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1. Introduction

L1-norm Principal Component Analysis (L1-PCA) is a fundamen-
tal tool in robust data analysis, and it has recently found appli-
cation to big data problems such as unsupervised classification
[1] or linear discriminative analysis [2]. The need for efficient L1-
PCA computation has solicited recent research for fast convergence
iterative solutions leveraging, among other techniques, binary data
weighting [3,4], Grassmann average [5,6], Grassmann manifold op-
timization [7].

Here, we present a novel approach to L1-PCA estimation in the
Fourier domain. Specifically, we express the L1-PCA formulation as
a binary weighted combination of observations and we rephrase
the problem of rank-1 L1-PCA as a phase (i.e., cyclic shift) esti-
mation problem. Then, we solve this problem in the Fourier do-
main, using FFT so as to reduce computational complexity on big
data samples. Our numerical studies show that the resulting al-
gorithm maintains the intrinsic outlier resilience of L1-PCA while
being computationally much lighter than alternatives.

The structure of the paper is as follows. In Sections 2 and
3.2 we present the L1-PCA formulation and the proposed FFT-
based computation, respectively. In Section 4, we assess the per-
formance of the proposed methods in multiple numerical studies
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and compare it to alternative techniques in the literature. Finally,
in Section 5, we draw some conclusions.

2. Rank-1 L1-PCA

Let us consider the D x N data matrix X whose columns Xx;,i €
[N1=1{1,2,...,N}, comprise N measurements in RP, where N > D.
The L1-PC of X is defined as

q; = argmax [|X"q;. (M
qeRP
lall2 =1
In [3], authors showed that
Qi = Xby [ Xby |, (2)
is a solution to (1), when by is a solution to
max || Xb],. 3
max | Xbll 3)

For the formulation in (3), [3] proposed an efficient bit-flipping
based solver.

The role of the optimal binary vector b is illustrated in Fig. 1,
scatter-plotting the points of the data matrix X, drawn from mul-
tivariate Gaussian distribution (N =512, D = 2). The color of each
point Xx; represents its optimal binary weight (+1 sign) in [byq];.
The above observation highlights the intrinsic unsupervised binary
classification property of L1-PCA, which is leveraged in Martin-
Clemente and Zarzoso [1].

From Fig. 1, a further observation stems. It is clear that the role
of the optimal signs by; is to apply a mr-shift to the phase of a few
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Fig. 1. Scatter-plot of data matrix X drawn from multivariate Gaussian distribution
(N =512, D = 2). The color of each point Xx; represents the corresponding optimal
sign in [by ];. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

measurements so as to map them into the half-plane where they
add constructively, thus providing the maximum euclidean norm
[IXb;1]l2. Inspired by this observation, we rephrase the search for
the L1-PC as a search for the phase of the half-plane into which the
measurements, either unchanged or phase-shifted by a m-phase,
additively combine into a vector of maximum L2 norm.

3. Proposed Fourier-domain rank-1 L1-PCA
3.1. L1-PCA as an optimal half-plane search

For simplicity, we first study D = 2. We observe that the unit
vector q; assumes directions belonging to the set

©={0: 0 =arg(Xb), be {+1}"}, (4)

where arg(-) : R% — (0,2m] returns the angle of its argument
with the positive horizontal axis. We note that ® is a finite set
with cardinality |®| < 2N. Accordingly, the maximization in (1) can
be rewritten as

.
max X u(@) ] (5)
where u(@) = [cos(f),sin(d)]", so that

[[lu(@)||, = 1. Noticing that |a|
lem can be rewritten as

arg(u(9)) =60 and
= Maxy(41) ba, the above prob-

T T

Iz)lea(g( bg{lfﬁ [N]bx [cos(8),sin(8)]". (6)
Setting z; = (b; + 1)/2 and ¢; = arg(x;), (6) becomes
, Z cos(z;7) || x|l 2u(¢i) Tu(®) (7)

€0, Ze{ i<IN]

=, nax X[N:] 1% cos (zi7r ) [cos(¢), sin(¢y)

-[cos(8), sin(8)]" (8)

