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Abstract—Large-scale high-performance computing systems
frequently experience a wide range of failure modes, such as
reliability failures (e.g., hang or crash), and resource overload-
related failures (e.g., congestion collapse), impacting systems and
applications. Despite the adverse effects of these failures, current
systems do not provide methodologies for proactively detecting,
localizing, and diagnosing failures. We present Kaleidoscope,
a near real-time failure detection and diagnosis framework,
consisting of of hierarchical domain-guided machine learning
models that identify the failing components, the corresponding
failure mode, and point to the most likely cause indicative
of the failure in near real-time (within one minute of failure
occurrence). Kaleidoscope has been deployed on Blue Waters
supercomputer and evaluated with more than two years of pro-
duction telemetry data. Our evaluation shows that Kaleidoscope
successfully localized 99.3% and pinpointed the root causes of
95.8% of 843 real-world production issues, with less than 0.01%
runtime overhead.

I. INTRODUCTION

Large-scale high-performance storage systems frequently
experience a wide range of failure modes [1]-[4], including
reliability failures (e.g., hang or crash) and resource overload-
related failures (e.g., congestion collapse [5]). The net ef-
fects of these failures on systems and applications are often
indistinguishable in terms of impact, and their mitigation
strategies can vary significantly (e.g., throttling for congestion,
or restart for a hung process). The inability to mitigate failures
early enough can impact a single component (e.g., a data
server), enable propagation of the failure across multiple
interconnected components, or even cause a whole system
outage, thereby adversely impacting application performance
and resilience [6]-[12]. Thus, there is an need for not only
detecting the failure, but also identification of the failure mode
in real-time. As we show using a real-world failure scenario
from the Blue Waters supercomputer’s storage system (refer
§II-A), a reliability failure can be construed as a performance
problem and vice versa.

To address above problems, we propose Kaleidoscope, a
system that uses machine learning (ML) to detect a failure,
identify the failure mode, and diagnose the failure cause by
using existing monitoring data in near real-time. Moreover,
we have demonstrated Kaleidoscope and its scalability on Blue
Waters, which is the largest university-based high-performance
computing (HPC) system in the world, in terms of both
compute and storage nodes. We focus on high-performance
storage systems because they have the most failures and lost
compute hours'. For example, in 2018, NCSA reported that

UIn this paper, we identify the failures at the granularity of storage clients,
network path to storage, storage servers, and RAID devices.
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storage-related failures have accounted for 64.4% (i.e., >32
million core hours) of total lost core hours on a yearly basis.
Further, the problem is expected to be worse in emerging
and future exascale systems, with even lower mean time
between failures and higher-impact service outages, because
of increasing system scale, heterogeneity, and complexity [13],
[14].

Why Machine Learning? Kaleidoscope uses multi-modal
telemetry data from numerous monitors that provide system-
wide temporal and spatial information on performance and
reliability. The monitors either actively poll the system com-
ponents [15], [16] (e.g., with pings/heartbeats), or passively
aggregate performance and reliability measurements [15], [17],
[17]-[19] (e.g., based on server load). The problem with
telemetry data is that they are often noisy due to asynchronous
collection [18], [19], failure propagation [4], [10], [20], and
non-determinism in the system (e.g., in adaptive routing
and load balancing) [21]-[23]. Therefore, when analyzed in
isolation, telemetry data of a single modality may lead to
misdiagnoses, i.e., false positives (e.g., in the case of failure
propagation) and false negatives (e.g., in the case of partial
failures). Moreover, the vast amounts of available telemetry
data (on the order of TBs per day [24]) lead to cognitive
overload of system managers [25]. They cannot keep up
with the incoming data for identifying and debugging failure
issues, significantly delaying the identification and mitigation
of the failure.” To address those problems, Kaleidoscope uses
ML methods that use domain-guided methods to accurately
estimate the system state in the presence of noisy data, thereby
detecting failures and identifying the failure mode and failure
cause.

While existing approaches are useful [26]-[38], they have
significant drawbacks because they do not (i) jointly ad-
dress reliability failures and resource-overload-related failures;
(ii) focus on detecting and identifying failures and their failure
mode in storage systems (except [30], which focuses on
distinguishing network vs storage failures, and [15], [17],
which mostly focuses on offline diagnosis); and (iii) deal with
the difficulty of collecting/labeling training data, especially for
rare failure scenarios in production settings [32], [33].

Our Approach. Kaleidoscope is a near real-time failure
detection and diagnosis framework. It consists of hierarchical
domain-guided interpretable ML models: (i) a failure localiza-
tion model for identifying component failures (e.g., failures of

2For example, as we will show in §VII-C, a partial failure of an I/O load
balancer on Blue Waters, which was impacting application performance by
as much as 25%, remained undetected for several weeks.



compute nodes, load balancers, the network, storage servers,
and RAID devices), and (ii) a failure diagnosis model for
identifying the failure mode of a system component as either
a resource-overload-related failure or a reliability failure.

The failure localization model uses ML and I/O path-
tracing data to estimate the failure state of the storage compo-
nents. I/O path-tracing data provide information on the route
taken by the request (from the storage client on the compute
node to the disk on the storage server) and the availability
of the components on the route. The model incorporates the
insight that the success of multiple I/O probes (e.g., a write
I/0 request) indicates that the components on the request path
are healthy with a high probability. Each measurement in the
I/O path-tracing data provides information on only a subset of
storage components. Hence, the model jointly analyzes the
I/O path-tracing data from multiple probes, and infers the
probability of component failures.

To address the problem of noisy and multi-modal telemetry
data and their joint analysis, our ML model uses the prob-
abilistic graphical model (PGM) formalism to express the
statistical dependence between the system components and the
path-tracing data. Here, the failure state of each component
is modeled as a hidden random variable; the path availabil-
ity (i.e., the probability that an I/O request will complete
successfully) is modeled as observed random variables; and
the statistical dependence among random variables is derived
using the design and implementation details of path-tracing
monitors, the storage system, and the system topology. The
proposed ML model is based on the insight that (i) even
though individual path-tracing measurements might be noisy,
(i1) groups of different measurements that are related to one an-
other can be jointly considered to reduce the noise and estimate
the failure state of the components, and (iii) the underlying
statistical relationships between the storage components and
the telemetry data can be used to correct for noise. We derive
those statistical relationships by using the system topology and
the paths taken by the I/O requests.

Although PGMs require less data for training and inference
(compared to current approaches [32], [33]), dynamic collec-
tion of path-tracing data can be expensive due to intrusive
instrumentation and data collection, which can interfere with
application performance. To address that problem, Kaleido-
scope uses Store Pings, a set of low-cost and low-latency
probing monitors that not only probe a disk from a client by
using an I/O request and record the response time (similar to
ioping [39]), but also, unlike ioping, provide a mechanism for
pinning (i.e., enforcing the use) of specific components on the
I/O request path (e.g., a disk, or data servers).

It is hard to distinguish between different failure modes
because of limited observability, measurement noise, and fail-
ure propagation effects (described in §11-B). Notwithstanding,
we have demonstrated that the proposed failure diagnosis
model, which is a domain-informed statistical model, is able
to accurately identify the failure mode and the likely causes
(as discussed in §V-B) by using (i) components’ telemetry
data, which include performance metrics and RAS logs, and
(ii) the failure state estimated using the failure localization
model. The failure diagnosis model uses the Local Outlier

Factor [40], an unsupervised anomaly detection method, which
answers the question, “Which modality of the telemetry data
(among RAS logs and performance metrics) best explains why
one component is flagged as failed, while others are marked
as healthy by the failure localization model?” The proposed
model indicates the failure mode of the failed component as
either a reliability failure (i.e., an error logs), or a resource-
overload-related failure (i.e., a performance metric).

