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A B S T R A C T   

The gut microbiome appears to play an important role in human health and disease. However, only little is 
known about how variability in the gut microbiome contributes to individual differences during early and 
sensitive stages of brain and behavioral development. The current study examined the link between gut 
microbiome, brain, and behavior in newborn infants (N = 63; M [age] = 25 days). Infant gut microbiome di
versity was measured from stool samples using metagenomic sequencing, infant functional brain network con
nectivity was assessed using a resting state functional near infrared spectroscopy (rs-fNIRS) procedure, and infant 
behavioral temperament was assessed using parental report. Our results show that gut microbiota composition is 
linked to individual variability in brain network connectivity, which in turn mediated individual differences in 
behavioral temperament, specifically negative emotionality, among infants. Furthermore, virulence factors, 
possibly indexing pathogenic activity, were associated with differences in brain network connectivity linked to 
negative emotionality. These findings provide novel insights into the early developmental origins of the gut 
microbiome-brain axis and its association with variability in important behavioral traits. This suggests that the 
gut microbiome is an important biological factor to consider when studying human development and health.   

1. Introduction 

The human gut microbiome is a complex ecosystem comprised of the 
microorganisms lining the intestinal tract, including bacteria, viruses, 
fungi, and archaea. The gut microbiome is crucial to normal physio
logical, metabolic, and immune function (for an example of another 
paper using this method see (Qin et al., 2010). Infancy represents a 
sensitive period in gut microbiome formation as the gut microbiome 
changes from a relatively sterile environment to a diverse ecosystem 
with over 3 × 1013 species of microorganisms (Cryan and Dinan, 2012; 
Sender et al., 2016). Importantly, the gut microbiome is thought to 
impact psychological functioning and mental health through the 
microbiota-gut-brain axis (Borre et al., 2014; Cryan and Dinan, 2012; 

Spichak et al., 2018). Yet, little is known about how the gut microbiome 
impacts developing brain function and psychological health during this 
sensitive period of early human development (Kelsey and Grossmann, 
2019; Cowan et al., 2019; Kelsey et al., 2018). 

Previous correlational studies in adults have shown that changes in 
the gut microbiome – referring to a general imbalance (but not a specific 
measure) of microorganisms in the gut – is linked to heightened negative 
affect and internalizing disorders such as anxiety and depression 
(Evrensel and Ceylan, 2015). Research more specifically assessing gut 
microbiome diversity in adulthood, however, has produced mixed re
sults. For example, individuals with Major Depressive Disorder are re
ported as having increased, decreased, and no significant difference in 
alpha diversity (within-sample species diversity; Bastiaanssen et al., 
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2020). Moreover, due to the correlational nature of these existing 
findings and its limitation to adult samples, the specific mechanisms and 
developmental history through which an association between the gut 
and psychological functioning are established remains elusive. 

The majority of our understanding of the mechanisms by which the 
microbiome impacts mental health outcomes comes from research 
conducted with animal models. Specifically, there has been a focus in 
animal work to characterize how the gut signals to the brain. To date, a 
number of potential pathways have emerged, including activation of the 
vagus nerve, the production of metabolites, and immuno-signaling 
(Sherwin et al., 2019). In addition, germ-free mice, which are reared 
in an entirely sterile environment, have been used for a sledgehammer 
approach to facilitate discoveries pertaining to how the gut microbiota 
broadly impacts brain and behavioral development (Heijtz et al., 2011). 
For example, germ free mice exhibit increased myelination in the pre
frontal cortex, immature microglia development, aberrant neurogenesis, 
differing grey matter volumes in social brain areas (e.g., neocortex and 
amygdala), and increased blood–brain barrier permeability, indexing 
specific differences in brain structure and physiology (Hoban et al., 
2016; Sharon et al., 2016; Spichak et al., 2018). Furthermore, germ-free 
mice exhibit differences in their internalizing behaviors, such as aber
rant fear conditioning (reduced freezing to the conditioned fear stim
ulus) and a decrease in species-typical anxiety behaviors (assessed 
through open field tests and elevated plus mazes; Chu et al., 2019; De 
Palma et al., 2015; Hsiao et al., 2013). In particular, it has been theo
rized that the initial commensal microbiome, or the founding microbial 
population, has an exceedingly large and lasting influence over the 
lifetime composition of the microbiota (Litvak and Bäumler, 2019). In 
line with this hypothesis, studies have shown that social deficits and 
aberrant stress responses in germ-free mice were reversed when 
recolonization of the gut microbiome occurred prior to but not after 
sexual maturity (Buffington et al., 2016; Heijtz et al., 2011; Sudo et al., 
2004). Given the emerging evidence from animal models suggesting the 
existence of sensitive periods in the development of the gut microbiome- 
brain-behavior relations, research elucidating these links in early human 
development is much needed. 

The prenatal and early postnatal life represent sensitive periods 
marked by tremendous growth in brain, behavioral, and gut microbiota 
development (Cowan et al., 2019). Specifically, new evidence has 
emerged that functional brain networks, or brain regions with high 
temporal correlations for low frequency oscillations, come online earlier 
than previously thought (Damoiseaux et al., 2006; Kaiser et al., 2015). 
Specifically, short range and interhemispheric (homologous) networks 
are detectable even before birth whereas long range networks (such as 
the default mode and fronto-parietal network) show a more protracted 
development across the first year of postnatal life (Gao et al., 2015; van 
den Heuvel and Thomason, 2016). Similar patterns are seen at the level 
of newborn behavior. Already within the first few hours of development, 
infants orient to the sight, sounds, and smells of other humans and their 
mothers (DeCasper and Fifer, 1980; Farroni et al., 2013; Farroni, Csibra, 
Simion, & Johnson, 2002; Farroni et al., 2005; Rattaz et al., 2005). These 
behavioral and regulatory capacities continue to grow and develop in 
step with improved sensory functions (Feldman, 2009; Sheese et al., 
2008). During the same period and in a similar manner to brain and 
behavioral development, the gut microbiota also go from a sparse 
environment marked by high levels of Bifidobacteria (microbes involved 
in digestion of human milk oligosaccharides) to a diverse flora rich in 
Bacteroides (microbes involved in the digestion of complex starches) 
coinciding with the introduction of solid foods (Moore and Townsend, 
2019). 

Although the brain and microbiome share similar windows of rapid 
development, limited research has investigated this connection through 
direct assessment of the gut microbiota in humans (Kelsey et al., 2018). 
Across the five existing infant studies with four cohorts of infants, there 
lacks a conclusive and unifying link between gut microbiota alpha di
versity and behavioral traits. Specifically, greater diversity of the gut 

microbiota has been associated with heighted surgency/extraversion, 
decreased negative emotionality, increased internalizing symptoms, and 
decreased cognitive performance in human infants (Aatsinki et al., 
2019a; Carlson et al., 2018; Christian et al., 2015; Loughman et al., 
2020), making any clear conclusions regarding the link between di
versity and positive infant mental health outcomes difficult to parse. 
Notably, these studies also relied upon taxa diversity as the main char
acterization of the gut microbiota; this limitation may have contributed 
to the mixed findings (Cowan et al., 2019). To advance our under
standing of these relationships, there is a need to assess the functionality 
of the microbes, or the genes expressed in the microbiota, allowing in
sights into not only the taxonomy of microorganisms present, but also 
the relevant biological processes in which they are functionally 
contributing (Hooks et al., 2019; Knight et al., 2018). 

