20
21
22
23
24
25
26
27
28
29

30

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/Ijl p. 1

Multiagent and Grid Systems — An International Journal -1 (2020) 1-22 I

DOT TU.5235/NMGS-2U0527

10S Press

Plan distance heuristics for task fusion in
distributed temporal continuous planning

Gilberto Marcon dos Santos* and Julie A. Adams
Collaborative Robotics and Intelligent Systems Institute, Oregon State University, Corvallis, OR, USA

Received 5 September 2019
\Accepted 4 March 2020

Abstract. Automating planning for large teams of heterogeneous robots is a growing challenge, as robot capabilities diversify
and domain complexities are incorporated. Temporal and continuous features accurately model real-world constraints, but add|
computational complexity. Distributed planning methods, such as the Coalition Formation then Planning framework, allocate
tasks to robot teams and plan each task separately to accelerate planning. However, the task decomposition limits cooperation
between coalitions allocated to different tasks and results in lower quality plans that require more actions and time to complete.
Task Fusion estimates couplings between tasks and fuses coupled coalition-task pairs to improve cooperation and produce higher
quality plans. Task Fusion relies on existing heuristics, which were ineffective and often resulted in worse results than the baseline
framework. This manuscript introduces new heuristics that outperform the existing methods in two complex heterogeneous
multi-robot domains that incorporate temporal and continuous constraints.

Keywords: Multiagent planning, coalition formation, temporal continuous planning, plan distance

1. Introduction

Robots are rapidly moving into the commercial, medical, and military domains. The fast-paced
development of sensing, processing, and actuation devices at increasingly lower costs is resulting in
robots with a growing variety of capabilities, approaching a world where robots are ubiquitous and
diverse. Robots have proven potential to assist in response to major disasters, such as search and rescue,
bomb defusal, and natural disasters, but currently highly trained operators make most decisions, while|
the robot decision making is limited to low level actions [2]. Exploiting the potential of autonomous
robots will require scalable automated planning capable of modeling complex problems that incorporate
a diverse set of robots [2].

First response for natural and man-made disasters requires rapid evaluation and deployment of available)
personnel and equipment in order to mitigate the situation, which when combined with the robotic
aspects, greatly increases the complexity of the deployment allocation and assignment problems. Existing
planning methods (e.g., [7,11,20,41]) fail to account for all of the domain’s complexities, such as requiring
continuous fluents (e.g., fuel capacity), concurrent actions (e.g. simultaneously triaging multiple victims),

*Corresponding author: Gilberto Marcon dos Santos, Collaborative Robotics and Intelligent Systems (CoRIS) Institute, Oregon
State University, 2000 SW Monroe Ave, 204 Rogers Hall, Corvallis, OR 97331, USA. E-mail: marcondg @oregonstate.edu

- . — TCSS an € authors. I‘lg S TESCTVE

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
!
72
73

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/Ijl p. 2

and real-time results (e.g. planning and executing the plan within the task deadlines). Existing methods can
only meet some of these requirements and cannot scale to a large number of heterogeneous robots [23].

Dukeman and Adams [18] developed the hybrid Coalition Formation then Planning (CFP) framework|
to merge automated planning and coalition formation with improved scalability to dozens of robots
when developing continuous temporal plans. The CFP assigns robots to coalitions according to their
capabilities and allocates tasks to each coalition. Planning for tasks separately accelerates planning, but
limits cooperation between coalitions, lowering plan quality, and requiring more actions and time to
execute.

Task Fusion merges coalition-task pairs in order to improve the plan quality by evaluating the coupling
of each pair. Task Fusion uses heuristics to estimate coupling and fuse the highest scoring pairs; thus,
allowing explicit cooperation between robots in the fused coalitions and improved plan quality. However,
prior analysis of Task Fusion effectiveness was inconclusive [18]. While some problems solved using Task
Fusion resulted in better quality plans, most produced worse quality plans, due to inaccurate heuristics.

This manuscript’s main contribution addresses the limitations of CFP and devises new heuristics
that estimate coupling between tasks and coalitions. Detecting couplings allows fusing tightly coupled
coalition-task pairs, which improves cooperation and reduces plan length; thus, producing higher quality|
plans that contain fewer actions and require less time to execute. The new heuristics leverage plan distance
as a proxy for the coalition-task coupling estimation. Plan distance heuristics, previously used as a
measure of plan diversity [40], were adapted for estimating problem coupling in Task Fusion. Relaxed
plans are determined rapidly from the coalition-task problems, and the distance between relaxed plans
indicates the level of coupling that informs the Task Fusion. The plan distance heuristics provide better
plans that require fewer computational resources for planning. This manuscript introduces new plan
distance heuristics, presents and evaluates four new hypothesis, incorporates four new metrics, and
evaluates the CFP framework using an additional planner.

2. Literature review

Automated planning for teams of heterogeneous robots is a specific application of multiagent planning.
Multiagent planning is the more general field of planning, which goes beyond embodied physical
robots and can involve other types of agents, such as software agents. Software agents are abstract
decision making entities, such as web crawlers and stock traders, whereas robot systems have physical
embodiment in the form of sensors and actuators, often associated with a mobile body [45]. Distributed
temporal continuous planning incorporates temporal constraints and continuous numerical fluents to more
accurately model real-world problems for multiple robot systems.

Planning for complex domains, such as first response, requires the classical planning model to be
extended to incorporate expressive features, such as concurrent action execution (e.g., [9,26,34]) and
continuous fluents (e.g., [7,10,11,20]). No single planner incorporates all the necessary features, and
the most expressive algorithms are unable to scale to complex problems with multiple robots or task
complexities [22]. However, significant performance improvements can be achieved by factoring the
problem based on the system and the environment [31]. Multiagent factoring distributes the plan synthesis
across multiple planning agents in order to reduce the computational complexity [42]. The planning
problem is partitioned into tasks and task plans are devised independently. Planning agents coordinate
before planning, to allocate tasks, and after planning, to merge the individual plans and minimize
conflicts [16]. Planning coordination remains a challenging problem, especially for problems with tightly|
coupled tasks [5] that have mutual dependencies, such as shared locations and resources (e.g., tools

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9
97
98
99

100

101

102

103

104

105

106

107

108

109

110

11

112

113

114

115

116

117

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/Ijl p. 3

and assets), and cannot be independently solved. The independent execution of one task can alter the)
environment and jeopardize the ability to accomplish tasks.

Plan merging algorithms allow agents to coordinate after planning in order to solve action redundancies
and consistency flaws [13]. The Multiagent Plan Coordination by Plan Modification Algorithm minimizes
the resulting number of actions while merging independently generated plans [13]. A set of actions is
replaced by a single redundant action, resulting in merged plans with fewer actions, but the algorithm’s
scalability to a large number of robots is limited. The Temporal Optimal Conflict Resolution Algorithm
employs a search relaxation constant in order to scale to a large number of robots, but cannot scale to a
large number of tightly coupled tasks [28]. Another temporal plan merge algorithm generates relaxed
plans for each task prior to merging [29], but is not applicable to multiple robot tasks.

Decentralized planing algorithms can use serial plan synthesis for tightly coupled tasks [17]. Robots
generate plans iteratively, where each planning agent assumes that its initial state is the prior agent’s
final state. The planner’s goals are concatenated with the goals of the next planning agent in order to
guarantee that the next agent will not undo the previous agent’s achieved goals. Serial plan synthesis does
not require serial plan execution. The serially synthesized plans can be merged for parallel execution;
however, most existing decentralized planners assume serial plan execution. Rather, the agents take
actions in turns, which hinders applicability to real-world multiple robot systems [42]. Parallel action
execution requires sophisticated coordination methods that optimize parallel plan execution, while also
minimizing makespan, the plan execution time.

The Multi-Agent Planning by Plan Reuse algorithm performs task allocation then planning using
relaxed reachability analysis after generating relaxed plans for all agent-task combinations. However,
the method requires homogeneous agents [4]. The algorithm can be applied to a heterogeneous mobile
multiple robot system by using actuation maps instead of relaxed plans, but it does not generalize to
complex tasks [32].

Task allocation can address coupling and optimize parallel plan execution with problem decomposition
[6]. The agent interaction graph minimizes the problem coupling when allocating tasks in order to reduce
computational complexity [6]. The problem decomposition is formulated as a constraint satisfaction
problem, but solving the constraint satisfaction problem dominates the plan synthesis time, rendering the
algorithm inefficient [15]. The Agent Decomposition-Based Planner uses causal graphs to decompose the)
planning problem [15], and has been extended to support concurrent actions in a real-world industrial
mobile manipulator robot domain [14], but does not scale to a large number of robots. The Multiagent
Planner for Required Cooperation allocates tasks to m planning agents, which devise plans for n executing
agents [39]. The above methods cannot support concurrent action execution, hindering their applicability|
to real-world multiple robot systems.