Results. We have implemented and deployed Kaleidoscope
on the Cray Sonexion [41] high-performance distributed stor-
age system of Blue Waters, a petascale supercomputer at
the National Center for Supercomputing Applications at the
University of Illinois at Urbana-Champaign. Cray Sonexion
uses the Lustre file system [42], which is used by more than
70 of the top 100 supercomputers [43] and is offered by cloud
service vendors. The key results are as follows.

1) High accuracy: We used 843 production issues that were
identified and resolved by the Blue Waters operators as
the ground truth. Kaleidoscope correctly localized the
component failures across all failure modes and resource
overloads for 99.3% of the cases and accurately diagnosed
the failure cause for 95.8% of the cases by pointing to
the most likely failure cause and it distinguished between
reliability failures and resource overloads/contention within
5—-10 minutes of the failure incident. Moreover, Kaleido-
scope found additional failures that were not present in the
ground truth data, i.e., had not previously been identified.

2) Low rate of false positives: With respect to false pos-
itives, Kaleidoscope outperforms by 100x the state of
the art regression-based failure localization model, Net-
Bouncer [26] customized for cloud networks, which fo-
cuses only on identifying partial and fail-stop failures and
not on resource-overload-related failures and diagnosis.

3) Low overhead: The overhead introduced by Kaleidoscope
is less than 0.01% of the system’s peak I/O throughput.

4) Long-term characterization: Kaleidoscope was used to
improve our understanding of storage-related failures by
characterizing two years of production data.

II. BACKGROUND AND MOTIVATION
A. Blue Waters Storage Design

We describe the Cray Sonexion storage subsystem of Blue
Waters and introduce our terminologies. Cray Sonexion is
designed for large-scale HPC systems with I/O-intensive work-
loads, such as machine learning and large simulations. It’s
deployment on Blue Waters consists of 6 management servers,
6 metadata servers (MS), 420 data servers (DS), and 582 1/0
load-balancers (LNET nodes). The storage servers in Cray
Sonexion are connected via an internal Infiniband network
(storage network). LNET nodes connect 28,000+ computing
nodes (i.e., clients) on Cray Gemini interconnection network
(compute network) to storage network. Cray Sonexion uses the
Lustre parallel distributed file system to manage 36 PB of disk
space across 17,280 HDD disk devices. The disks are arranged
in a grid RAID [44] and are referred to as object storage
devices (OSDs). Each storage server is attached to one or more
OSDs. Lustre offers high-availability and failover features.
In Lustre, data servers are arranged as active-active pair to
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Figure 1: Propagation of I/O failure and challenges in identifying, localizing, and disambiguating the causes of I/O failures.

achieve load balancing and high availability for connected
OSDs, whereas metadata servers are arranged as active-passive
pair for connected OSDs. The computing nodes are diskless:
all I/O operations go by RPC to the LNET nodes, and the
LNET nodes forward the request to the storage servers.

B. Motivating Failure Scenario

We describe a real-world failure scenario (see Fig. 1)
which frequently occurs in the distributed storage system the
of Blue Waters supercomputer to illustrate the difficulty of
identifying the root cause of an application failure/slowdown
using telemetry data. The telemetry data obtained during this
failure scenario capture the following partial views:

1) Storage view. In this failure scenario, the telemetry data
indicated high load and increasing service time on a pair
of data servers. These data servers eventually hang and lead
to unavailability of the files stored in these data servers. At
the same time, other data servers (not shown in the figure)
do not show symptoms of high load.

2) Application view. In this failure scenario, the NAMD [45]
application issues open and write 1/0O requests. They are
handled via FS clients (kernel modules) on each compute
node. To write to the file, the FS client first opens the file
and gets the file handler by accessing the metadata server,
and then uses this file handler to directly write to the file
on disk via the corresponding data servers. However, in
this case, the write request fails because of the FS client
request timeout, despite the successful completion of the
open request. The request failure causes the applications
to fail. From the point of view of the application, the FS
clients were partially failing.

Both views hint at a problem in the system, they are not

sufficient for detecting and diagnosing the failure. The real

cause of the failure was deeply hidden in the server logs.

The analysis of the server logs revealed that a disk failure

in the storage device (OSD in Lustre) was the real cause of

the storage server and application failure. The failure of the
disk triggers a RAID disk rebuild, which in turn decreases the
effective I/0O bandwidth available to two data servers (DS-1
and DS-2). The decrease in bandwidth causes an increase in
the service time of I/O requests, which, in turn increases the
load on data servers DS-1 and DS-2, which, in turn leads to
server hang and unavailability of the files, ultimately causing
application to fail. Intuitively, it can be seen from the failure
scenario example that the failure mitigation will depend on
both the failure location and mode. Overall, we find that the

telemetry data, when analyzed in isolation and as illustrated
in Fig. 1, provide outcomes and results that in general seem
conflicting, even to experts. For example, the telemetry data
on the application hint at high memory utilization, whereas
telemetry data on the data server can hint at high load.

C. Challenges

The failure scenario above highlights multiple challenges:

Dataset heterogeneity & Fusion. Large-scale HPC systems
produce vast amounts of telemetry data (at application, net-
work, and storage layers) by using multiple monitors across
the system stack. These datasets are highly heterogeneous in
nature (e.g., sampling frequency of monitors), and provides
only partial observability into the system (i.e., storage and
application levels). Thus, highlighting the need to jointly
analyze datasets to avoid conflicting outcomes.

Data labelling and rare failures. There are challenges
in both labeling the failure data, and acquiring them. This
problem exacerbates due to a long tail of one-off, unique
failures that are previously unknown and hard to anticipate
based on historical data (discussed in §VII-C).

Measurement uncertainty, noise, & propagation effects, em-
anated from (i) timing issues in asynchronous measurement
and data collection intervals, (ii) non-determinism due to
path redundancy and randomness in routing, and (iii) failure
propagation leading to variability and noise in measurements.

Timeliness of analytics. Minimal number of monitors must
be placed strategically across the system (i) to provide spatial
and temporal observability, and (ii) to reduce data and time
required to perform analytics.

Those challenges make it difficult (i) to identify the failing
component, and (ii) to discern the failure modes. That leaves
system operators with no option but to comb through multiple
monitoring dashboards to form their conclusions about failures
based on their experience, and that significantly increases the
response time for mitigating the impact of failure (upto 4—
8 hours), leading to unexpected outages and impact. This
is untenable for future exascale systems that would require
realtime failure detection, diagnosis and mitigation.

III. KALEIDOSCOPE OVERVIEW

Fig. 2 shows the design of Kaleidoscope. The “Infrastruc-
ture” part (upper left) shows a simplified diagram of Blue Wa-
ters storage system (described in §VII). The “Monitoring” part
(lower left) shows the telemetry data collected from the system
across the stack (described in §IV). The “Hierarchical ML”
part (upper right, described in §V) shows the interconnected
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Figure 2: An overview of Kaleidoscope design and implementation.

ML models that provide failure localization (i.e., identifying
the failed component), and diagnosis capabilities (i.e., identi-
fying the failure mode and pointing to the anomalous telemetry
data indicative of the failure). The “Outputs” part (lower right)
provides an interpretable set of results and dashboards that can
be used by the system managers (described in §VI).
Kaleidoscope addresses the challenges of identifying failing
components and discerning the failure modes described in
§II-C via the following approaches:
1) Fusing heterogeneous telemetry data for increased observ-
ability. Kaleidoscope uses telemetry data from across the
system, capturing both the system and application views,
to increase spatial and temporal observability. The fusion
and comprehensive analysis of the data enable accurate
detection of both resource overload and reliability failures.
Hierarchical probabilistic ML models for dealing with
data uncertainty and noises. Kaleidoscope uses hierarchical
probabilistic ML models that use domain knowledge to
model measurement noises and failure propagation effects.
The hierarchical ML models enable data analysis at differ-
ent granularities and time scales.
Unsupervised ML models for dealing with insufficient sam-
ples and rare failures. Kaleidoscope uses unsupervised ML
models and leverages domain knowledge on the system
design and architecture to alleviate the challenges of (i) la-
beling the failures, and (ii) acquiring training data on rare
failures, especially on rare one-off failures.
Low-cost automation for timely analytics. The use of
unsupervised methods alleviates the need for costly training
and re-training of models. Store Pings (refer to §1V-A) are
low-cost monitor to provide observability into storage.

