

Coastal Ocean Data Analysis Product in North America (CODAP-NA) – an internally consistent data product for discrete inorganic carbon, oxygen, and nutrients on the North American ocean margins

Li-Qing Jiang^{1,2}, Richard A. Feely³, Rik Wanninkhof⁴, Dana Greeley³, Leticia Barbero^{4,5}, Simone Alin³, Brendan R. Carter^{3,6}, Denis Pierrot⁴, Charles Featherstone⁴, James Hooper^{4,5}, Chris Melrose⁷, Natalie Monacci⁸, Jonathan D. Sharp^{3,6}, Shawn Shellito⁹, Yuan-Yuan Xu^{4,5}, Alex Kozyr^{1,2}, Robert H. Byrne¹⁰, Wei-Jun Cai¹¹, Jessica Cross³, Gregory C. Johnson³, Burke Hales¹², Chris Langdon¹³, Jeremy Mathis¹⁴, Joe Salisbury⁹, and David W. Townsend¹⁵

¹Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA

²National Centers for Environmental Information, National Oceanic and Atmospheric Administration,

Silver Spring, Maryland 20910, USA

³Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, Washington 98115, USA

⁴Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, 4301 Rickenbacker Causeway, Miami, Florida 33149, USA

⁵Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, USA
 ⁶Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, 3737 Brooklyn Ave NE, Seattle, Washington 98105, USA

⁷Northeast Fisheries Science Center, National Oceanic and Atmospheric Administration, 28 Tarzwell Drive, Narragansett, Rhode Island 02882, USA

⁸Ocean Acidification Research Center, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 2150 Koyukuk Drive, Fairbanks, Alaska 99775, USA

Ocean Process Analysis Lab (OPAL), University of New Hampshire, 8 College Rd, Durham, New Hampshire 03824, USA

¹⁰College of Marine Science, University of South Florida, 140 7th Avenue South, St. Petersburg, Florida 33701, USA

¹¹School of Marine Science and Policy, University of Delaware, 261 S. College Ave, Newark, Delaware 19716, USA

¹²College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 2651 SW Orchard Avenue, Corvallis, Oregon 97331, USA

¹³Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, USA

¹⁴Walsh School of Foreign Service, Georgetown University, Washington, District of Columbia 20057, USA ¹⁵School of Marine Sciences, University of Maine, Orono, Maine 04469 USA

Correspondence: Li-Qing Jiang (liqing.jiang@noaa.gov)

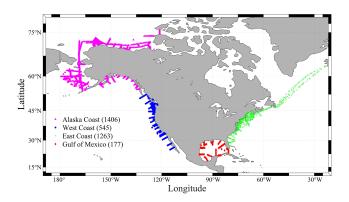
Received: 23 December 2020 – Discussion started: 15 January 2021 Revised: 19 April 2021 – Accepted: 19 April 2021 – Published: 15 June 2021

Abstract. Internally consistent, quality-controlled (QC) data products play an important role in promoting regional-to-global research efforts to understand societal vulnerabilities to ocean acidification (OA). However,

there are currently no such data products for the coastal ocean, where most of the OA-susceptible commercial and recreational fisheries and aquaculture industries are located. In this collaborative effort, we compiled, qualitycontrolled, and synthesized 2 decades of discrete measurements of inorganic carbon system parameters, oxygen, and nutrient chemistry data from the North American continental shelves to generate a data product called the Coastal Ocean Data Analysis Product in North America (CODAP-NA). There are few deep-water (> 1500 m) sampling locations in the current data product. As a result, crossover analyses, which rely on comparisons between measurements on different cruises in the stable deep ocean, could not form the basis for cruise-to-cruise adjustments. For this reason, care was taken in the selection of data sets to include in this initial release of CODAP-NA, and only data sets from laboratories with known quality assurance practices were included. New consistency checks and outlier detections were used to QC the data. Future releases of this CODAP-NA product will use this core data product as the basis for cruise-to-cruise comparisons. We worked closely with the investigators who collected and measured these data during the QC process. This version (v2021) of the CODAP-NA is comprised of 3391 oceanographic profiles from 61 research cruises covering all continental shelves of North America, from Alaska to Mexico in the west and from Canada to the Caribbean in the east. Data for 14 variables (temperature; salinity; dissolved oxygen content; dissolved inorganic carbon content; total alkalinity; pH on total scale; carbonate ion content; fugacity of carbon dioxide; and substance contents of silicate, phosphate, nitrate, nitrate plus nitrite, and ammonium) have been subjected to extensive QC. CODAP-NA is available as a merged data product (Excel, CSV, MATLAB, and NetCDF; https://doi.org/10.25921/531nc230, https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0219960.html, last access: 15 May 2021) (Jiang et al., 2021a). The original cruise data have also been updated with data providers' consent and summarized in a table with links to NOAA's National Centers for Environmental Information (NCEI) archives (https://www.ncei.noaa.gov/access/ocean-acidification-data-stewardship-oads/synthesis/NAcruises.html).

1 Introduction

Anthropogenic ocean acidification (OA) refers to the process by which the ocean's uptake of excess anthropogenic atmospheric carbon dioxide (CO₂) reduces ocean pH and calcium carbonate mineral saturation states (Feely et al., 2004; Orr et al., 2005; Jiang et al., 2019; IPCC, 2011). OA is making it more difficult for marine calcifiers to build shells and skeletal structures and is endangering coral reefs and other marine ecosystems (Gattuso and Hanson, 2011; Doney et al., 2020). Coastal ecosystems account for most of the economic activities related to commercial and recreational fisheries and aquaculture industries, supporting about 90 % of the global fisheries yield and 80% of known species of marine fish (Cicin-Sain et al., 2002). Studies have shown that OA has the potential to significantly impact both the fisheries and aquaculture industries and change the way humans make their living, run their communities, and live their lives in coastal regions around the world (Cooley and Doney, 2009; Barton et al., 2012, 2015).


The Global Ocean Data Analysis Project (GLODAPv2) offers an internally consistent data product for discrete-sampling-based open-ocean carbonate chemistry, nutrient chemistry, isotope, and transient tracer data (Olsen et al., 2016, 2020), allowing for a slew of new research products related to OA and its temporal trends in the global ocean (e.g., Lauvset et al., 2015; Jiang et al., 2015a; Gruber et al., 2019; Lauvset et al., 2020). While there are several data products and climatologies for coastal surface water partial pres-

sure of CO₂ (*p*CO₂) (e.g., Bakker et al., 2016; Laruelle et al., 2017; Roobaert et al., 2019; Takahashi et al., 2020), internally consistent data products for water column carbonate and nutrient chemistry data in the coastal ocean currently do not exist. Such products would contribute significantly to our understanding of the current status of OA and its temporal trends and help guide OA mitigation and adaptation efforts in coastal oceans.

The impact of OA on North American ocean margins is expected to vary significantly from region to region, with distinct regional drivers amplifying or mitigating overall coastal acidification. Anthropogenic CO2 invasion has been identified as the primary driver of open-ocean acidification over decadal timescales, but coastal ocean acidification is influenced by many other physical, biological, and anthropogenic processes that can oppose or amplify the anthropogenic CO₂ uptake. The continental west coast (WC) and east coast (EC) are in two vastly different ocean basins (Pacific vs. Atlantic) with different amounts of net organic matter remineralization in deeper waters flowing along the path of the global thermohaline circulation (Broecker, 1991; Feely et al., 2008, 2016; Jiang et al., 2010; Wanninkhof et al., 2015). In the surface ocean, latitudinal variation of sea surface temperature and the ratio of dissolved inorganic carbon (DIC) to total alkalinity (TA) result in significantly different pH and calcium carbonate mineral saturation states between the Alaska coast (AC) and Gulf of Mexico (GMx; Jiang et al., 2019; Cai et al., 2020). Upwelling can bring deep waters with corrosive OA chemistry (resulting from large respiratory CO₂ loads) to the surface, while onshore surface flow can bring less-corrosive open ocean waters to the coastline (Hales et al., 2005; Feely et al., 2008, 2016). Riverine input of low-pH water is found to intensify OA shoreward of the shelf break on the EC (Hunt et al., 2011; Xue et al., 2016). However, riverine water composition also varies significantly, and the Mississippi River is a source of high-TA water to the Gulf of Mexico (Cai et al., 2008; Stets et al., 2014; Gomez et al., 2020). Eutrophication (enhancement of biological production of organic matter through addition of nutrients) causes high pH and calcium carbonate mineral saturation states in surface waters of the coastal ocean and can lead to subsurface hypoxia (via subsequent respiration of that production), which is associated with low pH and calcium carbonate mineral saturation (Borges and Gypens, 2010; Cai et al., 2011; Laurent el al., 2017; Feely et al., 2016, 2018). The lack of OA synthesis efforts on North American ocean margins hampers our understanding of the geographic pattern and relative regional progression rates of OA along these coastlines (Cai et al., 2020).

Carbonate chemistry data in the coastal ocean are often collected by multiple laboratories with different methods and instruments. Many of the data sets may have never been shared with any major data centers, nor have these data sets gone through rigorous quality control (QC) and intercomparison analyses. The lack of observations in intermediate and deep water (water depth > 1500 m) makes it challenging to adjust the data based on constancy of parameters in deep water (i.e., crossover analyses) as is done for the open ocean (Lauvset and Tanhua, 2015). All these factors contribute to the lack of internally consistent data products for these important coastal environments.

In this study, we compiled and quality-controlled discrete sampling-based data for inorganic carbon, oxygen, and nutrient chemistry, and hydrographic parameters collected from the entire North American continental shelves and created a data product called the Coastal Ocean Data Analysis Product in North America (CODAP-NA). We serve both the internally consistent climate quality data product and the qualitycontrolled original cruise data through the NOAA National Centers for Environmental Information (NCEI). This effort will promote future OA research, modeling, and data synthesis in critically important coastal regions to help advance the OA adaptation, mitigation, and planning efforts of North American coastal communities. While we only partially address limitations associated with the lack of deep and intermediate data in this study, we do produce a data product that can be used as the basis to address these limitations and incorporate additional coastal cruises going forward. We hope this release will be considered analogous to GLODAPv2 (Olsen et al., 2016), in the sense that the new data sets added in the subsequent GLODAPv2.2019 and GLODAPv2.2020 updates (Olsen et al., 2019, 2020) were brought to be internally consistent with the fully quality-controlled data in the original GLODAPv2 product.

Figure 1. A map showing all the sampling locations of the CODAP-NA data product (v2021, a total of 3391 profiles). Magenta triangles show the sampling profiles at the Alaska coast (AC). Blue ones are for the west coast (WC), green crosses are for the east coast (EC), and the red diamonds are for the Gulf of Mexico (GMx). Numbers within the parentheses indicate the total number of profiles in the region.

2 Study area

From a geopolitical perspective, the term "continental shelf" is defined as the region between the coastline (excluding estuaries) and a distance of 200 nautical miles (\sim 370 km) offshore. While this definition is not as mechanistic as one based on a change in bathymetric gradient or a hydrographic condition such as chlorophyll or salinity levels, it is regionally and seasonally invariant and captures the full extent of coastal influences (Hales et al., 2008). This version of the data product is focused on the continental shelves of the North American coasts (Fig. 1), including

- AC including the large marine ecosystems (LMEs) of the Gulf of Alaska, eastern Bering Sea, northern Bering–Chukchi seas, and Beaufort Sea (see Sherman et al., 2009, for more information on the LMEs);
- WC including the LMEs of California Current and Gulf of California;
- EC including the LMEs of northeast US and southeast US continental shelf regions;
- GMx.

Data beyond continental shelves will be included if they are collected from a cruise that predominately covers parts of the North American ocean margins.

3 Parameters/variables

For the current version of the CODAP-NA, inorganic carbon system parameters, oxygen, nutrients, and related hydrographic parameters were included. CTDPRES, CTDTEMP, CTDSAL_PSS78, and CTDOXY were commonly measured

Table 1. Parameters that are included in the CODAP-NA (v2021) data product.

