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a b s t r a c t 

This paper presents a fast approximate rank-1 L1-norm Principal Component Analysis (L1-PCA) estimator 

implemented in the Fourier domain. Specifically, we first rephrase the problem of rank-1 L1-PCA esti- 

mation as a cyclic shift parameter estimation and then we present an algorithm for estimating the first 

L1-norm Principal Component (L1-PC) in the Fourier domain, practically using FFT. The proposed method 

is shown to be asymptotically efficient and our numerical studies corroborate its performance merits. 

© 2021 Published by Elsevier B.V. 
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. Introduction 

L1-norm Principal Component Analysis (L1-PCA) is a fundamen- 

al tool in robust data analysis, and it has recently found appli- 

ation to big data problems such as unsupervised classification 

1] or linear discriminative analysis [2] . The need for efficient L1- 

CA computation has solicited recent research for fast convergence 

terative solutions leveraging, among other techniques, binary data 

eighting [3,4] , Grassmann average [5,6] , Grassmann manifold op- 

imization [7] . 

Here, we present a novel approach to L1-PCA estimation in the 

ourier domain. Specifically, we express the L1-PCA formulation as 

 binary weighted combination of observations and we rephrase 

he problem of rank-1 L1-PCA as a phase (i.e., cyclic shift) esti- 

ation problem. Then, we solve this problem in the Fourier do- 

ain, using FFT so as to reduce computational complexity on big 

ata samples. Our numerical studies show that the resulting al- 

orithm maintains the intrinsic outlier resilience of L1-PCA while 

eing computationally much lighter than alternatives. 

The structure of the paper is as follows. In Sections 2 and 

.2 we present the L1-PCA formulation and the proposed FFT- 

ased computation, respectively. In Section 4 , we assess the per- 

ormance of the proposed methods in multiple numerical studies 
∗ Corresponding author. 
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nd compare it to alternative techniques in the literature. Finally, 

n Section 5 , we draw some conclusions. 

. Rank-1 L1-PCA 

Let us consider the D × N data matrix X whose columns x i , i ∈
 N] = { 1 , 2 , . . . , N} , comprise N measurements in R 

D , where N > D .

he L1-PC of X is defined as 

 L 1 = argmax 

q ∈ R 
D 

‖ q ‖ 2 = 1 

‖ X 
� q ‖ 1 . (1) 

n [3] , authors showed that 

 L 1 = Xb L 1 ‖ Xb L 1 ‖ 2 
−1 

(2) 

s a solution to (1) , when b L 1 is a solution to 

max 
 ∈{±1 } N 

‖ Xb ‖ 2 . (3) 

or the formulation in (3) , [3] proposed an efficient bit-flipping 

ased solver. 

The role of the optimal binary vector b L 1 is illustrated in Fig. 1 ,

catter-plotting the points of the data matrix X , drawn from mul- 

ivariate Gaussian distribution ( N = 512 , D = 2 ). The color of each

oint x i represents its optimal binary weight ( ±1 sign) in [ b L 1 ] i .

he above observation highlights the intrinsic unsupervised binary 

lassification property of L1-PCA, which is leveraged in Martín- 

lemente and Zarzoso [1] . 

From Fig. 1 , a further observation stems. It is clear that the role

f the optimal signs b is to apply a π-shift to the phase of a few
L 1 
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Fig. 1. Scatter-plot of data matrix X drawn from multivariate Gaussian distribution 

( N = 512 , D = 2 ). The color of each point x i represents the corresponding optimal 

sign in [ b L 1 ] i . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 2. Scatter-plot of Gaussian data X (green points), examples of discrete direc- 

tions in � (black points), α-dependent half-plane (shaded light blue area) ( N = 512 , 

D = 2 ). (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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easurements so as to map them into the half-plane where they 

dd constructively, thus providing the maximum euclidean norm 

 Xb L 1 ‖ 2 . Inspired by this observation, we rephrase the search for 

he L1-PC as a search for the phase of the half-plane into which the 

easurements, either unchanged or phase-shifted by a π-phase, 

dditively combine into a vector of maximum L2 norm. 