2)

3)

4)

IV. MONITORS & TELEMETRY DATA

A. End-to-end Probing Monitors

Kaleidoscope uses end-to-end I/O probing monitors (see
O & @ in Fig. 2), to collect path-tracing telemetry data.
that provide observability into the health of each component
on the path. For example, a successful probe from A to B
through C' and D reveals that all the components (A, B, C
and D) are healthy; if the probe fails, it means that at least one
component on the path is experiencing a failure. A probe is
marked as successful when it completes within a pre-specified
time limit (i.e., meets its service-level objective); otherwise
it is marked as failed. Although distributed path-tracing tools

exist (e.g., Zipkin [46] and Uber Jaeger [47] for microservices,
and Darshan [48] for HPC I/O, dynamic collection of tracing
data can be hugely costly. Moreover, the available tools only
provide application views and fail to provide observability into
the storage infrastructure view, which is critical, as we show
in §II-B. Hence, we created Store Pings, which are low-cost
probing monitors that not only probe a disk from a client
by means of I/O requests (similar to ioping [39]) and record
the response time, but also provide a mechanism for pinning
the path of the I/O requests to a disk through specific load
balancers and servers. The pinning of the path eliminates
the need for tracing of the request, and thereby reduces
the overhead of data collection on path availability. While
Store Pings are analogous to the ICMP-based network ping
(which provides visibility only into the network), the two are
significantly different. Specifically, Store Pings are designed
for storage systems and provide visibility across the entire
system stack, which includes compute, network/interconnect,
and storage subsystems. Since, Store Pings generate an 1/O
probing request of fixed size, an I/O failure occurs when the
I/O completion time is higher than or equal to one second. We
use one second as SLO because 99% of the Store Ping probes
on Blue Waters completes within one second.

Path Pinning. Store Pings provide path-pinning capabilities
by leveraging Lustre’s file system support for pinning of a
file on a specific object storage device (and hence the data
server),’ thereby eliminating the need to modify Lustre to
support path pinning. Since the metadata server has all the data
chunk information, an I/O request to the file uniquely identifies
both the OSD and the data server. It also prunes the number
of possible paths that can be taken by the I/O request (from
the client to the OSD). For example, a Store Ping executing
on a compute node (which is a storage client) and accessing
data on an OSD can use only 4 load balancers (LNETSs)
instead of all the LNETSs (of which there are more than 500)
in the system. Although pinning of all the components (e.g.,
pinning of I/O requests to a particular LNET) on the path
is desirable, it is unnecessary and would require changes in
the proprietary software and hardware in the compute and
storage system to support deterministic routing. We leverage
probabilistic models to handle non deterministic paths (§V).

3Store Pings executes independently of other applications. It creates and
operates on its own set of files to achieve the monitoring goals.



Increased Observability. The API of a Store Ping is:
store_ping(ost, *io op, kwargs), where *io_op is a func-
tion pointer to an I/O operation, and kwargs is the argument
of *io_op. Store Pings use direct I/O requests to avoid any
caching effect, which ensures that each I/O request traverses
all the way from the clients to the disks on the data servers. We
designed three types of Store Pings, CrWr, WrEx, and RmEx,
which correspond to three different I/O requests: (i) CrWr,
which creates and writes a new file; (ii)) WrEx, which writes
to an existing file; and (iii) RmEx, which removes an existing
file. CrWr and RmEx test the functionality of the metadata
servers, whereas WrEx tests the functionality of the data
servers (and, correspondingly, RAID disks). For example, a
CrWr requires two different back-end operations to complete:
(i) creation of a file by a metadata server on a random data
server (and the corresponding RAID disks) and addition of the
file entry to the metadata index, and (ii) opening and writing of
a file on the data server (and the corresponding RAID disks).
The payload of a write request is only 64 bytes. Together,
the three types of Store Pings test all the storage subsystems
(which include storage clients located on compute nodes,
network interconnections, storage servers, and RAID devices)
that are involved in ensuring successful I/O operations.

Placement. Store Pings are strategically placed in the sys-
tem to provide both spatial and temporal differential observ-
ability in near real-time. Store Pings generate probing requests
continuously at regular intervals to measure the availability
and performance of storage components. Note that Store Pings
should be enabled only on a subset of clients to reduce the
overhead of the Store Pings and their impact on existing I/O
requests, while providing complete spatial observability.

Selecting the number of Store Pings and their placement can
be formulated as a constraint optimization problem. The sub-
sets of components that can be tested together are limited by
the set of I/O paths, which are in turn limited by the topology,
probing mechanism, and I/O request routing protocols.

We use Boolean network tomography principle to solve the
constraint optimization problem of selecting the number of
Store Ping monitors and their placement [49]. Specifically,
the placement of monitors* in Kaleidoscope is guided by
the sufficient identifiability condition (discussed in [49], [50]),
which states that in a topology graph G of a system (in this
case the Lustre storage system) consisting of both monitor
and non-monitor nodes, any set of up to k failed components
is identifiable if for any non-monitor v € G and failure set
F with |F| < k such that v ¢ F, there is a measurement
path going through v but no node in F. In other words,
there must exist a set of I/O paths that can be used by
Store Pings to uniquely identify the failure-state of each
component and detect up to k concurrent failures. This is
also referred as spatial differential observability and allows
us to handle redundancies as long as the condition is met.
[49] provides set of rules and algorithms to meet sufficient

4In the network tomography formalism, both the ends of the probing path is
referred as monitors. However, in this work, we designate a storage component
as a monitor only if it executes Store Ping. A Store Ping path starts at a storage

client and ends at an object storage device (OSD). OSDs that do not execute
Store Ping are not referred as monitors.

identifiability condition to identify number of monitoring
nodes and their placement for any arbitrary storage system.
We omit the detailed discussion because of lack of space.
Blue Waters’s system managers not only want to identify
failures of storage components but also failures of service
nodes and login nodes. We place Store Ping monitors on
storage clients that (i) have different system stacks (e.g., kernel
versions), (ii) are physically located on different networks, and
(iii) execute different services (e.g., scheduling, user login,
and data moving). Specifically, we place monitors on all the
service nodes that provide scheduling and other capabilities
(64 nodes); import/export (I/E) nodes (25 nodes) that move
bulk data into and out of the storage system; and login nodes
(4 nodes), which launch applications. The I/E nodes and login
nodes are on the storage network, whereas the service nodes
are on the proprietary compute network fabric. This placement
scheme meets both the production requirements (given by
system managers) and theoretical requirements (from network
tomography principle).

Probing Plan. At any given time, Store Pings are executed
from (i) all login nodes, (ii) 1 out of 64 service nodes chosen
randomly, and (iii) 1 out of 25 I/E nodes chosen randomly.
That probing plan satisfies our minimal probing plan for
inferring storage system health, while providing reliability for
the monitoring infrastructure; if a client failure occurs, another
client can be chosen as a monitor. Store Pings are executed
every minute for each OSD, data server, and metadata server.
That results in 72 CrWr and 72 RmEx (from 6 clients to 6
metadata servers and 6 OSDs) and 5,184 WrEx (from 6 clients
to 432 data servers and 432 OSDs) requests per minute.

B. Component Logs

Kaleidoscope uses a comprehensive monitoring system
(similar to the monitoring system described in [31], [51]) to
collect performance measurements and RAS (reliability, avail-
ability, and serviceability) logs for each system component
(including compute nodes, load balancers, network switches,
and storage servers) in real-time (see Q in Fig. 2). We use
the Light-weight Distributed Metric Service (LDMS) [18], a
data-aggregation tool, to collect performance measurements
(e.g., loadavg, memory utilization, disk latency) for compute
nodes, load-balancers (LNETSs) and switches. We use ISC (the
Integrated System Console) [52] to collect performance mea-
surements on storage components (e.g., disks, and servers),
LDMS data, and RAS logs on a centralized server.

