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Abstract. Automating planning for large teams of heterogeneous robots is a growing challenge, as robot capabilities diversify7

and domain complexities are incorporated. Temporal and continuous features accurately model real-world constraints, but add8

computational complexity. Distributed planning methods, such as the Coalition Formation then Planning framework, allocate9

tasks to robot teams and plan each task separately to accelerate planning. However, the task decomposition limits cooperation10

between coalitions allocated to different tasks and results in lower quality plans that require more actions and time to complete.11

Task Fusion estimates couplings between tasks and fuses coupled coalition-task pairs to improve cooperation and produce higher12

quality plans. Task Fusion relies on existing heuristics, which were ineffective and often resulted in worse results than the baseline13

framework. This manuscript introduces new heuristics that outperform the existing methods in two complex heterogeneous14

multi-robot domains that incorporate temporal and continuous constraints.15
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1. Introduction17

Robots are rapidly moving into the commercial, medical, and military domains. The fast-paced18

development of sensing, processing, and actuation devices at increasingly lower costs is resulting in19

robots with a growing variety of capabilities, approaching a world where robots are ubiquitous and20

diverse. Robots have proven potential to assist in response to major disasters, such as search and rescue,21

bomb defusal, and natural disasters, but currently highly trained operators make most decisions, while22

the robot decision making is limited to low level actions [2]. Exploiting the potential of autonomous23

robots will require scalable automated planning capable of modeling complex problems that incorporate24

a diverse set of robots [2].25

First response for natural and man-made disasters requires rapid evaluation and deployment of available26

personnel and equipment in order to mitigate the situation, which when combined with the robotic27

aspects, greatly increases the complexity of the deployment allocation and assignment problems. Existing28

planning methods (e.g., [7,11,20,41]) fail to account for all of the domain’s complexities, such as requiring29

continuous fluents (e.g., fuel capacity), concurrent actions (e.g. simultaneously triaging multiple victims),30
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and real-time results (e.g. planning and executing the plan within the task deadlines). Existing methods can31

only meet some of these requirements and cannot scale to a large number of heterogeneous robots [23].32

Dukeman and Adams [18] developed the hybrid Coalition Formation then Planning (CFP) framework33

to merge automated planning and coalition formation with improved scalability to dozens of robots34

when developing continuous temporal plans. The CFP assigns robots to coalitions according to their35

capabilities and allocates tasks to each coalition. Planning for tasks separately accelerates planning, but36

limits cooperation between coalitions, lowering plan quality, and requiring more actions and time to37

execute.38

Task Fusion merges coalition-task pairs in order to improve the plan quality by evaluating the coupling39

of each pair. Task Fusion uses heuristics to estimate coupling and fuse the highest scoring pairs; thus,40

allowing explicit cooperation between robots in the fused coalitions and improved plan quality. However,41

prior analysis of Task Fusion effectiveness was inconclusive [18]. While some problems solved using Task42

Fusion resulted in better quality plans, most produced worse quality plans, due to inaccurate heuristics.43

This manuscript’s main contribution addresses the limitations of CFP and devises new heuristics44

that estimate coupling between tasks and coalitions. Detecting couplings allows fusing tightly coupled45

coalition-task pairs, which improves cooperation and reduces plan length; thus, producing higher quality46

plans that contain fewer actions and require less time to execute. The new heuristics leverage plan distance47

as a proxy for the coalition-task coupling estimation. Plan distance heuristics, previously used as a48

measure of plan diversity [40], were adapted for estimating problem coupling in Task Fusion. Relaxed49

plans are determined rapidly from the coalition-task problems, and the distance between relaxed plans50

indicates the level of coupling that informs the Task Fusion. The plan distance heuristics provide better51

plans that require fewer computational resources for planning. This manuscript introduces new plan52

distance heuristics, presents and evaluates four new hypothesis, incorporates four new metrics, and53

evaluates the CFP framework using an additional planner.54

2. Literature review55

Automated planning for teams of heterogeneous robots is a specific application of multiagent planning.56

Multiagent planning is the more general field of planning, which goes beyond embodied physical57

robots and can involve other types of agents, such as software agents. Software agents are abstract58

decision making entities, such as web crawlers and stock traders, whereas robot systems have physical59

embodiment in the form of sensors and actuators, often associated with a mobile body [45]. Distributed60

temporal continuous planning incorporates temporal constraints and continuous numerical fluents to more61

accurately model real-world problems for multiple robot systems.62

Planning for complex domains, such as first response, requires the classical planning model to be63

extended to incorporate expressive features, such as concurrent action execution (e.g., [9,26,34]) and64

continuous fluents (e.g., [7,10,11,20]). No single planner incorporates all the necessary features, and65

the most expressive algorithms are unable to scale to complex problems with multiple robots or task66

complexities [22]. However, significant performance improvements can be achieved by factoring the67

problem based on the system and the environment [31]. Multiagent factoring distributes the plan synthesis68

across multiple planning agents in order to reduce the computational complexity [42]. The planning69

problem is partitioned into tasks and task plans are devised independently. Planning agents coordinate70

before planning, to allocate tasks, and after planning, to merge the individual plans and minimize71

conflicts [16]. Planning coordination remains a challenging problem, especially for problems with tightly72

coupled tasks [5] that have mutual dependencies, such as shared locations and resources (e.g., tools73
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and assets), and cannot be independently solved. The independent execution of one task can alter the74

environment and jeopardize the ability to accomplish tasks.75

Plan merging algorithms allow agents to coordinate after planning in order to solve action redundancies76

and consistency flaws [13]. The Multiagent Plan Coordination by Plan Modification Algorithm minimizes77

the resulting number of actions while merging independently generated plans [13]. A set of actions is78

replaced by a single redundant action, resulting in merged plans with fewer actions, but the algorithm’s79

scalability to a large number of robots is limited. The Temporal Optimal Conflict Resolution Algorithm80

employs a search relaxation constant in order to scale to a large number of robots, but cannot scale to a81

large number of tightly coupled tasks [28]. Another temporal plan merge algorithm generates relaxed82

plans for each task prior to merging [29], but is not applicable to multiple robot tasks.83

Decentralized planing algorithms can use serial plan synthesis for tightly coupled tasks [17]. Robots84

generate plans iteratively, where each planning agent assumes that its initial state is the prior agent’s85

final state. The planner’s goals are concatenated with the goals of the next planning agent in order to86

guarantee that the next agent will not undo the previous agent’s achieved goals. Serial plan synthesis does87

not require serial plan execution. The serially synthesized plans can be merged for parallel execution;88

however, most existing decentralized planners assume serial plan execution. Rather, the agents take89

actions in turns, which hinders applicability to real-world multiple robot systems [42]. Parallel action90

execution requires sophisticated coordination methods that optimize parallel plan execution, while also91

minimizing makespan, the plan execution time.92

The Multi-Agent Planning by Plan Reuse algorithm performs task allocation then planning using93

relaxed reachability analysis after generating relaxed plans for all agent-task combinations. However,94

the method requires homogeneous agents [4]. The algorithm can be applied to a heterogeneous mobile95

multiple robot system by using actuation maps instead of relaxed plans, but it does not generalize to96

complex tasks [32].97

Task allocation can address coupling and optimize parallel plan execution with problem decomposition98