:Ge()nzlea{)él %V:] lIX; 1|2 cos(¢; — 0) cos(zimr). 9)
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Fig. 2. Scatter-plot of Gaussian data X (green points), examples of discrete direc-
tions in ® (black points), @-dependent half-plane (shaded light blue area) (N = 512,
D = 2). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Next, we introduce function 8 : R?2 — {0, 7}
o) = {5 s =7 (0
which absorbs the maximization over z so that (9) becomes
maX Z ||x1||2C05(¢1 Q)COS(ﬁ(d),,@)) (11)
O ian
_max Z IIXi]|2 cos(¢p; + B(¢;, 0) — 0) (12)
ie[N]
—max Z ”Xl ”2 (C05(¢1 + ﬁ(d)l’ 9)) CO5(9)+
ie[N]
+sin(¢i + B(¢i,0))sin(0)) (13)
=max > lIxillau(@i + B(di. 0)) Tu(d). (14)
ie[N]
Next, we define
m(0) =Y [Ixil2u(g; + B (¢, 6)) (15)

ie[N]

We notice that we obtain this vector if we add our data points,
after tuning their phases (adding m or nothing) so that each one
forms an acute angle with u(). Accordingly, we define M(6) =
lm(@)],, and ®(0) = arg(m(0)) -both piecewise constant func-
tions whose transitions are determined by the data point phases
{d)i}f\’: ;- Next, we notice that (14) can be rewritten as

max M(0)u(®(9)) "u(®). (16)

That is, if Oop is a solution to (16), then q;; = u(6gp) is the L1-PC
in (1).

The above maximization is carried out with respect to 6 € ©.
This is exemplified in Fig. 2 (N =512, D = 2), where we present
the scatter-plot of Gaussian data X (green points), and a few ex-
amples of the discrete directions in ® (black points). Adding the
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data points, unaltered or flipped so as to be tilted towards 6, we
obtain the vector m(6). The problem in (16) consists in finding a
direction 6 € ® (i.e. a black point in Fig. 2) such that the module
of m(#) is maximum at 6p. This condition is achieved when the
data measurements are phase-shifted by B(¢;, Oop) so as to add
constructively in the half-plane centered in 6,p:> Therefore, seek-
ing for Oy equals to seeking for a half-plane such that the phase-
shifted by B(¢;, Oope) add constructively.. The problem in (16) can
then be solved by first finding the half-plane in the direction « in
such that:

Oopr = argmax M(a) (17)
ae[0,2)

and then returning
Qopt = ¢(aopt)~ (18)

and then computing the related 6 as the phase ® (o) of their
algebraic sum. By doing this, the maximization of m(@) over the
discrete set ® is expressed in terms of the maximization of the
piecewise constant function M(«).

To recap, in the above analysis we firstly start from the search
for the maximum of (16) with @ varying in the discrete set ®, ex-
emplified by the black points in Fig. 2. Then, we replace it with the
search for the maximum of M(«) with « varying in the continu-
ous interval [0, 7r); this corresponds to maximize M(«) by vary-
ing the orientation of the « dependent half-plane (i.e. the blue
shaded area in Fig. 2). Finally, 6opr = ® (atop) is computed; remark-
ably, since M(«) is a piecewise constant function, different values
of aope can be found; still, all these values lead to the same Oop.
Thereby, we have managed to rephrase rank-1 L1-PCA as a search
for the phase aop of the half-plane into which the measurements,
either unchanged or phase-shifted by a 7, combine to a maximum
L2 norm vector. The optimal phase shifts /3(¢,~, ozop[) play the same
role as the optimal signs b;;: they apply a m-shift to the phase of
a few measurements. By doing this, the data are mapped into the
half-plane where all the measured points (either in their original
or flipped version) add constructively.

3.2. Fourier-domain computation

Based on the above analysis, we can now design an FFT-based
solver for L1-PCA. To that end, we will transfer our notation from
R2? to C. Accordingly, data point X; € R* can be represented by
m;el%i, where m; = ||x;||, and ¢; = arg(x;). Similarly, the metric in
(17) becomes M(«) = |M(a)|, where

M(@) = Y mefé@ (19)
ie[N]
and
e if lo — i < 7/2
§i(a) = {(pi t. otherwise 20)

Next, we proceed with estimating the maximizer of M(«), aopt,
as follows. First, we partition the range [0,27) into K inter-
vals/sectors of equal width 27 /K rads,

Ak) = [(k— 1)217”,

For every k, A(k) is centered around

kZIT”) k e [K]. 1)

S = %(k—uz). (22)

The result of the partition is summarized in Fig. 3 (left), that
shows the angular intervals {A(k)}yc[x), for K = 64 (blue sectors).