V. HIERARCHICAL MACHINE LEARNING MODELS

Kaleidoscope uses hierarchical domain-guided unsupervised
ML models to provide live forensics capabilities. These hier-
archical ML-models include: (i) failure localization model (for
identifying the failed nodes), and (ii) failure diagnosis model
(for identifying the failure mode of the failed node).

A. Failure Localization Model

Kaleidoscope uses a failure localization model (see @)
in Fig. 2) for identifying component(s) that are failed or
overloaded, and thus are leading to I/O failures. Kaleidoscope
uses telemetry data obtained from Store Ping monitors for that
purpose. However, Store Ping measurements are noisy (due to



asynchronous data collection, adaptive routing/load-balancing,
and failure propagation among others) and provide partial view
(i.e., the measurements only provide information on a subset
of the system components). These challenges are hard to deal
with traditional threshold or voting-based methods which often
lead to over-counting and misdiagnosis [26]. Therefore, we
model these noise/uncertainties in the telemetry data as well
as provide a formalism to fuse these partial views.

We use probabilistic graphical model (PGM) formalism,
in particular the factor graph (FG) model [53], to jointly
analyze and fuse the telemetry dataset from all the Store
Pings monitors placed on the system, while accounting for the
noise and related uncertainties. PGMs specify the relationships
between the random variables using a graphical structure,
where a node represents a random variable, and an edge rep-
resents the statistical relationship between random variables.
This graphical structure allows PGMs to capture complex
conditional independence between the random variables (i.e.,
domain knowledge), specified in a human interpretable man-
ner. Using such domain knowledge in turn reduces both the
data requirements (compared to supervised machine learning
methods [26], [30], [33]) as well as inference time. The
proposed PGM model is based on the insight that even though
individual Store Ping measurements might be noisy, groups
of different Store Ping measurements that are related to one
another can be jointly considered to reduce the measurement
errors, all while estimating the failure state of the components.
Kaleidoscope uses the most general form of PGMs called
factor graphs (FGs), which is a generalized formalism for
specifying and computing inference on PGMs. In our FG
model, the failure state of each component (which is hidden)
on a path and its corresponding path availability (which is
observed using Store Ping telemetry data) are specified as
random variables, and the functional as well as statistical
relationship between hidden and observed variables as (in
terms of path) factor functions. An inference on the FG
model allows Kaleidoscope to estimate failure state of each
component, and explain the observed telemetry data. This
determination of the failure state localizes failed components
in the system.

Formalism. We define the health, and hence the failure
state, of a component as as random variable, X l-(t), whose value
captures the probability of a component ¢ successfully serving
an I/O request at time ¢. We use the shorthand X; for Xi(t),
as the variable changes at every time step.’ In the absence of
measurements, X; is derived from a prior beta distribution®,
ie., X; ~ Beta(a, ), where o and /3 determine the shape of
the distribution. At any time step, « and [ are updated based
on the inference at the previous time step (described later in
the ‘inference’ paragraph).

Store Ping-based monitoring provides reachability measure-

5 All the variables defined below are time variant, however we use the same
shorthand to simplify the description.

%Beta distributions are: (1) continuous distribution which models the
success of an event (here an I/O request) and (2) commonly used as a
conjugate prior for Bernoulli and Binomial random variables (which we use
in our model). Moreover, use of conjugate priors drastically reduces the
computation time for inference [54].

ments between a client C; and an OSD OSD;. We use a ran-
dom variable Y/, osp,) to denote the number of successful
Store Pings between C; and OSD; in the interval (¢t — 1,t].
We model Y(c, osp;)’s prior using a binomial distribution,
}/(Ci,OSDj) ~ Binomial(A(ChOSDﬂ,N), where A(C’i,OSD,)
denotes the reachability from the C; to OSD;, and N denotes
the total number of Store Pings issued from the C; to OSD;.
We use binomial distribution because it allows us to compute
the probability of observing a specified number of “successes”
(in this case, number of successful Store pings between C; and
0OSDj), which we observe through our telemetry data.

We use the domain knowledge of underlying statistical
relationships between the telemetry data and the components’
health to calculate A(c; 0sp,)- These statistical relationships
are based on the understanding of system topology and I/O
request path. For example, lets consider the case when the
exact routing information of an I/O request is available using
a path tracing tool. Using the route information, we could
have determined A (¢, 05 p;) solely by the product of indi-
vidual component’s health (i.e., all components on the path
must work for the request to be successful): Ao, 05p,) =
[Lice((c:,08p,)) Xi- Where P((C;, OSD;)) denotes the path
between C; and OSD;.

Recall from §IV-A, that collecting path-tracing data is
expensive. Hence, we must model the redundancies (e.g.,
high availability pairs and failover) and non-determinism to
calculate A(¢, os p;)- In our system, a Store Ping destined
for an OSD may take a different path among several possible
paths depending on the load and routing policies. For the sake
of clarity, we illustrate the procedure to model redundancies by
modeling the path of I/O request through a high-availability
data server. We use the same methodology to model other
redundancies (e.g., load-balancers and network paths). An I/O
request to an OSD can be routed through one of the two
data servers connected to it. Hence, a destination OSD is not
reachable if both data servers (DS-1 and DS-2) connected to
it are unavailable or the OSD itself is not available. Rosp,,
the probability of an I/O request completing successfully from
a load balancer to an OSD;, is given by:

Rosp, = (1= (1—-Xps,) (1 = Xps,)) - Xosp,

where Xps, and Xpg, denote the health of data servers in the
HA pair associated with the OSD (denoted by OSD;). In the
equation, 1 — Xpg, and 1 — Xpg, determine the probability
distributions of the DS, and DSy to be failed respectively,
and their product determines the probability distribution that
both will be in a failed state. That probability distribution,
when multiplied by the probability distribution of the OSD’s
health, gives the reachability of the OSD from one of the data
servers. As shown in Fig. 3 (bottom half), the A(c; osp;)
between client C; and OSD; is given by:

Ac;0sp,) = Xe, - X1, - Xon, - Xsn,. - Xus, - Rosp;
where C;, L., CN,, SN,, MS,, and OSD; stand for client,
LNET, compute network, storage network, metadata Server,
and object storage device respectively, as shown in Fig. 3.

Here, the path availability A(c, 0sp;) only models the non-
determinism associated with load balancing on the data server.
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Figure 3: The FG model for failure localization. Non-shaded
circles represent hidden random variables, and shaded circles
represent observed random variables (measurements).”’

We follow a similar approach to derive A, os p,) for our
system. Moreover, Kaleidoscope models the temporal evolu-
tion by using estimated component health parameters from
previous inferences and uses the uncertainty to quantify the
confidence in the inference results.

The model described above can be represented using a factor
graph (FG) that models the relationship between different
random variables (shown as circles in Fig. 3) and functional
relationships known as factor functions (shown as dark boxes).
The relationships between random variables are extracted from
the system topology diagram, which can be derived from the
reference manuals or mined using tracing tools.

Fig. 3 shows a part of the FG that models (i) the health
of components that lie on the path of (C7,05D;) and
(C9,08D5), and the path availability for these components.
The components OS Dy, OSDs, DSy, and DSy form a high-
availability (HA) pair (i.e., a I/O request to a particular OSD
in the pair can be served by either of the data servers). The
circles in the FG represent random variables (e.g., a compo-
nent’s health). The factor functions, represented by squares,
encapsulate the relationships among the random variables. The
singleton factor functions f; encapsulate the prior belief on
the health of the component (which is known from a previous
time step or from training time), which is given by the beta
distribution (described above). The multivariate factor function
h(c;,05p,;) models the number of successful Store Pings on
a path, given by the binomial distribution (described above).