Abbreviation	Variable description	Unit	Measured/ Calculated
CTDPRES	Water pressure recorded from sensors on a CTD rosette. For surface samples collected from an onboard flow-through system, its pressure is equal to the depth of the water inlet. When such info is not available, it is assumed to be 5 dbar.	dbar	Measured
CTDTEMP_ITS90	Temperature on the International Temperature Scale of 1990 (ITS-90) from sensors on a CTD rosette. For surface samples collected from an onboard flow-through system, temperature has also been merged into the CTDTEMP_ITS90 variable.	°C	Measured
CTDSAL_PSS78	Salinity on the Practical Salinity Scale 1978 (PSS-78) from sensors on a CTD rosette. For surface samples collected from an onboard flow-through system, salinity from the thermosalinograph has been merged into the CTDSAL_PSS78 variable.	-	Measured
Salinity_PSS78	Salinity on the Practical Salinity Scale 1978 (PSS-78) scale measured as discrete samples	_	Measured
recommended_Salinity_ PSS78	Discrete salinity with some missing values filled in using CTDSAL	_	Measured
CTDOXY	Dissolved oxygen content from sensors on a CTD rosette	$\mu \mathrm{mol}\mathrm{kg}^{-1}$	Measured
Oxygen	Dissolved oxygen content measured as discrete samples from Winkler titration	$\mu \mathrm{mol}\mathrm{kg}^{-1}$	Measured
recommended_Oxygen	Discrete dissolved oxygen content from Winkler titration with some missing values filled in using CTDOXY	μmol kg ⁻¹	Measured
AOU	Apparent oxygen utilization	$\mu \mathrm{mol}\mathrm{kg}^{-1}$	Calculated
DIC	Dissolved inorganic carbon content	$\mu \mathrm{mol}\mathrm{kg}^{-1}$	Measured
TA	Total alkalinity	$\mu \mathrm{mol}\mathrm{kg}^{-1}$	Measured
pH_TS_measured	pH on total scale (TS) measured as discrete samples at measurement temperature and ambient pressure	-	Measured
TEMP_pH	Temperature of pH measurement	°C	Measured
pH_TS_in_situ_measured	pH on total scale (TS) measured as discrete samples and adjusted to in situ conditions	-	Measured
pH_TS_in_situ_calculated	dpH on total scale (TS) under in situ conditions calculated from DIC, TA, and other parameters using CO2SYS		Calculated
Carbonate_measured	Carbonate ion content measured as discrete samples at measurement temperature and ambient pressure	μmol kg ⁻¹	Measured
TEMP_Carbonate	Temperature of carbonate ion measurement	°C	Measured
Carbonate_in_situ_ measured	Carbonate ion content measured as discrete samples and adjusted to in situ conditions	μmol kg ⁻¹	Measured
Carbonate_in_situ_ calculated	Carbonate ion content under in situ conditions calculated from DIC, TA, and other parameters using CO2SYS	μmol kg ⁻¹	Calculated
fCO ₂ _measured	Fugacity of carbon dioxide measured as discrete samples at measurement temperature and ambient pressure	μatm	Measured
TEMP_fCO ₂	Temperature of fCO_2 measurement	°C	Measured
fCO2_in_situ_measured	Fugacity of carbon dioxide measured as discrete samples and adjusted to in situ conditions	μatm	Measured
fCO ₂ _in_situ_calculated	Discrete fugacity of carbon dioxide under in situ conditions calculated from DIC, TA, and other parameters using CO2SYS	μatm	Calculated

Table 1. Continued.

Abbreviation	Variable name	Unit	Measured/ Calculated
Aragonite	Aragonite saturation state under in situ conditions calculated from DIC, TA, and other parameters using CO2SYS	_	Calculated
Calcite	Calcite saturation state under in situ conditions calculated from DIC, TA, and other parameters using CO2SYS	_	Calculated
Revelle_Factor	Revelle factor calculated from DIC, TA, and other parameters using CO2SYS		Calculated
Silicate	Silicate content	$\mu \mathrm{mol}\mathrm{kg}^{-1}$	Measured
Phosphate	Phosphate content	µmol kg ^{−1}	Measured
Nitrate	Nitrate content	µmol kg ^{−1}	Measured
Nitrite	Nitrite content	$\mu \mathrm{mol}\mathrm{kg}^{-1}$	Measured
Nitrate_and_Nitrite	Nitrate and nitrite contents combined	µmol kg ^{−1}	Measured
recommended_Nitrate _and_Nitrite	Nitrate_and_Nitrite content, along with nitrate content when Nitrate_and_Nitrite data are not available	μmol kg ⁻¹	Measured
Ammonium	Ammonium content	$\mu \mathrm{mol}\mathrm{kg}^{-1}$	Measured

with pressure, temperature, conductivity, and oxygen sensors, respectively, mounted on a CTD rosette (Table 1). In some cruises with surface samples collected from flowthrough systems, temperature and salinity were also provided in columns reserved for CTDTEMP and CTDSAL PSS78, respectively. Water samples were routinely collected and measured on board or later in a shore-based laboratory for Salinity_PSS78, Oxygen, DIC, TA, pH_TS_measured, Carbonate measured, fCO₂ measured, Silicate, Phosphate, Nitrate, Nitrite, Nitrate_and_Nitrite, and Ammonium (Table 1). For pH, carbonate ion content ($[CO_3^{2-}]$), and fugacity of carbon dioxide (fCO_2), both measured and calculated values were presented. Saturation states of aragonite (Ω_{arag}) and calcite (Ω_{calc}) could only be calculated. The carbon system calculations were conducted using the MATLAB version 3.01 (Sharp et al., 2020) of the CO2SYS program (Lewis and Wallace, 1998), with the dissociation constants for carbonic acid of Lueker et al. (2000), bisulfate (HSO₄) of Dickson (1990), hydrofluoric acid (HF) of Perez and Fraga (1987), and total borate equations of Lee et al. (2010). Note that the use of "content" (i.e., per kilogram seawater) instead of "concentration" (i.e., per liter) is adopted in this study. For example, either "nitrate content" or "substance content of nitrate" is used instead of "nitrate concentration". For more information, refer to Jiang et al. (2021b).

4 Data sources

CODAP-NA was focused on chemical oceanographic data (inorganic carbon system parameters, oxygen, and nutrients) collected from discrete sampling-based observations (Table 2). This also included discrete samples taken from shipboard flow-through systems rather than solely water collected in sampling rosette bottles. Carbon parameters recorded from continuous underway measurements by inline analytical instruments were excluded, as they had been quality-controlled and included within the Surface Ocean CO₂ Atlas (SOCAT) (Bakker et al., 2016). The same was true for carbon parameters from time-series moorings. Data from large open estuaries (e.g., Salish Sea, Chesapeake Bay, Bay of Fundy) were excluded during this first round of analysis, but these are among the data that may be able to benefit from second-level QC against CODAP-NA. When a cruise spanned ocean margins and also contained a subset of measurements within estuaries, the estuarine data from that cruise were retained for this data product.

We started with the highest-quality coastal data sets to define a protocol for consistent QC and intercomparison, which would subsequently be applied to other compiled coastal data sets. As a first step, only climate-quality discrete measurements (core data sets) with known quality and metadata from the Atlantic Oceanographic and Meteorological Laboratory, Pacific Marine Environmental Laboratory, University of South Florida, University of Miami, University of Alaska Fairbanks, University of New Hampshire, and University of Delaware were included (Table 2). These data sets will serve as a reference for quality-controlling future data sets.

5 Technical approach and methodology

Cruise data set quality control often involves two steps: primary-level QC and second-level QC (Tanhua et al., 2010).

Table 2. List of cruises that are included in this version (v2021) of the CODAP-NA data product. Refer to Table 1 for the full names of the abbreviations and their units and Table 3 for definitions of the Cruise_flags. CTD is short for conductivity, temperature, and depth and refers to a package of electronic instruments that measure these properties. Start date and end date refer to the dates when data were first and last collected, respectively. For samples collected from flow-through systems, temperature and salinity were also stored in CTDTEMP and CTDSAL, respectively. GMx is short for Gulf of Mexico. FT is short for flow-through systems.

No.	Region	EXPOCODE	Observation_ type	Cruise_ flag	Cruise_ ID	Start date	End date	Variables measured
1	Alaska coast	33HQ20080329	Niskin	В	HLY0802	2008-04-01	2008-05-06	CTDTEMP, CTDSAL, DIC, TA, CTDOXY, Silicate, Phosphate, Nitrate, Nitrite, Ammonium
2	Alaska coast	33HQ20080703	Niskin	В	HLY0803	2008-07-04	2008-07-30	CTDTEMP, CTDSAL, DIC, TA, CTDOXY, Silicate, Phosphate, Nitrate, Nitrite, Ammonium
3	Alaska coast	33HQ20090403	Niskin	В	HLY0902	2009-04-05	2009-05-10	CTDTEMP, CTDSAL, DIC, TA, Silicate, Phosphate, Nitrate, Nitrite
4	Alaska coast	33HQ20100907	Niskin	В	HLY1003	2010-09-07	2010-09-08	CTDTEMP, CTDSAL, DIC, TA
5	Alaska coast	33HQ20111003	Niskin	В	HLY1103	2011-10-06	2011-10-19	CTDTEMP, CTDSAL, TA, pH
6	Alaska coast	33HQ20121005	Niskin	В	HLY1203	2012-10-10	2012-10-20	CTDTEMP, CTDSAL, DIC, TA
7	Alaska coast	33HQ20131005	FT	D	HLY1303	2013-10-05	2013-10-30	CTDTEMP, CTDSAL, DIC, TA
8	Alaska coast	316N20090614	Niskin	В	KN195	2009-06-22	2009-07-13	CTDTEMP, CTDSAL, DIC, TA, Silicate, Phosphate, Nitrate
9	Alaska coast	31FN20090924	Niskin	В	MF0904	2009-09-26	2009-10-09	CTDTEMP, CTDSAL, DIC, TA, CTDOXY, Silicate, Phosphate, Nitrate, Nitrite, Ammonium
10	Alaska coast	33RO20150713	Niskin	В	RB1504	2015-07-17	2015-07-31	CTDTEMP, CTDSAL, DIC, TA, CTDOXY, Silicate, Phosphate, Nitrate, Nitrite
11	Alaska coast	325020100509	Niskin	В	TN249-10	2010-05-13	2010-07-12	CTDTEMP, CTDSAL, DIC, TA, CTDOXY, Silicate, Phosphate, Nitrate, Nitrite, Ammonium
12	East coast	316G20120202	Niskin	С	DE1202	2012-02-06	2012-02-19	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
13	East coast	33GG20150619	Niskin	В	ECOA1	2015-06-20	2015-07-23	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY Oxygen, Silicate, Phosphate, Nitrate, Nitrite, Nitrate_and_Nitrite
14	East coast	33HH20180625	Niskin	В	ECOA2	2018-06-25	2018-07-29	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY Oxygen, Silicate, Phosphate, Nitrate_and_Nitrite
15	East coast	334A20140510	Niskin	С	EX1403	2014-05-10	2014-05-17	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
16	East coast	33RO20070710	Niskin	A	GOMECC1	2007-07-11	2007-08-02	CTDTEMP, CTDSAL, Salinity_PSS78, DIC, TACTDOXY, Oxygen, Silicate, Phosphate, Nitrate, Nitrite, Ammonium
17	East coast	33RO20120721	Niskin	A	GOMECC2	2012-07-22	2012-08-13	CTDTEMP, CTDSAL, Salinity_PSS78, DIC TA, pH, Carbonate_measured, CTDOXY, Oxy gen, Silicate, Phosphate, Nitrate, Nitrite, Nitrate_and_Nitrite
18	East coast	33GG20130609	Niskin, FT	С	GU1302	2013-06-09	2013-06-23	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
19	East coast	33GG20131113	Niskin	С	GU1305	2013-11-14	2013-11-24	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
20	East coast	33GG20140301	Niskin	С	GU1401 Leg2	2014-03-01	2014-03-08	CTDTEMP, CTDSAL, DIC, TA, pH, Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
21	East coast	33GG20151012	Niskin	С	GU1506 Leg2	2015-10-13	2015-10-24	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
22	East coast	33GG20160521	Niskin	С	GU1608 Leg1	2016-05-23	2016-06-02	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
23	East coast	33GG20160607	Niskin	С	GU1608 Leg2	2016-06-08	2016-06-12	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium

Table 2. Continued.