The existing infant studies have relied on 16S rRNA gene sequencing 
which affords insight into the taxonomic composition of the bacterial 
species in the gut microbiota yet does not provide transcriptional in
formation on the functional state of the microbiome. Therefore, any 
functional information provided is inferred from the present bacteria 
and not directly assessed (Aatsinki et al., 2019a; Carlson et al., 2018; 
Christian et al., 2015; Gao et al., 2019). Alternatively, shotgun meta
genomics encompasses all DNA sequences within a given sample, 
characterizing the full contents of the microbial microorganisms (e.g., 
bacteria, viruses, and fungi) and their underlying functional pathways 
(e.g., gene products, virulence factors, and antibiotic resistance; Kelsey 
et al., 2018). The direct assessment of microbial functional pathways 
provides a more powerful tool to better characterize and understand the 
potential link with brain and psychological development. 

The predicted functionality of protein coding genes found in a (meta) 
genome can be characterized at multiple levels, from simple annotation 
by homology to protein databases, to further grouping of functionally 
related genes into signatures. For the current study, we focused on three 
aspects of microbial function: 1) GO Terms (Gene Ontology Terms), 
characterizing how individual genes contribute to the biology of an 
organism at the molecular, cellular, and organism levels, 2) virulence 
factors, genes coding for molecules created by microorganisms to aid in 
their ability to colonize, suppress immunity, and divert nutrients away 
from the host, and 3) resistome, genes coding for products which are 
predicted to yield resistance to antibiotics characterizing overall anti
microbial susceptibility. In addition, it is important to more directly 
examine the potential effect the gut microbiome has on brain function in 
human infants, further contributing to individual differences in behav
ioral traits. Two published studies (using the same cohort of infants) 
have investigated the role of the gut microbiota in infant brain structure 
and function (Carlson et al., 2018; Gao et al., 2019). Across both studies, 
limited evidence points to some links between alpha diversity of taxa 
and brain structure and function (see supplemental materials for a 
summary). Specifically, increased alpha diversity was found to be 
associated with increased cortical volume in the parietal cortex and 
increased connectivity between the parietal cortex and supplemental 
motor area (Carlson et al., 2018; Gao et al., 2019). Given the limited 
current evidence suggesting the gut microbiome might be involved in 
brain development and brain connectivity, more systematic research 
investigating this link is needed. Therefore, the first goal of this study 
was to examine whether and how taxa diversity and functional diversity 
are linked to functional brain connectivity. In order to test whether gut 
microbiota composition is linked to functional brain connectivity in 
cortical networks, we used functional Near Infrared Spectroscopy 
(fNIRS) to characterize individual differences in spontaneous brain 
network activity in prefrontal and parietal cortical networks, previously 
linked to internalizing symptoms in adulthood and behavioral temper
ament in infancy (Kaiser et al., 2015; Wang et al., 2013). The second 
goal was to examine whether and how both taxa diversity and functional 
diversity are linked to behavioral temperament in the newborn period. 
Temperament refers to individual differences in an infant’s emotional 
and attentional responses to everyday situations (Rothbart, 2007). 
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Specifically, the present investigation focused on the following, previ
ously identified, dimensions of behavioral temperament: regulation/ 
orienting, negative emotionality, and surgency/positive emotionality 
(Gartstein and Rothbart, 2003). 

The present study examined the link between gut microbiome 
composition and brain and behavioral traits in newborn infants. This is 
the first study of its kind to use state-of-the art metagenomic sequencing, 
allowing not only insights into full taxonomic make-up but also the 
functionality of the microbes. To this end, the present study took a 
multifaceted approach to characterizing the gut microbiota to assess 
whether individual differences in behavioral temperament and func
tional brain connectivity measured using fNIRS could be captured by (1) 
alpha diversity of taxa, (2) alpha diversity of functional terms, and/or 
(3) specific taxa biomarkers. Based on the prior work linking alpha di
versity of taxa with mental health outcomes in adults (Bastiaanssen 
et al., 2020) and the work with infants assessing the link between taxa 
diversity and behavioral temperament (Aatsinki et al., 2019a; Bas
tiaanssen et al., 2020; Carlson et al., 2018), we predicted alpha diversity 
of taxa would be associated with negative emotionality, and regulation/ 
orienting behaviors. Moreover, we hypothesized that alpha diversity of 
taxa would be associated with brain connectivity in resting-state brain 
networks previously linked to internalizing disorders in adults (Kaiser 
et al., 2015; Patashov et al., 2019). Specifically, we hypothesized that 
taxa diversity would be associated with hyperconnectivity in the Fronto- 
parietal network (previously linked to cognitive control of attention and 
behavior in adults), hypoconnectivity in the Default mode network 
(previously linked to stimulus-independent thought and mind- 
wandering in adults), and hypoconnectivity in the homologous- 
interhemispheric network (previously linked to emotional integration 
in adults; Patashov et al., 2019; Wang et al., 2013). Critically, we ex
pected to see these associations only for the functional resting-state 
brain networks and not for the (non-functional) control network (see 
Methods). As a third goal, we were interested in exploring potential 
pathways by which the gut microbiota may influence behavioral 
temperament. Based on prior work linking gut microbiota to brain 
structure and function, and functional connectivity to behavioral 
temperament, we hypothesized that functional connectivity may be a 
significant mediator for the gut microbiota-behavioral temperament 
relation (Aatsinki et al., 2019; Carlson et al., 2018; Graham et al., 2016). 

Moreover, we predicted specific functional profiles of the gut 
microbiome such as decreased GO Terms (indicative of genes that 
function together as part of a network), increased number of virulence 
factors genes (indicative of potential pathogenicity of the microbes 
present), and increased number of antibiotic resistance genes would be 
linked to negative behavioral traits, including reduced behavioral 
regulation and enhanced negative emotionality (Firestein et al., 2019; 
Slykerman et al., 2019). As a fourth, and final goal, we were interested in 
utilizing exploratory, unsupervised machine learning algorithms in 
order to identify potential microbial species as biomarkers of functional 
connectivity and behavioral temperament. The current study aimed to 
expound upon the influence of the gut microbiota on early-emerging 
individual differences in brain and behavior, providing foundational 
insights into gut microbiome-brain-behavior relations. 

2. Materials and methods 

Sixty-three newborns (M [age] = 25 days; Median [age] = 24 days; 
ranging from 9 days to 56 days; 26 females; 37 males) were included in 
the final sample used in the present analyses. Participants were recruited 
from a local academic medical center and are a representative sample of 
the surrounding Mid-Atlantic college town (for socio-demographic in
formation see Table 1). All participants were born at term, with normal 
birth weight (>2,500 g) and did not have any hearing or visual im
pairments. Twenty-three additional infants were tested and subse
quently excluded from the present analyses for the following reasons: n 
= 13 were excluded because they failed to reach our pre-determined 

inclusion criterion of having at least 100 s of continuous data during 
which the infant was not crying; n = 4 were excluded because>30% of 
the measured fNIRS channels had poor light intensity readings, more 
specifically, a signal-to-noise ratio of<1.5 (Bulgarelli et al., 2019; Xu 
et al., 2015) ; n = 4 were excluded because of bad capping; n = 2 were 
excluded because their stool samples did not meet quality control 
thresholds for DNA sequencing. Note that the current attrition rate 
(36.5%) is lower than in previous infant fNIRS studies (Cristia et al., 
2013). Furthermore, in order to test that the infants were excluded at 
random and that the criteria for inclusion were not related to outcomes 
of interest, we compared the temperament profiles (negative emotion
ality, regulation/orienting, and surgency/positive emotionality) of in
fants that were included to those that were excluded using independent 

Table 1 
Socio-demographic information for the present study sample (N = 63).  

