155 on 11 April 2019, at the
same time as the shift in measurement cadence. This newer
instrument has a factor of 5-10 less short-term noise than the
gas chromatograph that it replaced. Our metric detects this
quite effectively from the raw data, not only flagging the timing
of the change, but indicating clearly that the introduction of this
new instrument significantly reduced the mixing effects in the
data. This provides additional corroboration of the efficacy
of our technique, and also has implications for the scientific
analysis, as described in the following section.

IV. DISCUSSION

The synthetic-data experiments in Secs. IIl A and IIIB,
which use Ansdtze that are expressly designed to mimic the
effects of the process that we term local mixing, confirm our
conjectures about 7t reversal of PE curves as an indicator of
local mixing in a data set. In both cases, the R metric shows
that the monotone-increasing order of the PE traces for the
original data is reversed when information is artificially inter-
changed between neighboring data points. In both examples, a
bin-averaging operation on these artificially mixed time series
restores the normal order, as expected, since that operation
compresses the distribution that is effectively created by that

mixing down to its mean. The bin sizes required to accomplish
this are on the same scale as, but roughly half the size of,
the width of the mixing window that we use to create the
Ansitze.® One can leverage this observation to estimate the
mixing scale: specifically, when the R value of the PE curve
reaches zero.

Applied in tandem with bin averaging, this reversal met-
ric has an even more powerful role in the examples in
Secs. III C-IIIE, which involve data from real-world exper-
iments. In all of these cases except a few spans of the Mauna
Loa data, the t-reversal metric suggests that the resolution of
these data sets was actually high enough that the raw data are
essentially repeated draws from a distribution composed from
the data in a local window around each point. Permutation
entropy brings this out quite effectively, if one varies the t pa-
rameter in the calculation and evaluates the ordering of those
results. Even though this operation may not reveal the exact
distribution of the mixing effects, it has important practical
implications, as it gives an indication of the scales of those
effects, not just their presence or absence. This can be used,
together with expert knowledge and other data-analytic tech-
niques, to select an appropriate lower bound on the interval at
which one should analyze, or report, the data.

Departures from pure monotonicity in the PE traces are a
complex and interesting question. If R does not reach zero for
any bin size, for instance, one can choose the first minimum
of a curve like the ones in Fig. 5 or 8 to perform the binning,
but that is not guaranteed to remove all of the mixing effects,
especially if nonstationarities are involved, causing the mix-
ing scales to vary across the data set. Deconvolving multiple
nonstationary mixing processes would call for strategies far
more sophisticated than simple binning at a fixed resolution
across the whole time series. A formal solution to this would
be a major challenge, given the complex nature of the non-
linear statistics that underpin permutation-entropy analyses.
Nonetheless, a windowed R analysis like the one shown in
Fig. 9 can help ascertain whether there are different regimes
in the data, with different noise and mixing properties in each,
as in the different segments of the Mauna Loa methane data,
before and after the instrument change.

A major advantage of our technique is its model-free na-
ture; it identifies the mixing scale regardless of the cause.
This has disadvantages as well, though: if two or more mix-
ing processes are at work, our analysis will bring out the
one with the largest scale. If the scales are widely separated
and one has very fine-grained data, it might be possible to
extend this analysis to detect the different scales. This is a
potential issue in the WDC data, where there are two known
sources of mixing: diffusion of the isotopes in the ice sheet
and fluid mixing in the laboratory analysis pipeline. Diffusion
is a function of density, and density in an ice core is a function
of depth, so the effects are not simple. Standard procedure in
this laboratory is to use estimates of the accumulation rate and

SCalculations of the ratio of the standard deviation of the points in
the mixing window to the absolute value of the difference between
two adjacent points explain this to some extent, yielding values
between 1.2 and 2.3 for the Lorenz and Mackey-Glass experiments
with a range of integrator time steps.
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temperature to make an educated guess at the diffusion scale
at each depth. In constructing the published data set from the
raw data, the analysts chose a sample rate that exceeded that
resolution—in effect, intentionally oversampling the data—
and then selected a bin size that spaced the reported data
points safely above their estimates of the mixing scales. If
those estimates are good, this procedure will obviously make
the two mixing scales (diffusion in the ice sheet and fluid
dynamics in the laboratory apparatus) very similar, so we do
not expect to be able to deconvolve these two effects from this
data set.

Similarly, there are a number of different potential sources
of the mixing effects in the Mauna Loa data. While the
sample lines are unlikely to be at issue because the flow
through them can be approximated as plug flow, there is noise
in the analyzer. There are also known sources of organized
natural variability in the study system itself, which span the
timescales from days to decades: (1) diurnal cycle related to
local wind regime, (2) synoptic scale variability occurring
on timescales of weather fronts (a few days), (3) seasonal
cycle related to changing atmospheric loss process rate, and
(4) long-term trend related to imbalance between emissions
and losses. We did not find any correlation between R and
meteorological parameters, although Dlugokencky et al. [27]
showed that, on average, the diurnal cycle in atmospheric
CH, correlated with dew point, because both are impacted by
daily cycling between up-slope and down-slope wind regimes.
Of course, there could be convolved effects from multiple
causes, but those would be difficult to study in isolation with a
permutation-entropy analysis for the same reasons mentioned
at the end of the previous paragraph.

The alignment between our results and scientific knowl-
edge about the experimental situation is encouraging. The R
calculations also clearly bring out the timing, as well as the
salutary effects, of the 2019 instrument change on Mauna
Loa, for instance. In the ice-core data, the R metric revealed
that a 15-point averaging window restored the normal order
of the PE traces, when the experts chose a 17-point window.
Similarly, our method suggested a 1-h mixing window for the
Mauna Loa data, which is exactly the cadence that is used
in practice. In the data gathered by the newer instrument, the
same strategy indicated a significant reduction in the mixing
scales, corresponding to a 25-min cadence.