No.	Region	EXPOCODE	Observation_ type	Cruise_ flag	Cruise_ ID	Start date	End date	Variables measured
24	East coast	33GG20170516	Niskin, FT	С	GU1701 Leg1	2017-05-17	2017-05-25	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
25	East coast	33GG20170530	Niskin, FT	С	GU1701 Leg2	2017-05-31	2017-06-05	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY, Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
26	East coast	33GG20170610	Niskin, FT	C	GU1702	2017-06-12	2017-06-21	CTDTEMP, CTDSAL, DIC, TA, pH
27	East coast	33GG20171031	Niskin	С	GU1706	2017-11-01	2017-11-07	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY, Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
28	East coast	33GG20180822	Niskin, FT	С	GU1804	2018-08-23	2018-08-29	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY, Silicate, Phosphate, Nitrate_and_Nitrite
29	East coast	33HH20120531	Niskin, FT	С	HB1202	2012-06-02	2012-06-13	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY, Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
30	East coast	33HH20130314	FT	D	HB1301	2013-03-17	2013-05-09	CTDTEMP, CTDSAL, DIC, TA, pH, Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
31	East coast	33HH20140908	FT	D	HB1405 Leg1	2014-09-10	2014-09-18	CTDTEMP, CTDSAL, DIC, TA, pH
32	East coast	33HH20140923	FT	D	HB1405 Leg2	2014-09-25	2014-09-30	CTDTEMP, CTDSAL, DIC, TA, pH
33	East coast	33HH20141028	FT	D	HB1405 Leg4	2014-11-04	2014-11-05	CTDTEMP, CTDSAL, DIC, TA, pH
34	East coast	33HH20150519	Niskin	С	HB1502	2015-05-20	2015-06-02	CTDTEMP, CTDSAL, DIC, TA, CTDOXY, Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
35	East coast	33HH20170211	Niskin, FT	С	HB1701	2017-02-12	2017-02-22	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY, Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
36	East coast	33HH20180523	Niskin, FT	С	HB1803	2018-05-23	2018-06-04	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY, Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
37	East coast	334B20121026	Niskin	С	PC1207	2012-10-27	2012-11-13	CTDTEMP, CTDSAL, DIC, TA, CTDOXY, Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
38	East coast	334B20141103	Niskin	С	PC1405	2014-11-04	2014-11-18	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY, Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
39	East coast	334B20160807	Niskin	С	PC1604	2016-08-09	2016-08-19	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY, Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
40	East coast	334B20161018	Niskin	С	PC1609	2016-10-19	2016-10-19	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY, Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
41	East coast	33H520181102	Niskin	С	S11802	2018-11-02	2018-11-12	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY, Silicate, Phosphate, Nitrate_and_Nitrite, Ammonium
42	East coast	AGSK20031205	FT	D	SKO0313	2003-12-06	2003-12-14	CTDTEMP, CTDSAL, DIC
43	East coast	AGSK20040403	FT	D	SKO0406	2004-04-04	2004-04-11	CTDTEMP, CTDSAL, DIC
44	East coast	AGSK20040625	FT	D	SKO0410	2004-06-26	2004-07-02	CTDTEMP, CTDSAL, DIC, TA
45	East coast	AGSK20041015	FT	D	SKO0414	2004-10-16	2004-10-22	CTDTEMP, CTDSAL, DIC, TA
46	East coast	AGSK20050916	FT	D	SKO0510	2005-09-17	2005-09-23	CTDTEMP, CTDSAL, DIC, TA
47	East coast	AGSK20060403	FT	D	SKO0604	2006-04-18	2006-04-27	CTDTEMP, CTDSAL, DIC, TA
48	East coast	AGSK20061014	FT	D	SKO0611	2006-10-15	2006-10-23	CTDTEMP, CTDSAL, DIC, TA
49	East coast	AGSK20070525	FT	D	SKO0721	2007-05-26	2007-06-02	CTDTEMP, CTDSAL, DIC
50	East coast	AGFO20140607	FT	D	SKO1406	2014-06-20	2014-06-28	CTDTEMP, CTDSAL, DIC, TA, pH
51	East coast	46SL20181115	FT	D	Selfoss846	2018-11-15	2018-11-22	CTDTEMP, CTDSAL, DIC, TA, pH, Silicate, Phos-

Table 2. Continued.

No.	Region	EXPOCODE	Observation_ type	Cruise_ flag	Cruise_ ID	Start date	End date	Variables measured
52	GMx	33RO20170718	Niskin	A	GOMECC3	2017-07-18	2017-08-20	CTDTEMP, CTDSAL, Salinity_PSS78, DIC, TA, pH, Carbonate_measured, CTDOXY, Oxygen, Silicate, Phosphate, Nitrate, Nitrite, Nitrate_and_Nitrite
53	GMx	33WA20141201	Niskin	С	WS1418	2014-12-03	2014-12-04	CTDTEMP, CTDSAL, DIC, TA, pH, CTDOXY, Silicate, Phosphate, Nitrate_and_Nitrite
54	GMx	33WA20150921	Niskin, FT	С	WS15264	2015-09-23	2015-09-24	CTDTEMP, CTDSAL, DIC, TA, pH, Silicate, Phosphate, Nitrate_and_Nitrite
55	West coast	332220170918	Niskin	A	SH1709	2017-09-18	2017-09-28	CTDTEMP, CTDSAL, DIC, TA, CTDOXY, Oxygen, Silicate, Phosphate, Nitrate, Nitrite, Ammonium
56	West coast	32WC20070511	Niskin	A	WCOA2007	2007-05-14	2007-06-12	CTDTEMP, CTDSAL, Salinity_PSS78, DIC, TA, CTDOXY, Oxygen, Silicate, Phosphate, Nitrate, Nitrite
57	West coast	32WC20110812	Niskin	A	WCOA2011	2011-08-12	2011-08-30	CTDTEMP, CTDSAL, Salinity_PSS78, DIC, TA, pH, CTDOXY, Oxygen, Silicate, Phosphate, Nitrate, Nitrite, Ammonium
58	West coast	332220120904	Niskin	A	WCOA2012	2012-09-05	2012-09-16	CTDTEMP, CTDSAL, Salinity_PSS78, DIC, TA, CTDOXY, Oxygen, Silicate, Phosphate, Nitrate, Nitrite, Ammonium
59	West coast	317W20130803	Niskin	A	WCOA2013	2013-08-05	2013-08-10	CTDTEMP, CTDSAL, Salinity_PSS78, DIC, TA, pH, Carbonate_measured, CTDOXY, Oxygen, Silicate, Phosphate, Nitrate, Nitrite, Ammonium
60	West coast	32P020130821	Niskin	A	WCOA2013	2013-08-21	2013-08-28	CTDTEMP, CTDSAL, Salinity_PSS78, DIC, TA, pH, Carbonate_measured, CTDOXY, Oxygen, Silicate, Phosphate, Nitrate, Nitrite, Ammonium
61	West coast	33RO20160505	Niskin	A	WCOA2016	2016-05-08	2016-06-06	CTDTEMP, CTDSAL, Salinity_PSS78, DIC, TA, pH, Carbonate_measured, CTDOXY, Oxygen, Silicate, Phosphate, Nitrate, Nitrite, Ammonium

These steps should follow initial, sometimes called "zerolevel", QC, which is performed for individual measurements based on instrument readings and observations collected during the analyses (Fig. 2). Primary-level QC is the process of identifying outliers and obvious errors within an individual cruise data set using measurement metadata or approaches like property-to-property plots. It should largely be done by the investigators responsible for the measurements. In addition, it is critical to provide additional uniform primary-level QC to all cruises within a data product using common tools and common thresholds to help identify any issues that have been missed by the data producers. These issues are communicated back to the investigators so that the issues could be reviewed and, if necessary, addressed. This additional layer of primary-level QC is often performed by the data product synthesis community. Second-level QC is a process in which data from one cruise are objectively compared against data from another cruise or a previously synthesized data set in order to quantify systematic differences in the reported values. The second-level QC process often entails crossover analysis (Lauvset and Tanhua, 2015) and increasingly regional multiple linear regression and inversions (Olsen et al., 2019, 2020).

Due to the scarcity of crossover stations at depths where parameters were not likely to be influenced by temporal variations (sampling depth > 1500 m; Olsen et al., 2020) on coastal cruises, second-level QC was not conducted for this version of the CODAP-NA, and no cruise-wide offsets or multiplicative adjustments were applied. Instead, the QC relied on (a) stringent criteria for the selection of data sources and (b) an enhanced primary-level QC procedure with rigorous consistency checks. This version of the CODAP-NA only accepted data from laboratories with direct involvement in the CODAP effort and with a track record of producing high-quality data and following best practices, making second-level quality control less essential. It is likely that there are other very high quality coastal cruise data sets that are not yet included in this version of CODAP-NA.

We worked directly with the data providers who knew their data best to conduct these primary-level QC procedures in order to leverage all of the resources related to a measurement: details related to the methods, instrumentation, reference standards, access to the raw data, and the analysts' recollection of the measurements. As part of the QC process, comparisons were made between many combinations of measured values. For a subset of properties, inter-consistency calculations and algorithm estimates based on other measure-

Zero-level QC by **Submitting** PIs

(focused on outliers within a cruise)

- Property to depth plots
- Property to property plots

Primary-level QC conducted by the data product development community

Data loading & calculation

- Calculate depth from pressure and vice versa.
- Use DIC and TA to calculate pH, [CO₃²⁻], and fCO₂. - Adjust pH, [CO32-] and fCO2 from report
- temperature to in situ temperature.
- Calculate AOU and Percent O2.

Property vs. property

TA vs. Silicate

DIC vs. fCO₂ (20 °C)

Phosphate vs. Nitrate

Nutrients vs. CTDOXY

DIC vs. CTDOXY

Nitrate vs. Silicate

TA vs. DIC

- Use algorithms to estimate properties from CTDTEMP, CTDSAL and CTDOXY.

Property vs. depth plots

(All variables against their sampling depths) CTDTEMP, and CTDSAL

- CTDOXY, Oxygen, AOU, and Percent O2
- DIC, and TA.
- pH, [CO32-], and fCO2 (at in situ condition, for both measured and calculated values)
- Silicate, Phosphate, Nitrate, Nitrite, and Ammonium

Internal consistency

(Property vs. property, delta value vs. depth, delta value vs. property):

- CTDSAL vs. Salinity (discrete)
- CTDOXY vs. Oxygen (Winkler)
- Measured fCO2 vs. calculated fCO2

Property vs. algorithm derived values

- Oxygen
- DIC
- Silicate - Phosphate
- Nitrate

Second-level QC

(focused on cruise-to-cruise offsets)

- Crossover analyses
- Offset or factor adjustment

CTDSAL vs. CTDTEMP TA vs. CTDSAL

- Measured pH vs. calculated pH
- Measured [CO22-] vs. calculated [CO₃²⁻]

Figure 2. A diagram showing major steps of the quality control (QC) process. Note uncertainty is separated into outliers (scatter) and systematic offset (all data from the cruise has a bias). $[CO_3^{2-}]$ is carbonate ion content; fCO_2 is fugacity of carbon dioxide. Refer to Table 1 for the rest of the abbreviations.

ments allowed additional checks. Below are the five major steps of the QC procedures used for CODAP-NA (Fig. 2). A new suite of QC tools is under development to allow these many comparisons and calculations to be performed quickly and efficiently, and these tools will be made available to the public soon with a separate paper dedicated to their rationales, development details, and instructions (Jiang et al., 2021c). A prototype version was used for CODAP-NA, though many software packages would, in principle, allow the comparisons and plots we use.

Step 1 was to ensure all of the cruise data files were ingested into NCEI's archives and documented with a rich metadata record (Jiang et al., 2015b). Maintaining a cruise data table allowing future users of the data product to access the original data files is an important component of any synthesis effort. For this study, a table with key metadata is available through this link: https://www.ncei.noaa.gov/ access/ocean-acidification-data-stewardship-oads/synthesis/ NAcruises.html (last access: 15 May 2021). The following fields are listed in the table: a sequential number of the individual cruise data set (no.), expedition code (EXPOCODE), flags indicating the quality of the cruise (Cruise_flag; see Table 3), cruise identifier (Cruise_ID), start date, end date, measured parameters, and links to NCEI's archive.