[6]. The agent interaction graph minimizes the problem coupling when allocating tasks in order to reduce99

computational complexity [6]. The problem decomposition is formulated as a constraint satisfaction100

problem, but solving the constraint satisfaction problem dominates the plan synthesis time, rendering the101

algorithm inefficient [15]. The Agent Decomposition-Based Planner uses causal graphs to decompose the102

planning problem [15], and has been extended to support concurrent actions in a real-world industrial103

mobile manipulator robot domain [14], but does not scale to a large number of robots. The Multiagent104

Planner for Required Cooperation allocates tasks tom planning agents, which devise plans for n executing105

agents [39]. The above methods cannot support concurrent action execution, hindering their applicability106

to real-world multiple robot systems.107

Models of capabilities were used recently as a heuristic for state-space forward search [46]. Capabilities108

are modeled as the agent’s likelihoods of achieving a particular state from any other state. A Bayesian109

network learns the likelihood capabilities from plan traces, but requires a large number of plan execution110

simulations covering initial and goal states. Buehler et. al [8] define a robot capability as an extended111

action schema that integrates with the underlying Robot Operating System (ROS) [33]. ROS controls112

action execution and relays abstracted sensor data to a multiple robot planning and execution architecture.113

However, neither study uses capability models to improve plan quality or reduce computational cost.114

The following Section presents the promises and limitations of the Coalition Formation then Planning115

framework for scalable multiagent planning, and introduces a new family of heuristics that address the116

shortcomings of the approach.117
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3. Coalition formation and planning118

Coalition formation is an alternative task allocation method for multiple robot distributed planning [18].119

Coalition formation generalizes task allocation by assigning entities (e.g., robots or humans) to coalitions120

to perform tasks (e.g., [1,21,38,44]). The entities are grouped into coalitions according to the capabilities121

offered by the individual entities and the capabilities required to complete the tasks. Capabilities repre-122

sent resources (i.e., sensor range and battery power) or services, (i.e., distance measurement or image123

acquisition) [37]. This Section formally defines coalition formation as applied to multiple robot planning,124

and introduces a new family of heuristics to address the shortcomings of the approach.125

The coalition formation problem takes a set of n robots, Φ = {φ1, φ2, . . . , φn}, and a set of m tasks,126

V = {v1, v2, . . . , vm}. Coalition formation maps tasks to coalitions, CF : V → 2Φ, which yields a set of127

m coalition-task pairs Pm = {p1, p2, . . . , pm} | pi = 〈Φi, vi〉 | Φi ⊆ Φ. A capability cj is a non-negative128

real number and each individual robot has a vector of capabilities Cφ = 〈cφ1 , c
φ
2 , . . . , c

φ
k〉, where each129

vector entry cφj represents a capability j offered by robot φ, and k is the number of modeled capabilities.130

The set of all n robots is the capability vector set CΦ = {C1, C2, . . . , Cn} that associates a capability131

vector with each robot. Tasks are defined as a vector of required capabilities Cv = 〈cv1, cv2, . . . , cvk〉,132

where each vector entry cvj represents a capability j required by task v. The set of m tasks is the task133

requirement capability vector set CV = {C1, C2, . . . , Cm} that associates a capability vector with each134

task. A coalition Φv ⊆ Φ is a subset of robots capable of executing a task v, if (
∑

φ∈Φv
cφj ) > cvj ,∀j ∈135

{1, 2, . . . , k}. Coalition formation algorithms maximize the individual robot’s contributions to the tasks136

and allow robots to belong to multiple coalitions.137

The Hybrid Mission Planning with Coalition Formation (HMPCF) [18] model is represented as138

a tuple 〈S, I, A,Φ, V,M,C〉, where S = {s1, s2, . . .} is the state space, I ⊆ S is the initial state,139

A = {a1, a2, . . .} is the action space, Φ = {φ1, . . . , φn} is the set of n robots, the grand coalition,140

V = {v1, . . . , vm} is the set of m tasks, M : Φ→ AΦ | AΦ ⊆ A is the robot-action mapping function,141

and C is the tuple 〈CΦ, CV 〉, where CΦ = {C1, C2, . . . , Cn} is the robot capability vector set and142

CV = {C1, C2, . . . , Cm} is the task requirement capability vector set. The conjunction of all task143

conditions defines the goal states G ⊆ S | G = {s1, s2, . . . , } | s `
∧
v∈V

v | ∀s ∈ G. A solution to a144

HMPCF problem is a plan, π, consisting of a set of scheduled actions assigned to each robot φ ∈ Φ.145

HMPCF uses existing Coalition Formation and Planning algorithms to solve large multiple robot planning146

problems that incorporate temporal constraints and continuous numerical fluents in a more tractable,147

albeit centralized manner.148

Planning alone, a fully centralized baseline planning method, groups all robots and tasks into a single-149

agent multi-effector planning problem. Planning Alone synthesizes a goal set G as the conjunction of150

all task requirements and invokes a domain-independent planner, as indicated in Fig. 1a. The external151

planner receives the grand coalition’s combined action space and attempts to satisfy all task constraints152

embedded in the goal state set. Planning Alone generates high-quality plans, but scales poorly as the153

number of robots or the domain complexity increase [18]. The combinatorial complexity of centralized154

planning limits the problems that can be solved.155

Coalition formation then planning (CFP) is a hybrid method that leverages coalition formation to156

minimize combinatorial complexity and overall planning time. The robot and task capability vector157

sets and coalition formation algorithms are used to generate the coalitions and assign tasks, invoking158

planning algorithms for each coalition-task pair. The resulting coalition-task pair plans are merged into159

a global plan, as presented in Fig. 1b. CFP applies serial plan synthesis and assumes robot coalitions160

take turns when planning, with coordination occuring before and after planning. Coordination before161
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Fig. 1. Planning alone (a) and the coalition formation then planning framework (b). Rounded filled shapes represent processes and
rectangles represent data. Coalition formation then planning extracts robots’ and task’s capabilities from the problem description,
partitions the robots into coalitions and generates separate plans for each coalition. The coalition plans are merged into a global
plan [18].

planning occurs by forming coalitions and allocating tasks, whereas plan merging performs coordination162

after planning by minimizing action redundancy, while also preventing consistency flaws [13]. Each task163

planning problem is solved separately, and the task planning problem’s goals are concatenated with the164

goals of the next task planning problem in order to guarantee that the following task plan will not undo165

the goals achieved by the prior task plan. CFP uses capabilities to inform problem partitioning.166

The Extract Coalition Formation Model process derives robot and task capability vectors from the167

problem description [18]. Coalition formation generates coalition-task pairs and the Coalition-Task168

Problem Synthesis process uses the coalition-task pairs, the problem description, and the final state169

achieved by the latest coalition-task plan to generate separate planning problems for each coalition-170

task pair. The Coalition-Task Planning Problems are solved separately by external planners, such as171

COLIN [11] or TFD [20]. The planner produces a plan for each coalition-task pair, and the resulting plans172

are merged into a global plan using a greedy approach [18].173

Multiple robot planning is largely an intractable problem, but assigning tasks to the most appropriate174

robot coalitions scales significantly better. The coalition formation problem is NP-hard [38], but domain-175

independent planning is EXPSPACE-complete [19]. The plan synthesis time can be orders of magnitude176

longer than the corresponding coalition formation problems; thus, the overhead created by coalition177

formation is minimal. The problem complexity is reduced by generating multiple small-action-set plans.178

