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Safety Embedded Control of Nonlinear
Systems via Barrier States

Hassan Almubarak , Student Member, IEEE , Nader Sadegh , Member, IEEE ,

and Evangelos A. Theodorou

Abstract—In many safety-critical control systems,
possibly opposing safety restrictions and control
performance objectives arise. To confront such a con-
flict, this letter proposes a novel methodology that embeds
safety into stability of control systems. The development
enforces safety by means of barrier functions used in
optimization through the construction of barrier states
(BaS) which are embedded in the control system’s model.
As a result, as long as the equilibrium point of interest of
the closed loop system is asymptotically stable, the gener-
ated trajectories are guaranteed to be safe. Consequently, a
conflict between control objectives and safety constraints
is substantially avoided. To show the efficacy of the
proposed technique, we employ barrier states with the
simple pole placement method to design safe linear con-
trols. Nonlinear optimal control is subsequently employed
to fulfill safety, stability and performance objectives by
solving the associated Hamilton-Jacobi-Bellman (HJB)
which minimizes a cost functional that can involve the
BaS. Following this further, we exploit optimal control
with barrier states on an unstable, constrained second
dimensional pendulum on a cart model that is desired to
avoid low velocities regions where the system may exhibit
some controllability loss and on two mobile robots to
safely arrive to opposite targets with an obstacle on the
way.

Index Terms—Barrier functions, feedback control,
optimal control, safety-critical control.

I. INTRODUCTION

CONTROL theory has been a central element in today’s
fast growing, interdisciplinary technologies from simple

decision making problems to terrifically complex autonomous
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systems. Undoubtedly, advancements in technologies are faced
with unprecedented challenges. One vital challenge is safety.
Nonetheless, conflicting safety restrictions and control objec-
tives potentially appear in safety-critical control systems. The
main goal of this letter is to develop a control design method-
ology that satisfies safety constraints and evades the possible
conflict between safety constraints and control objectives. The
objective is achieved by embedding the safety constraints
in the system’s model through barrier states (BaS) which
are provided to the control law used to attain performance
objectives.

For a dynamical system, safety is classically verified by
invariance of the set of permitted states. The set of permitted
states is (forward) invariant if at some point in time it con-
tains the system’s state then it contains the state for all (future)
times [1]. To formally prove invariance and verify safety, bar-
rier certificates were introduced in the control literature [2]
(for a brief historical overview, see [3]). Extending the idea
to control dynamical systems, a set is said to be controlled
invariant, also called viable, if for any initial condition in the
set, the associated trajectory is forced to be in the set for
all future times using a proper control. Influenced by barrier
certificates and control Lyapunov functions (CLFs), control
barrier functions (CBFs) were introduced in [4], which were
further developed in [5]–[8]. CBFs can be looked at as state-
dependent hard input constraints which are commonly used in
quadratic programming (QP) fashion to produce a safe con-
troller [6], [8]. CBFs are becoming increasingly popular in
multi-objective control due to their ability of rendering sets
invariant and flexible unification with CLFs. Nonetheless, to
avoid conflicts in the CLF-CBF QP, one of the conditions
needs to be relaxed. For a complete review on CBFs, the reader
may refer to [3].

In this letter, inspired by adopting barrier functions to estab-
lish inequality constraints forming CBFs, we utilize barrier
functions to construct barrier states. Those barrier states (BaS)
create barriers in the state space forcing the search of a
stabilizing feedback control law to the set of safe controls.
Specifically, the barrier states are appended to the model of
the safety-critical dynamical system to generate a system that
is safe if the equilibrium point of interest is asymptotically
stable. Therefore, since safety and stability have been unified,
designing a stabilizing controller for the new model means a
stabilizing safe control for the original dynamical system. In
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other words, the safety property is embedded in the stability
of the system as the feedback controller is a function of the
system’s states and the barrier states, hence the name safety
embedded control. The proposed method is general enough to
be used with any valid barrier function. For standard barrier
functions, such as Log or inverse, we show that it is possible
to generate smooth or even analytic state equations for barrier
states if desired. Unlike control barrier functions, no explicit
knowledge of the relative degree of the system with respect
to the output describing the safe region is required.