Models of capabilities were used recently as a heuristic for state-space forward search [46]. Capabilities
are modeled as the agent’s likelihoods of achieving a particular state from any other state. A Bayesian
network learns the likelihood capabilities from plan traces, but requires a large number of plan execution
simulations covering initial and goal states. Buehler et. al [8] define a robot capability as an extended
action schema that integrates with the underlying Robot Operating System (ROS) [33]. ROS controls
action execution and relays abstracted sensor data to a multiple robot planning and execution architecture.
However, neither study uses capability models to improve plan quality or reduce computational cost.
The following Section presents the promises and limitations of the Coalition Formation then Planning
framework for scalable multiagent planning, and introduces a new family of heuristics that address the
shortcomings of the approach

118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/ljl p. 4

3. Coalition formation and planning

Coalition formation is an alternative task allocation method for multiple robot distributed planning [18].
Coalition formation generalizes task allocation by assigning entities (e.g., robots or humans) to coalitions
to perform tasks (e.g., [1,21,38,44]). The entities are grouped into coalitions according to the capabilities
offered by the individual entities and the capabilities required to complete the tasks. Capabilities repre-
sent resources (i.e., sensor range and battery power) or services, (i.e., distance measurement or image|
acquisition) [37]. This Section formally defines coalition formation as applied to multiple robot planning,
and introduces a new family of heuristics to address the shortcomings of the approach.

The coalition formation problem takes a set of n robots, ® = {41, P2, ..., P, }, and a set of m tasks,
V = {v1,v2, ...,V }. Coalition formation maps tasks to coalitions, CF : V' — 2%, which yields a set of
m coalition-task pairs P, = {p1,p2,...,pm} | pi = (Pi,v;) | P; C P. A capability ¢; is a non-negative
real number and each individual robot has a vector of capabilities C'y = <c”1b, c‘zb, e ,c@, where each

vector entry cf represents a capability j offered by robot ¢, and k is the number of modeled capabilities.
The set of all n robots is the capability vector set C* = {C1,Cy, ..., C,} that associates a capability
vector with each robot. Tasks are defined as a vector of required capabilities C,, = (c{,c5,...,c})|
where each vector entry ¢} represents a capability j required by task v. The set of m tasks is the task
requirement capability vector set CV = {C1, Cs, ..., Cy,} that associates a capability vector with each
task. A coalition ®,, C & is a subset of robots capable of executing a task v, if (D bED, cf) > c;?, Vj €
{1,2,...,k}. Coalition formation algorithms maximize the individual robot’s contributions to the tasks
and allow robots to belong to multiple coalitions.

The Hybrid Mission Planning with Coalition Formation (HMPCF) [18] model is represented as

a tuple (S, 1, A, ®,V,M,C), where S = {s1,s9,...} is the state space, I C S is the initial state,

A = {a1,a9,...} is the action space, & = {¢1,...,¢,} is the set of n robots, the grand coalition,

V = {v1,...,vn} is the set of m tasks, M : & — Ag | Ap C A is the robot-action mapping function,

and C is the tuple (C®, CV), where C* = {C,Cy,...,C,} is the robot capability vector set and

CV = {C1,Cs,...,Cp,} is the task requirement capability vector set. The conjunction of all task

conditions defines the goal states G C S | G = {s1,82,...,} | s+ A v | Vs € G. A solution to a
ev

HMPCEF problem is a plan, 7, consisting of a set of scheduled actiong assigned to each robot ¢ € ®.
HMPCEF uses existing Coalition Formation and Planning algorithms to solve large multiple robot planning
problems that incorporate temporal constraints and continuous numerical fluents in a more tractable,
albeit centralized manner.

Planning alone, a fully centralized baseline planning method, groups all robots and tasks into a single-
agent multi-effector planning problem. Planning Alone synthesizes a goal set G as the conjunction of
all task requirements and invokes a domain-independent planner, as indicated in Fig. 1a. The external
planner receives the grand coalition’s combined action space and attempts to satisfy all task constraints
embedded in the goal state set. Planning Alone generates high-quality plans, but scales poorly as the
number of robots or the domain complexity increase [18]. The combinatorial complexity of centralized
planning limits the problems that can be solved.

Coalition formation then planning (CFP) is a hybrid method that leverages coalition formation to
minimize combinatorial complexity and overall planning time. The robot and task capability vector
sets and coalition formation algorithms are used to generate the coalitions and assign tasks, invoking
planning algorithms for each coalition-task pair. The resulting coalition-task pair plans are merged into
a global plan, as presented in Fig. 1b. CFP applies serial plan synthesis and assumes robot coalitions
take turns when planning, with coordination occuring before and after planning. Coordination beforel

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/Ijl p. 5

Domain | | Problem |

Extract Coalition
Formation Model

Coalition
Formation
Model

Coalition
Formation

Coalition-Task
Assignments

Coalition-Task
Problem Synthesis
]

| Domain || Problem |

Global Plan

Planning Loop

Coalition-Task
Planning
Problems

(" Planning)

Coalition-Task | | Coalition-Task
Plans Last State

a) Planning Alone.

Global Plan

b) Coalition Formation then Planning.

Fig. 1. Planning alone (a) and the coalition formation then planning framework (b). Rounded filled shapes represent processes and
rectangles represent data. Coalition formation then planning extracts robots’ and task’s capabilities from the problem description,
partitions the robots into coalitions and generates separate plans for each coalition. The coalition plans are merged into a global
plan [18].

planning occurs by forming coalitions and allocating tasks, whereas plan merging performs coordination
after planning by minimizing action redundancy, while also preventing consistency flaws [13]. Each task
planning problem is solved separately, and the task planning problem’s goals are concatenated with the
goals of the next task planning problem in order to guarantee that the following task plan will not undo
the goals achieved by the prior task plan. CFP uses capabilities to inform problem partitioning.

The Extract Coalition Formation Model process derives robot and task capability vectors from the
problem description [18]. Coalition formation generates coalition-task pairs and the Coalition-Task
\Problem Synthesis process uses the coalition-task pairs, the problem description, and the final state
achieved by the latest coalition-task plan to generate separate planning problems for each coalition-
task pair. The Coalition-Task Planning Problems are solved separately by external planners, such as
COLIN [11] or TFD [20]. The planner produces a plan for each coalition-task pair, and the resulting plans
are merged into a global plan using a greedy approach [18].

Multiple robot planning is largely an intractable problem, but assigning tasks to the most appropriate
robot coalitions scales significantly better. The coalition formation problem is NP-hard [38], but domain-
independent planning is EXPSPACE-complete [19]. The plan synthesis time can be orders of magnitude
longer than the corresponding coalition formation problems; thus, the overhead created by coalition
formation is minimal. The problem complexity is reduced by generating multiple small-action-set plans.
The reduced search branching factor permits derivation of plans for significantly larger problems [18]. The
ICFP framework is agnostic to the coalition formation algorithm adopted and uses external algorithms [36]

181
182
183
184
185

187
188
189
190
191
192

193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

222

223

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/ljl p. 6

Coalition formation can scale planning to larger numbers of robots and more complex tasks, but results
in poor quality plans, that have longer makespan than centralized planning (i.e., Planning Alone) [18].
The model of capabilities used by coalition formation does not reveal whether tasks are tightly coupled,
limiting cooperation between coalitions allocated to different tasks and results in lower quality plans that
require more actions and time to complete. Plan quality can be improved by partitioning the planning
problem along coalition and task coupling lines [6]. The most tightly coupled coalition-tasks pairs are
fused, whereas the most loosely coupled remain separate. When two coupled coalition-task planning
problems are solved separately, the planner considers each tasks’ goals individually, and produces
potentially redundant action sequences [42]. However, when two coupled coalition-tasks are fused, the
actions for one task can contribute to achieving states necessary to achieve another task and can generate)
higher quality plans. Planning uncoupled coalition-task planning problems together does not improve
plan quality, and often increases planning complexity.

3.1. Task fusion

Coalition formation was enhanced with Task Fusion in order to account for tightly coupled tasks
and generate higher quality plans at a lower computational cost [18]. After coalition formation, tightly
coupled coalition-task pairs are fused into larger coalition-task pairs. The fused coalition-tasks plans can
be synthesized faster and result in shorter makespan with fewer actions. Fusing allows the planner to
address the tasks’ mutual dependencies and facilitates cooperation between the fused coalitions. The)
result of Task Fusion over coalition-task pairs p; = (®;,v;) and p; = (®;,v;) is a fused coalition-task
pair pr, pr = (®g,vs) = F(pi,pj), where F is a mapping of pairs of coalition-task pairs F : p; x p; —
Pt | pi,pj € P, @y is the union of robots ¢ C ®; and ¢ C &, y = ®; U P;, and vy = v; A vj is the
conjunction of task requirements from v; and v;.

Task fusion is the fusion of tasks and the assigned coalitions. Both coalitions and tasks are fused. Tasks
are fused by concatenating the goals of the original tasks. Coalitions are fused by combining or taking the|
union of the members of the original coalitions. A coalition-task pair consists of a task and a coalition.
Fusing a coalition results in a new coalition where the members of the original coalitions are combined.
Fusing tasks results in a new task, where the goals of the original tasks are concatenated. Members from
both coalitions will be considered during plan generation, as the goals of both tasks must be satisfied by
the resulting plan.