The reduced search branching factor permits derivation of plans for significantly larger problems [18]. The179

CFP framework is agnostic to the coalition formation algorithm adopted and uses external algorithms [36].180
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Coalition formation can scale planning to larger numbers of robots and more complex tasks, but results181

in poor quality plans, that have longer makespan than centralized planning (i.e., Planning Alone) [18].182

The model of capabilities used by coalition formation does not reveal whether tasks are tightly coupled,183

limiting cooperation between coalitions allocated to different tasks and results in lower quality plans that184

require more actions and time to complete. Plan quality can be improved by partitioning the planning185

problem along coalition and task coupling lines [6]. The most tightly coupled coalition-tasks pairs are186

fused, whereas the most loosely coupled remain separate. When two coupled coalition-task planning187

problems are solved separately, the planner considers each tasks’ goals individually, and produces188

potentially redundant action sequences [42]. However, when two coupled coalition-tasks are fused, the189

actions for one task can contribute to achieving states necessary to achieve another task and can generate190

higher quality plans. Planning uncoupled coalition-task planning problems together does not improve191

plan quality, and often increases planning complexity.192

3.1. Task fusion193

Coalition formation was enhanced with Task Fusion in order to account for tightly coupled tasks194

and generate higher quality plans at a lower computational cost [18]. After coalition formation, tightly195

coupled coalition-task pairs are fused into larger coalition-task pairs. The fused coalition-tasks plans can196

be synthesized faster and result in shorter makespan with fewer actions. Fusing allows the planner to197

address the tasks’ mutual dependencies and facilitates cooperation between the fused coalitions. The198

result of Task Fusion over coalition-task pairs pi = 〈Φi, vi〉 and pj = 〈Φj , vj〉 is a fused coalition-task199

pair pf , pf = 〈Φf , vf 〉 = F (pi, pj), where F is a mapping of pairs of coalition-task pairs F : pi × pj →200

pf | pi, pj ∈ Pm, Φf is the union of robots φ ⊆ Φi and φ ⊆ Φj , Φf = Φi ∪ Φj , and vf = vi ∧ vj is the201

conjunction of task requirements from vi and vj .202

Task fusion is the fusion of tasks and the assigned coalitions. Both coalitions and tasks are fused. Tasks203

are fused by concatenating the goals of the original tasks. Coalitions are fused by combining or taking the204

union of the members of the original coalitions. A coalition-task pair consists of a task and a coalition.205

Fusing a coalition results in a new coalition where the members of the original coalitions are combined.206

Fusing tasks results in a new task, where the goals of the original tasks are concatenated. Members from207

both coalitions will be considered during plan generation, as the goals of both tasks must be satisfied by208

the resulting plan.209

Coalition-task coupling is estimated by a heuristic that maps two coalition-task pairs pi and pj , to a210

coupling estimate,H(pi, pj): pi × pj → [0,1], whereH(pi, pj) = 0 indicates that pi and pj are uncoupled211

and H(pi, pj) = 1 indicates that pi and pj are tightly coupled. The Task Fusion algorithm stops when212

the ratio of fused coalitions, relative to the original number of coalitions, m, becomes greater than a213

user-defined threshold fmax, the fusion ratio, as presented in Algorithm 1. No coalition is fused when214

fmax = 0, and all coalitions are fused when fmax = 1. A zero fusion ratio, fmax = 0, is equivalent to the215

baseline CFP (i.e., no Task Fusion). Fusing all coalitions using fmax = 1 does not produce the grand216

coalition, because the algorithm is restricted to pair wise coalition fusion only, in order to avoid the217

combinatorial complexity of evaluating all possible coalition-task subsets. A grand coalition can only be218

produced when only two coalitions exist to be fused.219

The previously developed heuristics estimate coalition-task coupling based on the coalition formation220

model of capabilities [18]. The Coalition Similarity (CS) heuristic, |Φi∩Φj |
|Φi∪Φj | , operates on coalition-task pairs221

that share common robots. Coalition-task pairs that have no common robots score 0 and coalition-task pairs222

that share all robots score 1. The Coalition Assistance (CA) heuristic,
∑k

r=1
c
Φi∪Φj
r

max(c
vi
r ,c

vj
r )

, estimates the223
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Algorithm 1: The task fusion algorithm.

Data: Pm = {p1, p2, . . . , pm}, a set of m coalition-task pairs;
H(pi, pj) : pi × pj → [0, 1];
Result: A set of o coalition-task pairs Po = {p1, p2, . . . , po}.
Initialize empty set Po = {∅};
Populate list l with all

(
m
2

)
pairs of coalition-task pairs 〈pi, pj〉, pi, pj ∈ Pm;

foreach pair 〈pi, pj〉 in list l do
Compute the heuristic value hij = H(pi, pj);

end
Sort list l relative to the heuristic value hij ;
foreach pair 〈pi, pj〉 in list l do

Remove pair 〈pi, pj〉 from list l;
Remove all pairs containing pi or pj from list l and from set Pm;
Fuse pair 〈pi, pj〉 into coalition-task pair pf = F (pi, pj);
Insert coalition-task pair pf into set Po;
if 2 · ‖Po‖ > m · fmax then

break;
end

end
Return Po = Pm ∪ Po;

ratio of coalition capabilities over task requirement capabilities after fusion, and prioritizes coalition-task224

pairs that share the same task requirement capabilities. These heuristics do not consider planning-related225

information, such as robots handling the same logical objects, or sharing the same physical location.226

Ignoring planning-related information limits the heuristic’s accuracy, which can produce plans that take227

longer to execute and require a larger number of actions. The following section introduces a new family228

of heuristics that leverage plan distance metrics to improve plan quality and cost.229

3.2. New task fusion heuristics with plan distance230

Heuristics for Task Fusion can become more accurate and achieve better planning results by incorpo-231

rating an estimation of plan distance. Plan distance metrics were developed to quantify solution diversity232

in plan synthesis and can estimate the level of similarity between two plans [40]. Nguyen et al. [30]233

formulate a distance function between two plans πi and πj , that maps to a real-valued distance metric234

δ(πi, πj) : πi × πj → [0, 1]. The action plan distance metric is defined by 1− |A(πi)∩A(πj)|
|A(πi)∪A(πj)| , where A(π)235

is the set of actions in plan π [30]. The opposite of plan distance, plan similarity, can be approximated by236

1− δ(πi, πj), changing the action plan distance metric to |A(πi)∩A(πj)|
|A(πi)∪A(πj)| . The similarity between plans can237

be a proxy for estimating the level of coupling between two coalition-task planning problems. Problems238

that produce similar plans can be considered more tightly coupled.239

Plan distance heuristics can use the plan’s logical objects, in addition to the plan’s actions. Logical240

object instances are extracted from the plan actions’ argument lists in order to reveal problem details241

that otherwise are ignored when only actions are considered. The overlap of actions and logical objects242

between two plans indicates the plans’ level of similarity and coupling. Higher overlap of actions and243

logical objects indicates that the robots interact with common objects and navigate through common244

locations, which are represented as logical objects. The use of action sets makes Nguyen et al.’s heuristic245

unaware of repeated action instances. Lists allow and account for repeated actions, revealing nuances246

that are otherwise omitted. This manuscript introduces a family of plan distance heuristics that use lists247

of plan’s actions and logical objects to estimate coupling and generate better planning results with Task248