. Proposed Fourier-domain rank-1 L1-PCA 

.1. L1-PCA as an optimal half-plane search 

For simplicity, we first study D = 2 . We observe that the unit 

ector q L 1 assumes directions belonging to the set 

= 

{
θ : θ = arg (Xb ) , b ∈ {±1 } N }, (4) 

here arg (·) : R 
2 → (0 , 2 π ] returns the angle of its argument

ith the positive horizontal axis. We note that � is a finite set 

ith cardinality | �| ≤ 2 N . Accordingly, the maximization in (1) can 

e rewritten as 

ax 
θ∈ �

‖ X 
� u (θ ) ‖ 1 (5) 

here u (θ ) = [ cos (θ ) , sin (θ )] � , so that arg (u (θ )) = θ and

 u (θ ) ‖ 2 = 1 . Noticing that | a | = max b∈{±1 } ba , the above prob-
em can be rewritten as 

ax 
θ∈ �

max 
b ∈{±1 } N 

∑ 

i ∈ [ N] 
b i x 

� 
i [ cos (θ ) , sin (θ )] � . (6) 

etting z i = ( b i + 1 ) / 2 and φi = arg (x i ) , (6) becomes 

max 
∈ �, z ∈{ 0 , 1 } N 

∑ 

i ∈ [ N] 
cos (z i π) ‖ x i ‖ 2 u (φi ) 

� u (θ ) (7) 

 max 
θ∈ �, z ∈{ 0 , 1 } N 

∑ 

i ∈ [ N] 
‖ x i ‖ 2 cos (z i π)[ cos (φi ) , sin (φi )] ·

· [ cos (θ ) , sin (θ )] � (8) 

 max 
θ∈ �, z ∈{ 0 , 1 } N 

∑ 

i ∈ [ N] 
‖ x i ‖ 2 cos (φi − θ ) cos (z i π) . (9) 
a

2 
ext, we introduce function β : R 
2 → { 0 , π} 

(α1 , α2 ) = 

{
π, for | α1 − α2 | ≥ π/ 2 
0 , otherwise 

(10) 

hich absorbs the maximization over z so that (9) becomes 

ax 
θ∈ �

∑ 

i ∈ [ N] 
‖ x i ‖ 2 cos (φi − θ ) cos (β(φi , θ )) (11) 

 max 
θ∈ �

∑ 

i ∈ [ N] 
‖ x i ‖ 2 cos (φi + β(φi , θ ) − θ ) (12) 

 max 
θ∈ �

∑ 

i ∈ [ N] 
‖ x i ‖ 2 ( cos (φi + β(φi , θ )) cos (θ )+ 

+ sin (φi + β(φi , θ )) sin (θ )) (13) 

 max 
θ∈ �

∑ 

i ∈ [ N] 
‖ x i ‖ 2 u (φi + β(φi , θ )) � u (θ ) . (14) 

ext, we define 

 (θ ) = 

∑ 

i ∈ [ N] 
‖ x i ‖ 2 u (φi + β(φi , θ )) (15) 

e notice that we obtain this vector if we add our data points, 

fter tuning their phases (adding π or nothing) so that each one 

orms an acute angle with u (θ ) . Accordingly, we define M(θ ) = 

 m (θ ) ‖ 2 , and �(θ ) = arg (m (θ )) –both piecewise constant func- 

ions whose transitions are determined by the data point phases 

 φi } N i =1 
. Next, we notice that (14) can be rewritten as 

ax 
θ∈ �

M(θ ) u (�(θ )) � u (θ ) . (16) 

hat is, if θopt is a solution to (16) , then q L 1 = u (θopt ) is the L1-PC
n (1) . 

The above maximization is carried out with respect to θ ∈ �. 

his is exemplified in Fig. 2 ( N = 512 , D = 2 ), where we present

he scatter-plot of Gaussian data X (green points), and a few ex- 

mples of the discrete directions in � (black points). Adding the 
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Fig. 3. Left: Partition of [0 , 2 π) in K sectors { 
(k ) } k ∈ [ K] . Right: Original points 
m i e 

jφi (green circles) and values z k e 
jδk (red circles). Data matrix X drawn from mul- 

tivariate Gaussian distribution ( N = 512 , D = 2 , K = 64 ). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

G

F

e

I

T

o

w

p  

r

l

t

w

T

d

o

o

s

y  

i

B

b  

i

e  

s

t  

t

p

T

p

 

(

b

M

ata points, unaltered or flipped so as to be tilted towards θ , we 

btain the vector m (θ ) . The problem in (16) consists in finding a

irection θ ∈ � (i.e. a black point in Fig. 2 ) such that the module 

f m (θ ) is maximum at θopt . This condition is achieved when the 

ata measurements are phase-shifted by β(φi , θopt ) so as to add 
onstructively in the half-plane centered in θopt 2 Therefore, seek- 
ng for θopt equals to seeking for a half-plane such that the phase- 
hifted by β(φi , θopt ) add constructively.. The problem in (16) can 

hen be solved by first finding the half-plane in the direction α in 

uch that: 

opt = argmax 
α∈ [0 , 2 π) 

M(α) (17) 

nd then returning 

opt = �(αopt ) . (18) 

nd then computing the related θ as the phase �(αopt ) of their 

lgebraic sum. By doing this, the maximization of m (θ ) over the 

iscrete set � is expressed in terms of the maximization of the 

iecewise constant function M(α) . 