Socio-demographic 
information  

Mean/Count 
(SD/%) 

Any antibiotic Treatments, 
n  

30 (48%)  

Prenatal antibiotics 8 (12%)  
During labor and delivery 26 (41%)  
Postpartum administration to 
mother 

3 (5%)  

Administered directly to the infant 
between delivery and study 
appointment. 

4 (6%) 

Apgar Score at 1st Minute  8.19 (0.94) 
Apgar Score at 5th Minute  8.94 (0.44) 
Birth Length, inches  19.75 (0.82) 
Birthweight, grams  3445.42 

(466.24) 
Bristol Stool Scale Score  6.41 (0.61) 
Breastfeeding, n  56 (90%) 
Epidural, n  37 (60%) 
Gestational Age, weeks  39.43 (1.18) 
Female, n  25 (40%) 
Head Circumference, cm  34.74 (1.17) 
Income, n    

Less than $15,000 5 (8%)  
$15,001 to $30,000 5 (8%)  
$30,001 to $45,000 3 (5%)  
$45,001 to $60,000 1 (2%)  
$60,001 to $75,000 2 (3%)  
$75,001 to $90,000 9 (15%)  
$90,001 to $110,000 7 (11%)  
$110,001 to $125,000 7 (11%)  
$125,001 to $175,000 2 (3%)  
$175,001 to $225,000 8 (13%)  
$225,001 to $275,000 8 (13%)  
$275,001+ 3 (5%) 

Infant Age at data 
collection, days  

24.92 
(10.68) 

Maternal Depression  10.92 (3.22) 
Maternal Education    

Some High School 2 (3%)  
High School Diploma/GED 11 (18%)  
Some College/Associates 7 (11%)  
Bachelor’s Degree 16 (26%)  
Graduate Degree 26 (42%) 

Number of Siblings  2.13 (1.11) 
Hours between stool sample 

collection and freezing  
7.96 (8.57) 

Lived with pet(s), n  37 (60%) 
Pitocin, n  31 (50%) 
Race white, n  45 (73%) 
Vaginal Delivery, n  47 (76%) 

Note: Maternal depression was assessed using the Edinburgh postnatal depression 
scale (Cox et al., 1987). There were two points of missing data for birth length 
and head circumference, one point missing for Pitocin use, and one point of 
missing data for the Bristol Stool Scale. Infants whose parent reported breast
feeding at any amount were considered breastfed. Any antibiotic treatment 
included infants potentially exposed to antibiotics during labor and delivery and 
through administration of antibiotics directly to the infant. 
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samples t-tests; However, no significant differences were found between 
the groups (all p-values > 0.30). All parents gave informed consent for 
their infants to participate in accordance with the Declaration of Hel
sinki, and families received a payment for their participation. All pro
cedures were approved by and carried out in accordance with The 
University of Virginia Institutional Review Board for Health Sciences 
(Protocol number 20381). 

2.1. Stool collection and processing. 

Parents were instructed to collect infant stool samples at home using 
infant diapers within 24 h of the study visit. This instruction was based 
on previous work showing that microbial communities are stable at 
room temperature for up to 24 h (Cardona et al., 2012; Guo et al., 2016; 
Liang et al., 2020). The average time between infant reported defecation 
and freezing the samples was 7.96 h, which is well below the 24-hour 
recommendation. The average Bristol Stool Scale score was 6.41. Once 
received by the investigators, stool samples were immediately aliquoted 
into cryovials containing a 20% Glycerol and 80% Phosphate-Buffered 
Saline solution (this solution was used in order to preserve microbial 
species for future studies interested in reconstituting microbiome in 
animal models), and stored at −80 ◦C. Note, efforts were made by in
vestigators to isolate the innermost portion of the stool sample, as it is 
least likely to be contaminated by urine. Bio-specimens were processed 
and sequenced at the National Cancer Institute (NCI). Automated DNA 
extraction was performed with the MagAttract PowerMicrobiome DNA/ 
RNA kit (Qiagen, Cat No./ID: 27500–4-EP) with QubitTM quantification 
following manufacturer’s instructions. Samples that did not meet quality 
control thresholds for DNA concentration were removed from further 
analyses (n = 2). Library preparation and sequencing was completed 
using the Illumina Nextera DNA Flex Library Prep and Illumina NovaSeq 
6000 sequencing platform, respectively. 

2.2. Shotgun metagenomic Analysis. 

Shotgun sequencing was analyzed using a series of pipelines and 
functions in the R language developed in-house and publicly available on 
Github under the package name JAMS, found at https://github. 
com/johnmcculloch/JAMS_BW (For an example of another paper 
using this method see (Rosshart et al., 2019). This package includes a 
pipeline (JAMSalpha) for obtaining taxonomic and functional relative 
abundance of features within each sample using FASTQ files as input 
and a series of functions in the R language for comparison between 
samples (beta analysis). 

For each metagenomic shotgun sequencing sample in this study, the 
paired-end sequencing FASTQ files generated from the Illumina Nova
Seq platform were used as input for JAMSalpha, Version 1.39 in order to 
gauge counts for taxonomic and functional features (McCulloch, 2019). 
Briefly, paired-end sequencing reads were (1) quality trimmed using 
Trimmomatic (Bolger et al., 2014), (2) aligned to the human genome 
using Bowtie2 and host DNA was subsequently removed (Langmead and 
Salzberg, 2012), (3) were assembled into contigs, (overlapping sets of 
DNA fragments), using Megahit (Li et al., 2015). Contigs were taxo
nomically classified using k-mer analysis with kraken2 (Wood and 
Salzberg, 2014), using a custom-built database containing all draft and 
complete genomes of all Bacteria, Archaea, Fungi, Viruses and Protozoa 
deposited in NCBI GenBank. Contigs were also annotated, ab initio, using 
Prokka (Seemann, 2014), yielding the predicted proteome for the met
agenomic sample. Sequencing reads were then aligned back to assem
bled contigs in order to gauge base pair counts for each contig, and thus, 
each predicted gene. The total basepair count for each last known taxon 
(LKT) – deepest taxonomic level up to species confidently classified 
using kraken2, was computed as the number of bases covering all con
tigs classified for each LKT. As of note, for other taxonomic classification 
methods, if there is no classification at the species level, sequences are 
simply deemed “unclassified”. However, k-mer based classification of 

contigs rather than short reads or alignment to a reference genome, al
lows for a more granular assessment of these sequences by allowing 
them to be classified into their most appropriate taxomonic level even if 
it is above the species level. 

The predicted proteome of each metagenomic sample (translated 
genes found within contigs) was further functionally classified using 
InterproScan (https://github.com/ebi-pf-team/interproscan) in order to 
attribute Gene Ontology Terms to each predicted protein. In parallel, the 
predicted proteome was also used as query against local instances of the 
VFDB database (Chen et al., 2016) and the ResFinder database (Zankari 
et al., 2012) using BLASTp. Hits with < 75% identity and/or < 75% 
query coverage were discarded. 

For beta-diversity analyses, the relative abundance, in parts per 
million (PPM) of each feature was used. This is obtained by dividing the 
number of bases covering a feature by the total number of bases 
sequenced for that analysis in a sample multiplied by 106. 

For alpha-diversity analyses, alpha-diversity measures were ob
tained using the Vegan package in R (https://cran.r-project. 
org/web/packages/vegan/index.html). 