2 This is demonstrated by contradiction. In fact, should any of the measurement
be out of the half-plane centered in 6,p, is phase-shift by 7 would lead to an in-
crease in m(6) with respect to m(6,p ), which contradicts the definition of 6,p.
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Fig. 3. Left: Partition of [0,27) in K sectors {A(k)}cx). Right: Original points
m;e® (green circles) and values zye/% (red circles). Data matrix X drawn from mul-
tivariate Gaussian distribution (N =512, D =2, K = 64). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Given this partition, the data, exemplified by the green circles in
Fig. 3 (right), can be assigned to different intervals as follows. For
every k € [K], we define

I, ={ie[N]:¢ic A(k) or ¢p; + T € A(k)}. (23)

That is, Z;, contains the indices of data points that belong to A (k)
or are therein projected by a r-shift. For the sake of completeness,
we denote by z, the accumulation of the magnitudes of all data
points with index in Z;, namely z, = 37;.; m;. The values zie% are
represented by the red points in Fig. 3(right). These values will be
leveraged as a proxy of the original data in the following compu-
tation.
Let us consider w(a) € RX such that

1, a-mw/2<(k-1/2)% so+m/2

0, otherwise (24)

wi(a) = {

That is, w(a) represents a window function centered around an in-
dex depending on « and K. As « varies, the window of w(a) shifts
over different indexes k, covering different phase sectors A (k). This
operation represents the counterpart, in the discrete domain, of
sliding the a-dependent half-plane addressed in (17).

A visual summary of the variables involved in the above anal-
ysis is given in Fig. 4. Fig. 4(left) plots the partition into angular
intervals and the values z,e/% (red circles) computed accordingly.
Besides, the o-dependent half-plane is represented in shaded light
blue. From the definition in (24), we recognize that the kth angular
interval is associated to a value wy (o) depending on the plane ori-
entation. In Fig. 4(right) we plot z;, (red samples) and w; («) (blue
samples), i.e. the entries of z and w(«), as discrete functions of
the index k (N =512, D = 2, K = 64). This representation suggests
that the search for the optimal half-plane in Fig. 4(left) can be ex-
pressed as the search for an optimal window shift in Fig. 4(right).
This intuition motivates the derivation of the FFT-based PCA com-
putation detailed in the following.

Based on the above definitions, for any « < [0, 277 ), the sum in
(19) can be rewritten by reordering the terms in groups of points
belonging to different phase intervals. Then we obtain:

M@) =) wi(e) )

ke[K] ir &(a)eA(k)

m;elsi@, (25)

Importantly, we notice that as K increases asymptotically, for
every k € [K], A(k) contracts around its center, §; -i.e., every x e
A (k) is asymptotically near §;. Accordingly, for large enough K, any
a, and i such that &;(a) € A(k), we can approximate &;(c) by §y.
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Fig. 4. Left: plot of the values zye/% (red circles), and a-dependent half-plane (shaded light blue area). Right: plot of the entries of z and w(a). Data matrix X drawn from
multivariate Gaussian distribution (N = 512, D = 2, K = 64). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

Accordingly, we estimate (25) as

M@~ Y w@) ¥

ke[K] i &(a)eA(k)

= > wi(@) z e,

ke[K]

m;el
(26)

where the z; is the sum of the magnitudes of data points in Z;.3
Next, let us assume that the data points are symmetrically dis-
tributed around a main direction. Then, for the values that wy(«)
is non-zero, the phases of symmetric samples’ sets elide each other
and we can approximate the summation with the absolute value,
i.e. the following equation stands:

M(a) = [M(@)| ~ Y w(@) z, =w(a)z.
ke[K]

(27)

Fig. 3 (right) shows the original points (green circles) for the
same data matrix as in Fig. 1. In the same plot, the red circles rep-
resent the entries of z. Fig. 4 plots the entries of z and w(«) versus
index k € [K] and offers an important insight: as « varies, the win-
dow defined by w(w) periodically shifts over the lag k, covering
different entries of z. Similar to Colonnese et al. [8], we notice that
for o taking values in {(k — 1)27 /K}k}, S(@) takes the values of
the periodical convolution of the entries of w = w(0) and z.