To recap, in the above analysis we firstly start from the search 

or the maximum of (16) with θ varying in the discrete set �, ex- 

mplified by the black points in Fig. 2 . Then, we replace it with the

earch for the maximum of M(α) with α varying in the continu- 

us interval [0 , π) ; this corresponds to maximize M(α) by vary- 

ng the orientation of the α dependent half-plane (i.e. the blue 

haded area in Fig. 2 ). Finally, θopt = �(αopt ) is computed; remark- 

bly, since M(α) is a piecewise constant function, different values 

f αopt can be found; still, all these values lead to the same θopt . 
hereby, we have managed to rephrase rank-1 L1-PCA as a search 

or the phase αopt of the half-plane into which the measurements, 

ither unchanged or phase-shifted by a π , combine to a maximum 

2 norm vector. The optimal phase shifts β
(
φi , αopt 

)
play the same 

ole as the optimal signs b L 1 : they apply a π-shift to the phase of

 few measurements. By doing this, the data are mapped into the 

alf-plane where all the measured points (either in their original 

r flipped version) add constructively. 

.2. Fourier-domain computation 

Based on the above analysis, we can now design an FFT-based 

olver for L1-PCA. To that end, we will transfer our notation from 

 
2 to C . Accordingly, data point x i ∈ R 

2 can be represented by

 i e 
jφi , where m i = ‖ x i ‖ 2 and φi = arg (x i ) . Similarly, the metric in

17) becomes M(α) = |M (α) | , where 

 (α) = 

∑ 

i ∈ [ N] 
m i e 

jξi (α) (19) 

nd 

i (α) = 

{
φi , if | α − φi | ≤ π/ 2 
φi + π, otherwise 

(20) 

ext, we proceed with estimating the maximizer of M(α) , αopt , 

s follows. First, we partition the range [0 , 2 π) into K inter- 

als/sectors of equal width 2 π/K rads, 

(k ) = 

[ 
(k − 1) 

2 π

K 
, k 

2 π

K 

)
, k ∈ [ K] . (21) 

or every k , 
(k ) is centered around 

k = 

2 π

K 
( k − 1 / 2 ) . (22) 

he result of the partition is summarized in Fig. 3 (left), that 

hows the angular intervals { 
(k ) } k ∈ [ K] , for K = 64 (blue sectors).
2 This is demonstrated by contradiction. In fact, should any of the measurement 

e out of the half-plane centered in θopt , is phase-shift by π would lead to an in- 

rease in m (θ ) with respect to m (θopt ) , which contradicts the definition of θopt . 

e  




α  

3 
iven this partition, the data, exemplified by the green circles in 

ig. 3 (right), can be assigned to different intervals as follows. For 

very k ∈ [ K] , we define 

 k = { i ∈ [ N] : φi ∈ 
(k ) or φi + π ∈ 
(k ) } . (23) 

hat is, I k contains the indices of data points that belong to 
(k ) 

r are therein projected by a π-shift. For the sake of completeness, 

e denote by z k the accumulation of the magnitudes of all data 

oints with index in I k , namely z k = 

∑ 

i ∈I k m i . The values z k e 
jδk are

epresented by the red points in Fig. 3 (right). These values will be 

everaged as a proxy of the original data in the following compu- 

ation. 

Let us consider w (α) ∈ R 
K such that 

 k (α) = 

{
1 , α − π/ 2 < (k − 1 / 2) 2 π

K 
≤ α + π/ 2 

0 , otherwise 
. (24) 

hat is, w (α) represents a window function centered around an in- 

ex depending on α and K. As α varies, the window of w (α) shifts 

ver different indexes k , covering different phase sectors 
(k ) . This 

peration represents the counterpart, in the discrete domain, of 

liding the α-dependent half-plane addressed in (17) . 