The letter is organized as follows. Section II presents the
problem statement. In Section III, utilizing barrier functions,
we develop barrier states used to embed safety in the stabi-
lization problem. Subsequently, we implement the developed
concept to design simple safe linear controls in Section IV.
In Section V, we employ barrier states in the context of
constrained optimal control to meet safety and performance
objectives through minimizing an infinite horizon cost func-
tional. In Section VI, we show the effectiveness of the
proposed technique through safely stabilizing an unstable pen-
dulum on a cart model where it is desired to avoid low velocity
regions near the 90o angle. Moreover, a multi-robot example is
used where two simple mobile robots are to go to specific loca-
tions safely, i.e., without colliding while avoiding obstacles on
the way. Lastly, conclusion remarks are driven in Section VII.

II. PROBLEM STATEMENT

Consider the nonlinear control-affine dynamical system

ẋ = f (x) + g(x)u (1)

where x ∈ D ⊂ R
n, u ∈ U ⊂ R

m, f : R
n → R

n and g : R
n →

R
n×m are continuously differentiable and f (0) = 0, without

loss of generality. We wish to formulate a continuous stabiliz-
ing feedback controller u = K(x) that renders the nonempty
open subset C of D defined as C = {x ∈ D : h(x) > 0}
controlled invariant, where h : D → R is a continuously dif-
ferentiable scalar valued function that represents the safe set.
The set D represents the domain of operation which will be
further prescribed later in the letter. The set C, referred to as
the safe set, is said to be forward invariant with respect to the
closed-loop system ẋ = f (x) + g(x)K(x) if x(0) ∈ C implies
x(t) ∈ C, ∀t ≥ 0.

Definition 1: The continuous feedback controller u = K(x)
is said to be safe if C is forward invariant with respect to the
resulting closed-loop system ẋ = f (x) + g(x)K(x). That is,

h(x(t)) > 0 ∀t ≥ 0; x(0) ∈ C (2)

We refer to this as the safety condition.
Enforcement of the safety constraint may be facilitated by

means of a smooth scalar valued function B : C → R known as
a barrier function (BF) in the optimization literature. Popular
barrier functions include the inverse barrier function (a.k.a.
Carroll barrier) B(η) = 1/η and the logarithmic barrier func-
tion B(η) = log(

1+η
η

). The main properties of those types of
barrier functions are that they blow up at the boundaries of the
complement of C, i.e., limη→0 B(η) = ∞, limη→∞ B(η) = 0
and infη∈R+ B(η) ≥ 0. Another choice that has the advan-
tage of being analytic with a known power series expansion

is B(η) = tanh−1(e−η). The composite BF corresponding to
h that defines C is defined to be β(x) := B ◦ h(x). Note that
β(x) → ∞ if and only if h(x) → 0. The following Proposition
follows from Definition 1 and the choice of BFs.

Proposition 1: For the control system in (1), the feedback
controller u = K(x) satisfies the safety condition (2) if and
only if β(x(0)) < ∞ implies β(x(t)) < ∞ ∀t > 0.

III. BARRIER STATES FOR SAFETY EMBEDDED

STABILIZATION

As possibly conflicting safety constraints and control
performance objectives need to be avoided in safety-critical
control, current multi-objective frameworks, e.g., CBF-CLF
safe stabilization framework, avoid possible conflicts by relax-
ing one of the constraints to ensure feasibility of the solution.
This may result in an undesirable performance. To untangle
such a problem, we propose a provable safe control tech-
nique that satisfies the safety constraints and the performance
objectives simultaneously with no relaxation.