2.3. Infant temperament. 

Infant behavioral temperament was assessed using parental reports 
the 91-item Infant Behavior Questionnaire Revised Short Form (IBQ-R; 
(Gartstein and Rothbart, 2003); Rigato, Stets, Bonneville-Roussy, & 
Holmboe, 2018; (Stifter and Fox, 1990; Worobey and Blajda, 1989). This 
measure has shown to be reliable and valid during the newborn period 
(for examples of other studies using this measure with newborn pop
ulations see: Rigato et al., 2018, (Stifter and Fox, 1990; Worobey and 
Blajda, 1989). Parents completed the questionnaire online using the 
Qualtrics platform prior to their appointment. Three general tempera
ment dimensions were computed summarizing information from various 
sub-scales: (1) negative emotionality (contributing sub-scales: fear, 
distress to limitations, falling reactivity, sadness), (2) regulation/ori
enting (contributing sub-scales: low intensity pleasure, cuddliness, 
duration of orienting, soothability), and (3) surgency/positive 
emotionality (contributing sub-scales: activity level, smiling and 
laughing, high intensity pleasure, perceptual sensitivity, approach, and 
vocal reactivity; Gartstein and Rothbart, 2003). If parents reported the 
behavior was not applicable at the current time, then this item was given 
a value of 0. 

2.4. Resting state fNIRS. 

Procedure. The resting state (rs)-fNIRS task took place in a small, 
quiet testing area. Infants were seated on their parent’s lap and placed 
approximately 60 cm from the screen (23-inch monitor). Parents were 
asked to remain quiet throughout the testing session. A fNIRS fabric cap 
(EasyCap, Germany) was fitted to each newborn and secured in place 
using a waist-band and outside netting. The presentation software 
package (Neurobehavioral Systems, USA) was used for the design and 
viewing of the experimental paradigm. A non-social stimulus was 
created by selecting non-social clips from a popular infant video (Baby 
Einstein) that featured videos of toys, stuffed animals, and still images of 
everyday objects. This stimulus was selected based on prior work that 
has shown that presenting a non-social video increases compliance and 
decreases movement for young infants, recent recommendations for the 
design of connectivity tasks for pediatric populations, and adult work 
suggesting that the presentation of non-social videos does not influence 
functional connectivity (Bulgarelli et al., 2020; Camacho et al., 2020; 
Vanderwal et al., 2015). Specifically, Vanderwal and colleagues (2015) 
showed children (ages 3–7) three sets of stimuli (a fixation cross, low- 
level movie, and a popular musical cartoon) during a resting state 
fMRI task. The authors concluded that a non-social movie was the best 
choice as it provided a functional connectivity metric that more closely 
matched the fixation cross while also providing higher quality (more 

C.M. Kelsey et al.                                                                                                                                                                                                                               

https://github.com/johnmcculloch/JAMS_BW
https://github.com/johnmcculloch/JAMS_BW
https://github.com/ebi-pf-team/interproscan
https://cran.r-project.org/web/packages/vegan/index.html
https://cran.r-project.org/web/packages/vegan/index.html


Brain Behavior and Immunity xxx (xxxx) xxx

5

artifact free) data. These clips were shown in 30 s intervals, and the 
order of presentation was randomized for each infant. The full recording 
session took place over a 7-minute time period. Sessions were video- 
recorded using a camera mounted above the screen. This allowed for 
later offline coding of the infants’ behavior, fussiness, and cap 
placement. 

Data acquisition. Infants’ fNIRS data were recorded using a NIRx 
Nirscout system and NirStar acquisition software. Concentration 
changes of oxygenated hemoglobin (oxyHb) and deoxygenated hemo
globin (deoxyHb) in the cerebral cortex are measured using fNIRS 
through the quantification of refracted light, (for more information 
regarding this technique see (Lloyd-Fox et al., 2010). The fNIRS system 
used contains 49 channels positioned over frontal and temporal-parietal 
regions and recorded measurements (as previously described in 
Altvater-Mackensen and Grossmann, 2016; Altvater-Mackensen and 
Grossmann, 2015; Grossmann et al., 2018; Kelsey et al., 2019; Krol et al., 
2019). The system emits two wavelengths of light in the Near-Infrared 
spectrum, 760 nm and 850 nm, and captures both deoxyHb and 
oxyHb. The diodes have a power of 25 mW/wavelength and data were 
recorded at a preset default sampling rate of 3.91 Hz. 

Behavioral Coding. Infants’ behavior during the fNIRS recording 
session was coded by a trained research assistant using video recordings 
of the experimental session. Specifically, researchers coded for behav
ioral signs of fussiness/irritability and alertness displayed by infants 
during the testing session. To assess the reliability of the attentional 
coding done by the primary coder, an additional trained coder also 
coded infant behavior from selected subsample of infants (n = 19). This 
analysis showed that inter-rater reliability amount of data included was 
excellent (Cronbach’s α = 0.94). In line with previous studies, infants 
were only included in the present analysis if they had at least 100 s of 
data during which the infant was not crying (Bulgarelli et al., 2019). 
Moreover, as it takes a minimum of 8 s for the Hemodynamic response 
function to return to baseline after a stimulus-evoked event, the onset of 
useable data was delayed for 8 s (Bulgarelli et al., 2019, 2020). How
ever, unlike Bulgarelli and colleagues (2019, 2020) the time series was 
continuous. On average, infants contributed 331.29 s of data (SD =

115.75 s). Note, this amount of data included is comparable to other 
fNIRS functional connectivity papers with young infant (see 11-month 
time point in (Bulgarelli et al., 2020). Finally, infants were rated on 
their levels of alertness during the task with 1 reflecting deep sleep and 6 
reflecting crying (Brazelton et al., 1987). On average, infants were rated 
as being midway between an active light sleep to a drowsy state (M =
2.55; SD = 1.26). 

Functional Networks. The fNIRS data were analyzed using the 
functional connectivity program, FC-NIRS (Xu et al., 2015). First, 
channels were removed on the basis of poor light intensity (signal-to- 
noise ratio was<1.5) (please note, this value was selected by the au
thor’s in order to optimize the number and quality of channels being 
retained; Xu et al., 2015). In order to be included in the present analyses, 
infants needed to have at least 70% of their channels passing this pre- 
defined threshold (Bulgarelli et al., 2020). Next, data were band-pass 
filtered using a previously validated low frequency filter (0.01-0.08 
Hz; Bulgarelli et al., 2019; Lu et al., 2009). Finally, concentration 
changes were calculated using the modified Beer-Lambert law [partial 
path length factor: 6.0] (Villringer and Chance, 1997). 