A few remarks are in order. Let us notice that a small asym-
metry in the data distribution around the principal component
would affect the estimate of oqp. This notwithstanding, its effect
on the estimate of Bopt would be restrained to the inclusion or
exclusion of few samples at the extrema of the selected half-plane
(see Fig. 4). Therefore, the estimate Qopt is inherently robust with
respect to the data distribution symmetry. Finally, let us observe
that a different window (e.g. Hamming or Hanning) could also be
adopted to deal with possible asymmetries of the data distribution,
especially far from the main data direction or for small number of
samples. The study of the impact of different windows is left for
further study.

Based on the above, the search for the optimal half-plane oy
in (17) can be rephrased as a cyclic shift parameter estimation
problem. That is, we estimate oy in (17) as

2w

&="F(-1), (28)

3 We notice that z can be straightforwardly computed by an extended set of 2N
measurements, including the original ones and their 7 -shifted versions.

where ¥ = argmax;c|g|. g =IDFT(W© Z), W =DFT(w), and Z =
DFT(z). Operator ® represents the element-wise product of two
vectors of the same size. The discrete-time Fourier transform (DFT)
and inverse DFT (IDFT) are implemented by means of Fast Fourier
Transform (FFT), with reduced cost O(KlogK). Finally, our algo-
rithm returns u(®(&)) as an estimate of q;;.

That is, L1-PC estimation is carried out in two steps. First, we
estimate the angle oy of the half-plane that contains L1-PC, by
search in the quantized discrete set {(k — 1)27 /K}k)- Second, the
L1-PC is estimated as u(®(&)). We notice that any errors in the
estimation of aop result into rotations of the half plane on which
the sum in (15) is computed and affect the final accuracy of the
L1-PC estimation only if they cause erroneous inclusion/exclusion
of data points at the borders of the half-plane.

Thereby, the fact that the final estimate 6 belongs to a discrete
® turns into an improved robustness of the L1 PCA estimator w.r.t.
estimation errors on «.

3.3. Generalization to D > 2

The above analysis is straightforwardly generalized to the case
D> 2.

To the aim of generalization, let us consider the polar repre-
sentation of the ith observation vector in RP, x; = myu(¢;), where
m; = |IXi]l2, @; € [0,27)P-1, and u(¢;) is a hyperspherical coordi-
nate vector [9].% In a nutshell, the proposed method in the general
case relies on the computation steps identified for the case D = 2,
namely: (i) accumulation of the module of the samples as a func-
tion of the D — 1 phases, (ii) computation of the D — 1-dimensional
DFT of the accumulation function, (iii) product with the DFT of the
D — 1-dimensional windowing function, and iv) IDFT of the prod-
uct and identification of the maximum of the so obtained D — 1-
dimensional sequence.

In more detail, for D> 2 and « € [0, 27)P-1, window vector
w(a) extends to an order-(D — 1) tensor W(a) € {0, 1}>x--xK de-
fined in (29).

1, al—n/2<("‘“#§a1+n/2,...
W@l .k, = ap g —m/2 < Gt 22T g 2.
0, otherwise
(29)
4 For ¢e[0,2m)P-', we define u(@p)=[cos(¢1), sin(¢;)cos(¢,),

sin(¢1) ... sin(¢p_) cos(¢p_1), sin(¢y) ...sin(¢p_1)]".
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Similarly, z extends to the order-(D — 1) tensor Z € CKx--xK where
[Z)e;....dpy = ez, i and

Ty, ko, = 11 € [N] :Vd [¢i]q € A(kg)
or [¢ila + 7 € Alkg)}. (30)

Then, the L1-PC in RP is identified by first estimating

1

¥ = argmax|[Gly,.... |- (31)
ve[K]P-1

where G = IDFTp_4 (W © 2),W = DFTp_4 (W(OD_])), and Z =

DFTp_1(Z). High-order DFT/IDFT are conducted by multiplying Z

in all D — 1 modes with the FFT matrix.