Fusion.249
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The introduced plan distance heuristics consider the overlap of actions and logical object occurrences250

between two plans in order to estimate coupling [27]. The Object heuristic (O), the Action heuristic (A),251

and the Action-Object heuristic (AO), are based on overlaps in the action, object, and both action and252

object occurrences, respectively. The time at which each action is scheduled to occur is used to extend253

each heuristic into three temporal variants: the Object-Temporal heuristic (OT), the Action-Temporal254

heuristic (AT), and the Action-Object-Temporal heuristic (AOT).255

A plan π consists of a list of actions, where each action entry contains a start time τ , robots Φ =256

{φ1, . . .}, and planning-model first-order logic objects O = {o1, . . .}. Plan distance heuristics compile257

a list of logical object and action occurrences, extracted from each plan action entry. Each action-258

object occurrence, tagged with the associated action start time, τ , populates the action-object list,259

L = {〈l1, τ1〉, . . .}. The similarities between plans πi and πj result in an estimate for the utility of260

fusing coalition-task pairs pi and pj . Let πi and πj represent the plans for coalition-task pairs pi and261

pj , respectively. A plan distance heuristic is a function H(πi, πj) : πi × πj → [0, 1] that maps to a262

utility value. Plan distance heuristics require synthesizing plans π for all m coalition-task pairs p, but can263

leverage the details from plans that are unavailable via the capabilities or coalition structures from the264

coalition formation model. The heuristics are agnostic to the origin of the plans adopted and leverage265

existing planners.266

3.2.1. Object, action, and action-object heuristics267

The Object (O), Action (A), and Action-Object (AO) heuristics represent the level of overlap between268

the logical object and action occurrences in plans πi and πj for coalition-task pairs pi and pj , respectively:269

H(pi, pj) = 1
|Li|·|Lj | ·

∑
li∈Li

∑
lj∈Lj

(li = lj), where |Li| and |Lj | are list sizes for action-object lists270

Li and Lj , respectively. The list elements l represent objects for the Object heuristic, actions for the271

Action heuristic, and both objects and actions for the Action-Object heuristic. All pairs of entries from272

both action-object lists are compared. Each heuristic variant populates the plan lists, Li and Lj . The273

Object heuristic populates lists with logical object occurrences; the Action heuristic populates lists with274

action occurrences; and the Action-Object heuristic populates lists with both action and logical object275

occurrences. The normalizing fraction ensures that the heuristic values are between [0, 1], where 1276

indicates maximal task coupling.277

A simple first response example is provided. Assume two coalition-task pairs, pA and pB , have plans278

πA and πB , respectively. The move(wx, wy) action moves a robot from a location wx to a location279

wy, whereas the triage(v, w) action triages a victim v in location w. The respective plan actions are280

{move(w0, w1), triage(v1, w1)} and {move(w0, w1), move(w1, w2), triage(v2, w2)}. The Action lists281

are LA = {move, triage} and LB = {move,move, triage}, resulting in three matches and producing an282

Action heuristic value of H(pA, pB) = 0.500, due to the normalization factor (|LA| = 2, |LB| = 3,283

and |LA| · |LB| = 6). The Object lists are LA = {w0, w1, v1, w1} and LB = {w0, w1, w1, w2, v2, w2},284

resulting in five matches and producing an Object heuristic value of H(pA, pB) = 0.208, due to the285

normalization factor (|LA| = 4, |LB| = 6, and |LA| · |LB| = 24). The Action-Object lists are LA =286

{move, triage, w0, w1, v1, w1} and LB = {move,move, triage, w0, w1, w1, w2, v2, w2}, resulting in six287

matches and producing an Action-Object heuristic value of H(pA, pB) = 0.111, due to the normalization288

factor (|LA| = 6, |LB| = 9, and |LA| · |LB| = 54). Note that repeated entries are supported, and the lists289

account for higher coupling, as demonstrated by the repeated use of the action move by plan πB .290

3.2.2. Object-temporal, action-temporal, and action-object-temporal heuristics291

The Object-Temporal (OT), Action-Temporal (AT), and Action-Object-Temporal (AOT) heuristics292

integrate temporal dependencies in order to account for action and object interactions at different times293
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throughout the plan. Each heuristic variant populates the plan lists, Li and Lj , with object occurrences,294

action occurrences, or both, as was the case in Subsubsection 3.2.1. The temporal heuristics weight295

each matching list entry with a decaying exponential weighting factor. The weighting ranks pairs that296

interact with the same objects at similar times higher than pairs that interact with the same objects at297

different times. The weighting factor is a function of the time difference between each matching list entry:298

H(pi, pj) = 1
|Li|·|Lj | ·

∑
li∈Li

∑
lj∈Lj

(li = lj) · e−|τi−τj |, where τi and τj are temporal timestamps for299

list entries li and lj , respectively. If ∆τ = |τi − τj | = 0, (i.e., the object matching occurs at the same300

time), the weighting factor is 1. If ∆τ → ∞, (i.e., the object matching occurs at different times), the301

weighting factor is 0.302

Drawing from the example in Subsubsection 3.2.1, assume the action triage(v1, w1) was scheduled to303

execute in plan πA at time τi = 10 minutes, whereas the action triage(v2, w2) was scheduled to execute304

in plan πB at time τj = 12 minutes. The time difference between the two actions is |τi − τj | = 2 minutes305

and the temporal weighting factor is e−|τi−τj | = e−2 = 0.607, causing the action match contribution to306

be diminished by 39.3%.307

Generating full plans to estimate coalition-task coupling can be prohibitively costly, and defeat the308

purpose of Task Fusion. However, relaxed plans can replace full plans for coalition-task coupling309

estimation. A relaxation of the problem model, such as to ignore actions’ negative effects, can significantly310

reduce the computation complexity [25]. Relaxed plans offer a rough approximation of the actual plans311

and are used to inform forward search [25], reachability analysis [4], and distance metrics [12]. Relaxed312

plans can provide an estimate of the actions and the involved logical objects required by the full plan, yet313

require significantly less computation.314

The heuristics use plan distance to estimate coupling and inform Coalition Formation. Relaxed plans315

allow evaluating efficiently the planning elements of coalition-task pairs before planning. Coupling across316

coalition-task pairs is estimated by the actions and logical objects extracted from the relaxed plans, and317

the most coupled coalition-task pairs are fused.318

4. Empirical evaluation319

The heuristics were evaluated for two different domains chosen to model the complexity of planning for320

multiple heterogeneous robot systems. Continuous fluents and temporal constraints allow modeling the321

numerical and temporal constraints necessary for each domain. Multiple robot planning problems with322

continuous fluents and temporal constraints are yet unavailable in existing standard planning problem323

benchmarks. The heterogeneous robot systems contain robots with subsets of the capabilities necessary324

to accomplish each task, and require robots to cooperate. The heterogeneity of robot capabilities, together325

with complex problems, generate tightly coupled tasks. Ten coalitions of robots and ten missions were326

randomly generated and combined to form 100 problems per domain. Each coalition generated ten327

problems, one for each mission, and each mission generated ten problems, one for each coalition. The328

resulting plans were evaluated based on the plan outcome, makespan, number of actions, processing time,329

and memory usage.330

4.1. Blocks world domain331

The Blocks World Domain [24] was extended [18] to require temporal constraints and continuous332

fluents, model a variety of end-effectors, block sizes, multiple robot arms, and incorporate two block333

sizes. A finite sized table holds stacks of blocks that require specific end-effectors. A specific stacking334
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of the blocks determines the initial and goal states, which a team of robot arms seeks to achieve. Each335

arm has a subset of available end effectors and each block requires a specific type of end effector. Blocks336

can be either single- or double-weight. Single-weight blocks can be manipulated by a single arm, while337

double-weight blocks require two arms. Four types of end effectors were used: friction, suction, magnetic,338

and encompass. Ten coalitions with a minimum of four robot arms and a maximum of eight robot arms339

were generated. Ten missions with a minimum of eleven tasks and a maximum of 24 tasks were generated.340