For each infant, we obtained a 49 by 49 correlation matrix corre
sponding to all of the relations between all of the channels measured. 
Considering that negative values are difficult to interpret in terms of 
their neurobiological basis (and based on prior work), we replaced all 
negative correlation values with zeros (Fox et al., 2009; Murphy et al., 
2009). Next, Fisher Z-transformations were performed on all correlation 
matrices. Networks of interest were created by selecting channels that 
corresponded to specific regions of interest. Brain networks were 
composed based on the anatomical information available in Kabdebon 
et al. (Kabdebon et al., 2014), a meta-analysis of resting state fMRI 
(Kaiser et al., 2015), and prior work using rs-fNIRS (Patashov et al., 

2019; Sasai et al., 2011). Based on this information, four networks were 
created: (1) The Fronto-parietal network, the average of all correlations 
between three channels in the dorsolateral prefrontal cortex (corre
sponding with the F3, F4, F5, F6 electrodes) and two channels in the 
parietal area (corresponding with CP3 and CP4 electrodes); 2) The 
Default mode network, the average of all correlations between three 
channels in the medial prefrontal cortex (corresponding with the Fpz 
electrode) and four channels in the superior temporal cortex (corre
sponding with FT7, T7, FT8, T8 electrodes; 3) The homologous- 
interhemispheric network, the average of all correlations between the 
21 channels in the left hemisphere (including frontal, temporal and 
parietal cortical regions) with their corresponding (homologous) chan
nels in the right hemisphere; and, (4) a (non-functional) control 
network, the average of all correlations between three channels in the 
left frontal area (corresponding with the F7 electrode) with three 
channels in the right temporal area (corresponding with the T8 elec
trode) and three channels in the right frontal area (corresponding with 
F8 electrode) with three channels in the left temporal area (corre
sponding with the T7 electrode; see Fig. 1 for schematic of network 
configurations; for more details on network configuration see Kelsey 
et al., 2020). Cortical projections were created using NIRSite by using 
10–20 system references from the cap layout. The present study focused 
on oxyHb based on previous work by the authors that has found brain- 
behavior correlation for this chromophore (Kelsey et al., 2020). Based 
on prior infant work, which has found laterality differences, networks 
were separated into left and right hemispheres (Carlson et al., 2018). 
Moreover, statistical outliers – values that were > 3 SD above or below 
the mean or based on multivariate mahalanobis’ distance – were 
removed for the subsequent analyses (functional connectivity data n =
1, negative emotionality n = 1). 

2.5. Analysis plan 

Alpha diversity values (Shannon Diversity Index and Chao1) for both 
the taxa and functional terms were calculated using the vegan R-pack
age. Associations between the covariates and the variables of interest 
were investigated using Wilcoxon’s rank-sum test and Kruskal–Wallis H- 
test. We included covariates in the model based on previous identifica
tion in prior work and significant associations found in the present 
sample. For the covariate analyses, we used the less stringent p-value <
0.05 cutoffs in order to be conservative in our later assessments. To 
account for the use of multiple comparisons across our models, we 
adjusted our p-values against the False Discovery Rate (FDR), or ex
pected proportion of type I errors (false positives). We considered results 
with FDR < 0.25 as significant (see Aatsinki et al., 2019a for another 
example of a paper using this threshold and Aatsinki et al., 2019b for a 
discussion of the use of a 0.25 FDR cutoff). FDR was estimated using the 
Benjamini & Hochberg method with the R function p.adjust. 

Linear discriminant analysis of effect size (LefSE) and Microbiome 
Multivariate Association with Linear Models (Maaslin2) were used to 
identify potential microbial biomarkers of functional connectivity and 
behavioral temperament using the Galaxy tool (http://huttenhower. 
sph.harvard.edu/galaxy/) and R respectively (Mallick et al., In Sub
mission). For LefSE, High and Low groupings were created for the 
outcome variable by applying a Median Split. The LefSE tool identifies 
the taxa and functional terms that are differentially abundant between 
groups by applying 1) non-parametric factorial Kruskal-Wallis (KW) 
test, 2) pairwise (unpaired) Wilcoxon rank-sum test and 3) Linear 
Discriminant analysis to estimate effect size of each differentially 
abundant feature (Segata et al., 2011). Per-sample normalization and an 
alpha value of 0.05 for the Kruskal-Wallis and Wilcoxin rank-sum test 
was used. The logarithmic LDA score for discriminative features was set 
at an absolute value of Log 3 fold change. For analysis with Maaslin2 the 
following default options were used: minimum abundance = 0, mini
mum prevalence = 10%, normalization = TSS, transformation = Log, q- 
value threshold = 0.25. 
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3. Results 

3.1. Associations with clinical covariates 

A series of Wilcoxon’s rank-sum test and Kruskal-Wallis H-tests were 
used to identify significant relationships between taxa diversity and 
potential clinical covariates (for a schematic representation for all as
sociations see Fig. 2). Any clinical variables found to be significantly 
associated with a study variable of interest were then included in the 
subsequent models assessing differences in said study variable as a co
variate. We found significant associations between the Shannon-Taxa 
and birthweight (Spearman’s rank correlation rs = –0.40, p = .001), 
income (Spearman’s rank correlation rs = –0.25, p = .049), breast
feeding (Kruskal-Wallis H Х 2 = 9.14, p = .002), gestational age 
(Spearman’s rank correlation rs = –0.31, p = .016), and head circum
ference (Spearman’s rank correlation rs = –0.37, p = .004). However, 
there were no significant associations found between the Chao1-Taxa 
diversity measure and any of the covariates. 

Next, we assessed the relationship between functional term diversity 
(Chao1 index for resistome, virulence terms, and GO Terms) and clinical 
covariates. Here, we found that resistome diversity was significantly 

associated with income (Spearman’s rank correlation rs = –0.31, p =

.016), gestational age,(Spearman’s rank correlation rs = –0.36, p =

.004), and maternal depression scores (Spearman’s rank correlation rs =

0.26, p = .044). Similarly, virulence factor diversity was associated with 
income (Spearman’s rank correlation rs = 0.33, p = .008) and antibiotics 
administered at the hospital after birth (Spearman’s rank correlation rs 
= 0.38, p = .002). Furthermore, GO Term diversity was associated with 
sex (Kruskal-Wallis H Х2 = 5.37, p = .02) and head circumference 
(Spearman’s rank correlation rs = –0.37, p = .004). 

Finally, we assessed the relation between clinical covariates and 
psychological outcome measures (behavioral temperament and func
tional brain connectivity). Here, we found significant associations be
tween negative emotionality, infant age (Spearman’s rank correlation rs 
= 0.43, p = .001), and income (Spearman’s rank correlation rs = 0.36, p 
= .005). However, there were no other significant associations found 
between clinical covariates and psychological outcome measures. 

3.2. Alpha diversity of last known taxa and functional connectivity. 

A series of univariate regressions with alpha diversity of last known 
taxa (either Shannon Diversity Index or Chao1, separately) as the 

Fig. 1. Shows the configurations for each of the network patterns. Note, each network consists of the average of all of the connections between red and blue channels 
of the same letter. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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predictor variables and functional connectivity network patterns 
(fronto-parietal [left and right], default mode [left and right], 
homologous-interhemispheric, and control network) as the outcome 
variables were conducted. There was a significant positive association 
between alpha diversity and the left fronto-parietal network (Chao1- 
Taxa standardized β = 0.71, FDR = 0.07, adjusted R2 = 0.13, Shannon- 
Taxa β = 0.14, FDR = 0.03, adjusted R2 = 0.17), as well as alpha di
versity of taxa and homologous-interhemispheric network connectivity 
(Chao1-taxa standardized β = 0.16, FDR = 0.10, adjusted R2 = 0.07; 
Shannon-Taxa β = 0.06, FDR = 0.20, adjusted R2 = 0.09; See Fig. 3). 
When the models were adjusted for significant covariate associations, 
both the relations between Shannon-taxa and Chao1-taxa with the left 
fronto-parietal network connectivity remained significant (Chao1-taxa 
standardized β = 0.46, FDR = 0.20, partial R2 = 0.12; Shannon-taxa β =
0.18, FDR = 0.07, partial R2 = 0.17; covariates included: antibiotics, 
delivery method, breastfeeding, infant age, infant weight at birth and at 

study visit, gestational age, income, sex, and head circumference at 
birth). Importantly, there was no association between alpha diversity 
and connectivity in the control network (Chao1-taxa FDR = 0.92; 
Shannon-Taxa FDR = 0.88). 