A visual summary of the variables involved in the above anal- 

sis is given in Fig. 4 . Fig. 4 (left) plots the partition into angular

ntervals and the values z k e 
jδk (red circles) computed accordingly. 

esides, the α-dependent half-plane is represented in shaded light 

lue. From the definition in (24) , we recognize that the k th angular

nterval is associated to a value w k (α) depending on the plane ori- 

ntation. In Fig. 4 (right) we plot z k (red samples) and w k (α) (blue

amples), i.e. the entries of z and w (α) , as discrete functions of 

he index k ( N = 512 , D = 2 , K = 64 ). This representation suggests

hat the search for the optimal half-plane in Fig. 4 (left) can be ex- 

ressed as the search for an optimal window shift in Fig. 4 (right). 

his intuition motivates the derivation of the FFT-based PCA com- 

utation detailed in the following. 

Based on the above definitions, for any α ∈ [0 , 2 π) , the sum in

19) can be rewritten by reordering the terms in groups of points 

elonging to different phase intervals. Then we obtain: 

 (α) = 

∑ 

k ∈ [ K] 
w k (α) 

∑ 

i : ξi (α) ∈ 
(k ) 

m i e 
jξi (α) . (25) 

Importantly, we notice that as K increases asymptotically, for 

very k ∈ [ K] , 
(k ) contracts around its center, δk –i.e., every x ∈
(k ) is asymptotically near δk . Accordingly, for large enough K, any 
, and i such that ξ (α) ∈ 
(k ) , we can approximate ξ (α) by δ .
i i k 
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Fig. 4. Left: plot of the values z k e 
jδk (red circles), and α-dependent half-plane (shaded light blue area). Right: plot of the entries of z and w (α) . Data matrix X drawn from 

multivariate Gaussian distribution ( N = 512 , D = 2 , K = 64 ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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ccordingly, we estimate (25) as 

 (α) ≈
∑ 

k ∈ [ K] 
w k (α) 

∑ 

i : ξi (α) ∈ 
(k ) 

m i e 
jδk 

= 

∑ 

k ∈ [ K] 
w k (α) z k e 

jδk , (26) 

here the z k is the sum of the magnitudes of data points in I k . 3 
ext, let us assume that the data points are symmetrically dis- 

ributed around a main direction. Then, for the values that w k (α) 

s non-zero, the phases of symmetric samples’ sets elide each other 

nd we can approximate the summation with the absolute value, 

.e. the following equation stands: 

(α) = |M (α) | ≈ ∑ 

k ∈ [ K] 
w k (α) z k = w (α) � z . (27) 

Fig. 3 (right) shows the original points (green circles) for the 

ame data matrix as in Fig. 1 . In the same plot, the red circles rep-

esent the entries of z . Fig. 4 plots the entries of z and w (α) versus

ndex k ∈ [ K] and offers an important insight: as α varies, the win-

ow defined by w (α) periodically shifts over the lag k , covering 

ifferent entries of z . Similar to Colonnese et al. [8] , we notice that

or α taking values in { (k − 1) 2 π/K} k ∈ [ K] , S(α) takes the values of

he periodical convolution of the entries of w = w (0) and z . 

A few remarks are in order. Let us notice that a small asym- 

etry in the data distribution around the principal component 

ould affect the estimate of αopt . This notwithstanding, its effect 

n the estimate of θopt would be restrained to the inclusion or 

xclusion of few samples at the extrema of the selected half-plane 

see Fig. 4 ). Therefore, the estimate θopt is inherently robust with 

espect to the data distribution symmetry. Finally, let us observe 

hat a different window (e.g. Hamming or Hanning) could also be 

dopted to deal with possible asymmetries of the data distribution, 

specially far from the main data direction or for small number of 

amples. The study of the impact of different windows is left for 

urther study. 

Based on the above, the search for the optimal half-plane αopt 

n (17) can be rephrased as a cyclic shift parameter estimation 

roblem. That is, we estimate αopt in (17) as 

ˆ = 

2 π
( ̂ v − 1) , (28) 
K 

3 We notice that z can be straightforwardly computed by an extended set of 2 N

easurements, including the original ones and their π-shifted versions. s

4 
here ˆ v = argmax l∈ [ K] | g l | , g = IDFT ( ̃  w � ˜ z ) , ˜ w = DFT (w ) , and ˜ z =
FT (z ) . Operator � represents the element-wise product of two 

ectors of the same size. The discrete-time Fourier transform (DFT) 

nd inverse DFT (IDFT) are implemented by means of Fast Fourier 

ransform (FFT), with reduced cost O(K log K) . Finally, our algo- 

ithm returns u (�( ̂  α)) as an estimate of q L 1 . 