Step 2 was to load the measurement values from the original cruise data files into MATLAB and conduct necessary calculations (Fig. 2). All missing values were replaced with "-999" during this process. Variables without a QC flag from the original cruise data file were assigned an initial flag of "2" (good values, Table 4). Variables that were clearly out of range (e.g., a DIC value of < 0) were automatically assigned a QC flag of "4" (bad values). The QC flags for all -999

values or missing values were replaced with "9" (missing values). All bottle measurement flags with a corresponding Niskin_flag of 3 or 4 were replaced with the corresponding Niskin flags. For example, if a discrete salinity measurement has a Salinity_flag of 2 but the corresponding Niskin_flag (QC flag of the Niskin bottle where the sample was drawn) is 3, the original Salinity_flag will be updated from 2 to 3.

Some surface samples from a few coastal cruises were collected from flow-through systems on board research vessels, instead of Niskin bottles on sampling rosettes. In such cases, the temperature and salinity values were stored under the CT-DTEMP and CTDSAL columns, respectively, although they were not measured from sensors mounted on a CTD rosette. Similarly, their sampling depth values were extracted from the metadata as the depth of the water inlet and stored under CTDPRES (Table 1). When water inlet depth information was not available, its sampling pressure was set to be 5 dbar. There is a column named "Observation_type" in the CODAP-NA data product file to indicate whether a sample is from a "Flow-through" system or a "Niskin" bottle.

We calculated or assigned the below parameters:

- a. Sample_ID if not already included (Eq. 1);
- b. depth from pressure and vice versa;
- c. recommended_Salinity_PSS78 (Table 1);
- d. conservative temperature, absolute salinity, and sigmatheta:
- e. recommended Oxygen;
- f. apparent oxygen utilization (AOU);

Table 3. Cruise flags used for this product.

Flag value	Meaning
A	These were dedicated OA cruises that were executed following best practices for global ocean work as outlined in Hood et al. (2011) and other documents as can be found on the GO-SHIP website*. Colloquially these are referred to as GO-SHIP quality. Traceable standards and certified reference materials were used, and deep stations (> 2500 m) were sampled to allow using near-constant deep-water contents as anchor points. A third inorganic carbon system parameter, such as pH or carbonate ion content, was often measured, allowing consistency checks.
В	These are dedicated OA cruises that had onboard inorganic carbon measurements performed according to best practices (Dickson et al., 2007) and many other parameters with the highest possible accuracy through use of standards and certified reference materials. However, the cruises did not necessarily have all other parameters analyzed to the highest standards, such as freezing nutrients for shoreside analyses, not taking oxygen and nutrients samples on most Niskins, not normalizing the CTD oxygen trace to Winkler oxygen values, and insufficient metadata. There often are insufficient deep stations to compare data with open-ocean data.
С	These were opportunistic cruises where OA parameters were measured in the water column. They include standard hydrographic, carbon, and OA parameters: T, S, O ₂ , nutrients, TA, DIC, and pH. Many parameters, including carbon and OA parameters, were measured shoreside; CTD oxygen data were not adjusted to Winkler oxygen values. Generally, no dedicated OA personnel were on board.
D	Underway samples only. These cruises had no CTD casts and only had samples taken from the seawater supply line, with often a limited amount of other hydrographic parameters. T and S were obtained from thermosalinographs with limited or no salinity check samples.

^{*} https://www.go-ship.org/HydroMan.html (last access: 15 May 2021)

Table 4. World Ocean Circulation Experiment (WOCE) World Hydrographic Program (WHP) (Joyce and Corry, 1994; Swift and Diggs, 2008) QC flags used for this product.

Flag value	Meaning
2	Acceptable
3	Questionable
6	Average of duplicates
9	Missing value

- g. recommended_Nitrate_and_Nitrite;
- h. calculated pH, carbonate ion, and fCO₂ under in situ conditions using CO2SYS from DIC and TA, along with temperature, salinity, pressure, and nutrients;
- i. in situ pH, carbonate ion, and $f CO_2$ from their respective values under their measurement conditions.

Sample_IDs were calculated from Station_ID (station identification number), Cast_number (cast number), and Niskin_ID (Niskin identification) based on Eq. (1) if they were not already available:

$$Sample_ID = Station_ID \times 10\,000 + Cast_number \times 100 + Niskin_ID.$$
 (1)

For example, at station 15, the second cast, a Niskin_ID of 3 will have a Sample_ID of 150203. In cases when they could not be calculated (e.g., Station_ID is non-numerical),

Sample_ID was assigned as 1, 2, 3, ... from the first row to the last row of the original cruise data file.

Sampling depth (Depth) and pressure (CTDPRES) were calculated from one another where applicable using the equations of "gsw_z_from_p" and "gsw_p_from_z", respectively, from the International Thermodynamic Equation of Seawater 2010 (TEOS-10; IOC et al., 2010). When both values were available, CTDPRES values were preferentially used, and the calculated Depth values were used to replace the original Depth values.

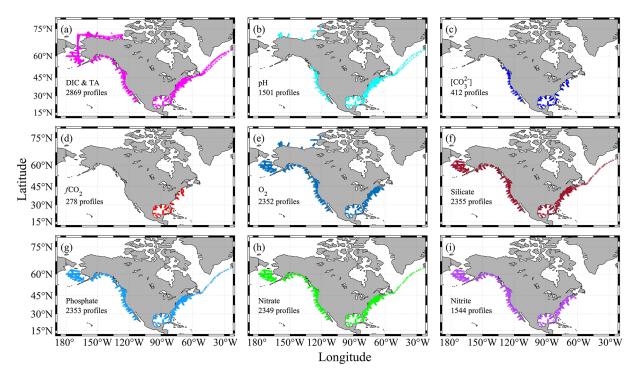
The "recommended_Salinity_PSS78" column was created by merging the discrete salinity and CTDSAL columns. Data were preferentially chosen from the discrete measurements provided their QC flags were equal to 2 or 6. If these values were not available, CTDSAL values with QC flags of 2 or 6 were chosen. In the absence of these two, discrete salinity measures with QC flags other than 2 or 6 were chosen. Lastly, the CTDSAL values with other QC flags were chosen. The same principles were applied to merge the oxygen data. The merged discrete oxygen and CTDOXY data were stored in the column named "recommended_Oxygen" (Table 1).

Conservative temperature (Θ) is proportional to the potential enthalpy and is recommended as a replacement for potential temperature (θ), as it more accurately represents the heat content (IOC et al., 2010). Absolute salinity (S_A) is the mass fraction of salt in seawater (unit: $g kg^{-1}$) based on conductivity ratio plus a regional correction term as opposed to the practical salinity scale (S_P , Practical Salinity Scale 1978, or PSS-78; unitless; based solely on the conductivity ratio) (Le Menn et al., 2018).

Conservative temperature, absolute salinity, and sigma-theta were calculated using the equations of "gsw_CT_ from_t", "gsw_SA_from_SP", and "gsw_sigma0", respectively, from the TEOS-10 (IOC et al., 2010). AOU was calculated based on absolute salinity, conservative temperature, latitude, longitude, CTDPRES, and recommended_Oxygen variable using the function "gsw_O2sol" as described in the TEOS-10 (IOC et al., 2010). Oxygen solubility is estimated with the combined equation from Garcia and Gordon (1992).

In order to measure nitrate, it is first reduced to nitrite, and then this new nitrite is measured alongside the nitrite originally in seawater (Hydes and Hill, 1985). The substance content of nitrite in ocean water is usually much lower than nitrate. When nitrite is not reported, it is often because its content is too low to be detectable. For the CODAP-NA data product, when Nitrate values were not available but both Nitrate_and_Nitrite and Nitrite values with QC flags of 2 or 6 were available, Nitrate values were calculated by subtracting Nitrite from Nitrate and Nitrite. Similarly, when Nitrate_and_Nitrite values were not available but both Nitrate and Nitrite values with QC flags of 2 or 6 were available, Nitrate_and_Nitrite values were calculated by adding Nitrate and Nitrite contents together. The "recommended_Nitrate_and_Nitrite" column was created by preferentially using Nitrate_and_Nitrite values. In cases when Nitrate_and_Nitrite values were not available but Nitrate values with a QC flag of 2 or 6 were available (Nitrite values not available), the Nitrate and Nitrite values were assumed to equal the Nitrate values.

Carbonate_in_situ_measured, pH_TS_in_situ_measured, and fCO_2 in situ measured (Table 1) were recalculated from their respective values under measurement conditions (i.e., pH_TS_measured, Carbonate_measured, and fCO₂_ in_situ_measured) with the CO2SYS program, using the dissociation constants as described above. TA was preferentially used as the second carbon parameter. When it was not available, DIC was used. If neither of them was available, TA derived from salinity with the locally interpolated alkalinity regression (LIARv2) method was used for the adjustment from measurement to in situ conditions (Carter et al., 2018). Carbonate_in_situ_calculated, pH_TS_in_situ_calculated, fCO₂_in_situ_calculated, aragonite saturation state, calcite saturation state, and Revelle_Factor were calculated from DIC and TA, along with in situ temperature, salinity, pressure, silicate, and phosphate using the same dissociation constants as above (Table 1). When either silicate or phosphate data were unavailable, their mean values during the cruise were used for the calculation. Samples with a salinity of less than 15 were excluded from this calculation, due to the potentially large uncertainties.


Step 3 was to identify outliers. Outliers were determined by visual inspection. Two types of outlier identification were used for this effort: (a) a broad-scale outlier identification by visually examining the plot of a variable against its sampling depth and other property-to-property plots and (b) a fine-scale outlier identification based on consistency checks. Here, consistency checks refer to both the "internal consistency checks" – i.e., the comparison of a measurement with its calculated value (e.g., spectrophotometrically measured pH vs. pH calculated from other carbon parameters using CO2SYS) – and validation checks, i.e., a measurement with one method against the same measurement made with a different method (e.g., oxygen measured from Winkler titration vs. a sensor, though in this case the oxygen profile is frequently adjusted to the Winkler titration values, so the measurements are not truly independent). For the broad-scale outlier identification we made plots of all variables against depth (or sigma-theta when only surface values are available), as well as these plots (Fig. 2):

- a. CTDSAL against CTDTEMP
- b. TA against CTDSAL
- c. TA against Silicate
- d. TA against DIC
- e. DIC against fCO_2 (20 °C)
- f. DIC against CTDOXY
- g. Phosphate against Nitrate
- h. Nitrate against Silicate
- i. all nutrients (silicate, phosphate, nitrate, nitrate, nitrate plus nitrite, and ammonium) against CTDOXY.

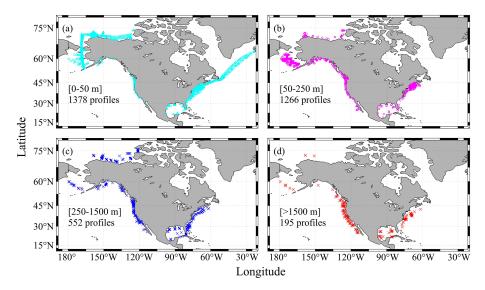
Consistency-check-based outlier identification was the primary way of finding outliers in this study. Consistency checks were conducted for these below variable pairs. This has been the most effective way of identifying outliers.

- a. CTDSAL vs. discrete salinity (discrete salinity as the reference value);
- b. CTDOXY vs. discrete oxygen measured from Winkler titration (Winkler oxygen as the reference value);
- pH measured with a spectrophotometer vs. pH calculated with CO2SYS from DIC, TA, and other parameters;
- d. Carbonate ion ($[CO_3^{2-}]$) measured with a spectrophotometer vs. $[CO_3^{2-}]$ calculated with CO2SYS from DIC, TA, and other parameters;
- e. Discrete fCO₂ measured with a non-dispersive infrared analyzer vs. fCO₂ calculated with CO2SYS from DIC, TA, and other parameters.