3.3. Alpha diversity of functional terms and functional connectivity. 

In order to examine how the particular functions of the microor
ganisms may be contributing to the functional connectivity differences, 
a series of univariate entry-method linear regressions were conducted 
with each of the Chao1 functional terms (virulence factors, resistome, 
and GO terms) entered together in the model predicting each of the 
previously identified functional connectivity networks (left fronto- 
parietal and homologous-interhemispheric) in addition to the control 
network separately. Note, Chao1 (and not Shannon) index was used to 
test for how the number of functional terms (as opposed to the evenness) 

Fig. 2. Schematic representation of correlations between all clinical covariates and study variables. Note, blue text represents significant positive associations, red 
text represents significant negative associations, and blank cells represent nonsignificant associations. Note, statistical significance is defined here as p < .05. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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is related to the outcomes of interest. We observed that Chao1 functional 
terms predicted homologous-interhemispheric network connectivity. 
Specifically, virulence factor diversity was positively associated with the 
homologous-interhemispheric network connectivity (standardized β =

0.22, FDR = 0.12, partial R2 = 0.14; See Fig. 4). Moreover, when the 
model was adjusted for significant covariate associations, the relation 
between Virulence factor diversity and homologous-interhemispheric 
network connectivity remained (standardized β = 0.23, FDR = 0.13, 
partial R2 = 0.16; covariates included: antibiotics, delivery method, 
breastfeeding, infant age, infant weight at study visit, gestational age, 
income, sex, maternal depression, and head circumference at birth). 
However, none of the other functional terms significantly predicted 
homologous-interhemispheric network connectivity. Moreover, there 
were no significant associations found between Chao1 functional terms 
and the left frontal-parietal network (FDR > 0.26) or the control 
network (FDR > 0.31) for the unadjusted models. 

3.4. Alpha diversity of last known taxa, alpha diversity of functional 
terms, and behavioral temperament. 

A series of multivariate regressions with alpha diversity of taxa 
(Chao1-taxa, Shannon-taxa) and Chao1 functional terms (virulence 
factors, resistome, and GO terms) as the predictors and behavioral 
temperament (negative emotionality, regulation/orienting, surgency/ 

positive emotionality) as the outcome variables were conducted. We did 
not find any significant associations between either of the alpha di
versity metrics for taxa and behavioral temperament. Similarly, we did 
not find any associations between the alpha diversity indices for the 
functional terms and behavioral temperament. 

3.5. Assessment of indirect effects 

Simple mediation analyses were conducted in order to test the hy
pothesis that the gut microbiota indirectly influences behavioral 
temperament (negative emotionality and regulation/orienting) through 
its effect on functional connectivity (for a schematic representation and 
relevant statistics see Fig. 5). Specifically, we were interested in the 
possible mediation effects of homologous-interhemispheric connectivity 
based on its significant association with negative emotionality (β = 0.30, 
FDR = 0.19, adjusted R2 = 0.08) and regulation/orienting (β = -0.26, 
FDR = 0.20, adjusted R2 = 0.07). 

To do this, we used ordinary least squares path analysis and boot
strapped confidence intervals based on 5,000 bootstrap samples. First 
we tested possible mediation effects for the relation between alpha di
versity of taxa and behavioral temperament. In line with previous 
findings from the present study, increased alpha diversity (Chao1-Taxa 
β = 0.29; Shannon-Taxa β = 0.31) was associated with increased 
homologous-interhemispheric connectivity. Additionally, homologous- 

Fig. 3. Shows the unadjusted relation between Chao1-Taxa and functional connectivity (oxyHb) Z-score for the homologous-interhemispheric network and left 
Fronto-parietal network. Note, shaded regions represent 90% confidence intervals. 

Fig. 4. Shows the unadjusted relation between virulence factor diversity and homologous-interhemispheric network connectivity. Note: shaded regions represent 
90% confidence intervals. 
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interhemispheric connectivity was associated with increased negative 
emotionality (β = 0.31-0.39). We also observed a significant indirect 
effect, suggesting the relationship between increased alpha diversity and 
negative emotionality may be mediated by homologous- 
interhemispheric connectivity (Chao1-taxa β = 0.09, CI = [0.002, 
0.211]; Shannon-taxa β = 0.12, CI = [0.020, 0.273]). There were, 
however, no significant indirect effects found for the relations between 
taxa diversity (Chao1-taxa and Shannon-taxa) and regulation/orienting. 

We then assessed if virulence factors influence behavioral tempera
ment through its effect on homologous-interhemispheric connectivity. 
Increased virulence factor diversity (β = 0.47) was associated with 
increased homologous-interhemispheric connectivity. In addition, 
homologous-interhemispheric connectivity was associated with 
increased negative emotionality (β = 0.27). There was a significant in
direct effect found, suggesting the relation between virulence factor 
diversity and negative emotionality may be mediated by homologous- 
interhemispheric connectivity (β = 0.13, CI = [0.005-0.271]). Simi
larly, we found evidence for a significant indirect effect, suggesting the 
relation between virulence factor diversity and regulation/orienting 
may also be mediated by homologous-interhemispheric connectivity 
through a negative association (β = -0.19, CI = [-0.412, -0.023]). 

3.6. Taxa biomarker identification 

Functional connectivity. LefSE identified fourteen total potential 
microbial biomarkers for the functional connectivity networks (LDA log 
fold change cut-off = 3) and are described in Table 2. The left fronto- 
parietal network was marked by an overall enrichment of Clostridium 
taxa in the high connectivity group. In particular, the species 
C. perfringens was a shared feature of both high connectivity group for 
the left fronto-parietal network (log fold change = 3.41) and low con
nectivity group for the left default mode network (log fold change =

3.56). For the high connectivity homologous-interhemispheric network, 
there was an increased enrichment of E. coli (Log fold change = 4.36) 
whereas the low connectivity homologous-interhemispheric network 
group had an increased enrichment of B. dentium (Log fold change =
4.01). 

An alternative biomarker discover technique, MaAslin2, was per
formed to validate findings. More specifically, a linear model with the 
five functional networks (fronto-parietal [left and right], default mode 
[left and right], homologous-interhemispheric) included as fixed effects 
was conducted (an additional model with covariates included as random 
effects was run and included in supplementary materials). For the un
adjusted model, Maaslin2 identified 479 total potential microbial bio
markers for the functional connectivity networks (q-value < 0.25) and 
the top fifty hits are summarized in Fig. 6. Again, we see the left fronto- 

A

B

Variables a b c c’

Behavioral Temperament: Negative Emotionality

Shannon-Taxa β = .31,

p = .015

β = .39,

p = .004

β = .-.26,

p = .051

β = .12

CI: [.020, .273]

Chao1-Taxa β = .29,

p = .023

β = .31,

p = .022

β = .00,

p = 1.0

β = .09

CI: [.002, .211]

Virulence Factors β = .47,

p < .001

β = .27,

p = .064

β = .09,

p = .55

β = .13

CI: [.005, .271]

Behavioral Temperament: Regulation/Orienting

Shannon-Taxa β = .32,

p = .013

β = -.28,

p = .038

β = -.054,

p = .68

β = -.088

CI: [-.224, .000]

Chao1-Taxa β = .29,

p = .025

β = -.32,

p = .018

β = .071,

p = .59

β = -.091

CI: [-.252, .000]

Virulence Factors β = .47,

p < .001

β = -.39,

p = .007

β = .20,

p = .15

β = -.19

CI: [-.412, -.023]

Note: significant indirect effects are in bold.