For a barrier function β(x) = B(h(x)) where h(x) defines the
safe set C, the idea is to augment the open loop system with
a new state variable z that is related to the recentered barrier
function [9], β(x)−β(0) to ensure that z = 0 is an equilibrium
state. If we simply set z to β(x) − β(0), the resulting state
equation would be

β̇(x) = B′(h(x))(Lf h(x) + Lgh(x)u)

= φ0(β(x))(Lf h(x) + Lgh(x)u)

where φ0 = B′◦B−1 and B−1 is the inverse of the BF. To safely
stabilize the origin of (1), however, we need to ensure stabiliz-
ability of the origin of the augmented system. The main issue
with augmenting β̇ as the state equation is that β(x) becomes a
redundant state and the resulting augmented system may not
be stabilizable in some cases. Fortunately, this issue can be
resolved by perturbing the barrier state equation through an
auxiliary function φ1 that ensures stabilizability of the origin
of the augmented system without affecting the safety guar-
antees. More specifically, we modify the state equation for z
according to

ż = φ0(z + β0)ḣ(x) − γφ1(z + β0, h(x)) (3)

where β0 = β(0), ḣ(x) = Lf h(x) + Lgh(x)u, γ ∈ R
+ and

φ1(ζ, η) is an analytic function of two variables satisfying

φ1(β(x), h(x)) = 0 and
∂φ1

∂ζ
(β0, h(0)) > 0

It can be seen that for all three BFs mentioned earlier, the
function φ0 := B′ ◦ B−1 is analytic with no singularities.
Moreover, it is worth noting that both φ0 and φ1 are for-
mulated independently of the system’s model based on the
barrier function and h(x). For instance, if ζ = B(η) = 1/η,
then φ0(ζ ) = B′(B−1(ζ )) = −ζ 2. Furthermore, letting
φ1(ζ, η) = ζ(ηζ − 1) satisfies the first condition φ1(ζ, η) = 0
along ζ = β(x) and η = h(x) since β(x)h(x) = 1 and the sec-
ond condition ∂φ1

∂ζ
= 2ζη − 1|β0,h(0) = 2β0h(0) − 1 = 1 > 0.

Table I provides the explicit expressions for φ0 and possible φ1
for most commonly used barrier functions. It should be noted
that the positive scalar γ is a design parameter that adjusts the
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TABLE I
FUNCTIONS φ0 AND φ1 FOR THREE BARRIER FUNCTIONS

rate at which z returns to β(x) − β0 if it deviates from it at
any instant of time. As a consequence, γ has some influence
on the design of the safe feedback control gains as we will
demonstrate in the simulation examples.

The following proposition shows that if z(0) is defined prop-
erly, then z(t) = β(x) − β0 and φ1(z + β0, h(x)) = 0, ∀t ≥ 0,
implying that boundedness of z guarantees satisfaction of the
safety constraint.

Proposition 2: Suppose that z(0) = β(x(0)) − β(0) and
β(x(0)) < ∞. Then, the auxiliary state variable z(t) generated
by the perturbed state equation in (3) along the trajectories
of (1) is bounded if and only if β(x(t)) is bounded ∀t.

Proof: We prove the Proposition by establishing that

z(t) = β(x(t)) − β(0), ∀t ≥ 0 (4)

Subtracting β̇(x) = φ0(β(x))ḣ(x) from both sides of (3), we
have ˙̃z(t) = φ̃0(z̃, x)ḣ(x) − γφ1(z̃ + β(x), h(x)) where z̃ =
z + β(0) − β(x) and φ̃0(z̃, x) = φ0(z̃ + β(x)) − φ0(β(x)). The
preceding differential equation has an equilibrium point at z̃ =
0 since φ1(β(x), h(x)) = 0 and φ̃0(0, x) = 0. Thus z̃(t) =
0, or equivalently z(t) = β(x(t)) − β(0), ∀t ≥ 0, provided
that z̃(0) = z(0) + β(0) − β(x(0)) = 0 as assumed by the
hypothesis.

If desired, multiple constraints can be combined to form one
BF, as done in the optimization literature, to create a single
BaS. Creating a single BaS is favorable in many applications
and helps avoiding adding many nonlinear state equations to
the safety embedded model which may increase the complex-
ity of the controller. A single BaS that represents different
constraints, however, may be highly nonlinear and may be
more difficult to use to design a safety embedded control.
Additionally, some flexibility on choosing design parameters
for each constraint, such as penalization of the barrier states
in the case of optimal control, will be lost since we will have
only one barrier state. It is important to mention that in some
applications, one could represent multiple constraints with one
function h(x) defining the safety set and then use a single BaS.