Coalition-task coupling is estimated by a heuristic that maps two coalition-task pairs p; and p;, to 4
coupling estimate, H (p;, p;): pi X p; — [0,1], where H (p;, p;) = 0 indicates that p; and p; are uncoupled
and H (p;, pj) = 1 indicates that p; and p; are tightly coupled. The Task Fusion algorithm stops when
the ratio of fused coalitions, relative to the original number of coalitions, m, becomes greater than a
user-defined threshold f,.., the fusion ratio, as presented in Algorithm 1. No coalition is fused when
fmax = 0, and all coalitions are fused when f,,,, = 1. A zero fusion ratio, f,.. = 0, is equivalent to the
baseline CFP (i.e., no Task Fusion). Fusing all coalitions using f,,,. = 1 does not produce the grand
coalition, because the algorithm is restricted to pair wise coalition fusion only, in order to avoid the
combinatorial complexity of evaluating all possible coalition-task subsets. A grand coalition can only be
produced when only two coalitions exist to be fused.

The previously developed heuristics estimate coalition-task cou‘%lin(% lloased on the coalition formation

iNP;

model of capabilities [18]. The Coalition Similarity (CS) heuristic, [®,0%,]> Operates on coalition-task pairs

that share common robots. Coalition-task pairs that have no common robots score 0 and coalition-task pairs
D UD
that share all robots score 1. The Coalition Assistance (CA) heuristic, Zk c’

r=1 pgaelelied)”

TGEET C7)

estimates the

224
225
226
227
228
229

230

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/ljl p. 7

Algorithm 1: The task fusion algorithm.

Data: P,, = {p1,p2,...,DPm}, asetof m coalition-task pairs;
H(pi,p;) : pi X pj — [0,1];
Result: A set of o coalition-task pairs P, = {p1,p2,...,Po}-
Initialize empty set P, = {0};
Populate list [with all (7;) pairs of coalition-task pairs (p;, p;), pi,pj € Pm;
foreach pair (pi, p;) in list | do
| Compute the heuristic value hi; = H (ps, p;);
end
Sort list [relative to the heuristic value h;;;
foreach pair (pi, p;) in list | do
Remove pair (p;, p;) from list [;
Remove all pairs containing p; or p; from list [and from set P, ;
Fuse pair (p;, p;) into coalition-task pair py = F(p:,p;);
Insert coalition-task pair py into set P,;
if2-||Ps|| > m - fmao then
| break;
end
end
Return P, = P, U P,;

ratio of coalition capabilities over task requirement capabilities after fusion, and prioritizes coalition-task
pairs that share the same task requirement capabilities. These heuristics do not consider planning-related
information, such as robots handling the same logical objects, or sharing the same physical location.
Ignoring planning-related information limits the heuristic’s accuracy, which can produce plans that take
longer to execute and require a larger number of actions. The following section introduces a new family
of heuristics that leverage plan distance metrics to improve plan quality and cost.

3.2. New task fusion heuristics with plan distance

Heuristics for Task Fusion can become more accurate and achieve better planning results by incorpo-
rating an estimation of plan distance. Plan distance metrics were developed to quantify solution diversity|
in plan synthesis and can estimate the level of similarity between two plans [40]. Nguyen et al. [30]
formulate a distance function between two plans 7; and 7;, that maps to a real-valued distance metric
d(m;, mj) : m x w; — [0, 1]. The action plan distance metric is defined by 1 — %, where A(7)
is the set of actions in plan 7 [30]. The opposite of plan distance, plan similarity, can be ajpproxirnated by
1 — 0(m;, m;), changing the action plan distance metric to W. The similarity between plans can
be a proxy for estimating the level of coupling between two coalition-task planning problems. Problems
that produce similar plans can be considered more tightly coupled.

Plan distance heuristics can use the plan’s logical objects, in addition to the plan’s actions. Logical
object instances are extracted from the plan actions’ argument lists in order to reveal problem details
that otherwise are ignored when only actions are considered. The overlap of actions and logical objects
between two plans indicates the plans’ level of similarity and coupling. Higher overlap of actions and
logical objects indicates that the robots interact with common objects and navigate through common|
locations, which are represented as logical objects. The use of action sets makes Nguyen et al.’s heuristic
unaware of repeated action instances. Lists allow and account for repeated actions, revealing nuances
that are otherwise omitted. This manuscript introduces a family of plan distance heuristics that use lists
of plan’s actions and logical objects to estimate coupling and generate better planning results with Task

usion

291
292
293

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/ljl p. 8

The introduced plan distance heuristics consider the overlap of actions and logical object occurrences
between two plans in order to estimate coupling [27]. The Object heuristic (O), the Action heuristic (A),
and the Action-Object heuristic (AO), are based on overlaps in the action, object, and both action and
object occurrences, respectively. The time at which each action is scheduled to occur is used to extend
each heuristic into three temporal variants: the Object-Temporal heuristic (OT), the Action-Temporal
heuristic (AT), and the Action-Object-Temporal heuristic (AOT).

A plan 7 consists of a list of actions, where each action entry contains a start time 7, robots & =
{1, ...}, and planning-model first-order logic objects O = {o1,...}. Plan distance heuristics compile
a list of logical object and action occurrences, extracted from each plan action entry. Each action-|
object occurrence, tagged with the associated action start time, 7, populates the action-object list,
L = {(l1,71),...}. The similarities between plans 7; and 7; result in an estimate for the utility of
fusing coalition-task pairs p; and p;. Let 7; and 7; represent the plans for coalition-task pairs p; and
p;, respectively. A plan distance heuristic is a function H (7;, 7;) : m; x m; — [0, 1] that maps to a
utility value. Plan distance heuristics require synthesizing plans 7 for all m coalition-task pairs p, but can
leverage the details from plans that are unavailable via the capabilities or coalition structures from the
coalition formation model. The heuristics are agnostic to the origin of the plans adopted and leverage
existing planners.

3.2.1. Object, action, and action-object heuristics

The Object (O), Action (A), and Action-Object (AO) heuristics represent the level of overlap between
the logical object and action occurrences in plans 7; and 7; for coalition-task pairs p; and p;, respectively:
H(pi,pj) = m “2ter, 2i,er, (li = 1j), where |L;| and |L;| are list sizes for action-object lists
L; and L;, respectively. The list elements [represent objects for the Object heuristic, actions for the|
IAction heuristic, and both objects and actions for the Action-Object heuristic. All pairs of entries from
both action-object lists are compared. Each heuristic variant populates the plan lists, L; and L;. The
Object heuristic populates lists with logical object occurrences; the Action heuristic populates lists with
action occurrences; and the Action-Object heuristic populates lists with both action and logical object
occurrences. The normalizing fraction ensures that the heuristic values are between [0, 1], where 1
indicates maximal task coupling.

A simple first response example is provided. Assume two coalition-task pairs, p4 and pp, have plans
74 and 7pg, respectively. The move(w,, w,) action moves a robot from a location w, to a location
w,, whereas the friage(v, w) action triages a victim v in location w. The respective plan actions are
{move(wo, w1), triage(vy,w1)} and {move(wy, w1), move(wy,ws), triage(ve, w2)}. The Action lists
are L4 = {move, triage} and L = {move, move, triage}, resulting in three matches and producing an|
/Action heuristic value of H(pa,pgp) = 0.500, due to the normalization factor (|L4| = 2, |Lg| = 3,
and |L 4| - |Lg| = 6). The Object lists are L4 = {wp, w1, v1, w1} and Lp = {wg, wy, wi, wa, ve, wa},
resulting in five matches and producing an Object heuristic value of H(p4,pp) = 0.208, due to the
normalization factor (|L| = 4, |[Lp| = 6, and |L4| - |Lg| = 24). The Action-Object lists are L4 =
{move, triage, wo, w1, v1, w1 } and Lp = {move, move, triage, wy, w1, w1, wa, v, we }, resulting in six
matches and producing an Action-Object heuristic value of H (p4,pp) = 0.111, due to the normalization
factor (|[La| =6, |Lp| =9, and |L 4| - |Lg| = 54). Note that repeated entries are supported, and the lists
account for higher coupling, as demonstrated by the repeated use of the action move by plan 7p.

3.2.2. Object-temporal, action-temporal, and action-object-temporal heuristics
The Object-Temporal (OT), Action-Temporal (AT), and Action-Object-Temporal (AOT) heuristics
integrate temporal dependencies in order to account for action and object interactions at different times

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

319

320
321
322
323
324
325
326
327
328
329
330

331

332

333
334

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/ljl p. 9

throughout the plan. Each heuristic variant populates the plan lists, L; and L, with object occurrences,
action occurrences, or both, as was the case in Subsubsection 3.2.1. The temporal heuristics weight
each matching list entry with a decaying exponential weighting factor. The weighting ranks pairs that
interact with the same objects at similar times higher than pairs that interact with the same objects at
different times. The weighting factor is a function of the time difference between each matching list entry:
H(pi,pj) = m Dner 2er,(li =15) - e~I7=7il, where 7; and 7; are temporal timestamps for
list entries [; and [;, respectively. If A7 = |r; — 7;| = 0, (i.e., the object matching occurs at the same
time), the weighting factor is 1. If A7 — oo, (i.e., the object matching occurs at different times), the
weighting factor is 0.