That is, L1-PC estimation is carried out in two steps. First, we 

stimate the angle αopt of the half-plane that contains L1-PC, by 

earch in the quantized discrete set { (k − 1)2 π/K } k ∈ [ K] . Second, the 
1-PC is estimated as u (�( ̂  α)) . We notice that any errors in the

stimation of αopt result into rotations of the half plane on which 

he sum in (15) is computed and affect the final accuracy of the 

1-PC estimation only if they cause erroneous inclusion/exclusion 

f data points at the borders of the half-plane. 

Thereby, the fact that the final estimate θ belongs to a discrete 

turns into an improved robustness of the L1 PCA estimator w.r.t. 

stimation errors on α. 

.3. Generalization to D ≥ 2 

The above analysis is straightforwardly generalized to the case 

 ≥ 2 . 

To the aim of generalization, let us consider the polar repre- 

entation of the i th observation vector in R 
D , x i = m i u ( φi ) , where

 i = ‖ x i ‖ 2 , φi ∈ [0 , 2 π) D −1 , and u ( φi ) is a hyperspherical coordi-

ate vector [9] . 4 In a nutshell, the proposed method in the general 

ase relies on the computation steps identified for the case D = 2 , 

amely: (i) accumulation of the module of the samples as a func- 

ion of the D − 1 phases, (ii) computation of the D − 1 -dimensional 

FT of the accumulation function, (iii) product with the DFT of the 

 − 1 -dimensional windowing function, and iv) IDFT of the prod- 

ct and identification of the maximum of the so obtained D − 1 - 

imensional sequence. 

In more detail, for D ≥ 2 and α ∈ [0 , 2 π) D −1 , window vector

 (α) extends to an order- (D − 1) tensor W ( α) ∈ { 0 , 1 } K×... ×K , de-

ned in (29) . 

 W ( α)] k 1 , ... ,k D −1 
= 

⎧ ⎨ 

⎩ 

1 , α1 − π/ 2 < 
(k 1 +1 / 2) , 2 π

K 
≤ α1 + π/ 2 , . . . 

αD −1 − π/ 2 < 
(k D −1 +1 / 2)2 π

K 
≤ αD −1 + π/ 2 

0 , otherwise 

. 

(29) 
4 For φ ∈ [0 , 2 π) D −1 , we define u ( φ) = [ cos (φ1 ) , sin (φ1 ) cos (φ2 ) , . . . , 

in (φ1 ) . . . sin (φD −2 ) cos (φD −1 ) , sin (φ1 ) . . . sin (φD −1 )] 
� . 
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5 We report here the complexity of the batch algorithm; let us observe that after 

the computation of the L1-PC over the first batch the computational complexity of 

the incremental version of the algorithm is lower and still linear with number of 

measurements N. 
imilarly, z extends to the order- (D − 1) tensor Z ∈ C 
K×... ×K , where 

 Z ] k 1 , ... ,k D −1 
= 

∑ 

i ∈I k 1 , ... ,k D −1 
m i and 

 k 1 , ... ,k D −1 
= { i ∈ [ N] : ∀ d [ φi ] d ∈ 
(k d ) 

or [ φi ] d + π ∈ 
(k d ) } . (30) 

hen, the L1-PC in R 
D is identified by first estimating 

ˆ  = argmax 
v ∈ [ K] D −1 

∣∣[ G ] v 1 , ... , v D −1 

∣∣, (31) 

here G = IDFT D −1 ( ˜ W � ˜ Z ) , ˜ W = DFT D −1 ( W (0 D −1 )) , and ˜ Z = 

FT D −1 ( Z ) . High-order DFT/IDFT are conducted by multiplying Z 

n all D − 1 modes with the FFT matrix. 

Then, we find 

ˆ = 

2 π

K 
( ̂ v − 1 D −1 ) (32) 

nd return the L1-PC estimate as u (�( ̂  α)) , where 

( ̂  α) = [ arg (m ( ̂  α1 )) , . . . , arg (m ( ̂  αD −1 ))] 
� , 

 (θ ) = 

∑ 

i ∈ [ N] 
‖ x i ‖ 2 u ( φi + β( φi , θ )) , 

nd 

( φi , θ ) = [ β([ φi ] 1 , θ ) , . . . , β([ φi ] D −1 , θ )] � . 

 summary of the proposed method is presented in Algorithm 1 . 

lgorithm 1 Proposed FFT-based L1-PC computation. 