Inference. With the factor graph model, we can cal-
culate the health of each component X; in the sys-
tem. The expected health of a component 7 can be es-
timated as E[Xq, Xo, X3,...|Y,,,Y},, Yp,, ...]. Observations
(Yp,,Yp,,Yp,,...) and the prior belief on the health of com-
ponents (o and 8 for each X;) are needed at time step Tj.
Y}, is measured as the number of observed successful Store
Pings during a specified interval, and o and 3 are obtained

7Only paths from (C7,0SD1) and (C2,0SDs) are shown, for clarity.
Redundancies and network components have also been removed for clarity.

from the inference result at the previous time step, and at
time zero initialized to 0.5 (i.e., there is no prior information
of the components being either healthy or failed.). Intuitively,
the inference procedure biases the prior belief of the model
on the failure states of the components using the telemetry
data (i.e., Store Ping probing data) obtained in the current
time step. Kaleidoscope solves the inference task by using
the Monte Carlo Markov Chain algorithm [55], a technique
for estimating the expectation of a statistic from a complex
distribution (in this case, F[X1, X2, X3, ...[Yp,, Yp,, Yp,, ...])
by generating a large number of samples from the model
and directly estimating the statistic. We also quantify the
confidence in the inference results and use it to reduce the
false positives. Our model declares a component to be failed
only when the confidence in the inference is more than 75%.
Failure localization model is implemented using PyMC3, a
Python-based probabilistic programming language [56]. It uses
samples collected over five minutes, i.e., the results of 26,640
I/O requests, for inference.

Training. Note that training is not explicitly required for
the proposed model. However, it can help bootstrap the model
before deployment. One key advantage of using probabilistic
models like FGs is that training of such models can be
reduced to inference on the model parameters (i.e., estimating
the parameters of the used probabilistic distributions). In the
case of a parametric FG that parameterizes certain statistical
relationships (as in our model), we set up the training problem
just like the inference problem to pick the set of parameters
that can explain a data trace generated by the system.

B. Failure Diagnosis Model

The failure diagnosis model (see @ in Fig. 2) leverages
(i) components’ telemetry data, which include performance
metrics and RAS logs, and (ii) the failure state estimated
with the failure localization model, to understand the likely
cause of the failure. It uses the insight that a failed component
behaves significantly differently from its healthy counterparts.
For example, telemetry data obtained from a failed data server
may reveal high load (e.g., high memory utilization) or an error
(e.g., process crash), whereas the telemetry data of the healthy
data servers will not reveal any such failures.

We use that insight to formulate the failure-diagnosing
problem as an explainability problem that can be phrased as
a conditional question: “Which modality of the telemetry data
(amongst RAS logs and performance metrics) best explain the
reason why one component is flagged as failed while others
to be marked as healthy by the failure localization model?”

The failure diagnosis model answers that conditional ques-
tion by statistically comparing the measurements of the failed
component and the healthy components by using an unsu-
pervised ML-based anomaly detection method that selects a
measurement that best distinguishes the failed components
from the healthy ones. If there has been a reliability failure
(e.g., kernel crash), it will point to error logs, and if there
has been a resource-overload-related failure, it will point to a
performance metric, such as high server load. Note that the
conditional question is fundamentally different from the non-
conditional question “Which modality of the telemetry data



are anomalous across all components?” The non-conditional
question usually suffers from noises (e.g., each component
produces hundreds if not thousands of error logs that may
not be relevant to diagnosing the failure [37]), making it
challenging to precisely distinguish anomaly from normal
behavior. In other words, the conditional question eliminates
the noise in the first place. For example, we should not flag a
data server as failed just because its utilization is higher than
the other servers. However, if the failure localization model
identifies the server as failed and high load is the only factor
that differs the failed data server from the other healthy data
servers, then the failure of the failed data server is most likely
due to high load.

Diagnosing Reliability Failures. Kaleidoscope attributes
and diagnoses reliability failures based on log analysis. Work-
ing with the vendor and national labs, we have curated a
library of regular-expression patterns to filter error logs that are
indicative of reliability failures (e.g., kernel dump). Currently,
our library consists of 184 regular expression patterns. In the
absence of such a library, we could use existing log pattern
mining tools (e.g., Baler [57]) to automatically create a library
of regular-expression patterns from existing logs, and then
filter the patterns based on their severity level, i.e., by using
patterns of a severity level of 4 (warning) and above.

Kaleidoscope filters RAS logs of storage components by
using the library of aforementioned regular-expression patterns
(§IV-B). The error logs generated by the failed/failing compo-
nents are compared to the error logs of healthy components,
8 = Luo — |J Li, where L represents the log set, and

UO and HO Zreegrgsent failed/failing and healthy components,
respectively. If § # @, then J is provided as evidence, and the
failed status is attributed to component failures.

Diagnosing Resource Overload and Contention. Kalei-
doscope attributes and diagnoses resource overload/contention
based on the following telemetry data: (i) the server perfor-
mance metrics (e.g., loadavg), which captures the load of a
server at S-minute intervals; (ii) the RAID device performance
metrics (e.g., await time, which captures the average disk
service time (in milliseconds)), and taken by a disk device
to serve an I/O request; and (iii) the network performance
counters (e.g., stall).

Kaleidoscope compares the performances of storage com-
ponents of similar types (e.g., data servers) by using the local
outlier factor (LOF) algorithm [40]. The LOF is based on the
concept of local density, where locality is given by k-nearest
neighbors and the density is estimated by the distance to the
neighbors. By comparing the local density of a target with
the local densities of its neighbors, Kaleidoscope identifies
regions with similar densities, and pinpoints outliers that have
a substantially lower density than their neighbors in terms of
performance metric values. Using the LOF algorithm, we cal-
culate LOF score using the aforementioned telemetry data for
each component indicating the similarity/dissimilarity of the
component to other components in terms of its performance.
Using that score, we can ask the aforementioned conditional
question. If we find that the failed component has a score of 1.0
(i.e., the performance is similar to that of other components),

Table I: Effectiveness (measured by true positives) of Kalei-
doscope’s triage and root-cause analysis.

Localization True Positive False Negative Total

837 (99.3%) 6 (0.7%) 843
Diagnosis Correct Diagnosis = Misdiagnosis Total
Reliability Failure 340 (98.3%) 6 (1.7%) 346
Overload/Contention 468 (94.2%) 29 (5.8%) 497

then there is no reason to believe that the component failure
was caused by a resource overload/contention problem.

We chose LOF because storage components within a ho-
mogeneous group could have different modes of operations
that are not indicative of anomalies. For example, we found
normal states in which &k data servers had a low loadavg
(less than 10) and N — k data servers had a high loadavg
(larger than 64). However, if there is one data server with a
loadavg significantly higher than that of the rest, it indicates
an anomaly, and such behavior is effectively captured by LOF.
In Kaleidoscope, we use a configuration named LOF, and
declare a component to have “resource overload/contention”
if the LOF value of the failed component is LOF’. times larger
than the max LOF value of a healthy component. (The default
value of LOF;. is 1.5.)

We use the outlier-based method to ask the conditional
question for their simplicity and effectiveness. Our approach
is very similar to that of, and inspired by, Distalyzer [36].
However, Distalyzer is only suited to offline diagnostics as it
does not provide a methodology for identifying/labeling failed
components because it assumes that such a label is already
available. Thanks to Kaleidoscope’s hierarchical approach, it
is possible to integrate more sophisticated statistical methods
and log analysis methodologies [31], [37], [58].

Training and Inference. Failure diagnosis is completely
unsupervised, and therefore does not require any training.
However, the method requires a library of regular-expression
patterns that is created in the offline mode through manual
methods (using vendor support) or automatic methods (using
statistical learning techniques such as clustering [57], [59]).
Failure diagnosis is implemented in Python.