Drawing from the example in Subsubsection 3.2.1, assume the action triage(vi, w;) was scheduled to
execute in plan 74 at time 7; = 10 minutes, whereas the action triage(vy, w2) was scheduled to execute
in plan 7p at time 7; = 12 minutes. The time difference between the two actions is |7; — 7;| = 2 minutes
and the temporal weighting factor is e |7 ~7il = ¢=2 = 0.607, causing the action match contribution to
be diminished by 39.3%.

Generating full plans to estimate coalition-task coupling can be prohibitively costly, and defeat the|
purpose of Task Fusion. However, relaxed plans can replace full plans for coalition-task coupling
estimation. A relaxation of the problem model, such as to ignore actions’ negative effects, can significantly|
reduce the computation complexity [25]. Relaxed plans offer a rough approximation of the actual plans
and are used to inform forward search [25], reachability analysis [4], and distance metrics [12]. Relaxed
plans can provide an estimate of the actions and the involved logical objects required by the full plan, yet
require significantly less computation.

The heuristics use plan distance to estimate coupling and inform Coalition Formation. Relaxed plans
allow evaluating efficiently the planning elements of coalition-task pairs before planning. Coupling across
coalition-task pairs is estimated by the actions and logical objects extracted from the relaxed plans, and
the most coupled coalition-task pairs are fused.

4. Empirical evaluation

The heuristics were evaluated for two different domains chosen to model the complexity of planning for
multiple heterogeneous robot systems. Continuous fluents and temporal constraints allow modeling the
numerical and temporal constraints necessary for each domain. Multiple robot planning problems with
continuous fluents and temporal constraints are yet unavailable in existing standard planning problem
benchmarks. The heterogeneous robot systems contain robots with subsets of the capabilities necessary|
to accomplish each task, and require robots to cooperate. The heterogeneity of robot capabilities, together]
with complex problems, generate tightly coupled tasks. Ten coalitions of robots and ten missions were
randomly generated and combined to form 100 problems per domain. Each coalition generated ten
problems, one for each mission, and each mission generated ten problems, one for each coalition. The
resulting plans were evaluated based on the plan outcome, makespan, number of actions, processing time,
and memory usage.

4.1. Blocks world domain

The Blocks World Domain [24] was extended [18] to require temporal constraints and continuous
fluents, model a variety of end-effectors, block sizes, multiple robot arms, and incorporate two block|
sizes. A finite sized table holds stacks of blocks that require specific end-effectors. A specific stacking

335
336
337
338
339
340
341
342
343

344

345

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

363
364
365
366

367

368
369
370
371
372
373
374
375

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/Ijl p. 10

of the blocks determines the initial and goal states, which a team of robot arms seeks to achieve. Each
arm has a subset of available end effectors and each block requires a specific type of end effector. Blocks
can be either single- or double-weight. Single-weight blocks can be manipulated by a single arm, while
double-weight blocks require two arms. Four types of end effectors were used: friction, suction, magnetic,
and encompass. Ten coalitions with a minimum of four robot arms and a maximum of eight robot arms
were generated. Ten missions with a minimum of eleven tasks and a maximum of 24 tasks were generated.
Tighter coupled tasks have blocks that share the same blocks’ pile. Each arm and grasper require different
amounts of time to grasp, manipulate, and release blocks; thus, introducing durative actions. The time to
stack and unstack blocks is also dependent on the arm and the block’s initial and final position positions,
modeled with continuous fluents.

4.2. First response domain

This first response domain [18] models disaster response problems that require coordinating heteroge-
neous human-robot teams. Human-robot teams cooperate to rescue victims, collect hazardous objects,
clear gas leaks, and clear blocked roads after a natural disaster. Prescription drugs inside pharmacies and
weapons at pawn shops must be secured to prevent looting and ensure civilian safety. Victim rescue tasks
require a human to triage the victim. The resulting triage level determines how the victim is taken to a
hospital, either guided by a quadrotor or transported by a rover. The pawn shop cleanup tasks require a
police officer to locate, clear, secure, and load the weapons into the police robot for transport to the police
base. The pharmacy cleanup tasks require personnel to locate, clear, and secure all prescription drugs,
including loading the drugs into a robot for transport to a hospital. The first response domain generates a
plan for both robots and humans.

The first response domain was expanded to permit more complex, but realistic problems. One extension
is a model of the robot batteries that drain as a function of robot activity over time. As well, the robot
load is a numerical fluent; thus, allowing robots to carry a varying number of objects, dependent on the
individual robot load capacity. The number of robots, victims, pawn shops, pharmacies, road blocks, gas
leaks, and waypoints was drawn from a uniform distribution. Ten coalitions with a minimum of 15 robots
and a maximum of 21 robots were generated, with each coalition having a minimum of 1 robot and a
maximum of 6 robots per robot type. Ten missions with a minimum of 13 tasks and a maximum of 24|
tasks were generated, with each mission having a minimum of 1 task and a maximum of 15 tasks per task
type. The coupling between two tasks is stronger when there is overlap between the locations the robots
must traverse. Traveling across the environment and performing each task requires significantly different
amounts of time, making continuous and temporal constraints critical to a plan’s successful execution.

4.3. Experimental design

The experiment’s independent variables are the specific planning methods: Planning Alone (PA),
Coalition Formation then Planning (CFP), Task Fusion with the plan distance heuristics: Object (O),
)Action (A), Action-Object (AO), Object-Temporal (OT), Action-Temporal (AT), and Action-Object-
Temporal (AOT), and Task Fusion with the baseline heuristics: Coalition Assistance (CA) and Coalition
Similarity (CS). The planning outcomes are: Success, a valid plan is produced; Nonexecutable, no plan
can be derived for the task given the coalition’s composition and allocated tasks; Time Fail, the time limit
is exceeded; and Memory Fail, the memory limit is exceeded. The fusion ratio, f;,,, limits the number of|
fused coalition-task pairs and can impact the effectiveness of Task Fusion. Each heuristic was evaluated

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

398
399

401

402

403

412
413

414

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/Ijl p. 11

for fusion ratios f,.,, = {0.25, 0.50, 0.75, 1.00}, values chosen to uniformly cover the valid [0, 1] range.
Each experiment’s planning time was capped at one hour and memory usage was limited to 120 GB.

The dependent variables are the planning outcome, makespan, number of actions, processing time, and
memory usage. Makespan represents plan length, measured in seconds [35]. The number of actions is the|
total number of actions required by the plan to accomplish a task [35]. The processing time, measured
in minutes, is the time required to solve a problem, which includes the coalition formation, processing
heuristics, planning for all tasks, and merging each task plan into a final plan. The memory usage is the
maximum amount of memory allocated, in GB. The makespan and the number of actions metrics indicate|
plan quality. Higher quality plans have lower makespan and fewer of actions; thus, higher quality plans
achieve their goals faster and require fewer actions. Plans with lower processing time and memory usage|
require fewer computing resources.

The TFD [20] and COLIN [11] planners support temporal constraints and continuous fluents, and
were adopted for the Blocks World Domain experiment. A dynamic programming coalition formation
algorithm was used [37]. COLIN [11] is the only continuous planner that accommodates the time-varying
continuous fluents required for the first response domain. RACHNA [43], a market-based coalition
formation algorithm, was used for the first response domain experiment. The relaxed plans were generated
by a relaxed COLIN planner, which removes actions’ delete effects [11]. The experiments were performed
on an Intel Xeon CPU E5-1630 v4 @ 3.70 GHz x 8 workstation with 128 GB memory, running Ubuntu
14.04.5 LTS with the 4.4.0-89-generic Linux kernel. Third party Coalition Formation and Planning
systems were compiled using the gcc/g++ compiler version 5.4.0.!

Plan distance heuristics aim to estimate coupling and provide higher quality plans requiring less
processing time and memory usage. The first hypothesis (/1) is that the effectiveness of Task Fusion is
affected by the heuristics utilized. The second hypothesis (H2) is that the object oriented plan distance)
heuristics: Object, Action-Object, Object-Temporal, and Action-Object-Temporal, will outperform the
baselines: the Coalition Assistance and Coalition Similarity heuristics, CFP, and Planning Alone. The|
third and fourth hypothesis are that the object oriented plan distance heuristics will result in better quality|
plans (H3) and will require lower computational cost than the baseline approaches (H,).

4.4. Results

The results are presented by problem domain and planner. Method quality and cost are represented
for multiple metrics. High quality methods minimize the plans’ makespan and number of actions, while
low cost methods minimize processing time and memory usage. The concepts of Pareto Dominance and
Pareto Strength [47] were adopted for comparing methods across these metrics. Method ¢, dominates|
method 5 if all of £;°s metrics’ means are better than ¢5’s. Specifically, ¢1’s quality dominates t5’s quality|
if both ¢;’s mean makespan and mean number of actions are better than the mean makespan and mean
number of actions for to. The Pareto Strength of a method ¢; is determined by the number n of methods
t1,t2,- - ,ty, that t; dominates. Methods with higher Pareto Strength dominate many other methods.