For q constraints, let β(x) = ∑q
i=1 B(hi(x)). Then,

β̇(x) =
q∑

i=1

B′ ◦ B−1
(

z + β0 −
q∑

j=1,j �=i

B
(

hj(x)
))

ḣi

and therefore the BaS can be found to be

ż =
q∑

i=1

[
φ0

(
z + β0 −

q∑

j=1,j �=i

B
(

hj(x)
))

ḣi

− γiφ1

(
z + β0 −

q∑

j=1,j �=i

B
(

hj(x)
)
, hi

)]
(5)

In the simulation examples, we use a single BaS to represent
multiple constraints for one problem and we use multiple ones
in the other to validate the proposed technique.

Now, we are in a position to create the safety embedded
model. By defining z = [z1, . . . , zq]T, if more than one BaS
is used, and augmenting it to the system (1), we get

ẋ = f (x) + g(x)u

ż = fb(x, z) + gb(x, z)u (6)

where fb(x, z) and gb(x, z) are defined according to (3) or (5).
By the definition of φ0 and the restrictions imposed on φ1, it
follows that both fb and gb are analytic if f , g, and h are ana-
lytic, and the subsystem ż = fb(x, z) + gb(x, z)u is stabilizable
at the origin. Hence, the combined system, which can be more
compactly described as

˙̄x = f̄ (x̄) + ḡ(x̄)u (7)

where x̄ =
[

x
z

]

, f̄ =
[

f
fb

]

with f̄ (0) = 0 and ḡ =
[

g
gb

]

, pre-

serves the continuous differentiability and stabilizability of the
original control system (1). Therefore, the safety constraint is
embedded in the closed-loop system’s dynamics and stabiliz-
ing the safety embedded system (7) implies enforcing safety
for the safety-critical system (1), i.e., forward invariance of
the safe set C with respect to (1).

Theorem 1: Suppose there exists a continuous feedback
controller u = K(x̄) such that the origin of the safety embed-
ded closed-loop system, ˙̄x = f̄ (x̄)+ḡ(x̄)K(x̄), is asymptotically
stable. Then, there exists an open neighborhood D of the ori-
gin such that u = K(x̄) is safe with respect to the safety region
C = {x ∈ D : h(x) > 0}.

Proof: Let us assume that the origin of the embedded
closed-loop system is asymptotically stable with a domain of
attraction A. Then, there exist open neighborhoods X ⊂ R

n

and Z ⊂ R
q of the origin with Z bounded such that

X × Z ⊂ A. Letting β := [β1 · · · βq]T, by the continuity
of β̃(x) = β(x) − β(0) on {x ∈ R

n : h(x) > 0}, the inverse
image β̃−1(Z) of Z by β̃ is an open neighborhood of the ori-
gin. Thus D := X ∩ β−1(Z) is also an open neighborhood of
the origin. For any initial condition x(0) ∈ C ⊂ D, it can be
seen that z(0) = β̃(x(0)) ∈ Z and x̄(0) ∈ A. Thus the trajec-
tories x̄(t), t ≥ 0, are bounded and converge to zero implying
that z(t) is bounded as well. By Propositions 1 and 2, β(x) is
also bounded guaranteeing the safety of u = K(x̄).

The remainder of the letter is devoted to synthesizing
safe feedback controllers that simultaneously stabilize (1) and
satisfy the required safety constraint (2) by stabilizing the
dynamical system (7) which unifies the two requirements. In
the next sections, we apply the proposed methodology to con-
strained linear control systems to generate safe linear controls
using pole placement and then to constrained optimal control
problems to synthesize optimal safe controllers.