Tighter coupled tasks have blocks that share the same blocks’ pile. Each arm and grasper require different341

amounts of time to grasp, manipulate, and release blocks; thus, introducing durative actions. The time to342

stack and unstack blocks is also dependent on the arm and the block’s initial and final position positions,343

modeled with continuous fluents.344

4.2. First response domain345

This first response domain [18] models disaster response problems that require coordinating heteroge-346

neous human-robot teams. Human-robot teams cooperate to rescue victims, collect hazardous objects,347

clear gas leaks, and clear blocked roads after a natural disaster. Prescription drugs inside pharmacies and348

weapons at pawn shops must be secured to prevent looting and ensure civilian safety. Victim rescue tasks349

require a human to triage the victim. The resulting triage level determines how the victim is taken to a350

hospital, either guided by a quadrotor or transported by a rover. The pawn shop cleanup tasks require a351

police officer to locate, clear, secure, and load the weapons into the police robot for transport to the police352

base. The pharmacy cleanup tasks require personnel to locate, clear, and secure all prescription drugs,353

including loading the drugs into a robot for transport to a hospital. The first response domain generates a354

plan for both robots and humans.355

The first response domain was expanded to permit more complex, but realistic problems. One extension356

is a model of the robot batteries that drain as a function of robot activity over time. As well, the robot357

load is a numerical fluent; thus, allowing robots to carry a varying number of objects, dependent on the358

individual robot load capacity. The number of robots, victims, pawn shops, pharmacies, road blocks, gas359

leaks, and waypoints was drawn from a uniform distribution. Ten coalitions with a minimum of 15 robots360

and a maximum of 21 robots were generated, with each coalition having a minimum of 1 robot and a361

maximum of 6 robots per robot type. Ten missions with a minimum of 13 tasks and a maximum of 24362

tasks were generated, with each mission having a minimum of 1 task and a maximum of 15 tasks per task363

type. The coupling between two tasks is stronger when there is overlap between the locations the robots364

must traverse. Traveling across the environment and performing each task requires significantly different365

amounts of time, making continuous and temporal constraints critical to a plan’s successful execution.366

4.3. Experimental design367

The experiment’s independent variables are the specific planning methods: Planning Alone (PA),368

Coalition Formation then Planning (CFP), Task Fusion with the plan distance heuristics: Object (O),369

Action (A), Action-Object (AO), Object-Temporal (OT), Action-Temporal (AT), and Action-Object-370

Temporal (AOT), and Task Fusion with the baseline heuristics: Coalition Assistance (CA) and Coalition371

Similarity (CS). The planning outcomes are: Success, a valid plan is produced; Nonexecutable, no plan372

can be derived for the task given the coalition’s composition and allocated tasks; Time Fail, the time limit373

is exceeded; and Memory Fail, the memory limit is exceeded. The fusion ratio, fmax, limits the number of374

fused coalition-task pairs and can impact the effectiveness of Task Fusion. Each heuristic was evaluated375
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for fusion ratios fmax = {0.25, 0.50, 0.75, 1.00}, values chosen to uniformly cover the valid [0, 1] range.376

Each experiment’s planning time was capped at one hour and memory usage was limited to 120 GB.377

The dependent variables are the planning outcome, makespan, number of actions, processing time, and378

memory usage. Makespan represents plan length, measured in seconds [35]. The number of actions is the379

total number of actions required by the plan to accomplish a task [35]. The processing time, measured380

in minutes, is the time required to solve a problem, which includes the coalition formation, processing381

heuristics, planning for all tasks, and merging each task plan into a final plan. The memory usage is the382

maximum amount of memory allocated, in GB. The makespan and the number of actions metrics indicate383

plan quality. Higher quality plans have lower makespan and fewer of actions; thus, higher quality plans384

achieve their goals faster and require fewer actions. Plans with lower processing time and memory usage385

require fewer computing resources.386

The TFD [20] and COLIN [11] planners support temporal constraints and continuous fluents, and387

were adopted for the Blocks World Domain experiment. A dynamic programming coalition formation388

algorithm was used [37]. COLIN [11] is the only continuous planner that accommodates the time-varying389

continuous fluents required for the first response domain. RACHNA [43], a market-based coalition390

formation algorithm, was used for the first response domain experiment. The relaxed plans were generated391

by a relaxed COLIN planner, which removes actions’ delete effects [11]. The experiments were performed392

on an Intel Xeon CPU E5-1630 v4 @ 3.70 GHz × 8 workstation with 128 GB memory, running Ubuntu393

14.04.5 LTS with the 4.4.0-89-generic Linux kernel. Third party Coalition Formation and Planning394

systems were compiled using the gcc/g++ compiler version 5.4.0.1395

Plan distance heuristics aim to estimate coupling and provide higher quality plans requiring less396

processing time and memory usage. The first hypothesis (H1) is that the effectiveness of Task Fusion is397

affected by the heuristics utilized. The second hypothesis (H2) is that the object oriented plan distance398

heuristics: Object, Action-Object, Object-Temporal, and Action-Object-Temporal, will outperform the399

baselines: the Coalition Assistance and Coalition Similarity heuristics, CFP, and Planning Alone. The400

third and fourth hypothesis are that the object oriented plan distance heuristics will result in better quality401

plans (H3) and will require lower computational cost than the baseline approaches (H4).402

4.4. Results403

The results are presented by problem domain and planner. Method quality and cost are represented404

for multiple metrics. High quality methods minimize the plans’ makespan and number of actions, while405

low cost methods minimize processing time and memory usage. The concepts of Pareto Dominance and406

Pareto Strength [47] were adopted for comparing methods across these metrics. Method t1 dominates407

method t2 if all of t1’s metrics’ means are better than t2’s. Specifically, t1’s quality dominates t2’s quality408

if both t1’s mean makespan and mean number of actions are better than the mean makespan and mean409

number of actions for t2. The Pareto Strength of a method ti is determined by the number n of methods410

t1, t2, · · · , tn that ti dominates. Methods with higher Pareto Strength dominate many other methods.411

4.4.1. The blocks world domain with TFD412

The Blocks World Domain with TFD planning was characterized by a positive relationship between413

the evaluated metrics and the Task Fusion ratio fmax. Most heuristics offered increasingly better success414

1The full source code will be made available at the time of publication. The problem set is available at https://gitlab.com/human-
machine-teaming-lab-open-repositories/multi-agent-planning-and-coalition-formation/test-set.
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Table 1
Blocks world with TFD planning results by method, fmax, and per-
centage for successfully generating a plan, nonexecutable coalition,
and no plan generated due to time failure or memory failure