4.4.1. The blocks world domain with TFD
The Blocks World Domain with TFD planning was characterized by a positive relationship between
the evaluated metrics and the Task Fusion ratio f,,... Most heuristics offered increasingly better success

! The full source code will be made available at the time of publication. The problem set is available at https://gitlab.com/human-
machine-teaming-lab-open-repositories/multi-agent-planning-and-coalition-formation/test-set

415
416
417
418
419
420
421
422
423
424
425
426
427
428

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/Ijl p. 12

Table 1
Blocks world with TED planning results by method, f.x, and per-
centage for successfully generating a plan, nonexecutable coalition,
and no plan generated due to time failure or memory failure

Method fmax Success Nonexec Time fail
Object 0.25 38 26 36
0.50 33 29 38
0.75 39 16 45
1.00 39 16 45
Action 0.25 29 29 42
0.50 32 25 43
0.75 37 13 50
1.00 37 13 50
Action-object 0.25 32 29 39
0.50 28 28 44
0.75 34 15 51
1.00 34 15 51
Object-temporal 0.25 35 28 37
0.50 31 28 41
0.75 36 17 47
1.00 36 17 47
Action-temporal 0.25 23 32 45
0.50 31 23 46
0.75 36 15 49
1.00 35 16 49
Action-object-temporal ~ 0.25 28 32 40
0.50 30 25 45
0.75 36 14 50
1.00 35 15 50
Coalition similarity 0.25 23 33 44
0.50 20 31 49
0.75 27 20 53
1.00 27 20 53
Coalition assistance 0.25 36 22 42
0.50 28 23 49
0.75 42 6 52
1.00 41 7 52
CFP N/A 24 34 42
Planning alone N/A 40 0 60

rates, plan quality, and computational cost for larger f,,, values. The improved performance saturates
at high f,,,, values, with virtually equivalent results being obtained for f,,,, = 0.75 and 1.00 across the
heuristics.

The Coalition Assistance heuristic (f,,.x = 0.75 and 1.00) had the best planning success rates (42% and
41%, respectively) followed by Planning Alone (40%, and the Object heuristic (f,,,, = 0.75 and 1.00,
both 39%), as shown in Table 1. Planning Alone had the highest rate of time failures (60%), followed by
the Coalition Similarity (f,.c = 0.75 and 1.00, both 53%) and Coalition Assistance (f,.x = 0.75 and
1.00, both 52%) heuristics. CFP produced the highest rate of nonexecutable coalitions (34%). No method
exceeded the 120 GB memory limit.

Planning Alone (PA), the Object (O) and Coalition Assistance (CA) heuristics produced the highest
success rates, as shown in Fig. 2a. The Object heuristic produced the second highest success rates for
fmax = 0.25 and 0.50, whereas the Coalition Assistance heuristic produced the highest success rates
for fna = 0.75 and 1.00. The Coalition Assistance heuristic, however, resulted in mediocre makespan,

umber of actions, and memory usage results for all f,.. values, as presented in Fig. 2b, ¢ and e

429
430
431
432

434
435
436
437
438
439
440
441
442
443
444
445
446
447

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/Ijl p. 13

45 T T T T 52 80
¥ o . 50 2 78
i A—ma] ~ 48 S 76
S ¢ ‘2 46 3 74
= 35 F] s 4 o 72
8 = & 42 5 70
S 30 f 4 & o
a 5 0 g 68
25 / i 38 25 66
\/ 36 . 64
20 1 1 1 34 1 1 1 1 62
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Fusion Ratio (fq2) Fusion Ratio (f4z) Fusion Ratio (f,qz)
a) Success (%) b) Makespan ¢) Number of Actions
14 T T T T 8
g 12t 1 g 7
2 oL) E’; 6 —— O v— OT
= ‘\\4\ S 5 [> —_—— A > AT
R MR . < | 2. «Q\\ —— A0 —0— AOT
2 6 m 5 5L _ —&— CS o CA
g 1 v | E : — CFP PA
&~ % Q1 = 2 ¢ S—
2 1 1 —Q 1 1 1 1 1
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Fusion Ratio (f,..,) Fusion Ratio (fn.z)
d) Processing Time e) Memory Usage

Fig. 2. Blocks world with TFD (a) success, (b) makespan, (c) number of actions, (d) processing time, and (¢) memory usage by
fusion ratio (fiax). Samples were connected to facilitate visualization.

respectively. Planning Alone resulted in the best makespan (Fig. 2b), but among the worst number of|
actions (Fig. 2¢), processing time (Fig. 2d), and the worst memory usage (Fig. 2e).

The Action-Object (AO) heuristic produced the second best makespan and the best number of actions
for fu. = 0.50 through 1.00, as presented in Fig. 2b and c, respectively. The Action-Object-Temporal
(AOT) heuristic produced the second best number of actions for f;,,, = 0.50 through 1.00 (Fig. 2¢) and
resulted in the best processing time and memory usage across all f,,,, values, as shown in Fig. 2d and
e, respectively. The Coalition Similarity (CS) heuristic resulted in the second worst success rates and
makespan for f,,,c = 0.75 and 1.00 (Fig. 2a and b), and third worst memory usage for all f,,,, values
(Fig. 2e). CFP produced among the worst success rates, makespan, number of actions, memory usage,
and among the worst processing time.

The Pareto Strength quality, which minimizes plans’ makespan and number of actions, was evaluated
across all methods. The Action-Object heuristic (f,.x = 1.00 and 0.75) produced the best and second
best plan quality (Pareto Strengths 32 and 31, respectively), followed by the Action-Object-Temporall
heuristic (f,,.x = 1.00 and 0.75), which had the third and fourth best quality (Pareto Strengths 30 and 29,
respectively). The Action (fqx = 0.25), Object (fir = 0.25), and Coalition Similarity (f,.c = 0.50)
heuristics produced the lowest quality (Pareto Strength 0). The Pareto Strength cost minimizes processing
time and memory usage. The Action-Object-Temporal heuristic (f,,.. = 0.75 and 1.00) resulted in the
two lowest costs (Pareto Strengths 33 and 32). Planning Alone (PA), CFP, and the Coalition Similarity|
euristic (f,,.. = 0.50) had the highest cost (Pareto Strength Q)

448
449
450

451

452
453
454
455
456
457
458
459
460
461

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/Ijl p. 14

Table 2
Blocks world with COLIN planning results
Method fmaxr Success Nonexec Time fail Mem fail
Object 0.25 53 21 10 16
0.50 48 16 13 23
0.75 55 10 17 18
1.00 55 10 17 18
Action 0.25 38 29 17 16
0.50 41 22 13 24
0.75 47 15 22 16
1.00 47 15 22 16
Action-object 0.25 49 23 12 16
0.50 46 19 13 22
0.75 50 13 21 16
1.00 50 13 20 17
Object-temporal 0.25 48 24 14 14
0.50 47 16 14 23
0.75 52 11 20 17
1.00 52 11 19 18
Action-temporal 0.25 43 22 18 17
0.50 43 16 17 24
0.75 45 10 29 16
1.00 45 10 29 16
Action-object-temporal ~ 0.25 46 25 13 16
0.50 45 19 11 25
0.75 47 12 23 18
1.00 47 12 22 19
Coalition similarity 0.25 37 27 17 19
0.50 38 21 17 24
0.75 43 16 22 19
1.00 43 16 22 19
Coalition assistance 0.25 44 27 17 12
0.50 39 25 20 16
0.75 50 15 22 13
1.00 49 15 23 13
CFP N/A 38 34 12 16
Planning alone N/A 28 0 42 30

The Action-Object-Temporal heuristic is the best solution to the Blocks World Domain with TFD, as it
resulted in among the best makespan and number of actions; and the best processing time, and memory|
usage. The Action-Object heuristic is the second best, as it resulted in the best quality, but mediocre|
processing time and memory usage. CFP is the worst solution, resulting in the worst metrics.

4.4.2. The blocks world domain with COLIN

The object oriented heuristics also offered the best solution to the Blocks World Domain with the
COLIN planner. The top five success rates were achieved by the plan similarity heuristics, whereas only
two of the top five best success rates were plan similarity heuristics when using TFD. The Object heuristic
presented better results with increasing f,,,, values.

The Object heuristic (f,,.x = 0.75 and 1.00) had the best success rate (both 55%), as presented in|
Table 2. The Object (far = 0.25, 53%) and Object-Temporal (f,,.x = 0.75 and 1.00, both 52%) heuristics
were second and the third best, respectively. Planning Alone had zero nonexecutable coalitions, but had
the worst success (28%), time failure (42%), and memory failure (30%) rates. CFP produced the most

onexecutable coalitions (34%)

462
463
464
465

467
468
469
470
471
472
473
474
475
476
477
478
479
480

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/jl p. 15

%) T T = 64 T T T 8 T T T
y v 62 + 4
50 . @ 76 1
- =~ /—d 5 2 T4 -\ i
SEECH > S > b1 = 58t 3 -
I L 2 F E
2 40 | - | & % s > >
] k> 54 F 5 70 F \ i
3 L] L o
30 7 48 L Z 66 | T——
25 1 1 1 1 46 1 1 1 1 64 1 1 1 1
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Fusion Ratio (fq2) Fusion Ratio (f4z) Fusion Ratio (f,qz)
a) Success (%) b) Makespan ¢) Number of Actions
12 T T T 30 T T T
~_ ‘ ~~
E 1 o //Z\ 18 % r T
2 o > 20 |] —— O v— OT
o8t 18 < o —— A > AT
2oL 1B P = T —— A0 —o— AOT
§ ﬂ#ﬁ g 10 . —a— CS O— CA
g 4l 15 |, —" ™ — CFP PA
~ =
2 1 1 1 0 1 1 1 1
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Fusion Ratio (f,..,) Fusion Ratio (fn.z)
d) Processing Time e) Memory Usage

Fig. 3. Blocks world with COLIN (a) success, (b) makespan, (c) number of actions, (d) processing time, and (¢) memory usage
by fusion ratio (fiuax). Samples were connected to facilitate visualization.