IV. SAFETY EMBEDDED LINEAR CONTROL

Consider the linear time-invariant system ẋ = Ax + Bu sub-
ject to some safety constraint defined by a smooth function h.
Defining the associated barrier state, augmenting it and lin-
earizing the safety embedded model (7) around the origin
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yields the linearized safety embedded system ˙̄x = Āx̄ + B̄u
where

Ā =
[

A 0n×1
−γφ1x(β0, hx(0)) + φ0(β0)hx(0)A − γφ1z(β0, h(0))

]

B̄ =
[

B
φ0(β0)hx(0)B

]

It should be noted that this system may not be controllable.
This should not pose any problem, however, as φ1 guarantees
stabilizability which should be enough for us to design a safe
stabilizing controller. Although we may not be able to change
the location of the barrier state’s pole, it is sufficient to use
the states and the barrier state to construct a safe stabilizing
control. Next, we show an example where we form a barrier
state to design a safe stabilizing control while the linearized
system is stabilizable but not controllable.

A. Constrained Linear System Numerical Example

Consider the open loop unstable linear system given by
[

ẋ1
ẋ2

]

=
[

1 − 5
0 − 1

][
x1
x2

]

+
[

0
1

]

u

Assume that it is desired to stay in the safe set C = {x : (x1 −
2)2 + (x2 − 2)2 − 0.52 > 0} and that the closed-loop system’s
poles are −3 and −5. Using the inverse barrier function, the
linearized safety embedded system that we will use to design
the linear control will be

˙̄x =
⎡

⎣
1 − 5 0
0 − 1 0

4γ+4
7.752

4γ−24
7.752 − γ

⎤

⎦x̄ +
⎡

⎣
0
1
4

7.752

⎤

⎦u

where x̄ = [x1 x2 z]T. We use this augmented linear system
to design a safe linear controller using the pole placement
method to place the poles of the closed-loop controllable sub-
system at −3 and −5, achieving the desired performance.
When γ = 2, the safe stabilizing linear control is found to
be u = −4.43x1 +8.38x2 −5.63z. Note that although the con-
troller is linear with respect to the safety embedded system,
it is a nonlinear function of the original state x provided
z(0) = β(x(0)) − β(0). Fig. 1 shows that indeed the designed
linear controller is able to safely stabilize the system.

It is worth noting that this is a linear control design for
an inherently nonlinear control problem and thus limitations
and difficulties of linear controls to stabilize nonlinear systems
apply. One could use any nonlinear control technique to design
a safely stabilizing control. In the next section, we leverage
the infinite horizon optimal control in the process of designing
an efficacious optimal safe control as optimal control is a well
suited paradigm for such a problem and it facilitates the design
of nonlinear controllers.

V. SAFETY EMBEDDED OPTIMAL CONTROL

Consider the infinite horizon optimal control problem of
minimizing some cost functional subject to the dynamics (1)
and the safety condition (2). This has been a sought-after
problem recently [10]–[12] where CBFs are used to solve con-
strained optimal control problems. In these efforts, it can be
seen how difficult the problem is and thus various complex

Fig. 1. The top figure shows numerical simulations of the closed loop
system starting from different initial conditions (small circles) with differ-
ent γ s using the pole placement method to place the poles at (−3, −5).
The bottom figure shows a phase portrait of the closed loop system
under the safety embedded linear control u = −22.63x1 + 7.14x2 +
102.96z with γ = 1.

techniques have been developed to solve the problem. Using
the proposed BaS, this problem can be solved directly using
well-known unconstrained optimal control methods. A sys-
tematic approach toward solving this problem is to seek an
optimal feedback controller u = K(x̄) that minimizes

V(x(0), u(t)) = 1

2

∫ ∞

0
Q(x̄) + uTRu dt (8)

where Q : R
n+q → R

+ ∀x �= 0 is analytic and its Hessian is
positive definite and R 
 0, subject to (7). By Theorem 1, if
this optimal control problem is successfully solved, then both
safety and stability requirements are met. For such an infinite
horizon optimal control problem, a necessary and sufficient
condition is that the well-known Hamilton-Jacobi-Belmman
(HJB) equation is satisfied,

HJB := min
u

V ∗̄
x

(
f̄ (x̄) + ḡ(x̄)u

) + 1

2
uTRu + 1

2
Q(x̄) = 0 (9)

with a boundary condition V∗(0) = 0 where V∗ is the optimal
solution, a.k.a. the value function, and V ∗̄

x = ∂V∗
∂ x̄ .