In addition, the values for dissolved oxygen, DIC, TA, Silicate, Phosphate, and Nitrate were also calculated from existing estimation algorithms (e.g., Carter et al., 2018). These estimates were then compared against the measured CTDOXY

Figure 3. Sampling profiles for certain parameters. A profile is plotted if it has at least one measured value. Panel (a) only includes profiles that have both dissolved inorganic carbon (DIC) and total alkalinity (TA) measured. Panel (b) is for profiles with discrete pH measurements from a spectrophotometer. Panel (c) is for profiles with discrete carbonate ion content ($[CO_3^{2-}]$) measurements from a spectrophotometer. Panel (d) is for profiles with discrete fugacity of carbon dioxide (fCO_2) measurements from flasks. Panel (e) is for profiles with recommended_Oxygen values (see Table 1 for more details). Panels (f)—(i) are for profiles with nutrient measurements.

and Oxygen, DIC, TA, Silicate, Phosphate, and Nitrate, respectively, to help assess whether cruise-to-cruise biases exist (Fig. 2). These algorithms are intended primarily for openocean estimation. They are used in the coastal environment only to call attention to measurements that require additional QC, and never to directly assign flags.


For all the aforementioned plots, we enable features to go through each profile individually with all data from a cruise plotted together in the background. Similarly, we are able to go through each cruise individually with all data from all cruises plotted together in the background. These approaches allow us to detect systematic offsets.

Step 4 was to append all of the individual cruise data files one after another into one data product file with all of the variables as listed in Table 1. All rows with a Niskin_flag of 4 (Table 4) were removed. Data values with QC flags that were not 2 (good), 3 (questionable), or 6 (average of duplicate measurements) were replaced with -999, and their corresponding QC flags were changed to 9. For surface samples collected from flow-through systems, their Cast_numbers and Niskin_IDs were all set to -999, and their Niskin_flags were all set to 9. The contents of Observation_type were standardized to be either Niskin or Flow-through. The merged data product file was further quality-controlled by plotting all of the non-missing values for each variable. These plots

were examined further, with focus on the outliers falling out of 2.5 times their respective standard deviations.

6 Data products

The data product is available in Excel, CSV, MAT-LAB, and NetCDF formats at NOAA/NCEI with a DOI of https://doi.org/10.25921/531n-c230 and NCEI accession number of 0219960 (Jiang et al., 2021a). All parameters in Table 1 along with their Cruise_flags (Table 3) and primarylevel QC flags (Table 4) are presented. The chosen primarylevel QC flag convention is the same as the GLODAPv2 project (Olsen et al., 2020). Note the difference between the WOCE primary-level QC flags (e.g., 2, 3, 4, 9, etc.) and the second-level QC flags as used by the GLODAPv2 (a choice of either 0 or 1). In the current version (v2021) of the CODAP-NA, there are 3391 discrete chemical oceanographic profiles and a total of 28 206 data points. They were collected on 61 cruises in the ocean margins of North America from 6 December 2003 to 22 November 2018. There are on average eight sampling depth levels (a median of seven) for each profile. The total count of data points for each parameter and their minimum, maximum, and mean values are listed in Table 5.

Figure 4. Sampling depths of the profiles: (a) profiles with maximum depths ranging from 0 to 50 m, (b) profiles with maximum depths ranging from 50 to 250 m, (c) profiles with maximum depths ranging from 250 to 1500 m, and (d) profiles with maximum depths greater than 1500 m.

Table 5. The minimum, maximum, mean, and data point counts of the parameters that are included in the final product. Refer to Table 2 for their full parameter names and units.

Abbreviation	Units	Min	Max	Mean	Count
CTDTMP_ITS90	°C	-1.79	31.74	10.84	26 679
CTDSAL_PSS78	_	1.38	37.61	33.4	26 641
Salinity_PSS78	_	0.12	36.97	34.8	3485
recommended_Salinity_PSS78	_	0.12	37.61	33.4	26 648
CTDOXY	μ mol kg $^{-1}$	3.1	616	215.6	24 198
Oxygen	$\mu mol kg^{-1}$	2.7	472	184	11869
recommended_Oxygen	$\mu mol kg^{-1}$	2.7	616	216.7	24 259
AOU	$\mu mol kg^{-1}$	-299.3	313.5	58.4	24 203
DIC	$\mu mol kg^{-1}$	886.4	2621	2104	18 341
TA	μmol kg ⁻¹	878	2853	2251	18 351
pH_TS_in_situ_measured	_	7.43	8.58	7.93	10 575
pH_TS_in_situ_calculated	_	7.37	8.54	7.93	17 031
Carbonate_in_situ_measured	$\mu \mathrm{mol}\mathrm{kg}^{-1}$	21.7	325	121.7	5021
Carbonate_in_situ_calculated	$\mu molkg^{-1}$	21.4	306.9	114.2	17 031
fCO2_in_situ_measured	µatm	198.3	1171	449.9	3173
fCO2_in_situ_calculated	μatm	105.9	2074	574.7	17 031
Aragonite	_	0.34	5.1	1.72	17 031
Calcite	_	0.58	7.67	2.68	17 031
Revelle_Factor	_	8.26	19.7	14.31	17 031
Silicate	μ mol kg $^{-1}$	0	234.4	24.38	18 772
Phosphate	μ mol kg $^{-1}$	0	9.36	1.22	18 709
Nitrate	μ mol kg $^{-1}$	0	97.1	15.63	15 808
Nitrite	$\mu mol kg^{-1}$	0	3.76	0.09	14 846
Nitrate_and_Nitrite	$\mu mol kg^{-1}$	0	97.1	14.15	17 564
recommended_Nitrate_and_Nitrite	μmol kg ⁻¹	0	97.1	14.25	18 640
Ammonium	μmol kg ⁻¹	0	13.98	0.54	10 452

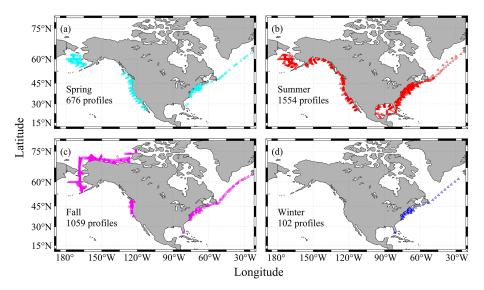


Figure 5. Sampling profiles in each of the four seasons: (a) spring (March–May), (b) summer (June–August), (c) fall (September–November), and (d) winter (December–February).

Of the 3391 profiles, 2869 have both DIC and TA measurements; thus the full list of carbonate system parameters (pH, fCO₂, [CO₃²⁻], aragonite saturation state, calcite saturation state, and Revelle factor) can be calculated (Fig. 3). In addition, there are 1501 profiles with discrete pH measurements from a spectrophotometer-based method (Byrne and Breland, 1989; Clayton and Byrne, 1993; Dickson, 1993), 412 profiles with discrete carbonate ion measurements (Byrne and Yao, 2008; Sharp and Byrne, 2019), and 278 profiles with discrete fCO₂ measurements (Wanninkhof and Thoning, 1993). There is also good coverage of oxygen and nutrients measurements (Fig. 3).

One major difference between the CODAP-NA and the GLODAPv2 is the shallower sampling depths of the former (Fig. 4). About $80\,\%$ of the 3391 profiles have a maximum sampling depth of $<250\,\mathrm{m}$, and $30\,\%$ of them have maximum sampling depth of $<25\,\mathrm{m}$, with a lot of them being surface-only measurements. Only 195 profiles ($<6\,\%$ of the total 3391 profiles) have at least one sampling depth level below 1500 m, which has commonly been used as a threshold for subsurface crossover analyses (Fig. 4). Most of these deep-water profiles are found off the west coast, Gulf of Mexico, and a few offshore stations in the Mid-Atlantic Bight. On average, the sampling depth is 298 m, with a median sampling depth of only $65\,\mathrm{m}$.

Another distinctive feature of coastal oceans is their large magnitude of seasonal variation. For a lot of parameters, their seasonal variation, along with the diel and intertidal variations, often eclipse their long-term variation. Understanding the seasonal variation and de-seasonalizing the observation data are often critical steps in the process of deciphering the long-term change. Like most data products, this version of the CODAP-NA is summer- and fall-biased, with spring,

summer, fall, and winter having 676, 1554, 1059, and 102 profiles, respectively (Fig. 5). All coasts have good summer data coverage, but the only area with meaningful winter data coverage is the northeastern US coast (Fig. 5, Table 6).

To demonstrate the large seasonal amplitude (defined here as the difference between the maximum and minimum values of a variable on an annual cycle) in the study area, an analysis was conducted to group surface stations (with at least one sampling depth $< 25 \,\mathrm{m}$) that are within 1 km distance and have at least one measurement between December and March and one measurement between June and October. The results, which are based on 135 groups of stations (most of them along the northeastern US coast), show large seasonal variations for nearly all the variables (Fig. 6). The average seasonal amplitudes and their percentage changes are CTDTEMP (13.9 °C), CTDSAL (2.3), TA (112 µmol kg⁻¹, 5%), DIC (126 μ mol kg⁻¹, 6%), fCO₂ (170 μ atm, 39%), $[CO_3^{2-}]$ (61 µmol kg⁻¹, 45 %), pH (0.16), aragonite saturation state (0.99, 47%), and calcite saturation state (1.47, 45%). Note the "seasonal amplitudes" here represent the sum of effects of all changes including changes from freshwater input, mixing, upwelling, warming and cooling, biological cycling, and diurnal cycling within a season.

To present a rough estimate of the measurement uncertainties of these variables, a similar approach was used to group deep-water stations with a maximum sampling depth of $> 1500\,\mathrm{m}$. Due to the scarcity of deep-water stations, a radius of $10\,\mathrm{km}$ and $200\,\mathrm{m}$ depth difference were used to find the comparison pairs. This analysis is limited to certain cruises with deep-water sampling ($\sim 5\,\%$ of the data) only; thus the uncertainty estimates only hold true for these "reference" cruises, mostly with a Cruise_flag of A (Table 3). They do not apply to the rest of the cruises. Results show that

Table 6. Number of profiles and data points (the sum of all depth levels at each profile) in all seasons of each region.

	Spring (Mar–May) Summer (Jun–Aug) Fall (Sep–No						Winter	(Dec-Feb)
	Profiles	Data points	Profiles	Data points	Profiles	Data points	Profiles	Data points
Alaska coast	300	2053	425	2807	681	2580	0	0
West coast	167	3024	250	3874	128	1524	0	0
East coast	209	484	728	8776	235	554	91	235
Gulf of Mexico	0	0	151	2269	15	15	11	11

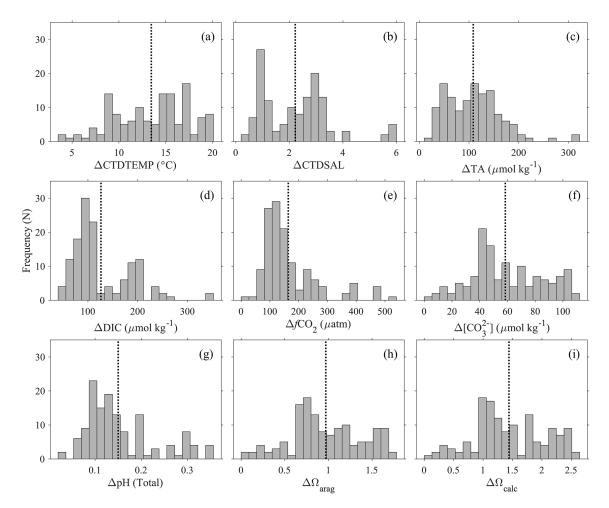


Figure 6. Seasonal amplitudes (maximum minus minimum values within a group of close by stations) of (a) temperature (CTDTEMP), (b) salinity (CTDSAL), (c) total alkalinity (TA), (d) dissolved inorganic carbon (DIC), (e) fugacity of carbon dioxide (fCO₂), (f) carbonate ($[CO_3^{2-}]$, (g) pH on total scale, (h) aragonite saturation state (Ω_{arag}), and (i) calcite saturation state (Ω_{calc}) in the surface water. The y axis, "frequency (N)", refers to the number of groups of stations. The dotted lines show the average value of the variabilities. This analysis is based on groups of profiles that are within 1 km of each other.

the DIC and TA uncertainties (0.1 % and 0.2 %, respectively) are about the same as previously reported by the GLODAPv2 group (Fig. 7, Table 7) by this metric. Some variables like Nitrite and Ammonium show uncertainties as large as $\sim 70\,\%$ with this metric due, primarily, to the low average values of these measurements at depth. The average CTDTEMP precision of 0.06 °C is significantly higher than that of 0.01 °C as

previously reported for the GLODAPv2 (Olsen et al., 2020). The measurement uncertainties could be overestimated, because this analysis includes natural gradients due to the large radius and depth differences, as well as any temporal changes within the 1–10-year (average: 6-year) period.