The Object (O) heuristic resulted in the highest success rates across all f;,,, values, as presented in|
Fig. 3a whereas Planning Alone (PA) produced the worst. PA produced the best makespan (Fig. 3b), but
among the worst number of actions (Fig. 3c). The Object heuristic produced the second best makespan,
the best number of actions, and the second best processing time and memory usage for f,,, = 0.50
through 1.00, as shown in Fig. 3b—e. The Coalition Similarity (CS) heuristic generated the lowest cost
(Fig. 3d and e), but also produced among the worst success rates and the worst makespan, across all f,,,,
values (Fig. 3a—c).

All heuristics produced their maximum success rates for the highest f,,,, values, 0.75 and 1.00, as
presented in Fig. 3a, and resulted in monotonically better makespan for larger f,,,. values, as presented in
Fig. 3b, meaning that greater f,,, values resulted in higher success rates for all f,,,, values evaluated.
The Object heuristic produced monotonically better makespan, number of actions, processing time, and
imemory usage for greater f,,,, values, as presented in Fig. 3b—e. The Object heuristic is the best solution
to the Blocks World Domain with COLIN, as it resulted in the best quality and second lowest cost across
finax = 0.50, 0.75, and 1.00.

The Object heuristic (f,.x = 0.75 and 1.00) produced the best and second best plan quality (both Pareto
Strength 30). The Action-Object heuristic (f,,.c = 0.75 and 1.00) produced the third and fourth best plan
quality results (both Pareto Strength 28), followed by the Object (f,,.x = 0.50) and Object-Temporal
(fmax = 0.75 and 1.00) heuristics (all Pareto Strength 24). The Coalition Similarity heuristic (f,q.x = 0.25)
produced the lowest plan quality (Pareto Strength 0), while the Coalition Similarity heuristic (fy. =

481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/Ijl p. 16

0.50) was slightly better (Pareto Strength 1). The Coalition Similarity heuristic produced the three lowest
cost results (Pareto Strengths 33, 31, and 30), with the best result being for the lowest f,., value. The
Object heuristic (f,;.x = 0.75 and 1.00) produced the fourth lowest cost results (both Pareto Strength
27). Planning Alone and the Action heuristic (f,,.x = 0.50) produced the worst cost results (both Pareto
Strength 0).

4.4.3. The first response domain

The more complex first response domain presented noisier results, compared to the Blocks World
Domain. Planning Alone exceeded the processing time limit for all problems, resulting in no plans.
The plan distance heuristics produced generally better results for intermediary f,,,. values, whereas the
baseline heuristics, Coalition Similarity and Coalition Assistance, performed better for lower f,,. values.
Monotonically worsening success, makespan, number of actions, and memory usage were observed for|
larger f,.. values for most baseline methods, while most plan distance heuristics presented convex curves.

The Coalition Similarity heuristic (f,.x = 0.25) produced the best planning success rate (73%), as
shown in Table 3. The Coalition Similarity (f,.. = 0.50) and Action-Object-Temporal (f,,,,, = 0.25)
heuristics were the second best (both 66%), followed closely by the Object-Temporal heuristic (fy,x =
0.50, 65%). The Object heuristic (f,,.» = 0.25) produced the highest rate of nonexecutable coalitions
(35%), the Coalition Assistance heuristic (f,,.x = 1.00) produced the highest rate of time failures (56%),
and the Object heuristic (f,,.c = 0.75) produced the most memory failures (10%).

Many methods performed best for the intermediary f;,,, values, 0.50 and 0.75, in the first response|
domain, whereas most methods generated best results for the boundary f,,.,, values, 0.25 and 1.00, in
the Blocks World Domain. The Object (O) and Object-Temporal (OT) heuristics produced their best
success rates for f,,,, = 0.50, as shown in Fig. 4a, and produced their best makespan, number of actions,
processing time, and memory usage for f,.. = 0.75, as indicated in Fig. 4b—e, respectively. The Action-
Object (AO) heuristic produced its best success rate, processing time, and memory usage for f,., = 0.50,
as shown in Fig. 4a, d, and e, respectively, and produced their best makespan and number of actions for
fmax = 0.75, as shown in Fig. 4b and c, respectively. The success rates produced by the Action-Temporal
(AT), Action-Object-Temporal (AOT), and Coalition Assistance (CA) heuristics monotonically decreased
for greater f,.. values, as presented in Fig. 4a. The Action-Object-Temporal (AOT) heuristics produced
imonotonically lower (better) makespan and fewer actions for larger f,,,. values, as shown in Fig. 4
(b and c, respectively). The Action-Temporal (AT) and Coalition Similarity (CS) heuristics produced
imonotonically worse processing times and memory usage for greater f,,,, values, as indicated in Fig. 4 (d
and e, respectively). CFP resulted in among the best success rates, the best processing time and memory|
usage, but among the worst makespan and number of actions.

The Object heuristic (f.x = 0.75) produced the overall best plan quality (Pareto Strength 32),
dominating all methods. The Object-Temporal heuristic (. = 0.75) had the second best plan quality|
(Pareto Strength 30), followed by the Action-Object (f,oc = 0.75), Action-Object-Temporal (fx =
1.00) and Object-Temporal (f,,.x = 1.00) heuristics (all Pareto Strength 28). The Coalition Similarity
(fmax = 0.50 and 1.00), Coalition Assistance (f;,,.x = 1.00), and Action-Temporal (;.. = 0.75) heuristics
had the lowest plan quality (all Pareto Strength 0). CFP produced the lowest cost (Pareto Strength 32),
dominating all other methods. The Coalition Similarity heuristic (f,,,x = 0.25) had the second lowest
cost (Pareto Strength 31), followed by the Object heuristic (f,..x = 0.75, Pareto Strength 30).

The best performing method was the Object (O) heuristic with f,,,. = 0.75, which provided among the|
lowest success rates Fig. 4a, but the best makespan, number of actions, and processing time Fig. 4b—e.
[The action oriented plan distance heuristics, Action and Action-Temporal, offered mediocre results an

525
526
527

528

529
530
531
532
533
534
535
536
537

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/Ijl p. 17

Table 3
First response planning results
Method fmaxr Success Nonexec Time fail Mem fail
Object 0.25 56 35 8 1
0.50 61 25 10 4
0.75 33 24 33 10
1.00 44 10 45 1
Action 0.25 51 20 29 0
0.50 33 20 42 5
0.75 29 20 51 0
1.00 33 12 52 3
Action-object 0.25 57 30 10 3
0.50 59 20 21 0
0.75 42 20 34 4
1.00 59 10 29 2
Object-temporal 0.25 59 24 13 4
0.50 65 22 12 1
0.75 43 28 23 6
1.00 43 10 47 0
Action-temporal 0.25 58 30 9 3
0.50 57 22 19 2
0.75 44 20 36 0
1.00 39 10 51 0
Action-object-temporal ~ 0.25 66 20 11 3
0.50 62 23 13 2
0.75 48 17 35 0
1.00 34 11 55 0
Coalition similarity 0.25 73 20 4 3
0.50 66 16 16 2
0.75 44 26 28 2
1.00 47 18 32 3
Coalition assistance 0.25 46 23 31 0
0.50 41 18 40 1
0.75 31 15 54 0
1.00 31 13 56 0
CFP N/A 62 32 5 1

did not provide the best solution to any of the domains and planners evaluated. The Coalition Assistance|
heuristic with f,,.. = 0.75 was the worst solution, with the second lowest success rate Fig. 4a, and among
the quality and cost results Fig. 4b—e.

5. Discussion

The proposed heuristics significantly outperform the baseline methods in the resulting plansaf quality|
and offers a better trade-off between quality and processing cost. While other existing methods make|
constraining assumptions, such as requiring serial plan execution, or requiring a specific planning
algorithm, the framework is demonstrated to outperform baselines on both planning algorithms used.