Theorem 2: Consider the optimal control problem (7)-(8)
with analytic f (x), g(x) and h(x) and suppose that the pair
(
∂f
∂x (0), g(0)) is stabilizable, Q is analytic with positive definite

Hessian and R 
 0. Then, there exists a unique analytic value
function V∗(x̄) satisfying the HJB equation (9), which yields
an optimal safe feedback control

u∗
safe(x̄) = −R−1ḡ(x̄)V ∗̄

x (x̄) (10)
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Moreover, V∗(x̄) is a Lyapunov function and u∗
safe renders the

origin of the closed loop system f̄ (x̄) + ḡ(x̄)u∗
safe(x̄) asymp-

totically stable. Therefore, the barrier state z is bounded
guaranteeing the generation of safe trajectories.

Proof: As remarked earlier in the letter, the embedded
system (7) preserves the continuous differentiability and stabi-
lizability properties of (1) and thus satisfies the analyticity and
stabilizability assumptions in [13]–[15] hence guaranteeing the
existence and uniqueness of the value function V∗(x̄) and the
corresponding optimal controller u∗

safe(x̄) described in (10).
Furthermore, the origin of the resulting closed loop system is
asymptotically stable by Lyapunov stability theory [14], [16]
and by Theorem 1, u∗

safe(x̄) is safe which completes
the proof.

Various techniques have been proposed in the literature to
approximate the solution to the HJB equation or the associated
optimal control [13]–[15], [17]–[20]. In the next section, we
utilize these efforts to produce a power series solution of the
value function and its gradient to produce the optimal safe con-
trol (10) for the optimal control problem (8). Specifically, we
mainly utilize the recursive analytic solution proposed in [14]
and the nonlinear quadratic regulator (NLQR) in [13].

VI. NUMERICAL IMPLEMENTATION AND EXAMPLES

To demonstrate the efficacy of the presented technique to
produce a safe and stabilizing control, we use a single BaS
to enforce safety for a model of an inverted pendulum on
a cart, and multiple barrier states for a multi-mobile robot
navigation task where two point-robots are asked to go to
intersecting targets while avoiding collision and avoiding some
unsafe region.

A. Second Order Inverted Pendulum on a Cart

This system is an unstable version with a state dependent
input matrix of the mechanical system with unity parameters
used in [7] to show the applicability of the Control Lyapunov–
Barrier Function (CLBF) approach. The system is given by

ẋ1 = x2

ẋ2 = sin(x1) − 0.5(tanh(10x2) + x2) + cos(x1)u

It is desired to avoid low velocities when the angle is half
way through to stabilize the pendulum at the upright position
to steer clear of the 90o angle where the system loses control-
lability due to the cos(x1) term in the input matrix g(x). That
is, there are two symmetrical decoupled unsafe sets and there-
fore the safe set can be represented by two functions h1 and h2
such that C = {x ∈ D | (x1−2)2+x2

2 > 1 ∩ (x1+2)2+x2
2 > 1}.

We pick the Carroll BF with γ = 5 and use equation (5) with
z(0) = β(x(0)) − β(0) to generate a single BaS. To generate
the optimal safe controller, it is chosen to minimize the func-
tional (8), with R = 1, Q = 1x2

1 + 50x2
2 + 0.5z. It is worth

mentioning that this is an optimal control problem and thus
different performances can be achieved using different cost
functionals.

Fig. 2 shows numerical simulations for the closed-loop
system under a 3rd order nonlinear quadratic regulator
(NLQR) [13], i.e., the approximated value function for the

Fig. 2. Numerical simulations of the closed-loop safety-critical system
starting from different initial conditions (small circles). The goal is to sta-
bilize the pendulum and avoid crossing the 90o angle with low velocities,
where the unsafe region is represented by the red circles. The proposed
technique successfully generates safe trajectories and safely stabilizes
the origin.

optimal control problem is of order four. Clearly, the proposed
technique is powerful enough to generate a safe and asymp-
totically stable closed loop system safety is embedded in the
stability of the overall system. It can be seen that there is a
small cusp when the trajectories cross the 90o angle which
is a result of the lose of controllability when cos(90o) = 0.
If low velocities were allowed at that specific region, that is
if no barrier states are used, the closed loop system will go
unstable.