For aragonite and calcite saturation states, uncertainty comes primarily from the use of an empirical equation to ap-

Table 7. Uncertainties of some variables based on an analysis that groups deep-water stations (> 1000 m sampling depth) within a 10 km radius and 200 m depth difference. SD is short for standard deviation. Numbers in parentheses are expected errors based on propagating uncertainties in carbonate system calculations using DIC, TA, and others as input parameters with the CO2SYS companion errors.m program. Refer to Table 1 for their full names and respective units.

Abbreviation	Units	Mean \pm SD	Percentage	Number of pairs
CTDTEMP_ITS90	°C	0.06 ± 0.07	_	54
CTDSAL_PSS78	_	0.007 ± 0.007	0.02%	53
Salinity_PSS78	_	0.003 ± 0.003	0.01 %	33
CTDOXY	$\mu \mathrm{molkg}^{-1}$	3.4 ± 3.7	4 %	51
Oxygen	$\mu \mathrm{molkg}^{-1}$	3.3 ± 5.9	3 %	47
DIC	$\mu molkg^{-1}$	2.4 ± 2.1	0.1 %	48
TA	μ mol kg $^{-1}$	5.0 ± 3.9	0.2 %	45
pH_TS_in_situ_measured	_	0.003 ± 0.005	-	6
pH_TS_in_situ_calculated	_	$0.01 \pm 0.01 \; (0.02 \pm 0.01)$	_	44
Carbonate_in_situ_measured	$\mu molkg^{-1}$	1.4 ± 0.8	2 %	12
Carbonate_in_situ_calculated	$\mu \mathrm{molkg}^{-1}$	$2.2 \pm 2.0 \ (4.1 \pm 0.7)$	3 %	44
fCO_2 _in_situ_measured	μatm	=	_	_
fCO_2 _in_situ_calculated	μatm	$21 \pm 22 \ (30 \pm 16)$	3 %	44
Aragonite	_	0.02 ± 0.02	3 %	44
Calcite	_	0.04 ± 0.04	3 %	44
Revelle_Factor	_	0.14 ± 0.14	1 %	44
Silicate	$\mu mol kg^{-1}$	5.3 ± 4.4	5 %	50
Phosphate	$\mu mol kg^{-1}$	0.10 ± 0.13	5 %	51
Nitrate	$\mu mol kg^{-1}$	0.6 ± 0.5	2 %	29
Nitrite	$\mu \mathrm{molkg}^{-1}$	0.02 ± 0.02	69 %	17
Ammonium	$\mu \mathrm{mol}\mathrm{kg}^{-1}$	0.06 ± 0.11	72 %	29

proximate the real-world apparent solubility product (K'_{sp}) . Despite the 3% number shown in Table 7, the real uncertainty of aragonite and calcite saturation states is likely > 5 % (Mucci, 1983; Jiang et al., 2015a; Orr et al., 2018). Best practices for oceanic carbonate system calculations have been recommending the dissociation constants of Lueker et al. (2000) (Dickson et al., 2007). However, a recent study finds that in colder regions, where water temperature is < 8 °C, the constants of Lueker et al. (2000) may underestimate fCO_2 and overestimate pH and $[CO_3^{2-}]$, meaning that cold ocean regions could be more undersaturated than expected with respect to calcium carbonate mineral (CaCO₃) saturation states (Sulpis et al., 2020). This applies to many Alaska coast stations. In brackish water (salinity < 20), the relative uncertainty in carbonate ion content is worse than that in open ocean water (Dickson et al., 2007; Orr et al., 2018). In addition, due to the way calcium content is derived in the CO2SYS (Riley and Tongudai, 1967; Millero, 1995), the calculated saturation states could suffer from uncertainties up to 12 % for not directly measuring the calcium content in certain very low salinity regions (Beckwith et al., 2019; Dillon et al., 2020).

Note the above uncertainty analyses are based on deepwater stations only, and these data are usually collected from cruises with a Cruise_flag of A or B (Table 3). The uncertainties of data points from cruises with Cruise_flags of C and D

are expected to be much larger. Internal consistency checks of measured versus calculated values and validation checks of values measured using different methods show that differences increase quickly towards the surface (Figs. 8–11). Some apparent "outliers" end up being in surface samples where the Niskin vs. CTD values are offset due to highly stratified surface conditions in the coastal ocean. We contend that these Winkler and CTD values are likely "good" data from the measurement point of view, so, for such instances, the QC flags are kept as 2, despite their poor internal consistency.

7 Data availability

The Coastal Ocean Data Analysis Product in North America (CODAP-NA) is available as a merged data product in the formats of Excel, CSV, MATLAB, and NetCDF (https://doi.org/10.25921/531n-c230; NCEI Accession: 0219960) and can be accessed with the following link: https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0219960.html (last access: 15 May 2021) (Jiang et al., 2021a). An Excel spreadsheet listing all of the QC-related changes is also included as part of the data package. The original cruise data files have also been updated with data providers' consent and summarized in a table with the following link: https://www.ncei.noaa.gov/

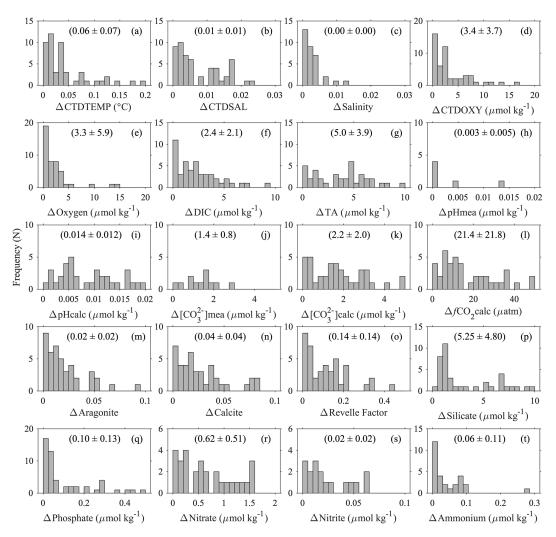


Figure 7. Uncertainties of some parameters based on deep-water comparison analyses: (a) temperature (ITS-90) measured with CTD sensors; (b) salinity (PSS78) measured with CTD sensors; (c) discrete salinity (PSS78); (d) dissolved oxygen measured with CTD sensors; (e) dissolved oxygen content measured with Winkler titration; (f) dissolved inorganic carbon content; (g) total alkalinity; (h) pH on total scale measured with spectrophotometers; (i) pH on total scale calculated from DIC, TA, and other parameters; (j) carbonate ion content measured with spectrophotometers; (k)–(o) carbonate ion content, fugacity of carbon dioxide, aragonite saturation state, calcite saturation state, and Revelle factor calculated from DIC, TA, and other parameters; and (p)–(t) Silicate, Phosphate, Nitrate, Nitrite, and Ammonium contents. The y axis, "frequency (N)", refers to the number of groups of stations. The values inside the parentheses are mean values \pm standard deviations.

access/ocean-acidification-data-stewardship-oads/synthesis/ NAcruises.html (last access: 15 May 2021).

8 Summary and conclusions

In this study, we relied on consistency checks performed in direct collaboration with the data providers who originally collected and measured the samples to QC and synthesize 2 decades of discrete measurements of inorganic carbon system parameters, oxygen, and nutrient chemistry data from North America's coastal oceans. The generated data product is called Coastal Ocean Data Analysis Product in North America (CODAP-NA). It is composed of 3391 oceano-

graphic profiles from 61 research cruises covering all continental shelves in North America (west coast, east coast, Gulf of Mexico, and Alaska coast) from 6 December 2003 to 22 November 2018.

It is strongly recommended to measure a third carbonrelated variable for consistency check purposes. The large majority of coastal OA cruises have already measured DIC and TA, with a lot of them also measuring pH using highprecision spectrophotometric methods. Recently, laboratories have increasingly begun to include carbonate ion content ([CO₃²]) as an additional measurable parameter of the seawater CO₂ system (Byrne and Yao, 2008; Sharp and Byrne, 2019). Uncertainty analyses suggest that crossover adjust-

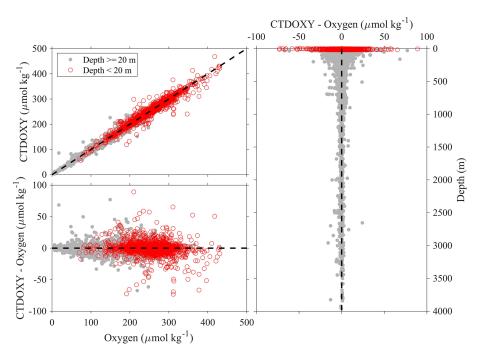
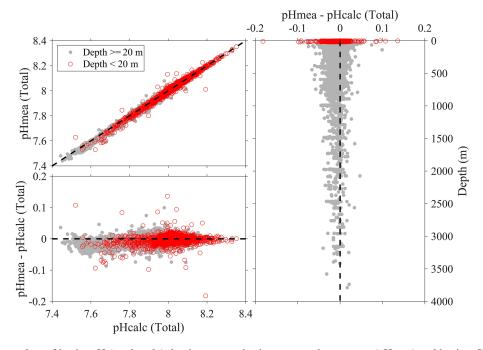



Figure 8. Comparison plots of dissolved oxygen measured from sensors mounted on CTD (CTDOXY) and dissolved oxygen that is measured from Winkler titration (Oxygen).

Figure 9. Comparison plots of in situ pH (total scale) that is measured using spectrophotometers (pHmea) and in situ pH (total scale) that is calculated from DIC and TA and other parameters (pHcalc).

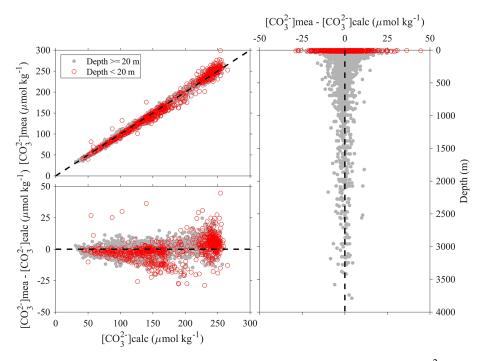


Figure 10. Comparison plots of in situ carbonate ion content that is measured using spectrophotometers ($[CO_3^{2-}]$ mea) and that is calculated from DIC, TA, and other parameters ($[CO_3^{2-}]$ calc).

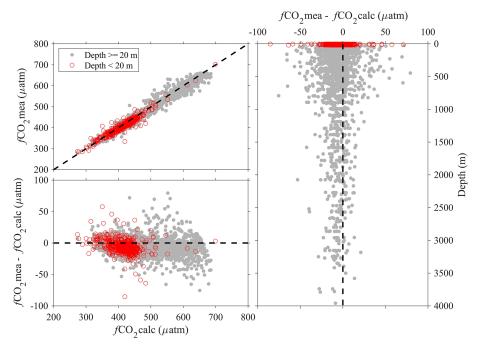


Figure 11. Comparison plots of fugacity of carbon dioxide (fCO_2 mea) that is measured from discrete bottle samples and fCO_2 that is calculated from DIC, TA, and other parameters (fCO_2 calc).

ments could be applied to future coastal data QC. All major coastal cruises in the future are recommended to take deepwater samples (> 1500 m) when feasible, ideally at agreed-upon reference stations for QC purposes.