Then, we find
. 2T .
o= ?(V—ID—I) (32)

and return the L1-PC estimate as u(®(&)), where
(&) = [arg(m()), ..., arg(m(@p-1))]",
m@©) = 3 lIxillu(g; + B(@,.6)),

ie[N]
and

B(@:.0)=[Bi]1.0)..... BUdilp-1.)]".

A summary of the proposed method is presented in Algorithm 1.

Algorithm 1 Proposed FFT-based L1-PC computation.

Input: Data matrix X € RP*N =[xy, ..., xy], wherex; = m;u(¢;)

s1. ComputeW <« DFT(W(0)).

s2. Build Z and ComputeZ <« DFT(Z).

s3. Compute G « IDFT(W o Z).

s4. Find the index vectorV of the largest absolute entry in tensor
g.

s5. Set & = (V—1p_1)27 /K and return u(®(&))

3.4. Incremental algorithm computation

So far, we have presented a version of the algorithm working
on a batch of data. An online, incremental computation of the best
angle version is herein derived. Specifically, we observe that the
formulation of the maximization in Eq. (31) allows to highlight
the contribution of each and every incoming sample. Let as as-
sume that an L1-PCA estimate is available given the set of available
samples. Each new received sample requires just updating Z and
computing the new maximum. For the sake of simplicity, we out-
line the incremental computation for the case D = 2 in more detail.
Let us denote by g™ = IDFT(W ® Z™) the convolution computed
up to the nth observation. When a new observation with absolute
value my,q arrives, we have

g™ — IDFT(W @ 2"V = IDFT(W 0 Z™) + IDFT(W @ AZ™D)

being AZ™+D the DFT of the incremental component. Let us
denote by k., k_ the indexes of the phase intervals where the
observation and its m-shifted version belong. With these posi-
tions, AZ("*1) is straightforwardly computed as follows: AZ"+D =
mp1e(ky) + my1e(k-), being e(k) the DFT basis vector e(k) =

[1e %k, e iFKK-DIT The element-wise DFT domain multipli-
cation W AZ™D is then computed as follows: W® AZMHD =
My W o e(ky) + my W © e(k_). We recognize that the multipli-

cation by e(k) in the DFT domain corresponds to a circular shift
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by k in the original domain. Thereby, denoting by CS(-, k) a vector
cyclic shift operator by k, we straightforwardly compute g1 as

gD =g™ 4 my 1 CS(W, k) + My CS(W, k_)

This operation requires K sums every new sample to compute the
updated values g(+1); then, the maximum is updated by K com-
parisons. The above described procedure is straightforwardly ex-
tended to the case D > 2.

3.5. Remarks

The role of K K represents the number of angular windows and
the FFT size. Therefore, it affects both computation cost and the
precision with which the half-plane is determined. If K is too large
with respect to the number of available samples N, z, might not be
estimated accurately, affected by an erratic error known as popula-
tion noise. On the other hand, when both N and K tend to infinity,
the entries of z tend to the magnitude weighted tomographic pro-
jection of the probability density function of the observed samples
and the estimator of the cyclic shift aope is asymptotically efficient.
In practice, both N and K are limited and K affects the quantization
step with which the phase o,y is estimated. Still, K affects the ac-
tual L1-PCA estimate only indirectly, namely through the summa-
tion in (25). This inherent robustness of the rank-1 component es-
timate assures that quantization error in estimating the half-plane
direction may be accepted in order to assure a better estimate z,
which in turn directly affects the sum forming L1-PC estimate.

Complexity Finally, the computational complexity of the FFT
based algorithm,” accounting the main steps of sign changing, FFT
computing and max extraction on the FFT samples is approximated
as

Crrr = O(N - D+ D - KP log(K) + K)

(for comparison sake let us recall here that the computa-
tional complexity of the bit flipping algorithm [3] is Cgr =
O(N-D-min{N, D} + 3-N? + N . D)). Clearly, the complexity of the
proposed method is dominated by the FFT computational cost,
which increases with the data dimension D, whereas it smoothly
scales with the number of measurements. Therefore, the method is
well suited to the big data framework where, despite single mea-
surements may have a restrained dimension, a huge number N of
measurements needs to be processed. This makes the proposed FFT
method suitable for certain big data applications, ranging from ex-
tended reality to bioinformatics, which process huge amounts of
volumetric data, video point clouds, and more in general 2D Rie-
mannian manifolds embedded in 3D spaces. In these cases, the
proposed method provides a computationally efficient solution to
the L1 PCA problem in (1) even for large N.