nput: Data matrix X ∈ R 
D ×N = [ x 1 , . . . , x N ] , where x i = m i u ( φi ) 

s1. Compute ˜ W ← DFT ( W (0 )) . 

s2. Build Z and Compute ̃  Z ← DFT ( Z ) . 

s3. Compute G ← IDFT ( ˜ W � ˜ Z ) . 

s4. Find the index vector ̂ v of the largest absolute entry in tensor 

G . 

s5. Set ˆ α = ( ̂ v − 1 D −1 ) 2 π/K and return u (�( ̂  α)) 

.4. Incremental algorithm computation 

So far, we have presented a version of the algorithm working 

n a batch of data. An online, incremental computation of the best 

ngle version is herein derived. Specifically, we observe that the 

ormulation of the maximization in Eq. (31) allows to highlight 

he contribution of each and every incoming sample. Let as as- 

ume that an L1-PCA estimate is available given the set of available 

amples. Each new received sample requires just updating ˜ Z and 

omputing the new maximum. For the sake of simplicity, we out- 

ine the incremental computation for the case D = 2 in more detail. 

et us denote by g (n ) = IDFT ( ̃  w � ˜ z (n ) ) the convolution computed 

p to the n th observation. When a new observation with absolute 

alue m n +1 arrives, we have 

 
(n +1) = IDFT ( ̃  w � ˜ z (n +1) ) = IDFT ( ̃  w � ˜ z (n ) ) + IDFT ( ̃  w � 
˜ z (n +1) ) 

eing 
˜ z (n +1) the DFT of the incremental component. Let us 

enote by k + , k − the indexes of the phase intervals where the 

bservation and its π-shifted version belong. With these posi- 

ions, 
˜ z (n +1) is straightforwardly computed as follows: 
˜ z (n +1) = 

 n +1 e (k + ) + m n +1 e (k −) , being e (k ) the DFT basis vector e (k ) =
1 e − j 2 π

K 
k . . . e − j 2 π

K 
k (K−1) ] T . The element-wise DFT domain multipli- 

ation ˜ w � 
˜ z (n +1) is then computed as follows: ˜ w � 
˜ z (n +1) = 

 n +1 ̃  w � e (k + ) + m n +1 ̃  w � e (k −) . We recognize that the multipli-

ation by e (k ) in the DFT domain corresponds to a circular shift
5 
y k in the original domain. Thereby, denoting by CS(·, k ) a vector 
yclic shift operator by k , we straightforwardly compute g (n +1) as 

 
(n +1) = g (n ) + m n +1 CS (W , k + ) + m n +1 CS (W , k −) 

his operation requires K sums every new sample to compute the 

pdated values g (n +1) ; then, the maximum is updated by K com- 

arisons. The above described procedure is straightforwardly ex- 

ended to the case D > 2 . 

.5. Remarks 

The role of K K represents the number of angular windows and 

he FFT size. Therefore, it affects both computation cost and the 

recision with which the half-plane is determined. If K is too large 

ith respect to the number of available samples N, z k might not be 

stimated accurately, affected by an erratic error known as popula- 

ion noise. On the other hand, when both N and K tend to infinity, 

he entries of z tend to the magnitude weighted tomographic pro- 

ection of the probability density function of the observed samples 

nd the estimator of the cyclic shift αopt is asymptotically efficient. 

n practice, both N and K are limited and K affects the quantization 

tep with which the phase αopt is estimated. Still, K affects the ac- 

ual L1-PCA estimate only indirectly, namely through the summa- 

ion in (25) . This inherent robustness of the rank-1 component es- 

imate assures that quantization error in estimating the half-plane 

irection may be accepted in order to assure a better estimate z , 

hich in turn directly affects the sum forming L1-PC estimate. 

Complexity Finally, the computational complexity of the FFT 

ased algorithm, 5 accounting the main steps of sign changing, FFT 

omputing and max extraction on the FFT samples is approximated 

s 

 F F T = O 

(
N · D + D · K D log (K) + K 

)
for comparison sake let us recall here that the computa- 

ional complexity of the bit flipping algorithm [3] is C BF = 

 

(
N · D · min { N, D } + 3 · N 

2 + N · D 

)
). Clearly, the complexity of the 

roposed method is dominated by the FFT computational cost, 

hich increases with the data dimension D , whereas it smoothly 

cales with the number of measurements. Therefore, the method is 

ell suited to the big data framework where, despite single mea- 

urements may have a restrained dimension, a huge number N of 

easurements needs to be processed. This makes the proposed FFT 

ethod suitable for certain big data applications, ranging from ex- 

ended reality to bioinformatics, which process huge amounts of 

olumetric data, video point clouds, and more in general 2D Rie- 

annian manifolds embedded in 3D spaces. In these cases, the 

roposed method provides a computationally efficient solution to 

he L1 PCA problem in (1) even for large N . 