Method fmax Success Nonexec Time fail
Object 0.25 38 26 36

0.50 33 29 38
0.75 39 16 45
1.00 39 16 45

Action 0.25 29 29 42
0.50 32 25 43
0.75 37 13 50
1.00 37 13 50

Action-object 0.25 32 29 39
0.50 28 28 44
0.75 34 15 51
1.00 34 15 51

Object-temporal 0.25 35 28 37
0.50 31 28 41
0.75 36 17 47
1.00 36 17 47

Action-temporal 0.25 23 32 45
0.50 31 23 46
0.75 36 15 49
1.00 35 16 49

Action-object-temporal 0.25 28 32 40
0.50 30 25 45
0.75 36 14 50
1.00 35 15 50

Coalition similarity 0.25 23 33 44
0.50 20 31 49
0.75 27 20 53
1.00 27 20 53

Coalition assistance 0.25 36 22 42
0.50 28 23 49
0.75 42 6 52
1.00 41 7 52

CFP N/A 24 34 42
Planning alone N/A 40 0 60

rates, plan quality, and computational cost for larger fmax values. The improved performance saturates415

at high fmax values, with virtually equivalent results being obtained for fmax = 0.75 and 1.00 across the416

heuristics.417

The Coalition Assistance heuristic (fmax = 0.75 and 1.00) had the best planning success rates (42% and418

41%, respectively) followed by Planning Alone (40%, and the Object heuristic (fmax = 0.75 and 1.00,419

both 39%), as shown in Table 1. Planning Alone had the highest rate of time failures (60%), followed by420

the Coalition Similarity (fmax = 0.75 and 1.00, both 53%) and Coalition Assistance (fmax = 0.75 and421

1.00, both 52%) heuristics. CFP produced the highest rate of nonexecutable coalitions (34%). No method422

exceeded the 120 GB memory limit.423

Planning Alone (PA), the Object (O) and Coalition Assistance (CA) heuristics produced the highest424

success rates, as shown in Fig. 2a. The Object heuristic produced the second highest success rates for425

fmax = 0.25 and 0.50, whereas the Coalition Assistance heuristic produced the highest success rates426

for fmax = 0.75 and 1.00. The Coalition Assistance heuristic, however, resulted in mediocre makespan,427

number of actions, and memory usage results for all fmax values, as presented in Fig. 2b, c and e,428
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Fig. 2. Blocks world with TFD (a) success, (b) makespan, (c) number of actions, (d) processing time, and (e) memory usage by
fusion ratio (fmax). Samples were connected to facilitate visualization.

respectively. Planning Alone resulted in the best makespan (Fig. 2b), but among the worst number of429

actions (Fig. 2c), processing time (Fig. 2d), and the worst memory usage (Fig. 2e).430

The Action-Object (AO) heuristic produced the second best makespan and the best number of actions431

for fmax = 0.50 through 1.00, as presented in Fig. 2b and c, respectively. The Action-Object-Temporal432

(AOT) heuristic produced the second best number of actions for fmax = 0.50 through 1.00 (Fig. 2c) and433

resulted in the best processing time and memory usage across all fmax values, as shown in Fig. 2d and434

e, respectively. The Coalition Similarity (CS) heuristic resulted in the second worst success rates and435

makespan for fmax = 0.75 and 1.00 (Fig. 2a and b), and third worst memory usage for all fmax values436

(Fig. 2e). CFP produced among the worst success rates, makespan, number of actions, memory usage,437

and among the worst processing time.438

The Pareto Strength quality, which minimizes plans’ makespan and number of actions, was evaluated439

across all methods. The Action-Object heuristic (fmax = 1.00 and 0.75) produced the best and second440

best plan quality (Pareto Strengths 32 and 31, respectively), followed by the Action-Object-Temporal441

heuristic (fmax = 1.00 and 0.75), which had the third and fourth best quality (Pareto Strengths 30 and 29,442

respectively). The Action (fmax = 0.25), Object (fmax = 0.25), and Coalition Similarity (fmax = 0.50)443

heuristics produced the lowest quality (Pareto Strength 0). The Pareto Strength cost minimizes processing444

time and memory usage. The Action-Object-Temporal heuristic (fmax = 0.75 and 1.00) resulted in the445

two lowest costs (Pareto Strengths 33 and 32). Planning Alone (PA), CFP, and the Coalition Similarity446

heuristic (fmax = 0.50) had the highest cost (Pareto Strength 0).447
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Table 2
Blocks world with COLIN planning results

Method fmax Success Nonexec Time fail Mem fail
Object 0.25 53 21 10 16

0.50 48 16 13 23
0.75 55 10 17 18
1.00 55 10 17 18

Action 0.25 38 29 17 16
0.50 41 22 13 24
0.75 47 15 22 16
1.00 47 15 22 16

Action-object 0.25 49 23 12 16
0.50 46 19 13 22
0.75 50 13 21 16
1.00 50 13 20 17

Object-temporal 0.25 48 24 14 14
0.50 47 16 14 23
0.75 52 11 20 17
1.00 52 11 19 18

Action-temporal 0.25 43 22 18 17
0.50 43 16 17 24
0.75 45 10 29 16
1.00 45 10 29 16

Action-object-temporal 0.25 46 25 13 16
0.50 45 19 11 25
0.75 47 12 23 18
1.00 47 12 22 19

Coalition similarity 0.25 37 27 17 19
0.50 38 21 17 24
0.75 43 16 22 19
1.00 43 16 22 19

Coalition assistance 0.25 44 27 17 12
0.50 39 25 20 16
0.75 50 15 22 13
1.00 49 15 23 13

CFP N/A 38 34 12 16
Planning alone N/A 28 0 42 30

The Action-Object-Temporal heuristic is the best solution to the Blocks World Domain with TFD, as it448

resulted in among the best makespan and number of actions; and the best processing time, and memory449

usage. The Action-Object heuristic is the second best, as it resulted in the best quality, but mediocre450

processing time and memory usage. CFP is the worst solution, resulting in the worst metrics.451

4.4.2. The blocks world domain with COLIN452

The object oriented heuristics also offered the best solution to the Blocks World Domain with the453

COLIN planner. The top five success rates were achieved by the plan similarity heuristics, whereas only454

two of the top five best success rates were plan similarity heuristics when using TFD. The Object heuristic455

presented better results with increasing fmax values.456

The Object heuristic (fmax = 0.75 and 1.00) had the best success rate (both 55%), as presented in457

Table 2. The Object (fmax = 0.25, 53%) and Object-Temporal (fmax = 0.75 and 1.00, both 52%) heuristics458

were second and the third best, respectively. Planning Alone had zero nonexecutable coalitions, but had459

the worst success (28%), time failure (42%), and memory failure (30%) rates. CFP produced the most460

nonexecutable coalitions (34%).461



Galley Proof 5/06/2020; 9:49 File: mgs200327.tex; BOKCTP/ljl p. 15

G.M. dos Santos and J.A. Adams / Plan distance heuristics for task fusion in distributed temporal continuous planning 15

Fig. 3. Blocks world with COLIN (a) success, (b) makespan, (c) number of actions, (d) processing time, and (e) memory usage
by fusion ratio (fmax). Samples were connected to facilitate visualization.