The first response domain has an underlying routing problem, in that robots must travel across locations
in order to perform their location-dependent tasks, such as navigating to a victim before triaging said
wvictim. The randomly distributed victim locations result in a wide variety of complex routing problems,
which is a possible cause for the larger variance across the various metrics when compared to the Blocks
World Domain. Faster routes involving multiple short hops generate more actions than slower routes wit

538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/Ijl p. 18

80 T T T 95 T T 210
70 90 F é- o 200
s 5 | >/] &
S 60 = £ 180
7 g 2
=]
g g £ 160
g 5 10 < 150
= 65 E 1w
50 60 “ 130
20 . . L L 55 120
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Fusion Ratio (f,,.2) Fusion Ratio (f,.,) Fusion Ratio (f,..)
a) Success (%) b) Makespan ¢) Number of Actions
14 = T T 8 T T
E 12 . g Tr 7
g 10 F . Y 6 T —a— O v— OT
or= 0 b‘o 5
& st o 4 s - A > AT
I | =4 —e— AO —o— AOT
'z NEXA 23
8 4 leas> | 3 —a— CS O>— CA
S g 2 — CFP
[a 2 F 7 E 1
0 1 1 1 1 0
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Fusion Ratio (f...) Fusion Ratio (fn.z)
d) Processing Time e) Memory Usage

Fig. 4. First response (a) success, (b) makespan, (c) number of actions, (d) processing time, and (¢) memory usage by fusion
ratio (fmaz). Samples were connected to facilitate visualization.

fewer long hops. The number of possible alternative routes across the locations’ graph connecting the|
multiple points of interest is larger. Allocating different tasks to different robots can result in plans with
a wider variety of makespans and number of actions, due to the fact that the allocated robots perform
different paths to achieve their tasks, depending on where the robots were initially located. The distances
traveled by robot arms are more uniform in the Blocks World Domain, because there are only two block
sizes.

The hypothesis H;, which states that the effectiveness of Task Fusion is affected by the heuristics
utilized, was supported across all experiments. The heuristics had a profound impact on the Task Fusion
effectiveness, with the choice of heuristic resulting in success rates ranging from the lowest to the
highest. The fusion ratio, f,., also impacted Task Fusion by limiting the number of fused coalition-task
pairs. The lower f,,, values attenuated the negative impacts of the bad heuristics, whereas the higher
values enhanced the effectiveness of the good heuristics. The best-performing heuristics had a positive
relationship with increasing f,... The Action-Object-Temporal heuristic performed generally better for
larger f,... values, whereas the Coalition Similarity heuristic performed the worst.

Hypothesis Hy, which states that the object oriented plan distance heuristics, Object, Action-Object,
Object-Temporal, and Action-Object-Temporal, outperform the baselines: Coalition Assistance and
Coalition Similarity heuristics, CFP, and Planning Alone, was supported. The best solution for each
domain and planner was produced by object oriented plan distance heuristics, which account for logical
objects common across the task plans to identify and fuse tightly coupled tasks. Task Fusion increase

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

598
599
600
601

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/Ijl p. 19

coalition size, which increases the search space; thus, increasing the computational costs. However, when
two tightly coupled tasks are fused, the actions accomplishing one task often contribute to achieving
states necessary to achieve the other task.

The third hypothesis, H3, was supported, as the Object and Action-Object heuristics offered the|
best quality plans across the evaluated domains and planners. The relaxed plan logical objects provide
an accurate estimate of the utility of fusing coalition-task pairs. Detecting and fusing tightly coupled
coalition-task pairs facilitates planning for tasks that require explicit cooperation between robots. Robots
explicitly cooperate and accomplish tasks faster when tightly coupled tasks are fused. The Coalition
IAssistance and Coalition Similarity heuristics fuse tasks based on coalition formation capabilities and
fail to account for task planning elements, such as plan actions and logical objects. Tightly coupled tasks
are planned separately and the outcomes of one task increase the planning complexity for other tasks,
resulting in worse plan quality.

The final hypothesis, Hy, was not supported, as no method dominated costs across all experiments. The
object oriented plan distance heuristics resulted in lower costs compared to the baseline methods for the)
Blocks World Domain with TFD, but were superseded by the Coalition Similarity heuristic for the same|
domain with COLIN. Further, the Coalition Similarity heuristics’ low cost results are associated with
the worst plan quality. The object oriented plan distance heuristics resulted better costs compared to the)
Coalition Assistance heuristic for all domains and planners, which provides some support for hypothesis
Hy.

The manuscript extends and applies distance heuristics 0 (7;, 7;) as Task Fusion heuristics H (;, 7;),
related by the formula H = 1 — §. The existing action oriented plan distance heuristic [30] is extended
to include plans’ logical objects and use lists instead of sets to account for repeated instances. Plans
often include repeated instances of actions and logical objects (i.e., the same block is handled multiple
times to achieve a task in the Blocks World Domain, or the same location is visited to rescue victims in|
the first response domain). Accounting for the repeated instances of actions and logical objects allows
more accurate coupling estimation. Tightly coupled tasks require robots to handle the same blocks and
transition through the same locations more often, increasing the likelihood for dependencies and conflicts.
The object oriented plan distance heuristics outperformed the action oriented plan distance heuristics
across most evaluated metrics, domains, and planners. The nuances revealed by using lists of logicall
objects is a potential contribution to diverse planning, which needs to be evaluated as future work.

The heuristics contribute to a more informed task allocation. Coalition formation models operate on
robot and task capabilities, but lack planning domain information. The plan distance heuristics use relaxed
plans in order to introduce planning domain information into the task allocation process. The added
planning domain information supports more accurately estimating the value of fusing coalition-task pairs
and results in improved task allocation. The heuristics also contribute to estimating coupling between
planning problems. Determining the exact problem coupling by computing the treewidth of the agent
interaction graph is an NP-hard problem [3]. The heuristics offer an approximate alternative, which is
polynomial on the number of actions and objects in the problem’s plan: O(|L;| - |L;|), where |L;| and
|L;| are list sizes for action-object lists L; and L;, respectively.

The Task Fusion algorithm considers only pair wise (binary) coalition fusion in order to avoid the|
complexity of evaluating all possible coalition combinations. Extending the algorithm to support n-ary|
fusions constitutes future research. Another future research direction is to merge and generate relaxed
plans for all (’;) pairs of coalition-task pairs from the original set of m coalition-task pairs. New heuristics
can compare the resulting plan quality and computational cost to the original coalition-task relaxed plans;

owever, several issues limit the approach. The first drawback is the combinatorial number of relaxe

602
603
604
605
606

607

608
609
610
611
612
613
614
615
616
617
618
619
620
621

622

623

624

625

626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/Ij1 p. 20

plans to be generated, which does not scale linearly with the number of agents, and can jeopardize overall
scalability. The second limitation is that greedily minimizing each coalition-task pair’s makespan and
number of actions does not guarantee minimizing the makespan and the number of actions of the resulting
global plan. Lastly, the processing time and the memory usage necessary to generate relaxed plans does
not necessarily correlate to the computational cost necessary to generate full plans.

6. Conclusion

Plan distance heuristics were introduced to provide a better balance between plan quality and the
required processing resources, when planning for multiple heterogeneous robots in complex real-world
time-sensitive domains. The heuristics estimate plan distance as a proxy for estimating coalition-tasks
coupling. The level of coupling determines which coalition-tasks pairs to fuse, after robots are grouped
into coalitions and allocated tasks. Fusing coupled tasks improves plan quality by increasing cooperation
between robots, while separating loosely coupled tasks reduces plan synthesis cost. The heuristics use
lists of logical object instances, extracted from the plans’ action description arguments, to reveal nuances
ignored by existing Task Fusion heuristics.

The plan distance heuristics combine aspects of problem coupling and plan distance estimation|
to improve task allocation. The heuristics generally outperform baselines in both plan quality and
computational costs. First response is an example domain that is time-critical. The small reductions in
plan execution time can make the difference between mission success or mission failure. The cases in
which the heuristics do not perform strictly better still offer a better balance between plan quality and
computational cost. As a result, larger planning problems, which involve more tasks, robots, and logicall
objects, can be solved.

Acknowledgments

This work was partially supported by NSF grant #1723924.

References

[1] M. Agarwal, N. Agrawal, S. Sharma, L. Vig and N. Kumar, Parallel multi-objective multi-robot coalition formation,
Expert Systems with Applications 42(21) (Nov 2015), 7797-7811.

[2] R. Alterovitz, S. Koenig and M. Likhachev, Robot planning in the real world: Research challenges and opportunities, A]
Magazine 37(2) (2016), 76-84.

[3] S. Arnborg, D.G. Corneil and A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM Journal on Algebraic
Discrete Methods 8(2) (Apr 1987), 277-284.

[4] D. Borrajo, Multi-agent planning by plan reuse, In Proceedings of the International Conference on Autonomous Agents|
and Multi-Agent Systems, May 2013, pp. 1141-1142.

[51 R.I Brafman and C. Domshlak, From one to many: Planning for loosely coupled multi-agent systems, In Proceedings of
the International Conference on Automated Planning and Scheduling, 2008, pp. 28-35.

[6] R.I. Brafman and C. Domshlak, On the complexity of planning for agent teams and its implications for single agent
planning, Artificial Intelligence 198 (May 2013), 52-71.

[71 D. Bryce, S. Gao, D.J. Musliner and R.P. Goldman, SMT-based nonlinear PDDL -+ planning, In Proceedings of the AAAI
Conference on Artificial Intelligence, 2015, pp. 3247-3253.