4. Numerical studies

Herein, we assess the performance of the proposed L1-PC esti-
mator, also in the presence of outliers, comparing it with standard
PCA and L1-PCA [3] alternatives.

4.1. Synthetic data

We first provide examples in the case D = 2. In Fig. 5 we show
an example of L1-PC estimated on a data matrix X, drawn from
multivariate Gaussian distribution (N = 625, D = 3). The proposed

5 We report here the complexity of the batch algorithm; let us observe that after
the computation of the L1-PC over the first batch the computational complexity of
the incremental version of the algorithm is lower and still linear with number of
measurements N.
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Fig. 5. Example of rank-1 L1 PCA estimated on a multivariate normal sample data
set X for different percentages of outliers: (a) p=0; (b) p=2.5% and (c) p = 5%.

fast FFT-based estimator maintains the accuracy and the resilience
property of the L1-PCA estimator.

Furthermore, we offer an example for D = 3, with a data ma-
trix X drawn from multivariate Gaussian distribution. The data
and their projection on the unit sphere are shown in Fig. 6
(N = 625). To elaborate, we consider the bi-dimensional interval
(91, ¢2) € (-, ) x (—m,m) and we quantize it into K x K in-
tervals of width 27 /K x 2w /K. The magnitudes of the received
samples are accumulated in z. Besides, a bi-dimensional window
function [W([01,62]7)]i, «, equal to 1 for 6; — /2 < W <

Signal Processing 189 (2021) 108286

Fig. 6. Data matrix X drawn from multivariate Gaussian distribution (N = 625, D =
3): original measurements (left plot) and projection on the unit sphere and plane
separating the two half-spaces (right plot).

=T

-m/2

/2

+7
- -mi/2 0 /2 +7

Fig. 7. Estimated entries of z and window w (N = 625, D = 3).

5 5

Fig. 8. Estimated L1-PC using the algorithm in Markopoulos et al. [3] and the pro-
posed fast FFT based method.

O +m/2,60, —1/2 < W <6, +m/2 and zero otherwise is
considered. After computing the circular convolution of the above
defined functions, the optimal window displacement is found, as
shown in Fig. 7 The orientation of the optimal L1-PC is determined
by the optimal azimuth and elevation argmaxy, r, |[IDFT,(W ©
Z)]k1,kz|- The estimated L1-PC, obtained using the algorithm in
[3] and the proposed fast FFT based method are shown in Fig. 8.
The accuracy of the proposed FFT-based L1-PC is similar to that
of the algorithm in Markopoulos et al. [3], as it can be observed in
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Fig. 9. Histograms of the quadratic reconstruction error ||x — q q"x||, on a multivariate Gaussian distribution (N = 512, K = 128).

Fig. 9, where the histogram of the quadratic reconstruction error
||Ix —q q"x||, observed on the N samples is computed.

We now compare the proposed approach with i) the approxi-
mated the L1-PC obtained by substituting bop with the £1 quanti-
zation of the highest eigenvalue eigenvector of the N x N matrix
XTX (denoted as EIG in the following) ii) the fixed-point itera-
tion method of [10] (denoted as FP in the following). In Fig. 10 we
present the Mean Square Error obtained by the proposed FFT algo-
rithm (FFT), the algorithm in [3] (L1), the L2-PCA (L2), and the two
above mentioned competitors EIG and FP, for the case D = 2 (left)
D = 3 (right) (N = 2048, p = 5%, K = 128, 20 Montecarlo runs). The
proposed fast FFT based algorithm maintains the resilience prop-
erty of classical algorithms, and it proves more resilient than fast
state-of-the-art competitors.