. Numerical studies 

Herein, we assess the performance of the proposed L1-PC esti- 

ator, also in the presence of outliers, comparing it with standard 

CA and L1-PCA [3] alternatives. 

.1. Synthetic data 

We first provide examples in the case D = 2 . In Fig. 5 we show

n example of L1-PC estimated on a data matrix X , drawn from 

ultivariate Gaussian distribution ( N = 625 , D = 3 ). The proposed 
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Fig. 5. Example of rank-1 L1 PCA estimated on a multivariate normal sample data 

set X for different percentages of outliers: (a) p = 0 ; (b) p = 2 . 5% and (c) p = 5% . 

f

p

t

a

(

(  

t

s

f

Fig. 6. Data matrix X drawn from multivariate Gaussian distribution ( N = 625 , D = 

3 ): original measurements (left plot) and projection on the unit sphere and plane 

separating the two half-spaces (right plot). 

Fig. 7. Estimated entries of z and window w ( N = 625 , D = 3 ). 

Fig. 8. Estimated L1-PC using the algorithm in Markopoulos et al. [3] and the pro- 

posed fast FFT based method. 

θ
c

d

s

b

Z
[

o  
ast FFT-based estimator maintains the accuracy and the resilience 

roperty of the L1-PCA estimator. 

Furthermore, we offer an example for D = 3 , with a data ma- 

rix X drawn from multivariate Gaussian distribution. The data 

nd their projection on the unit sphere are shown in Fig. 6 

 N = 625 ). To elaborate, we consider the bi-dimensional interval 

φ1 , φ2 ) ∈ (−π, π) × (−π, π) and we quantize it into K × K in-

ervals of width 2 π/K × 2 π/K. The magnitudes of the received 

amples are accumulated in z . Besides, a bi-dimensional window 

unction [ W ([ θ1 , θ2 ] 
� )] k ,k equal to 1 for θ1 − π/ 2 < 

(k 1 +1 / 2)2 π
K ≤
1 2 

6 
1 + π/ 2 , θ2 − π/ 2 < 

(k 2 +1 / 2)2 π
K ≤ θ2 + π/ 2 and zero otherwise is 

onsidered. After computing the circular convolution of the above 

efined functions, the optimal window displacement is found, as 

hown in Fig. 7 The orientation of the optimal L1-PC is determined 

y the optimal azimuth and elevation arg max k 1 ,k 2 | [ IDFT 2 ( ˜ W �

˜  )] k 1 ,k 2 | . The estimated L1-PC, obtained using the algorithm in 

3] and the proposed fast FFT based method are shown in Fig. 8 . 

The accuracy of the proposed FFT-based L1-PC is similar to that 

f the algorithm in Markopoulos et al. [3] , as it can be observed in
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Fig. 9. Histograms of the quadratic reconstruction error || x − q q � x || 2 on a multivariate Gaussian distribution ( N = 512 , K = 128 ). 
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Fig. 10. MSE obtained by the proposed FFT algorithm, the algorithm in Markopou- 

los et al. [3] , the L2-PCA and the three above mentioned competitors, for the case 

D = 2 (left) D = 3 (right) ( N = 1024 , p = 5% , K = 128 , 20 Montecarlo runs). 

L  
ig. 9 , where the histogram of the quadratic reconstruction error 

| x − q q � x || 2 observed on the N samples is computed. 

We now compare the proposed approach with i) the approxi- 

ated the L1-PC obtained by substituting b opt with the ±1 quanti- 

ation of the highest eigenvalue eigenvector of the N × N matrix 

 
� X (denoted as EIG in the following) ii) the fixed-point itera- 

ion method of [10] (denoted as FP in the following). In Fig. 10 we

resent the Mean Square Error obtained by the proposed FFT algo- 

ithm (FFT), the algorithm in [3] (L1), the L2-PCA (L2), and the two 

bove mentioned competitors EIG and FP, for the case D = 2 (left) 

 = 3 (right) ( N = 2048 , p = 5% , K = 128 , 20 Montecarlo runs). The

roposed fast FFT based algorithm maintains the resilience prop- 

rty of classical algorithms, and it proves more resilient than fast 

tate-of-the-art competitors. 