While corroboration of the known properties of a new
instrument is not that exciting, there can be unknown mech-
anisms at work in one’s data, leaving traces that are all but
invisible to normal analysis techniques. Indeed, this was the
driving force behind the creation of the WDC data set used
for this work. After a permutation entropy analysis revealed
noise introduced by the CRDS instrument that had been used
to analyze this section of the ice core [10], the analysis
was repeated using a newer instrument, removing the noise
effects. Finally, the results of the analysis described in the
previous sections not only corroborate the reasoning behind
the approaches taken by the experts, but could also provide a
more systematic way to figure out exactly how to squeeze as
much information out of a study system as nature will allow.
Of course, this does not mean that data measured below the
mixing scale are useless; indeed, one must sample below a
scale in order to identify its lower boundary.

There are many avenues for extension of this work. The
metric used in the pointwise t-reversal metric (R) and the
temporally aggregated nature of its average, R, have pros and
cons. R is based solely on the L1 norm of the distance be-
tween the focal t-sequence vector v and the purely monotone
vector v;. While this is a sensible measure of an overall pattern
of monotonicity, it does incorporate some bias: an interchange
of the T = 6 and T = 1 PE traces, for instance, will affect the
‘R value more strongly than an interchange of the v = 3 and
7 = 4 traces. Because R is an average of R across a segment
of the data set, it cannot capture temporal detail that occurs
below the scale of the segment, such as regimes of reversed
and normal ordering at different points in the data. Since many
real-world data sets are nonstationary, it might be useful to
develop a formalized strategy for a windowed R analysis with
varying window sizes. (The window size in Fig. 9 is tuned
by hand to bring out the operative effects without excessive
detail.) One could compute some statistics on the lengths of
reversed and normal regimes from these results; even just the
maxima and minima in R might be informative. This could be
particularly useful in ice cores, where large diffusion events
are theorized to occur [31]. In cases like this, these t-reversal
metrics could provide insight not only into the instruments and
sampling rates that are appropriate for different timescales,
but also into the scientific questions of a field. Applications
of the techniques described in this paper are by no means
limited to purely temporal data, either, as evidenced by the
WDC example. Since mixing is an important issue in spatial
and spatiotemporal data sets, that is an additional advantage
of the technique, and an avenue for further investigation.

V. CONCLUSION

In experimental practice, a delicate balance can arise be-
tween properly sampling the dynamics of a study system and
oversampling them and thereby obfuscating the underlying
signal with measurement-related effects. The Nyquist rate
provides some guidance for this when the system is linear and
its highest frequency is known, but those conditions are not
always met in real-world situations. In this paper, we have de-
scribed an information-theoretic technique for detecting one
such oversampling effect, which arises when local mixing is
present. Critically, this method requires no domain-specific
knowledge about the data, or about the system that produced
it. One simply calculates the permutation entropy across the
time series at different temporal resolutions and examines
the relationship between the resulting traces. For most time
series, permutation entropy will increase with the stride of the
calculation (the T parameter in the previous sections). This
simply reflects decreasing predictability over the longer time
span sampled by each permutation. Reversal of that ordering
suggests that local mixing has occurred.” The basic intuition
here is straightforward: if successive data points are measured
on a smaller scale than the mixing scales that are inherent
in the data, each measurement is essentially a single draw
from a local distribution composed of the data points in its

"In data from purely random process, of course, where temporal
ordering is meaningless, T order cannot bring out local mixing.
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local neighborhood. By definition, this added randomness will
raise the entropy rate. A reversal of the normal ordering of
the traces, then, is an indication that mixing may be at work
in the data. One can extend this reasoning to estimate the
scale of the mixing effects by performing bin averaging of
the signal for a range of bin sizes. (However, this does not
extend to discontinuous data, such as iterates of maps, where
a binned average does not have the appropriate smoothing
effects.) Mixing is not the only data issue that R can flag;
we are currently investigating rounding effects, for instance,
which can also change PE values and reshuffle the t ordering.

Our method can not only be used by practitioners to detect
mixing in their data; it can also help them choose appropriate
lower bounds on the scales at which to perform the analysis,
allowing them to squeeze as much information as possible
out of their study system while avoiding spurious effects.
Sampling frequency is often an imperfect balance between
time, money, scientific need, and what the system of interest
allows. Educated guesses are frequently our only means of
making decisions about how often to sample. Considerable
time and money could be saved if we had some meaningful
feedback about where to draw the line in terms of sampling.
Accuracy is also an issue here, since local mixing obfuscates
data; in a situation like this, knowing the scales at which one
should perform an analysis is of obvious value. Moreover,
a method that identifies oversampling scales can be used to
establish solid guidelines for data reporting. Our method does
not only work on time series data, as is clear from our ice-

core example, where the t-reversal metric revealed mixing on
spatial scales in the core that aligned with expert reasoning
about diffusion in the ice sheet.

Permutation entropy and its variants (e.g., [32]) have be-
come a staple in time-series analysis, especially in anomaly
detection and forecasting. Some of that work has leveraged
the 7 parameter to focus on different temporal scales. To the
best of our knowledge, though, no one has used the ordering
of PE traces calculated across different t values to understand
the properties of the data.

The gas-mixture data is located in the UCI Machine Learn-
ing Repository [33]. The ice-core data is located in the U.S.
Antarctic Program Data Center [34]. The hourly averages of
the Mauna Loa data can be found at [35].
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