VI. EVALUATION

We have deployed Store Ping monitors on Cray Sonexion
for two years and Kaleidoscope’s live forensics on Cray
Sonexion for more than three months. However, to compre-
hensively evaluate the effectiveness of Kaleidoscope’s live
forensics, we fed the two years of monitoring data collected by
Store Ping monitors retrospectively. The evaluation is based on
843 production issues resolved by the Cray Sonexion operators
over the two-year span. Each of the 843 issues has a corre-
sponding report after manual investigation. We use the dataset
as the ground truth to measure the true positives and false
negatives. We also quantify the false positives by inspecting
100 randomly selected issues from the issues reported by
Kaleidoscope.

A. Effectiveness

Kaleidoscope observed 26,596 I/O failure events in total
(25,427 resource overloads and 1,169 reliability failures). The



number is significantly higher than the 843 production issues.

This is because many of the I/O failure events are transient

and short-cycled and thus does not lead to production issues.

In Cray Sonexion, operators use the following two policies
to identify important I/O failure events for manual investiga-
tion:

1) certain class of failures are auto-fixed by the system within
one minute of occurrence (e.g., network recovery to route
out bad links). Kaleidoscope finds out these cases and stops
alarms by monitoring recovery events.

2) resource overload/contention events are often transient in
nature and a mitigation action is triggered only when the
condition continues for more than 30 minutes. Fig. 4 shows
the histogram of the duration of these I/O failures.

Applying the above two policies on the results generated by
Kaleidoscope reduces 1/O failure events from 26,596 to 1,525.
We evaluated the effectiveness of Kaleidoscope regarding
its accuracy of both localizing the failed components and
diagnosing their root causes. Table I summarizes the results.
Localization accuracy. Kaleidoscope was able to localize
the failed components (caused by either reliability failures
or resource overload/contention) for 99.3% of the production
issues (837 out of 843). Only six out of 843 production issues
were not detected by Kaleidoscope. We read the report and
found that none of the six issues had any impact on the I/O
completion time. All six issues belonged to disk drive failures.
Those failures were recorded and flagged for repairs to avoid
RAID failures. Kaleidoscope additionally detected 688 events.
We refrained from labeling these additional events as false
positives because there was no evidence supporting that these
were not actual issues. On the contrary, we found that many
of the performance issues either went unnoticed because the
system was not monitored adequately (such as no dedicated
monitoring for disk load), or were ignored because there was
no automatic alerting mechanism to take remediation action
on the events in time.

Diagnosis accuracy. Among the 843 production issues, 346
were caused by reliability failures and 497 were caused by
resource overload. Applying the same heuristic on Kaleido-
scope output as used by the operators (described above),
we found that Kaleidoscope reported 340 reliability failures
and 468 overloads, which accounts for 98.3% of reliability
failures and 94.2% of the resource overload/contention issues
from the list of production issues (see Table I). Kaleidoscope
additionally detected 22 reliability failures and 558 resource
overload issues. We had managed to manually validate 100 of
those resource overload issues detected by Kaleidoscope and
they were indeed true.

Kaleidoscope presented error logs or performance metric to
the operator for further investigation. Kaleidoscope diagnosis
module missed 35 production issues: (i) 6 issues were missed
by localization module, and (ii) 29 resource overload issues
coincidentally had random noise in the logs, which confused
Kaleidoscope.

False Alarms & Misdiagnosis. It was challenging to measure
false positives (FP) due to the lack of ground truth dataset—an
I/O failure detected by Kaleidoscope but not being resolved
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Table II: Comparing failure localization in Kaleidoscope and
NetBouncer using 6 months of production data consisting of
186 issues.

True Positive False Negative Alarms
Kaleidoscope 184 2 4892
NetBouncer 110 76 116,072

could come from non-technical reasons (e.g., low priority
jobs).

To statistically estimate the FP rate, we randomly selected
100 failures identified by Kaleidoscope (referred as Kaleido-
scope events): 50 tagged with “reliability failures” and 50
tagged with “resource overload/contention.” Kaleidoscope’s
failure localization model was able to localize all true cases of
failures correctly. However, Kaleidoscope’s failure diagnosis
model misdiagnosed the root cause of four (out of 100) cases.

B. Baseline Comparison

Kaleidoscope is the first (to our knowledge) system that
supports real-time forensics for peta-scale storage systems. In
our work, we compare Kaleidoscope with NetBoucner [26].
We choose NetBouncer because it significantly outperformed
existing failure localization methods designed for large-scale
networks [60]-[62] and was tested on a real deployment.

Table II shows the localization accuracy of Kaleidoscope
and NetBouncer [26], the state-of-the-art failure localization
method. Our implementation was reviewed by the author(s)
of NetBouncer.

NetBouncer has 110 true positives (out of 186 true positive
cases found in 6 months of our retrospective data), i.e., it
misses 76 true cases that were captured by Kaleidoscope.
NetBouncer’s missing those issues because it is incapable of
modeling 1) non-determinism due to path redundancy and 2)
temporal evolution of the component state, which is modeled
by Kaleidoscope as discussed in §V-A. Furthermore, Kalei-
doscope reports a total number of 4,892 events, far less than
the number reported by NetBouncer. Given that self-recovered
failures and overload condition less than 30 minutes can be
filtered out, we can reduce the alarms to 412 (instead of 4,892)
and 92,000 (instead of 116,072) respectively. The significant
difference in the results of NetBouncer and Kaleidoscope is
due to NetBouncer’s inability of distinguishing I/O failure
events as reliability failures or overload/contention.

C. Monitoring Overhead

We used the IOR benchmark [63] to measure the monitoring
overhead in a worst-case scenario. The measurement used
stress testing to max out the throughput offered by Cray
Sonexion. IOR was running on 4,320 compute nodes during



Table III: Impact of 100 Store Ping monitors running at 30
second interval on IOR benchmark [63]. The mean value of
I/O throughput without Kaleidoscope is normalized to 100.
The off configuration is shared across both 100 and 6 montiors.

. 100 monitors 6 monitors
Kaleidoscope
Mean Std  Mean Std
Off 100  0.15 100 0.15
On 9758 0.32 99.99 0.12

this measurement. Table III shows the monitoring overhead
introduced by Store Pings when (i) 100 monitors were running
at 30 second interval and (ii) 6 monitors were running at
one-minute interval. Recall from §IV-A, we need 6 monitors
for our probing plan to provide sufficient measurements, and
we show result for 100 monitors to show the scalability of
our solution. Store Pings decreased mean throughput only
by less than 0.01% in Cray Sonexion. However, scaling to
100 monitors and increasing the frequency by 2x would
decreases the throughput by less than 2.42%. Note that the
average throughput in production is significantly below the
peak throughput under the stress test. We also measured the
time difference between the launch of Store Pings for a given
interval and found that all Store Pings were launched within
10 seconds and 98.4% were launched within 3 seconds.

VII. OPERATIONAL EXPERIENCE

Our interaction with Cray Sonexion’s operators shows that
Kaleidoscope help them understand the tail latency and per-
formance variation in near real time. Operators can detect
performance regression by comparing the measurements from
different points of time. Fig. 5 shows the latency measurement
histogram for the WrEx Store Pings (RmEx and CrWr are
omitted for clarity). We can see that 99% of WrEx completed
within one second (Service Level Objectives or SLO), and
only 0.14% failed with timeout. Furthermore, the operators
use Kaleidoscope to characterize storage-related failures in
Blue Waters. Such fine-grained characterization is not possible
before the deployment of Kaleidoscope as previously deployed
methods lacked joint analysis methods for identification, and
disambiguation of failures. While previous work [15] has
characterized 1/O failures, to the best of our knowledge, this
is the first study which considers the impact of both reliability
and resource-overload failures on I/O request completion time.