Fig. 5. (A) The theorized mediation model where gut microbial diversity indirectly impacts behavioral temperament through its influence on functional brain 
connectivity, (B) Shows the corresponding statistical values for paths outlined in the mediation model. 
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parietal network was marked by an overall enrichment of Clostridium 
taxa (21 taxa identified; β = 1.76–2.99, q-values = 0.06-0.25) and the 
left default mode network was associated with a diminution of Clos
tridium (2 taxa identified, β = -2.59 to −2.68, q-values = 0.19-0.25). 

Temperament. LefSE identified a total of five microorganisms as 
potential biomarkers for temperament and are described in Table 3. 

Both negative emotionality and regulation/orienting were marked by an 
enrichment of Bifidobacterium. In particular, B. pseudocatenulatum was 
enriched in the high negative emotionality group (Log fold change =
4.09) and the high regulation/orienting group (Log fold change = 4.48). 

Similarly, MaAslin2 was performed as an additional biomarker dis
covery tool for behavioral temperament. More specifically, a linear 
model with the three temperament domains (regulation/orienting, 
negative emotionality, and surgency) included as fixed effects was 
conducted (an additional model with covariates included as random 
effects was run and included in supplementary materials). For the un
adjusted model, Maaslin2 identified one biomarker for Negative 
emotionality, Thermovibrio guaymasensis (β = 0.37, q-value = 0.087). 

4. Discussion 

The current study examined the relations between gut microbiota 
composition, functional brain network connectivity, and behavioral 
temperament in newborn infants. Our results show gut microbiota 
composition is linked to individual variability in brain network con
nectivity, which in turn, mediates individual differences in behavioral 
temperament among infants. Furthermore, using shotgun metagenomic 
sequencing, our results provide new evidence for an association between 
genes coding for microbial virulence factors and brain network con
nectivity. These findings provide novel insights into the early develop
mental origins of the gut microbiome-brain axis and its association with 
variability in important behavioral traits, potentially affecting long-term 
development. 

Our results demonstrate gut microbiota taxa diversity is positively 
associated with functional connectivity in two resting-state brain net
works in newborn infants. In concordance with our hypotheses, 
increased taxa diversity was linked to fronto-parietal connectivity, a 
brain network previously associated with positive mental health out
comes in adults and positive behavioral traits in infants (Kaiser et al., 
2015; Rothbart, 2007). Specifically, greater connectivity in the frontal- 
parietal network has been linked to decreased incidence of internalizing 
disorder in adulthood and increased regulation and orienting behaviors 
in infancy (Kaiser et al., 2015). Our findings, in addition, corroborate 
data from previous infant studies, showing a positive association be
tween taxa diversity and parietal cortex structure and function (Carlson 
et al., 2018; Gao et al., 2019). This points to a consistent pattern of as
sociation between gut microbiome diversity and the developing brain. It 
is important to consider potential mechanisms by which such an asso
ciation may arise. In previous studies with mice, antibiotic administra
tion during pregnancy induced a dysregulated state of microglia 
localized to the prefrontal and parietal cortices (Lebovitz et al., 2019), 
suggesting one potential mechanism by which chemical intervention 

Table 2 
LefSE identified taxa biomarkers of functional connectivity networks.  

Phylum Family Genus Species Log fold change Group with thehighest Median Connectivity 

Left Default mode network 
Firmicutes Clostridiaceae Clostridium perfringens  3.559 Low 
Left Fronto-parietal network 
Firmicutes Enterococcaceae Enterococcus faecalis  3.765 High 
Actinobacteria Coriobacteriaceae Collinsella Unclassified  3.665 High 
Firmicutes Clostridiaceae Clostridium disporicum  3.548 High 
Bacteroidetes Prevotellaceae Prevotella copri  3.523 High 
Firmicutes Clostridiaceae Clostridium perfringens  3.415 High 
Firmicutes Clostridiaceae Clostridium tertium  3.367 High 
Firmicutes Lachnospiraceae Robinsoniella peoriensis  3.265 High 
Firmicutes Clostridiaceae Clostridium Unclassified  3.167 High 
Bacteroidetes Bacteroidaceae Bacteroides caccae  3.164 High 
Firmicutes Streptococcaceae Streptococcus salivarius  3.397 Low 
Firmicutes Enterococcaceae Enterococcus Unclassified  3.042 Low 
Homologous-interhemispheric network 
Proteobacteria Enterobacteriaceae Escherichia coli  4.357 High 
Actinobacteria Bifidobacteriaceae Bifidobacterium dentium  4.012 Low  
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Fig. 6. MaAslin2 top fifty taxa biomarkers of functional connectivity identified 
in the unadjusted model. Taxa with the lowest q-values are at the top. 
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affecting the microbiota composition may impact brain development in 
utero. 

Contrary to our hypothesis, in the current study, taxa diversity was 
positively associated with connectivity in infants’ homologous- 
interhemispheric network, consequently linked to heightened negative 
emotionality and decreased regulatory behaviors. While this finding was 
in opposition to our hypothesis partly based on prior work with adults, it 
is similar to prior work with infants. In particular, a study by Carlson 
et al. (Carlson et al., 2018) found that increased alpha diversity assessed 
at 1 year of age was associated with decreased cognitive performance at 
two years of age. In addition, a Christian et al. (Christian et al., 2015) 
study reported that increased alpha diversity was associated with 
decreased regulatory behaviors both of which were assessed at same 
time (18–27 months). It is interesting to consider the possibility that 
these results, like the present results, may be attributed to an increase in 
microorganisms that are high in virulence factors. Given that certain 
external factors such as cesarean section and cessation of breastfeeding 
contribute to a premature progression of the gut microbiota, it is 
possible that lower taxa diversity is developmentally appropriate at this 
stage of life (Bäckhed et al., 2015). Taken together, our findings are thus 
in line with previous results from studies performed with infants. 

To further examine the association between gut microbial composi
tion and homologous-interhemispheric connectivity, we assessed the 
diversity of genes coding for various functions within the microbiota 
(The Gene Ontology Consortium, 2019; Li et al., 2015). Using this 
approach, we found that an increase in microbial genes coding for 
virulence factors was linked to increased homologous-interhemispheric 
connectivity among infants. Taken together with the taxa diversity 
findings, it appears that the aforementioned increase in taxa diversity 
may be driven, at least partly, by an increase in virulence factors. This 
result further highlights the limitations of 16S rDNA sequencing 
methods (Cowan et al., 2019), and how this can be addressed through 
shotgun metagenomics. It is also interesting to consider the possibility 
that the increase in virulence factors may be seen in infants who are 
more susceptible to, or currently experiencing subacute infection. In this 
context, only a few studies with adults have reported associations be
tween somatic symptoms (e.g., stomach ache and irritable bowel syn
drome) and mental health outcomes (Callaghan et al., 2020; Lee et al., 
2009); however, little is known about the directionality or causality of 
such associations. It is important to mention that the stool samples and 
temperament measurements were taken at the same time point in the 
current study. As a result, we are not able to address questions con
cerning potential directionality. Nonetheless, the current findings with 
newborn infants point to a remarkably early emergence of the associa
tion markers between microbial genes for virulence and brain function. 
Longitudinal studies will be required to unpack more fully the associa
tion between gut microbiota composition, infection status, and the in
fluence of microbial virulence on the brain and behavioral traits during 
infancy. Furthermore, as evidence is accumulating in support of the gut- 
brain axis being mediated by microbiota-immune signaling, future work 
should consider collecting pre-inflammatory cytokines and other in
flammatory markers (Fung, 2020). This would allow for a better un
derstanding of these associations and may identify possible points of 
intervention (Fung, 2020). Moreover, while we do see a positive asso
ciation between virulence factor diversity and taxa diversity, we are not 

currently able to determine whether this is driven by an increase of 
pathogenic microbes or just an increase in genetic machinery and po
tential to be pathogenic under the right circumstances. Therefore, future 
work should carefully characterize the microbial profile of high and low 
diversity microbiomes in infants. 