Quality control of coastal data is an ongoing challenge that is not fully resolved by this effort, but CODAP-NA provides a foothold for future efforts toward continuously updating CODAP-NA as an internally consistent data product for the coastal environment. Perhaps more significantly, the CODAP-NA product greatly improves the findability, accessibility, interoperability, and reusability of these data sets. Findability is improved with this paper highlighting the data sets, accessibility is improved through data ingestion of the cruises in Table 2 into a coherent data product, interoperability is improved by providing the product in multiple machine-readable formats, and reusability is improved by assigning a static DOI for this initial version of the product.

Author contributions. All authors contributed to the writing of the paper. LQJ coordinated the overall effort, designed and built the tools for the QC process, participated in the QC effort, and prepared the first draft of the paper. RAF, RW, DG, LB, SA, BRC, DP, and CF contributed data to the data product, helped develop the QC strategy, provided comments on the OC tools, participated in all steps of the QC effort, and provided guidance to LQJ on this overall effort. RW minted the new cruise flags that were used by this data product. JH, CM, NM, JS, SS, and YYX (ranked alphabetically based on their last names) participated in the QC process. AK provided data management support to this product development. RHB, WJC, JC, GCJ, BH, CL, JM, and JS (ranked alphabetically based on their last names) contributed data to this data product. DWT and his group measured nutrients data for the ECOA2 cruise and all of the Northeast Fisheries Science Center (NOAA/NFSC)'s Ecosystem Monitoring Program (EcoMon) cruises.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. Funding for this work comes from the National Oceanic and Atmospheric Administration (NOAA) Ocean Acidification Program (OAP, project no. OAP 1903-1903). This research was carried out in part under the auspices of the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), a Cooperative Institute of the University of Miami and the National Oceanic and Atmospheric Administration (cooperative agreement no. NA20OAR4320472). Rik Wanninkhof, Richard A. Feely, and Brendan R. Carter thank the National Oceanic and Atmospheric Administration's Global Ocean Monitoring and Observation division for funding the Carbon Data Management and Synthesis Grant (fund ref. no. 100007298). Li-Qing Jiang is grateful to Are Olsen (University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway), Robert Key (Princeton University, Princeton, New Jersey, USA), Nico Lange and Toste Tanhua (GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany), and Siv Lauvset (NORCE Norwegian Research Centre, Bergen, Norway) for generously sharing their QC experiences. We thank Nico Langue for answering multiple QC-related questions along the way. We thank Tim Boyer (NOAA National Centers for Environmental Information, Silver Spring, Maryland, USA) for contributing to the discussion during the product development. We thank Jon Hare (NOAA Northeastern Fisheries Science Center, Woods Hole, Massachusetts, USA) for contributing nutrient data collected from the US northeast coast from 2009 to 2016 (https://doi.org/10.7289/v5hq3wv3). Li-Qing Jiang also wants to thank Christopher Sabine (University of Hawaii at Manoa, Hawaii, USA) for the guidance and encouragement from his experiences of working on the first version of the Global Ocean Data Analysis Project (GLODAP) long before this project was funded. We thank Maura Thomas (University of Marine) for analyzing nutrient data from some cruises and Chris Taylor and Tamara Holzwarth-Davis (NOAA Northeast Fisheries Science Center) for help with sampling and data analysis for DIC, TA, and DO on some cruises. We thank Xuewu (Sherwood) Liu (University of South Florida, Tampa, Florida, USA) for assistance with the original pH data from cruise HLY1103. We also thank Jia-Zhong Zhang (NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA) and Calvin W. Mordy (NOAA Pacific Marine Environmental Laboratory, Seattle, Washington, USA) for help answering questions related to the conversion between Nitrate and Nitrate_and_Nitrite. This is contribution number 5161 from the NOAA Pacific Marine Environmental Laboratory.

Financial support. This research has been supported by the National Oceanic and Atmospheric Administration (NOAA) Ocean Acidification Program (grant no. OAP 1903-1903).

Review statement. This paper was edited by David Carlson and reviewed by two anonymous referees.

References

Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A.

- C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
- Barton, A., Hales, B., Waldbusser, G. G., Langdon, C., and Feely, R. A.: The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects, Limnol. Oceanogr., 57, 698–710, https://doi.org/10.4319/lo.2012.57.3.0698, 2012.
- Barton, A., Waldbusser, G. G., Feely, R. A., Weisberg, S. B., Newton, J. A., Hales, B., Cudd, S., Eudeline, B., Langdon, C. J., Jefferds, I., King, T., Suhrbier, A., and McLaughlin, K.: Impacts of Coastal Acidification on the Pacific Northwest Shellfish Industry and Adaptation Strategies Implemented in Response, Oceanography, 28, 146–159, https://doi.org/10.5670/oceanog.2015.38, 2015.
- Beckwith, S. T., Byrne, R. H., and Hallock, P.: Riverine calcium end-members improve coastal saturation state calculations and reveal regionally variable calcification potential, Front. Mar. Sci., 6, 169, https://doi.org/10.3389/fmars.2019.00169, 2019.
- Borges, A. V. and Gypens, N.: Carbonate chemistry in the coastal zone responds more strongly to eutrophication than ocean acidification, Limnol. Oceanogr., 55, 346–353, https://doi.org/10.4319/lo.2010.55.1.0346, 2010.
- Broecker, W. S.: The great ocean conveyor, Oceanography 4, 79–89, https://doi.org/10.5670/oceanog.1991.07, 1991.
- Byrne, R. H. and Breland, J. A.: High precision multiwavelength pH determinations in seawater using cresol red, Deep-Sea Res., 36, 803–810, 1989.
- Byrne, R. H. and Yao, W.: Procedures for measurement of carbonate ion concentrations in seawater by direct spectrophotometric observations of Pb(II) complexation, Mar. Chem., 112, 128–135, https://doi.org/10.1016/j.marchem.2008.07.009, 2008.
- Cai, W.-J., Guo, X., Chen, C.-T. A., Dai, M., Zhang, L., Zhai, W., Lohrenz, S. E., Yin, K., Harrison, P. J., and Wang, Y.: A comparative overview of weathering intensity and HCO₃⁻ flux in the world's major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers, Cont. Shelf Res., 28, 1538–1549, https://doi.org/10.1016/j.csr.2007.10.014, 2008.
- Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W.-C., Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M., and Gong, G.-C.: Acidification of subsurface coastal waters enhanced by eutrophication, Nature Geosci., 4, 766–770, https://doi.org/10.1038/ngeo1297, 2011.
- Cai, W.-J., Xu, Y.-Y., Feely, R. A., Wanninkhof, R., Jönsson, B., Alin, S. R., Barbero, L., Cross, J. N., Azetsu-Scott, K., Fassbender, A. J., Carter, B. R., Jiang, L.-Q., Pepin, P., Chen, B., Hussain, N., Reimer, J. J., Xue, L., Salisbury, J. E., Hernández-Ayón, J. M., Langdon, C., Li, Q., Sutton, A. J., Chen, C.-T. A., and Gledhill, D. K.: Controls on surface water carbonate chemistry along North American ocean margins, Nat. Commun., 11, 2691, https://doi.org/10.1038/s41467-020-16530-z, 2020.
- Carter, B. R., Feely, R. A., Williams, N. L., Dickson, A. G., and Fong, M. B., and Takeshita, Y.: Updated methods for global locally interpolated estimation of alkalinity, pH, and nitrate, Limnol. Oceanogr.-Meth., 16, 119–131, https://doi.org/10.1002/lom3.10232, 2018.

- Cicin-Sain, B., Bernal, P., Vandeweerd, V., Belfiore, S., and Goldstein, K.: A Guide to Oceans, Coasts, and Islands at the World Summit on Sustainable Development, Center for the Study of Marine Policy, Newark, Delaware, 2002.
- Clayton, T. D. and Byrne, R. H.: Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results, Deep-Sea Res., 40, 2115– 2129, 1993.
- Cooley, S. R. and Doney, S. C.: Anticipating ocean acidification's economic consequences for commercial fisheries, Environ. Res. Lett., 4, 024007, https://doi.org/10.1088/1748-9326/4/2/024007, 2009.
- Dickson, A. G.: Standard potential of the reaction: AgCl(s) + 1/2 H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO_4^- in synthetic seawater from 273.15 to 318.15 K, J. Chem. Thermodyn., 22, 113–127, https://doi.org/10.1016/0021-9614(90)90074-z, 1990.
- Dickson, A. G.: The measurement of seawater pH, Mar. Chem., 44, 131–142, 1993.
- Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO₂ measurement, Sidney, British Columbia, North Pacific Marine Science Organization, PICES Special Publication 3, 191 pp., http://hdl.handle.net/11329/249, 2007.
- Dillon, W. D. N., Dillingham, P. W., Currie, K. I., and McGraw, C. M.: Inclusion of uncertainty in the calciumsalinity relationship improves estimates of ocean acidification monitoring data quality, Mar. Chem., 226, 103872, https://doi.org/10.1016/j.marchem.2020.103872, 2020.
- Doney, S. C., Busch, D. S., Cooley, S. R., and Kroeker, K. J.: The impacts of ocean acidification on marine ecosystems and reliant human communities, Ann. Rev. Environ. Resour., 45, 83–112, https://doi.org/10.1146/annurev-environ-012320-083019, 2020.
- Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero, F. J.: Impact of anthropogenic CO₂ on the CaCO₃ system in the oceans, Science, 305, 362–366, 2004.
- Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and Hales, B.: Evidence for upwelling of corrosive "acidified" water onto the Continental Shelf. Science, 320, 1490–1492, https://doi.org/10.1126/science.1155676, 2008.
- Feely, R. A., Alin, S. R., Carter, B., Bednaršek, N., Hales, B., Chan, F., Hill, T. M., Gaylord, B., Sanford, E., Byrne, R. H., Sabine, C. L., Greeley, D., and Juranek, L.: Chemical and biological impacts of ocean acidification along the west coast of North America, Estuar. Coast. Shelf. S., 183, 260–270, https://doi.org/10.1016/j.ecss.2016.08.043, 2016.
- Feely, R. A., Okazaki, R. R., Cai, W.-J., Bednaršek, N., Alin, S. R., Byrne, R. H., and Fassbender, A.: The combined effects of acidification and hypoxia on pH and aragonite saturation in the coastal waters of the Californian Current Ecosystem and the northern Gulf of Mexico, Cont. Shelf Res., 152, 50–60, https://doi.org/10.1016/j.csr.2017.11.002, 2018.
- Garcia, H. E. and Gordon, L. I.: Oxygen solubility in seawater: Better fitting equations, Limnol. Oceanogr., 37, 1307–1312, https://doi.org/10.4319/lo.1992.37.6.1307, 1992.
- Gattuso, J.-P. and Hansson, L.: Ocean acidification, Oxford University Press, Oxford, 2011.
- Gomez, F. A., Wanninkhof, R., Barbero, L., Lee, S.-K., and Hernandez Jr., F. J.: Seasonal patterns of surface inorganic carbon system variables in the Gulf of Mexico inferred from a regional