A. I/O Failures Caused by Reliability Failures

Kaleidoscope finds that the most common symptom of
reliability failures is performance degradation that leads to
I/O failures; only a very small percentage (0.057% of 346
failures (Table I)) of reliability failures caused system-wide
outages. For example, disk failure is tolerated by the RAID
array which uses RAID resync on hot-spare disks to protect
the RAID array from future failures. Such a resync or periodic
scrubbing of a RAID array takes away a certain amount of
bandwidth for an extended period of time, ranging from 4—
12 hours, which increases completion time of I/O requests.
As shown in Fig. 6, I/O requests during reliability failures
increase the average completion time of I/O requests by up to
52.7x compared to the average I/O completion time in failure-

free scenarios; the 99th percentile of I/O request completion
times is 31 seconds.

B. I/O Failures Caused by Resource Overloads

Kaleidoscope reveals that resource overloads frequently lead
to I/O failures. We used disk service time (await), returned by
iostat, as a metric of the load on disk devices. await measures
the average end-to-end time for a request including device
queuing and the time to service the I/O request on the disk
device. await is different from I/O completion time, which
includes the traversal time between the client and the disk.
Fig. 7 shows a histogram of disk service time (await) returned
by iostat using an event-driven measurement (triggered only
when loadavg exceeds 50). Such anomalies occur frequently.
We found 14,081 such unique events by clustering the per-disk
continuous data points in time with service times longer than
one second. Excessive 1/0. Excessive I/O requests create high

load on the server and lead to disk-level contention, causing
performance and stability issues. Fig. 8 shows a histogram
of the duration of excessive I/O requests by applications to
the metadata server. The duration of high I/O requests are
generally small (lasting less than 10 seconds); however, there
is a long tail of applications that send high I/O requests
for hours. In one case, an application caused high load on
the metadata server by opening and closing 75,000+ million
files in 4 hours, leading to 20,000+ I/O requests per second.
During that event, loadavg increased from 60 to 350 with the
50th and 99th percentile duration being 12 and 227 minutes,
respectively.

High load. The increase of I/O request completion time
has a strong correlation with the load on storage servers.
High load conditions are caused by a flood of I/O requests
on a storage server by either one application (e.g., extreme
I/0), or multiple applications competing for resources. Fig. 9
shows the histogram of load across all servers. It shows the
average and 99th percentile completion time of I/O requests
at different load values of the storage servers. Overall, we can
see a strong correlation between an increase in load and the
completion time of I/O requests. At high load (loadavg of
350), the average and 99th percentile I/O request completion
time increases to 1 second and 10 seconds, respectively.

C. Identifying One-off Failures

Kaleidoscope found many one-off, unique failures that do
not have a common pattern and are previously unknown. Such
failures can hardly be anticipated based on historical datasets.
Kaleidoscope found four such failures per month on average.
The following describes one of such failures. LNET nodes
serve as bridge between computing nodes and storage servers.
A request from a client to an OSD (a RAID disk device) can be
served by any of 4 LNET nodes. For any pair of (client, OSD),
the group of 4 LNET nodes are fixed and chosen in round-
robin when routing a request. In a rare failure incident, LNET
had partially failed, but the failure was not detected as Cray
Sonexion uses heartbeats to detect failures. The partial failure
caused LNET to drop requests passing through it, causing I/O
failures. The I/O bandwidth (in MB/sec) for the applications
served by the failed LNET node decreased by 25+% for
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(“Comp. T.” is the completion time of I/O requests.)

multiple hours. Upon investigation, it was found that the LNET
had suffered a software error that caused it to drop I/O requests
for weeks. Using Kaleidoscope, we detected the failure in <5
minutes.

VIII. DISCUSSION AND LIMITATIONS
A. Interpretability of ML models

Researchers provide diverse and sometimes non-overlapping
motivations for interpretability, and offer myriad notions of
what attributes render models and results interpretable [64].
Below, we discuss two aspects of this general interpretability
problem in the context of Kaleidoscope.

Model Interpretability. The proposed hierarchical unsuper-
vised ML models will significantly enhance interpretability,
and hence wide-spread adoption/deployment of Kaleidoscope.
1) We use models that inherently capture all the system

modeling assumptions. For example, Kaleidoscope through

Factor Graphs (FG), a probabilistic graphical model (PGM)

formalism, encodes that an I/O request failure occurs only

if one or more components on the I/O request path fail.
2) Our model incorporates aspects of the storage system, i.e.,
topology and storage system architecture details directly
into the graphical structure of the PGM. This allows
the overall hierarchical model to be constructed directly
from domain knowledge without requiring any pre-labeled
training data (in contrast to supervised methods like deep
neural networks).
Kaleidoscope can be extended to different system topologies
and storage system architectures (described later in §VIII-B).
Kaleidoscope automatically creates/changes the ML models
with appropriate parameters using the system topology and
file system I/O protocols (encoded through I/O request paths),
which can be provided as an input. For example, Kaleidoscope
will automatically add additional node(s) to the FG model
to capture the failure state of newly added component(s) in
the system. Similarly, if the I/O protocols change (i.e., the
path taken by an I/O operations change), Kaleidoscope will
automatically change the the factor functions to reflect new
I/O paths.
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Figure 10: Issue on Scratch OSD 208 and Projects MDS.

Result Interpretability. System managers of Blue Waters
have created several monitoring dashboards [51] to visualize
live data in multiple ways. As we highlight in the §I, these
analyses process vast amounts of telemetry data leading to
cognitive overload of the system managers. Kaleidoscope
strives to reduce this cognitive overload by providing intuitive
charts and summaries of the telemetry data to quickly identify
and understand the failure location and the failure mode (i.e.,
reasoning behind the ML output). An example of such a chart
providing evidence of failure localization inference is shown in
Fig. 10. The inference pointed to the existence of two concur-
rent failures: (i) a load issue on scratch data server 208 and (ii)
an outage of projects file system metadata server. Fig. 10 uses a
heatmap to depict a failure impact on clients (as an evidence).
Each cell in the heatmap shows the ratio of operations that took
longer than 1 second to the total number of operations issued
during 5 minutes interval by a given client (y-axis) to each
data server from Scratch, Home, and Projects Lustre partitions
(x-axis), with darker color means higher ratio. Clients 0, 1,
and 2 are the login nodes on Ethernet network, client 3
gives an aggregated view of all 25 Import/Export nodes on
Infiniband network, and client 4 provides an aggregated view
of all 64 service nodes on compute network. As seen from
the figure, scratch data server 208 and project metadata server
are behaving anomalously compared to rest of the cluster.
Thus, Kaleidoscope, in addition to detecting and diagnosing
failures, provides significant value in directly summarizing and
visualizing the relevant evidence for a detected failure. Without
Kaleidoscope the system managers will have to monitor a large
number of failures-modes and failed-components across every
instant of time.

B. Generalizing Kaleidoscope to other systems.

Kaleidoscope is not tied to a specific storage architecture.
Kaleidoscope uses (i) Store Ping monitoring data for failure
localization, and (ii) performance metrics and RAS logs for
failure diagnosis. Performance metrics and RAS logs are
already available on all storage systems. However, Store Pings
must be deployed on the storage system for running Kaleido-
scope. The goal of Store Ping is to test all components of



the storage system such as load balancers, network, metadata
servers, and object storage servers/devices (OSDs) using native
storage-system operations (such as read, write, remove, etc.).
Store Ping achieves this goal by pinning the files strategically
(discussed in §IV-A) onto OSDs such that the health of each
of these components can be inferred. Fortunately, such support
is available for all popular POSIX-compliant HPC storage
systems such as Ceph [65], Gluster [66] and GPFS [67]. Let us
consider Ceph. Storage cluster clients in Ceph use the CRUSH
(controlled replication under scalable hashing [68]) algorithm
to efficiently compute information about data location, instead
of having to depend on a central lookup table (e.g., in the case
of Lustre clients use MDS for file lookup). We can use CRUSH
(via crushtool) to get the mapping rules, and use those to
place the files to specific OSDs (and in doing so invoke MDS
operations). Finally, recall from above that the ML models
used by Kaleidoscope are not tied to specific system topology
and storage protocols.