[8] J. Buehler and M. Pagnucco, A framework for task planning in heterogeneous multi robot systems based on robot
capabilities, In Proceedings of the AAAI Conference on Artificial Intelligence, AAAI Press, 2014, pp. 2527-2533

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

688
689
690
691
692
693
694
695
696
697
698

Galley Proof 5/06/2020; 9:49

File: mgs200327.tex; BOKCTP/Ijl p. 21

(9]
[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]

[20]

[21]
[22]
[23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]
[31]
[32]
[33]
[34]

[35]
[36]

[37]

[38]

M. Cashmore, A.I. Coles, B. Cserna, E. Karpas, D. Magazzeni and W. Ruml, Temporal planning while the clock ticks, In|
Proceedings of the International Conference on Automated Planning and Scheduling, June 2018, pp. 39-46.

AlJ. Coles, A.L Coles, M. Fox and D. Long, POPF2: A forward-chaining partial order planner, In The Internationa
Planning Competition, 2011, pp. 65-70.

A.J. Coles, A.L. Coles, M. Fox and D. Long, COLIN: Planning with continuous linear numeric change, Journal of Artificia
Intelligence Research 44 (May 2012), 1-96.

A. Coman and H. Munoz-Avila, Generating diverse plans using quantitative and qualitative plan distance metrics, In|
Proceedings of the AAAI Conference on Artificial Intelligence, 2011, pp. 946-951.

J.S. Cox and E.H. Durfee, Efficient and distributable methods for solving the multiagent plan coordination problem,
Multiagent and Grid Systems 5(4) (Dec 2009), 373—-408.

M. Crosby, R.P.A. Petrick, F. Rovida and V. Krueger, Integrating mission and task planning in an industrial robotics|
framework, In Proceedings of the International Conference on Automated Planning and Scheduling, June 2017, pp. 471
479.

M. Crosby, M. Rovatsos and R.P.A. Petrick, Automated agent decomposition for classical planning, In Proceedings of the
International Conference on Automated Planning and Scheduling, June 2013, pp. 46-54.

M. de Weerdt and B. Clement, Introduction to planning in multiagent systems, Multiagent and Grid Systems 5(4) (Dec
2009), 345-355.

Y. Dimopoulos, M.A. Hashmi and P. Moraitis, mu-SATPLAN: Multi-agent planning as satisfiability, Knowledge-Based,
Systems, 2012, pp. 54-62.

A. Dukeman and J.A. Adams, Hybrid mission planning with coalition formation, Journal of Autonomous Agents and,
Multi-Agent Systems 31(6) (Nov 2017), 1424-1466.

K. Erol, D.S. Nau and V. Subrahmanian, On the complexity of domain-independent planning, In Proceedings of the
National Conference on Artificial Intelligence, 1992, pp. 381-386.

P. Eyerich, R. Mattmuller and G. Roger, Using the context-enhanced additive heuristic for temporal and numeric planning,
In E. Prassler, R. Bischoff, W. Burgard, R. Haschke, M. Hagele, G. Lawitzky, B. Nebel, P. Ploger, U. Reiser and M.
Zollner, editors, Towards Service Robots for Everyday Environments, Springer, 2012, pp. 49-64.

B.P. Gerkey and M.J. Mataric, Sold!: Auction methods for multirobot coordination, /EEE Transactions on Robotics and,
Automation 18(5) (Oct 2002), 758-768.

M. Ghallab, D.S. Nau and P. Traverso, Automated Planning: Theory and Practice, Elsevier, 2004.

M. Ghallab, D.S. Nau and P. Traverso, Automated Planning and Acting, Cambridge University Press, 2016.

N. Gupta and D.S. Nau, On the complexity of blocks-world planning, Artificial Intelligence 56(2-3) (1992), 223-254.
J. Hoffmann, FF: The fast-forward planning system, Al magazine 22(3) (2001), 57-62.

S. Jimenez and A. Jonsson, Temporal planning with required concurrency using classical planning, In Proceedings of the
International Conference on Automated Planning and Scheduling, 2015, pp. 129-137.

G. Marcon dos Santos and J.A. Adams, Task fusion heuristics for coalition formation and planning, In Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems, Stockholm, Sweden, July 2018, pp. 2198-2200.
G. Marcon dos Santos and J.A. Adams, Optimal temporal plan merging, In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems, Auckland, New Zealand, May 2020.

L. Mudrova, B. Lacerda and N. Hawes, Partial order temporal plan merging for mobile robot tasks, In Proceedings of the
European Conference on Artificial Intelligence, Aug 2016, pp. 1537-1545.

T.A. Nguyen, M. Do, A.E. Gerevini, I. Serina, B. Srivastava and S. Kambhampati, Generating diverse plans to handle|
unknown and partially known user preferences, Artificial Intelligence 190 (Oct 2012), 1-31.

F.A. Oliehoek and C. Amato, A concise introduction to decentralized POMDPs, Springer, 2016.

T. Pereira, N. Luis, A. Moreira, D. Borrajo, M. Veloso and S. Fernandez, Heterogeneous multi-agent planning using
actuation maps, In IEEE International Conference on Autonomous Robot Systems and Competitions, Apr 2018, pp. 219—
224. IEEE.

M. Quigley, K. Conley, B.P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler and A.Y. Ng, ROS: An open-source robot
operating system, In Workshops at the IEEE International Conference on Robotics and Automation, 2009.

M.F. Rankooh and G. Ghassem-Sani, ITSAT: An efficient SAT-based temporal planner, Journal of Artificial Intelligence
Research 53 (July 2015), 541-6.

S. Russell and P. Norvig, Artificial intelligence: A modern approach, (3rd Edition) Pearson Education, 2009.

S.D. Sen and J.A. Adams, An influence diagram based multi-criteria decision making framework for multirobot coalition|
formation, Autonomous Agents and Multi-Agent Systems 29(6) (Nov. 2015), 1061-1090.

T.C. Service and J.A. Adams, Coalition formation for task allocation: Theory and algorithms, Autonomous Agents and
Multi-Agent Systems 22(2) (2011), 225-248.

O. Shehory and S. Kraus, Methods for task allocation via agent coalition formation, Artificial Intelligence 101(1-2) (1998),
165-200.

711

716

Galley Proof 5/06/2020; 9:49

File: mgs200327.tex; BOKCTP/Ijl p. 22

[39]
[40]
[41]
[42]
[43]

[44]
[45]

[46]

[47]

Authors’ Bios

S. Sreedharan, Y. Zhang and S. Kambhampati, A first multi-agent planner for required cooperation, In Proceedings of the,
Competition of Distributed and Multi-Agent Planners, 2015, pp. 17-20.
B. Srivastava, S. Kambhampati, T.A. Nguyen, M.B. Do, A. Gerevini and I. Serina, Domain independent approaches for|
finding diverse plans, In Proceedings of the International Joint Conference on Artificial Intelligence, 2007, pp. 20162022,
A. Torralba, V. Alcazar, D. Borrajo, P. Kissmann and S. Edelkamp, SymBA*: A symbolic bidirectional A* planner, In
The International Planning Competition, 2014, pp. 105-108.

A. Torreno, E. Onaindia, A. Komenda and M. Stolba, Cooperative multi-agent planning, ACM Computing Surveys 50(6)
(Nov 2017), 1-32.

L. Vig and J.A. Adams, Market-based multi-robot coalition formation, In M. Gini and R. Voyles, editors, Distributed
Autonomous Robotic Systems 7, 2006, pp. 227-236. Springer.

L. Vig and J.A. Adams, Multi-robot coalition formation, /[EEE Transactions on Robotics 22(4) (2006), 637-649.

M. Wooldridge and N. Jennings, Intelligent agents: Theory and practice, Knowledge Engineering Review 10(2) (1995),
115-152.

Y. Zhang, S. Sreedharan and S. Kambhampati, Capability models and their applications in planning, In Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems, May 2015, pp. 1151-1159.
E. Zitzler and L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto
approach, IEEE Transactions on Evolutionary Computation 3(4) (1999), 257-271.

Gilberto Marcon dos Santos is a PhD candidate at the Collaborative Robotics and Intelligent Systems|

(CoRIS) Institute, Oregon State University (OSU). His current research applies coordination algorithms|

to improve domain-independent planning and solve multi-robot problems. He graduated in Brazil from|

% .'. 1\ the Universidade Federal de Goias in 2016 with a BS in Computer Engineering and an MS in Electrical
= and Computer Engineering.

o

Dr. Julie A. Adams is the Associate Director of Research in the Collaborative Robotics and Intelligent
Systems Institute, Professor of Computer Science in the School of Electrical Engineering and Computer
Science, and Professor (courtesy) of Mechanical and Industrial Engineering in the School of Mechanical,
Industrial and Manufacturing Engineering at Oregon State University. She was the founder of the Human-
Machine Teaming Laboratory at Vanderbilt University, prior to moving the laboratory to Oregon State. Dr.|
Adams received her M.S. and Ph.D. degrees in Computer and Information Sciences from the University|
of Pennsylvania and her B.S. in Computer Science and B.B.E. in Accounting from Siena College.