- high-resolution ocean biogeochemical model, Biogeosciences, 17, 1685–1700, https://doi.org/10.5194/bg-17-1685-2020, 2020.
- Gruber N., Clement D., Carter, B. R., Feely, R. A., van Heuven,
 S., Hoppema, M., Ishii, M., Key, R. M., Kozyr, A., Lauvset, S.
 K., Monaco, C. L., Mathis, J. T., Murata, A., Olsen, A., Perez, F.
 F., Sabine, C. L., Tanhua, T., and Wanninkhof, R.: The oceanic sink for anthropogenic CO₂ from 1994 to 2007, Science, 363, 1193–1199, https://doi.org/10.1126/science.aau5153, 2019.
- Hales, B., Takahashi, T., and Bandstra, L.: Atmospheric CO₂ uptake by a coastal upwelling system, Global Biogeochem. Cy., 19, GB1009, https://doi.org/10.1029/2004GB002295, 2005.
- Hales, B., Cai, W.-J., Mitchell, B. G., Sabine, C. L., and Schofield, O.: North American Continental Margins – Report of the North American Continental Margins Working Group for the U.S. Carbon Cycle Scientific Steering Group and Interagency Working Group, available at: https://data.globalchange. gov/assets/48/3f/48c42b8c11bb5e3f5e442a72a7ae/
 - north-american-continental-margins.pdf (last access: 15 May 2021), 2008.
- Hood, E. M., Sabine, C. L., and Sloyan, B. M. (Eds.): The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines, ICPO Publication Series number 134, IOCCP Report Number 14, available at: http://www.go-ship.org/HydroMan.html (last access: 15 May 2021), 2011.
- Hugo, G.: Future demographic change and its interactions with migration and climate change, Glob. Environ. Change, 21, S21–S33, 2011.
- Hunt, C. W., Salisbury, J. E., and Vandemark, D.: Contribution of non-carbonate anions to total alkalinity and overestimation of *p*CO₂ in New England and New Brunswick rivers, Biogeosciences, 8, 3069–3076, https://doi.org/10.5194/bg-8-3069-2011, 2011.
- Hydes, D. J. and Hill, N. C.: Determination of nitrate in seawater: Nitrate to nitrite reduction with copper-cadmium alloy, Estuar. Coast. Shelf. S., 21, 127–130, 1985.
- IOC, SCOR, and IAPSO: The international thermodynamic equation of seawater 2010: Calculation and use of thermodynamic properties, Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO, 196 pp., 2010.
- IPCC: Workshop report of the Intergovernmental Panel on Climate Change (IPCC) Workshop on impacts of ocean acidification on marine biology and ecosystems, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Mach, K. J., Plattner, G.-K., Mastrandrea, M. D., Tignor, M., and Ebi, K. L., IPCC Working Group II Technical Support Unit, Carnegie Institution, Stanford, California, USA, 164 pp., 2011.
- Jiang, L.-Q., Cai, W.-J., Feely, R. A., Wang, Y., Guo, X., Gledhill, D. K., Hu, X., Arzayus, F., Chen, F., Hartmann, J., and Zhang, L.: Carbonate mineral saturation states along the U.S. East Coast, Limnol. Oceanogr., 55, 2424–2432, 2010.
- Jiang L.-Q., Feely, R. A., Carter, B. R., Greeley, D. J., Gledhill, D. K., and Arzayus, K. M.: Climatological distribution of aragonite saturation state in the global oceans, Global Biogeochem. Cy., 29, 1656–1673, 2015a.
- Jiang, L.-Q., O'Connor, S. A., Arzayus, K. M., and Parsons, A. R.: A metadata template for ocean acidification data, Earth Syst. Sci. Data, 7, 117–125, https://doi.org/10.5194/essd-7-117-2015, 2015b.

- Jiang, L.-Q., Carter, B. R., Feely, R. A., Lauvset, S., and Olsen, A.: Surface ocean pH and buffer capacity, past, present and future, Sci. Rep., 9, 18624, https://doi.org/10.1038/s41598-019-55039-4 2019
- Jiang, L.-Q., Feely, R. A., Wanninkhof, R., Greeley, D., Barbero, L., Alin, S. R., Carter, B. R., Pierrot, D., Featherstone, C., Hooper, J., Melrose, C., Monacci, N., Sharp, J., Shellito, S., Xu, Y.-Y., Kozyr, A., Byrne, R. H., Cai, W.-J., Cross, J., Johnson, G. C., Hales, B., Langdon, C., Mathis, J., Salisbury, J., and Townsend, D. W.: Coastal Ocean Data Analysis Product in North America (CODAP-NA, Version 2021) (NCEI Accession 0219960), NOAA National Centers for Environmental Information, Dataset, https://doi.org/10.25921/531n-c230, 2021a.
- Jiang, L.-Q., Pierrot, D., Wanninkhof, R., Feely, R. A., Tilbrook, B., Alin, S., Barbero, L., Byrne, R. H., Carter, B. R., Dickson, A. G., Gattuso, J.-P., Greeley, D., Hoppema, M., Humphreys, M. P., Karstensen, J. Lange, N., Lauvset, S. K., Lewis, E. R., Olsen, A., Pérez, F. F., Sabine, C., Sharp, J. D., Tanhua, T., Trull, T., Velo, A., Allegra, A. J., Barker, P., Burger, E., Cai, W.-J., Chen, C.-T. A., Cross, J., Garcia, H., Hernandez-Ayon, J. M., Hu, X., Kozyr, A., Langdon, C., Lee, K., Salisbury, J., Wang, Z. A., and Xue, L.: Best practice data standards for discrete chemical oceanographic observations, Front. Mar. Sci., in review, 2021b.
- Jiang, L.-Q., Pierrot, D., Sharp, J., and Carter, B.: A suite of internal consistency based primary-level quality control tools for discrete bottle based chemical oceanographic data, Limnol. Oceanogr.-Methods, in preparation, 2021c.
- Joyce, T. and Corry, C.: Chapter 4. Hydrographic Data Formats, in: Requirements for WOCE Hydrographic Programme Data Reporting, WOCE Hydrographic Programme Office, Woods Hole Oceanographic Institution, Woods Hole, MA, 1994.
- Laruelle, G. G., Landschützer, P., Gruber, N., Tison, J.-L., Delille, B., and Regnier, P.: Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation, Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017, 2017.
- Laurent, A., Fennel, K., Cai, W.-J., Huang, W.-J., Barbero, L., and Wanninkhof, R.: Eutrophication-induced acidification of coastal waters in the northern Gulf of Mexico: Insights into origin and processes from a coupled physical-biogeochemical model, Geophys. Res. Lett., 44, 946–956, https://doi.org/10.1002/2016gl071881, 2017.
- Lauvset, S. K., Gruber, N., Landschützer, P., Olsen, A., and Tjiputra, J.: Trends and drivers in global surface ocean pH over the past 3 decades, Biogeosciences, 12, 1285–1298, https://doi.org/10.5194/bg-12-1285-2015, 2015.
- Lauvset, S. K. and Tanhua, T.: A toolbox for secondary quality control on ocean chemistry and hydrographic data, Limnol. Oceanogr.-Meth., 13, 601–608, https://doi.org/10.1002/lom3.10050, 2015.
- Lauvset, S. K., Carter, B. R., Perez, F. F., Jiang, L.-Q., Feely, R. A., Velo, A., and Olsen, A.: Processes Driving Global Interior Ocean pH Distribution, Global Biogeochem. Cy., 34, e2019GB006229, https://doi.org/10.1029/2019GB006229, 2020.
- Le Menn, M., Giuliano, Albo, P. A. G., Lago, S., Romeo, R., and Sparasci, F.: The absolute salinity of seawater and its measurands, Metrologia, 56, 015005, https://doi.org/10.1088/1681-7575/aaea92, 2018.

- Lee, K., Kim, T.-W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y.-M.: The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans, Geochim. Cosmochim. Acta, 74, 1801–1811, https://doi.org/10.1016/j.gca.2009.12.027, 2010.
- Lewis, E. and Wallace, D. W. R.: Program Developed for CO₂ System Calculations, ORNL/CDIAC-105 (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 1998.
- Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO₂ calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO₂ in gas and seawater at equilibrium, Mar. Chem., 70, 105–119, 2000.
- Millero, F. J.: Thermodynamics of the carbon dioxide system in the oceans, Geochim. Cosmochim. Acta, 59, 661–677, 1995.
- Mucci, A.: The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure, Am. J. Sci., 283, 781–799, 1983.
- Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.: The Global Ocean Data Analysis Project version 2 (GLODAPv2) an internally consistent data product for the world ocean, Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, 2016.
- Olsen, A., Lange, N., Key, R. M., Tanhua, T., Álvarez, M., Becker, S., Bittig, H. C., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jones, S. D., Jutterström, S., Karlsen, M. K., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Telszewski, M., Tilbrook, B., Velo, A., and Wanninkhof, R.: GLODAPv2.2019 an update of GLODAPv2, Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, 2019.
- Olsen, A., Lange, N., Key, R. M., Tanhua, T., Bittig, H. C., Kozyr, A., Álvarez, M., Azetsu-Scott, K., Becker, S., Brown, P. J., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jutterström, S., Landa, C. S., Lauvset, S. K., Michaelis, P., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Velo, A., Wanninkhof, R., and Woosley, R. J.: An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2020, Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, 2020.
- Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool, A.: Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437, 681–686, 2005.
- Orr, J. C., Epitalon, J.-M., Dickson, A. G., and Gattuso, J.-P.: Routine uncertainty propagation for the marine carbon dioxide system, Mar. Chem., 207, 84–107, 2018.

- Perez, F. F. and Fraga, F.: Association constant of fluoride and hydrogen ions in seawater, Mar. Chem., 21, 161–168, https://doi.org/10.1016/0304-4203(87)90036-3, 1987.
- Riley, J. P., and Tongudai, M.: The major cation/chlorinity ratios in sea water, Chem. Geol., 2, 263–269, 1967.
- Roobaert, A., Laruelle, G. G., Landschützer, P., Gruber, N., Chou, L., and Regnier, P.: The spatiotemporal dynamics of the sources and sinks of CO₂ in the global coastal ocean, Global Biogeochem. Cy., 33, 1693–1714, https://doi.org/10.1029/2019GB006239, 2019.
- Sharp, J. D. and Byrne, R. H.: Carbonate ion concentrations in seawater: spectrophotometric determination at ambient temperatures and evaluation of propagated calculation uncertainties, Mar. Chem., 209, 70–80, https://doi.org/10.1016/j.marchem.2018.12.001, 2019.
- Sharp, J. D., Pierrot, D., and Humphreys, M. P.: CO₂-System-Extd, v3.0.1, MATLAB (MathWorks), https://doi.org/10.5281/zenodo.3952803, 2020.
- Sherman, K., Aquarone, M. C., and Adams, S.: Sustaining the World's Large Marine Ecosystems, Gland, Switzerland, IUCN, viii+142 pp., 2009.
- Stets, E. G., Kelly, V. J., and Crawford, C. G.: Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification, Sci. Total Environ., 488–489, 280–289, https://doi.org/10.1016/j.scitotenv.2014.04.054, 2014.
- Sulpis, O., Lauvset, S. K., and Hagens, M.: Current estimates of K_1^* and K_2^* appear inconsistent with measured CO_2 system parameters in cold oceanic regions, Ocean Sci., 16, 847–862, https://doi.org/10.5194/os-16-847-2020, 2020.
- Swift, J. H. and Diggs, S. C.: Description of WHP-Exchange Format for CTD/Hydrographic Data, available at: https://cchdo.github.io/hdo-assets/documentation/WHP_Exchange_Description.pdf (last access: 15 May 2021), 2008.
- Takahashi, T., Sutherland, S. C., and Kozyr, A.: Global Ocean Surface Water Partial Pressure of CO₂ Database (LDEO Database Version 2019): Measurements Performed During 1957–2019 (NCEI Accession 0160492), NOAA National Centers for Environmental Information, Dataset, https://doi.org/10.3334/cdiac/otg.ndp088(v2015), 2020.
- Tanhua, T., van Heuven, S., Key, R. M., Velo, A., Olsen, A., and Schirnick, C.: Quality control procedures and methods of the CARINA database, Earth Syst. Sci. Data, 2, 35–49, https://doi.org/10.5194/essd-2-35-2010, 2010.
- Wanninkhof, R. and Thoning, K.: Measurement of fugacity of CO₂ in surface water using continuous and discrete methods, Mar. Chem., 44, 189–204, 1993.
- Wanninkhof, R., Barbero, L., Byrne, R., Cai, W.-J., Huang, W.-J., Zhang, J.-Z., Baringer, M., and Langdon, C.: Ocean acidification along the Gulf Coast and East Coast of the USA, Cont. Shelf Res., 98, 54–71, https://doi.org/10.1016/j.csr.2015.02.008, 2015.
- Xue, L., Cai, W.-J., Hu, X., Sabine, C., Jones, S., Sutton, A., Jiang, L.-Q., and Reimer, J. J.: Sea surface carbon dioxide at the Georgia time series site (2006–2007): Air-sea flux and controlling processes, Prog. Oceanogr, 140, 14–26, https://doi.org/10.1016/j.pocean.2015.09.008, 2016.