C. Dealing with large number of alarms

There is a trade-off between detecting failures quickly and
generating too many alarms (due to transient failures and
micro-bursts). This is a fundamental limitation of any failure
detection algorithm (and it is not tied to ML). Hence, to
reduce the overhead (§VI-C), Kaleidoscope on Blue Waters
is configured to collect datasets at 60s intervals. Therefore,
Kaleidoscope cannot detect micro-burst performance anoma-
lies [69] and transient failures that are shorter than dataset
collection interval (60s). Detecting transient failures/ micro-
bursts is an active area of research as it allows designers to
craft load-balancing and quality-of-service techniques.

In this work, we report all failures irrespective of their
duration (except for the failures that are shorter than dataset
collection interval and cannot be detected by Kaleidoscope).
Hence, Kaleidoscope reported >26,000 failures, which is
much greater than production issues. We observe more alarms
than production issues because many of the I/O failure events
are transient and short-lived and thus does not lead to pro-
duction issues. In particular, most of the short-lived issues are
related to resource overload problems (caused by one or more
applications), which are filtered using heuristics discussed in
§VI-A. Moreover, as we show in §VII, Kaleidoscope caught
many failures that went unnoticed in the production for several
weeks despite all the existing monitoring tools.

IX. RELATED WORK

Kaleidoscope is built upon the wealth literature on failure
detection and localization [16], [26], [30], [31], [70]-[77].
Kaleidoscope is more than a failure detector. It not only
detects and localizes the failing component, but also reveals the
probable causes by pinpointing the error logs or performance
metrics. As discussed in §I, the capability of jointly localizing
and discerning the failure mode is critically important to devise
the right recovery strategies. To the best of our knowledge, no
existing solution provides such a capability.

Kaleidoscope is the first effort for designing a hierarchi-
cal domain-driven ML-based realtime failure detection and
diagnosis framework that leverages vast amounts of hetero-
geneous telemetry data for large-scale high-performance stor-

age systems. Kaleidoscope’s failure detection and diagnosis
capabilities are fundamentally different from prior work that
applies statistical or machine learning using system telemetry
data: (i) prior solutions are data hungry requiring big data
for training (e.g., [32], [33]), (ii) prior work supports either
(a) anomaly detection [34], [35], (b) failure localization [26],
[27], [29]-[3 1], or (c) failure diagnosis only [36], [37]. (iii) no
prior solution handles uncertainty in telemetry data and in the
system.

Kaleidoscope proactively detects, localizes, and diagnoses
I/O timeout and slowness before the applications being af-
fected. It uses active measurements from Store Ping monitors
to support ML-based failure detection and diagnosis. It is
different from passive or reactive approaches [30], [73], [78].
This requires very low monitoring overhead, i.e., Kaleidoscope
has to run on a small subset of client nodes and cannot
probe every single path deterministically. While active probing
is a well-established technique for failure detection [16],
[26], Kaleidoscope solves those key challenge by effectively
modeling non-determinism and uncertainty in the distributed
systems as discussed in §III. As a result, Kaleidoscope reduces
the number of probes by orders of magnitude compared with
existing methods [16], [26], [30], [77]. In fact, active measure-
ments are applied in limited context for storage subsystems
(e.g., TOKIO [15], [79]). However, these probes have high
overhead, and hence are executed once in a day.

X. CONCLUSION

This paper advocates the need for identifying and diagnos-
ing resource overload and reliability failures jointly to effec-
tively coordinate recovery strategy. We build Kaleidoscope and
deploy it on a petascale production system to disambiguate
component failures from resource overload/contention issues.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
0.1 Dataset Collection

0.1.1  Store Pings. Blue Waters using Jenkins framework triggers
Store ping monitors to probe/measure response time of each OSD
every minute from pre-specified clients. Store pings execute follow-
ing probes:

e create (called as CrWr in this paper)

o write (called as WrEx in this paper)

o single file remove time (called as RmEx in this paper)

Using the response time of various file system commands on each
OSD, it is possible to measure performance degradation as well as
unavailability of HA servers as discussed in Section IV.A.

Placement. We execute Store Pings from following categories of
node.

(1) H2ologin1 (represents 1 of 1 node, Dell, SLES11, IB),

(2) H2ologin2 (represents 1 of 1 node, Dell, SLES11, IB),

(3) H2ologin3 (represents 1 of 1 node, Dell, SLES11, IB),

(4) H2ologin4 (represents 1 of 1 node, Dell, SLES11, IB),

(5) IE (represents 1 of 25 DTN nodes, Dell, RHEL6, IB), and

(6) Nid/mom (represents 1 of 64 nodes, Cray service, SLES11,

Gemini).

So each minute, 6 launches of the script are done, representing
varied hardware endpoints and networks, varied software in OS
and clients, and varied environments posed by user activity (think
login node load variation).

The live data is available at http://isce.ncsa.illinois.edu/ovis/qos.
php. tab:sping ataprovidesexampleo fthisdata.

0.2 Component logs
We collect following performance metrics:

(1) Metadata activity includes number of metadata operations.
Live example can be found at https://isce.ncsa.illinois.edu/
Imtstatic.php.

(2) Metadata and data server load and active processes. Live
example can be found at https://isce.ncsa.illinois.edu/set/
scharts.php.

(3) Average Load of IE nodes. IE stands for import/export

(4) Lustre IO Stat data. Live example can be found at https:
//isce.ncsa.illinois.edu/set/lustre_iostat.php.

We also collect RAS logs from across the system and filter important
error logs using regular-expression (regex) patterns. These regex
patterns can be found in our artifact repository.

Most of these datasets are available for free download at https:
//bluewaters.ncsa.illinois.edu/data-sets#gsc.tab=0.

0.3 Implementation
We implemented the following artifacts in this paper. These artifacts

are available in the github repository.

0.3.1 Store Pings. We have implemented Store Ping monitors both
in Ruby V2.3 and Python V3.5.

0.3.2  Failure Localization. We have implemented failure localiza-
tion code in Python v3.5 (that can also be launched/tested using
IPython Notebooks).

0.3.3  Failure Diagnosis. We have implemented failure diagnosis
code in Python 3.5.

0.4 Scaling Test for Store Ping Overhead
calculation

We reserved all nodes on Blue Waters to calculate the overhead
associated with the Store Pings. In this test, we ran Store Pings
using our placement strategy, while executing Cray modified IOR
benchmark (posted in the repository) on approximately 4320 nodes
using the following command. We use 4320 nodes as that is ven-
dor recommended setting to achieve highest I/O throughput. We
launched Store Pings concurrent while running IOR to understand
the performance degradation. We ran the test for an hour and exe-
cute Store Pings at 30 second intervals. The results are summarized
in Table 3 of the main paper.

IOR -a POSIX -w -o "path" -D 180 -b 4096g -E -C -g -k

-s 1 -t 4m -F -e

ARTIFACT AVAILABILITY

Software Artifact Availability: Some author-created software ar-
tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: There are associated proprietary artifacts
that are not created by the authors. Some author-created artifacts
are proprietary.

Author-Created or Modified Artifacts:

Persistent ID:

— https://zenodo.org/badge/latestdoi/257360891
Artifact name: Kscope

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Blue Waters, a Cray XE/XK machine
Operating systems and versions: Cray CLE, x86_64 GNU/Linux
Applications and versions: Cray IOR

Key algorithms: Probabilistic Graphical Models
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src_host ctime Probe file system OSD time_ms Error code
h2ologin3 1409260357 1 snx11003 1 4 0
h2ologin3 1409260357 1 snx11003 13 2 0

Table 1: Store Ping telemetry data.

URL to output from scripts that gathers execution environment
information.
https://github.com/saurabhjhal/kscope-artifact/tree/
— master/author\_kit