B. Multi Simple Mobile Robot Collision Avoidance

In this example, two simple mobile robots are asked to nav-
igate their way toward prespecified targets. The robots are to
avoid colliding as well as avoid an obstacle on their way. The
robots dynamics are

ẋi =
[

ui1
ui2

]

, ẋj =
[

uj1
uj2

]

To avoid collision, a BaS is featured through a barrier function
that prevents the robots from getting too close to each other.
We pick the maximum distance between the two robots to
be δ = 0.1. Therefore, the associated safe set is {xi, xj ∈
D | ‖xi−xj‖2 > δ2}. Furthermore, we add an obstacle which is
represented by a circle at (0, 0) with a radius of 0.25. This calls
for a BaS for each agent. Hence, the overall safe set for each
agent is given by C = {xk ∈ D | ‖xi −xj‖2 > δ and x2

k1 +x2
k2 >

0.252, k = i, j}. For this example, we select the Log BF,
βl = log(

1+hl
hl

) for l = 1, 2, 3, to construct three barrier states,
where the first represents the distance constraint between the
two robots and the second and third barrier states represent
the barriers needed to avoid the obstacle for agent i and agent
j respectively. Using Table I, the barrier states are given by

żl = −γl

(
hl(e

zcl − 1)2 − ezcl + 1
)

− 4 sinh2(zcl/2)hlxul

with zl(0) = βl(x(0)) − βl(0) for l = 1, 2, 3 where γ1 =
15, γ2 = γ3 = 0.5, zcl = (zl + cl), cl = log(

1+hl(0)
hl(0)

), u1 =
[uT

i , uT
j ]T, u2 = ui and u3 = uj. The cost functional (8) is

selected such that R = I4 and Q = xT
i xi + xT

j xj + 0.001z2
1 +
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Fig. 3. Two mobile robots starting from two opposite points sent to
two opposite target points with an obstacle in-between. The two robots
arrive at the desired locations safely. It can be seen that the two robots
start by moving in a straight line toward their target points, which is the
optimal behavior, but start to steer away to avoid the obstacle and then
take some turns to avoid crossing the same point at the same time and
to avoid getting too close (less than δ distance) to each other as shown
in the bottom figure.

0.5z2
2 + 0.5z2

3. A 3rd order NLQR is used in this example.
As shown in Fig. 3, using the proposed technique, we are
effectively able to send the two robots safely to the targeted
positions while avoiding the obstacle as well as colliding with
each other. The robots get very close to each other at sometime
but never get too close, i.e., the distance between them is never
less than or equal to δ.

VII. CONCLUSION AND FUTURE WORKS

A novel construction of safety embedded controls through
the development of barrier states was presented. Through a
proper conversion of barrier functions, barrier states were
augmented to generate a nominal model which is safe if is
asymptotically stable. Using barrier states, the constrained
control problem was transformed to an unconstrained con-
trol problem, which makes the safety problem easier to be
considered with various control techniques such as optimal
control. Moreover, the BaS method is agnostic to the relative
degree of the function describing the safe set with respect to
the system unlike existing CBF based methods. Furthermore,
there is no need to relax the stability requirement to guarantee
safety as the two conditions are coupled and achieved simulta-
neously. The disadvantages of this approach include increasing
the dimension of the model and adding nonlinearity to the

model. The safety embedded model was used in constrained
linear control and in the context of optimal control to generate
safe stabilizing controllers. Simple linear controls and nonlin-
ear quadratic controls were used to show the efficacy of the
proposed method in various simulation examples.

Future work will include generalizations to nonlinear
stochastic systems and applications to infinite and finite
horizon stochastic optimal control as well as sampling-
based model predictive control formulations. Another line of
research includes generalizations of the proposed optimal con-
trol framework to min-max and H∞ optimal control problem
formulations. Finally, incorporating uncertainty quantification
methods into the augmented state space representation in (7)
is an active research.
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