In Fig. 11 , we plot the Mean Square Error (MSE) per run versus 

he algorithm Computational complexity for the proposed FFT al- 

orithm (black points) and the fast competitors EIG (cyan points), 

nd FP [10] (blue points) for D = 2 (left) and D = 3 (right) ( N =
024 , p = 5% , K = 128 , 20 Montecarlo runs). 6 We appreciate the re-

uced MSE achieved by the FFT based, at a computational com- 

lexity comparable to the fastest but less accurate algorithm in 

wak [10] . Let us remark that this favourable condition is observed 

or small D , and large N. This condition is found in different appli-

ations dealing with big data acquired on a plane or a surface. A 

elevant example is represented by point clouds, which are lever- 

ged in emerging processing fields such as extended/augmented 

eality applications. 

As far as point clouds are concerned, a relevant application of 

he proposed method is that of point cloud registration, which ex- 

loits L1-PC computation. Due to noisy acquisition and huge num- 

er of measurements, conventional methods are error prone or 

omputationally heavy. In Fig. 12 a 3D point cloud of N = 35 , 947 ,

oints, each of dimension D = 3 , is plotted, for no outliers (left)

nd 5% outliers (right). For both the clouds the rank-1 L1 PCA is 

omputed using the FFT-based method ( K = 128 ). The estimate ap- 

ears stable with respect to the noise. 

.2. Real data 

We now provide results of applications of the FFT based L1 

CA method to real data. Specifically, we selected two point clouds 

etrieved from 3D scanning of real objects’ dataset as described in 
6 For the sake of simplicity, the EIG algorithm computational complexity has been 

pproximated as CC EIG ≈ N 2 , whereas for the algorithm in Kwak [10] we set CC FP ≈
 NDN iter , N iter = 10 

c

r

o

7 
i et al. [11] . 7 Each point cloud represents a real 3D object (Ikea

hair) by a number of 3D points N equal to 9400 and 26,001, 

espectively. For both the point clouds, we have computed the 
7 The dataset is available inline at http://graphics.stanford.edu/projects/ 

bjectsensing/ 
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Fig. 11. MSE versus computational complexity (CC) by the proposed FFT algorithm (red points), the EIG algorithm (gray points), and the algorithm in Kwak [10] (blue points), 

for the cases D = 2 (left) and D = 3 (right) ( N = 1024 , p = 5% , K = 128 , 20 Montecarlo runs). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 12. Point cloud dataset “Stanford Bunny” (left); Noisy point cloud dataset and 

L1-PC (right), for N = 35947 , D = 3 . 

r

b

a  

a

L

Fig. 13. Point cloud data retrieved via real object scanning: original point cloud (a), 

noisy version (b), rank-1 L1-PCAs (red lines) ( N = 9400 , K = 64 ). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 14. Point cloud data retrieved via real object scanning: original point cloud (a), 

noisy version (b), rank-1 L1-PCAs (red lines) ( N = 26001 , K = 64 ). (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
ank-1 L1-PCA on the original data and on a version obtained 

y adding a white zero-mean Gaussian noise of standard devi- 

tion equal to σn = 0 . 1 . The results are shown in the Figs. 13

nd 14 , where the point clouds (colored points) and the rank-1 

1-PCA direction (red line) are shown. We recognize that the 
8 
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Fig. 15. Computational complexity (log-scale) of rank-1 L1-PCA estimation on the 

point cloud data retrieved via real object scanning using K = 64 , with N = 9400 

(blue bars) and N = 26001 (red bars). (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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ank-1 L1-PCA direction captures the main axis of the object 

nd it is stable w.r.t. the additive noise. Besides, we report the 

omputational complexity of FFT-based rank-1 L1-PCA on the two 

oint clouds in Fig. 15 . For the sake of comparison, we report the

omplexity of state-of-the-art algorithms for the same parameters. 

e recognize that the FFT-based algorithm is computationally 

fficient and it is a promising analysis tool for volumetric data 

nalysis. 

. Conclusions 

We reformulated L1-PCA into a cyclic shift parameter estima- 

ion problem and presented a fast estimator for the L1-PC based on 

FT. Compared to counterparts, our method is accurate and compu- 

ationally efficient. The choice of the FFT size allows for a trade-off

etween computational complexity and accuracy. Numerical simu- 

ations assess the algorithm’s performance in a variety of experi- 

ental conditions. 
9 
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