In Fig. 11, we plot the Mean Square Error (MSE) per run versus
the algorithm Computational complexity for the proposed FFT al-
gorithm (black points) and the fast competitors EIG (cyan points),
and FP [10] (blue points) for D =2 (left) and D = 3 (right) (N =
1024, p = 5%, K = 128, 20 Montecarlo runs).> We appreciate the re-
duced MSE achieved by the FFT based, at a computational com-
plexity comparable to the fastest but less accurate algorithm in
Kwak [10]. Let us remark that this favourable condition is observed
for small D, and large N. This condition is found in different appli-
cations dealing with big data acquired on a plane or a surface. A
relevant example is represented by point clouds, which are lever-
aged in emerging processing fields such as extended/augmented
reality applications.

As far as point clouds are concerned, a relevant application of
the proposed method is that of point cloud registration, which ex-
ploits L1-PC computation. Due to noisy acquisition and huge num-
ber of measurements, conventional methods are error prone or
computationally heavy. In Fig. 12 a 3D point cloud of N = 35, 947,
points, each of dimension D = 3, is plotted, for no outliers (left)
and 5% outliers (right). For both the clouds the rank-1 L1 PCA is
computed using the FFT-based method (K = 128). The estimate ap-
pears stable with respect to the noise.

4.2. Real data

We now provide results of applications of the FFT based L1
PCA method to real data. Specifically, we selected two point clouds
retrieved from 3D scanning of real objects’ dataset as described in

6 For the sake of simplicity, the EIG algorithm computational complexity has been
approximated as CCgc ~ N2, whereas for the algorithm in Kwak [10] we set CCpp ~
4NDNj¢er, Niter = 10
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Fig. 10. MSE obtained by the proposed FFT algorithm, the algorithm in Markopou-
los et al. [3], the L2-PCA and the three above mentioned competitors, for the case
D =2 (left) D = 3 (right) (N = 1024, p = 5%, K = 128, 20 Montecarlo runs).

Li et al. [11].7 Each point cloud represents a real 3D object (Ikea
chair) by a number of 3D points N equal to 9400 and 26,001,
respectively. For both the point clouds, we have computed the

7 The dataset is available inline at http://graphics.stanford.edu/projects/
objectsensing/
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Fig. 11. MSE versus computational complexity (CC) by the proposed FFT algorithm (red points), the EIG algorithm (gray points), and the algorithm in Kwak [10] (blue points),
for the cases D = 2 (left) and D = 3 (right) (N = 1024, p = 5%, K = 128, 20 Montecarlo runs). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 12. Point cloud dataset “Stanford Bunny” (left); Noisy point cloud dataset and
L1-PC (right), for N = 35947, D = 3.

rank-1 L1-PCA on the original data and on a version obtained
by adding a white zero-mean Gaussian noise of standard devi-
ation equal to o, =0.1. The results are shown in the Figs. 13
and 14, where the point clouds (colored points) and the rank-1
L1-PCA direction (red line) are shown. We recognize that the

(a) 04 02 0 -02 (b) 04 02 0 -02

Fig. 13. Point cloud data retrieved via real object scanning: original point cloud (a),
noisy version (b), rank-1 L1-PCAs (red lines) (N = 9400, K = 64). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

(a) (b)

Fig. 14. Point cloud data retrieved via real object scanning: original point cloud (a),
noisy version (b), rank-1 L1-PCAs (red lines) (N = 26001, K = 64). (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 15. Computational complexity (log-scale) of rank-1 L1-PCA estimation on the
point cloud data retrieved via real object scanning using K = 64, with N = 9400
(blue bars) and N = 26001 (red bars). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

rank-1 L1-PCA direction captures the main axis of the object
and it is stable w.r.t. the additive noise. Besides, we report the
computational complexity of FFT-based rank-1 L1-PCA on the two
point clouds in Fig. 15. For the sake of comparison, we report the
complexity of state-of-the-art algorithms for the same parameters.
We recognize that the FFT-based algorithm is computationally
efficient and it is a promising analysis tool for volumetric data
analysis.

5. Conclusions

We reformulated L1-PCA into a cyclic shift parameter estima-
tion problem and presented a fast estimator for the L1-PC based on
FFT. Compared to counterparts, our method is accurate and compu-
tationally efficient. The choice of the FFT size allows for a trade-off
between computational complexity and accuracy. Numerical simu-
lations assess the algorithm’s performance in a variety of experi-
mental conditions.
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