The Object (O) heuristic resulted in the highest success rates across all fmax values, as presented in462

Fig. 3a whereas Planning Alone (PA) produced the worst. PA produced the best makespan (Fig. 3b), but463

among the worst number of actions (Fig. 3c). The Object heuristic produced the second best makespan,464

the best number of actions, and the second best processing time and memory usage for fmax = 0.50465

through 1.00, as shown in Fig. 3b–e. The Coalition Similarity (CS) heuristic generated the lowest cost466

(Fig. 3d and e), but also produced among the worst success rates and the worst makespan, across all fmax467

values (Fig. 3a–c).468

All heuristics produced their maximum success rates for the highest fmax values, 0.75 and 1.00, as469

presented in Fig. 3a, and resulted in monotonically better makespan for larger fmax values, as presented in470

Fig. 3b, meaning that greater fmax values resulted in higher success rates for all fmax values evaluated.471

The Object heuristic produced monotonically better makespan, number of actions, processing time, and472

memory usage for greater fmax values, as presented in Fig. 3b–e. The Object heuristic is the best solution473

to the Blocks World Domain with COLIN, as it resulted in the best quality and second lowest cost across474

fmax = 0.50, 0.75, and 1.00.475

The Object heuristic (fmax = 0.75 and 1.00) produced the best and second best plan quality (both Pareto476

Strength 30). The Action-Object heuristic (fmax = 0.75 and 1.00) produced the third and fourth best plan477

quality results (both Pareto Strength 28), followed by the Object (fmax = 0.50) and Object-Temporal478

(fmax = 0.75 and 1.00) heuristics (all Pareto Strength 24). The Coalition Similarity heuristic (fmax = 0.25)479

produced the lowest plan quality (Pareto Strength 0), while the Coalition Similarity heuristic (fmax =480
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0.50) was slightly better (Pareto Strength 1). The Coalition Similarity heuristic produced the three lowest481

cost results (Pareto Strengths 33, 31, and 30), with the best result being for the lowest fmax value. The482

Object heuristic (fmax = 0.75 and 1.00) produced the fourth lowest cost results (both Pareto Strength483

27). Planning Alone and the Action heuristic (fmax = 0.50) produced the worst cost results (both Pareto484

Strength 0).485

4.4.3. The first response domain486

The more complex first response domain presented noisier results, compared to the Blocks World487

Domain. Planning Alone exceeded the processing time limit for all problems, resulting in no plans.488

The plan distance heuristics produced generally better results for intermediary fmax values, whereas the489

baseline heuristics, Coalition Similarity and Coalition Assistance, performed better for lower fmax values.490

Monotonically worsening success, makespan, number of actions, and memory usage were observed for491

larger fmax values for most baseline methods, while most plan distance heuristics presented convex curves.492

The Coalition Similarity heuristic (fmax = 0.25) produced the best planning success rate (73%), as493

shown in Table 3. The Coalition Similarity (fmax = 0.50) and Action-Object-Temporal (fmax = 0.25)494

heuristics were the second best (both 66%), followed closely by the Object-Temporal heuristic (fmax =495

0.50, 65%). The Object heuristic (fmax = 0.25) produced the highest rate of nonexecutable coalitions496

(35%), the Coalition Assistance heuristic (fmax = 1.00) produced the highest rate of time failures (56%),497

and the Object heuristic (fmax = 0.75) produced the most memory failures (10%).498

Many methods performed best for the intermediary fmax values, 0.50 and 0.75, in the first response499

domain, whereas most methods generated best results for the boundary fmax values, 0.25 and 1.00, in500

the Blocks World Domain. The Object (O) and Object-Temporal (OT) heuristics produced their best501

success rates for fmax = 0.50, as shown in Fig. 4a, and produced their best makespan, number of actions,502

processing time, and memory usage for fmax = 0.75, as indicated in Fig. 4b–e, respectively. The Action-503

Object (AO) heuristic produced its best success rate, processing time, and memory usage for fmax = 0.50,504

as shown in Fig. 4a, d, and e, respectively, and produced their best makespan and number of actions for505

fmax = 0.75, as shown in Fig. 4b and c, respectively. The success rates produced by the Action-Temporal506

(AT), Action-Object-Temporal (AOT), and Coalition Assistance (CA) heuristics monotonically decreased507

for greater fmax values, as presented in Fig. 4a. The Action-Object-Temporal (AOT) heuristics produced508

monotonically lower (better) makespan and fewer actions for larger fmax values, as shown in Fig. 4509

(b and c, respectively). The Action-Temporal (AT) and Coalition Similarity (CS) heuristics produced510

monotonically worse processing times and memory usage for greater fmax values, as indicated in Fig. 4 (d511

and e, respectively). CFP resulted in among the best success rates, the best processing time and memory512

usage, but among the worst makespan and number of actions.513

The Object heuristic (fmax = 0.75) produced the overall best plan quality (Pareto Strength 32),514

dominating all methods. The Object-Temporal heuristic (fmax = 0.75) had the second best plan quality515

(Pareto Strength 30), followed by the Action-Object (fmax = 0.75), Action-Object-Temporal (fmax =516

1.00) and Object-Temporal (fmax = 1.00) heuristics (all Pareto Strength 28). The Coalition Similarity517

(fmax = 0.50 and 1.00), Coalition Assistance (fmax = 1.00), and Action-Temporal (fmax = 0.75) heuristics518

had the lowest plan quality (all Pareto Strength 0). CFP produced the lowest cost (Pareto Strength 32),519

dominating all other methods. The Coalition Similarity heuristic (fmax = 0.25) had the second lowest520

cost (Pareto Strength 31), followed by the Object heuristic (fmax = 0.75, Pareto Strength 30).521

The best performing method was the Object (O) heuristic with fmax = 0.75, which provided among the522

lowest success rates Fig. 4a, but the best makespan, number of actions, and processing time Fig. 4b–e.523

The action oriented plan distance heuristics, Action and Action-Temporal, offered mediocre results and524
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Table 3
First response planning results

Method fmax Success Nonexec Time fail Mem fail
Object 0.25 56 35 8 1

0.50 61 25 10 4
0.75 33 24 33 10
1.00 44 10 45 1

Action 0.25 51 20 29 0
0.50 33 20 42 5
0.75 29 20 51 0
1.00 33 12 52 3

Action-object 0.25 57 30 10 3
0.50 59 20 21 0
0.75 42 20 34 4
1.00 59 10 29 2

Object-temporal 0.25 59 24 13 4
0.50 65 22 12 1
0.75 43 28 23 6
1.00 43 10 47 0

Action-temporal 0.25 58 30 9 3
0.50 57 22 19 2
0.75 44 20 36 0
1.00 39 10 51 0

Action-object-temporal 0.25 66 20 11 3
0.50 62 23 13 2
0.75 48 17 35 0
1.00 34 11 55 0

Coalition similarity 0.25 73 20 4 3
0.50 66 16 16 2
0.75 44 26 28 2
1.00 47 18 32 3

Coalition assistance 0.25 46 23 31 0
0.50 41 18 40 1
0.75 31 15 54 0
1.00 31 13 56 0

CFP N/A 62 32 5 1

did not provide the best solution to any of the domains and planners evaluated. The Coalition Assistance525

heuristic with fmax = 0.75 was the worst solution, with the second lowest success rate Fig. 4a, and among526

the quality and cost results Fig. 4b–e.527

5. Discussion528

The proposed heuristics significantly outperform the baseline methods in the resulting plansąŕ quality529

and offers a better trade-off between quality and processing cost. While other existing methods make530

constraining assumptions, such as requiring serial plan execution, or requiring a specific planning531

algorithm, the framework is demonstrated to outperform baselines on both planning algorithms used.532

The first response domain has an underlying routing problem, in that robots must travel across locations533

in order to perform their location-dependent tasks, such as navigating to a victim before triaging said534

victim. The randomly distributed victim locations result in a wide variety of complex routing problems,535

which is a possible cause for the larger variance across the various metrics when compared to the Blocks536

World Domain. Faster routes involving multiple short hops generate more actions than slower routes with537
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Fig. 4. First response (a) success, (b) makespan, (c) number of actions, (d) processing time, and (e) memory usage by fusion
ratio (fmax). Samples were connected to facilitate visualization.

fewer long hops. The number of possible alternative routes across the locations’ graph connecting the538

multiple points of interest is larger. Allocating different tasks to different robots can result in plans with539

a wider variety of makespans and number of actions, due to the fact that the allocated robots perform540

different paths to achieve their tasks, depending on where the robots were initially located. The distances541

traveled by robot arms are more uniform in the Blocks World Domain, because there are only two block542

sizes.543

The hypothesis H1, which states that the effectiveness of Task Fusion is affected by the heuristics544

utilized, was supported across all experiments. The heuristics had a profound impact on the Task Fusion545

effectiveness, with the choice of heuristic resulting in success rates ranging from the lowest to the546

highest. The fusion ratio, fmax, also impacted Task Fusion by limiting the number of fused coalition-task547

pairs. The lower fmax values attenuated the negative impacts of the bad heuristics, whereas the higher548

values enhanced the effectiveness of the good heuristics. The best-performing heuristics had a positive549

relationship with increasing fmax. The Action-Object-Temporal heuristic performed generally better for550

larger fmax values, whereas the Coalition Similarity heuristic performed the worst.551

Hypothesis H2, which states that the object oriented plan distance heuristics, Object, Action-Object,552

Object-Temporal, and Action-Object-Temporal, outperform the baselines: Coalition Assistance and553

Coalition Similarity heuristics, CFP, and Planning Alone, was supported. The best solution for each554

domain and planner was produced by object oriented plan distance heuristics, which account for logical555

objects common across the task plans to identify and fuse tightly coupled tasks. Task Fusion increases556
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coalition size, which increases the search space; thus, increasing the computational costs. However, when557

two tightly coupled tasks are fused, the actions accomplishing one task often contribute to achieving558

states necessary to achieve the other task.559

The third hypothesis, H3, was supported, as the Object and Action-Object heuristics offered the560

best quality plans across the evaluated domains and planners. The relaxed plan logical objects provide561

an accurate estimate of the utility of fusing coalition-task pairs. Detecting and fusing tightly coupled562

coalition-task pairs facilitates planning for tasks that require explicit cooperation between robots. Robots563

explicitly cooperate and accomplish tasks faster when tightly coupled tasks are fused. The Coalition564

Assistance and Coalition Similarity heuristics fuse tasks based on coalition formation capabilities and565

fail to account for task planning elements, such as plan actions and logical objects. Tightly coupled tasks566

are planned separately and the outcomes of one task increase the planning complexity for other tasks,567

resulting in worse plan quality.568

The final hypothesis, H4, was not supported, as no method dominated costs across all experiments. The569

object oriented plan distance heuristics resulted in lower costs compared to the baseline methods for the570

Blocks World Domain with TFD, but were superseded by the Coalition Similarity heuristic for the same571

domain with COLIN. Further, the Coalition Similarity heuristics’ low cost results are associated with572

the worst plan quality. The object oriented plan distance heuristics resulted better costs compared to the573

Coalition Assistance heuristic for all domains and planners, which provides some support for hypothesis574

H4.575

The manuscript extends and applies distance heuristics δ(πi, πj) as Task Fusion heuristics H(πi, πj),576

related by the formula H = 1− δ. The existing action oriented plan distance heuristic [30] is extended577

to include plans’ logical objects and use lists instead of sets to account for repeated instances. Plans578

often include repeated instances of actions and logical objects (i.e., the same block is handled multiple579

times to achieve a task in the Blocks World Domain, or the same location is visited to rescue victims in580

the first response domain). Accounting for the repeated instances of actions and logical objects allows581

more accurate coupling estimation. Tightly coupled tasks require robots to handle the same blocks and582

transition through the same locations more often, increasing the likelihood for dependencies and conflicts.583

The object oriented plan distance heuristics outperformed the action oriented plan distance heuristics584

across most evaluated metrics, domains, and planners. The nuances revealed by using lists of logical585

objects is a potential contribution to diverse planning, which needs to be evaluated as future work.586

The heuristics contribute to a more informed task allocation. Coalition formation models operate on587

robot and task capabilities, but lack planning domain information. The plan distance heuristics use relaxed588

plans in order to introduce planning domain information into the task allocation process. The added589

planning domain information supports more accurately estimating the value of fusing coalition-task pairs590

and results in improved task allocation. The heuristics also contribute to estimating coupling between591

planning problems. Determining the exact problem coupling by computing the treewidth of the agent592

interaction graph is an NP-hard problem [3]. The heuristics offer an approximate alternative, which is593

polynomial on the number of actions and objects in the problem’s plan: O(|Li| · |Lj |), where |Li| and594

|Lj | are list sizes for action-object lists Li and Lj , respectively.595

The Task Fusion algorithm considers only pair wise (binary) coalition fusion in order to avoid the596

complexity of evaluating all possible coalition combinations. Extending the algorithm to support n-ary597

fusions constitutes future research. Another future research direction is to merge and generate relaxed598

plans for all
(
m
2

)
pairs of coalition-task pairs from the original set ofm coalition-task pairs. New heuristics599

can compare the resulting plan quality and computational cost to the original coalition-task relaxed plans;600

however, several issues limit the approach. The first drawback is the combinatorial number of relaxed601
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plans to be generated, which does not scale linearly with the number of agents, and can jeopardize overall602

scalability. The second limitation is that greedily minimizing each coalition-task pair’s makespan and603

number of actions does not guarantee minimizing the makespan and the number of actions of the resulting604

global plan. Lastly, the processing time and the memory usage necessary to generate relaxed plans does605

not necessarily correlate to the computational cost necessary to generate full plans.606

6. Conclusion607

Plan distance heuristics were introduced to provide a better balance between plan quality and the608

required processing resources, when planning for multiple heterogeneous robots in complex real-world609

time-sensitive domains. The heuristics estimate plan distance as a proxy for estimating coalition-tasks610

coupling. The level of coupling determines which coalition-tasks pairs to fuse, after robots are grouped611

into coalitions and allocated tasks. Fusing coupled tasks improves plan quality by increasing cooperation612

between robots, while separating loosely coupled tasks reduces plan synthesis cost. The heuristics use613

lists of logical object instances, extracted from the plans’ action description arguments, to reveal nuances614

ignored by existing Task Fusion heuristics.615

The plan distance heuristics combine aspects of problem coupling and plan distance estimation616

to improve task allocation. The heuristics generally outperform baselines in both plan quality and617

computational costs. First response is an example domain that is time-critical. The small reductions in618

plan execution time can make the difference between mission success or mission failure. The cases in619

which the heuristics do not perform strictly better still offer a better balance between plan quality and620

computational cost. As a result, larger planning problems, which involve more tasks, robots, and logical621

objects, can be solved.622
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