Contrary to prior work with infants (Aatsinki, Lahti, Uusitupa, et al., 
2019; (Christian et al., 2015), we did not find evidence for a direct as
sociation between taxa diversity and infant behavioral temperament. 
There are several possible differences accounting for the mixed findings. 
For example, though prior work has examined the gut microbiota within 
the first few months of life (Aatsinki, Lahti, Uusitupa, et al., 2019; 
(Loughman et al., 2020), our study examined the behavioral tempera
ment in the youngest sample of infants studied to date. It is therefore 
possible that the predicted association between gut microbiota and 
behavioral traits only emerges later in infant development. Related, 
certain components of behavioral temperament, such as fear behaviors, 
do not emerge until later during the first year of life (Grossmann and 
Jessen, 2017). In line with this potential explanation, Aatsinki et al. 
(Aatsinki, Lahti, Uusitupa, et al., 2019) reported a significant association 
between taxa diversity (assessed at 2.5 months) and fear behaviors 
(assessed at 6 months). This suggests gut microbiota influences on brain 
network connectivity may precede the direct associations with behav
ioral traits. 

We also explored the possibility of a link between taxa diversity and 
behavioral temperament and found this link to be mediated by func
tional brain network connectivity. Indeed, the current results demon
strate that infants’ taxa diversity and virulence factor diversity are 
associated with homologous-interhemispheric brain network connec
tivity and indirectly associated with negative emotionality (Fig. 5). Gao 
et al. (Gao et al., 2019) obtained a similar pattern in infants that was 
suggestive of a mediation but they did not test this directly. They found 
that alpha diversity was linked to increased connectivity between the 
parietal lobe and supplemental motor area, and functional connectivity 
in this network was associated with behavioral (cognitive) performance. 
Therefore, in conjunction with prior work, our findings support the 
notion that the gut microbiome may be more directly linked to or 
impacting the brain through the gut-brain axis, whereas links between 
the gut microbiome and overt behaviors are possibly harder to detect or 
emerge only later in development. More generally, in order to better 
characterize the link between the gut microbiome and behavioral traits, 
the current data indicate that it is critical to include measures of brain 
function. 

To identify candidate biomarkers for behavioral temperament and 
brain connectivity, we took an unbiased and thorough approach through 
using both LefSE and MaAslin2. Across both analyses we identified 
multiple microbial species associated with early functional brain con
nectivity, including several microbes from the orders Clostridiales 
(including Lachnospiraceae, and Bacteroides) which have been previously 
identified as a microbe of interest due to its role in serotonin modulation 
(Yano et al., 2015). To this end, microbes from the order Clostridiales 
have previously been associated with global brain connectivity metrics 
in both cortical and subcortical areas in adults (Labus et al., 2019). Our 
analysis showed that Lachnospiraceae and Bacteroides were associated 
with infants’ fronto-parietal brain network connectivity. Interestingly, 
the same microbes have been shown to be associated with brain 

Table 3 
LefSE identified taxa biomarkers of behavioral temperament.  

Phylum Family Genus Species Log fold change Group with the highest Median abundance 

Negative emotionality 
Actinobacteria Bifidobacteriaceae Bifidobacterium pseudocatenulatum  4.085 High 
Firmicutes Streptococcaceae Streptococcus vestibularis  3.120 Low 
Actinobacteria Actinomycetaceae Schaalia radingae  3.385 Low 
Regulation/orienting 
Actinobacteria Bifidobacteriaceae Bifidobacterium catenulatum  4.177 High 
Actinobacteria Bifidobacteriaceae Bifidobacterium pseudocatenulatum  4.047 High  
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development in adolescents in a previous study (Callaghan et al., 2020). 
In this study by Callaghan et al. (2020) Clostridiales was significantly 
lower among adolescents that had experienced early adversity (institu
tionalization during infancy) compared to a control group. Furthermore, 
this study also identified Lachnospiraceae and Bacteroides as being linked 
to heightened medial Prefrontal Cortex responses to fearful faces 
assessed using fMRI. This prior study with adolescents shows early life 
experiences may shape the colonization of the gut with these microbes, 
and that this may affect brain development. Our study adds important 
evidence directly from infants to further support the role that these 
microbes play in early human brain function. Our analysis also identi
fied a particular species of bacteria, C. perfringens, linked to both 
hyperconnectivity in the left fronto-parietal network and hypo
connectivity in the left default mode network, suggesting this microbe 
may disrupt early brain network formation. This is of particular interest 
as C. perfringens is one of the most common causes of food poisoning in 
the United States (CDC, 2020), and preliminary work suggests strains of 
C. perfringens may cause brain lesions similar to what is seen in multiple 
sclerosis (Rumah et al., 2013). 

With respect to negative emotionality and regulation/orienting 
temperamental domains, our analysis identified five associated mi
crobes using unadjusted analyses, with two belonging to the genus 
Bifidobacterium. Specifically, Bifidobacterium was enriched for high 
levels of negative emotionality (Bifidobacterium pseudocatenulatum) and 
regulation/orienting (Bifidobacterium pseudocatenulatum and Bifido
bacterium catenulatum). Prior work with infants has also identified Bifi
dobacterium as a potential biomarker for behavioral temperament linked 
to decreased regulation/orienting and increased surgency/positive 
emotionality (Aatsinki et al., 2019a). In addition, this genus of microbes 
is thought to play an important role in fighting infections. Many Bifi
dobacterium species are involved in the conversion of lactose, found in 
breastmilk, to lactic acid. The accumulation of lactic acid lowers the 
overall pH and makes it a less hospitable environment for pathogens 
(Liévin et al., 2000). Overall, our current findings, together with prior 
work, hint at the involvement of Clostridiales and Bifidobacterium in brain 
and behavioral development; however, more careful experimental work 
is required to fully characterize and understand the associations 
revealed here using LefSE and MaAslin2. 

Furthermore, while our results show some agreement between the 
two analysis methods, there were also significant differences in the 
biomarkers identified depending on the analysis method used. These 
differences can likely be attributed to specific difference across analyt
ical methods. Specifically, LefSE first screens out candidates using 
nonparametric tests and then uses linear discriminant analysis to 
maximize the differences between groups (created in the present study 
by using a median split). On the other hand, MaAslin uses a form of 
generalized linear model and examines associations based on contin
uous outcome measures. Future work should continue to use both 
methods in conjunction to identify biomarkers more reliably. 

Our current study may have a number of strengths and include novel 
methods, such as the use of shotgun-metagenomic sequencing and rs- 
fNIRS to index functional brain network connectivity, but there are 
some limitations that merit acknowledgement. First, our analysis is 
limited to one time point in early development. It will be important for 
future studies to assess the development and variability in the gut 
microbiota composition and its association with brain network con
nectivity and behavioral temperament over time to determine its long- 
term effects and better understand directionality of the associations 
seen in the current study (Kelsey et al., 2020). Relatedly, another limi
tation of the present study is the assessment of a single stool sample per 
infant which was collected in the home (and not in the laboratory) 
environment. In this context is important to note that prior work has 
highlighted significant temporal variation in the adult gut microbiome 
(Davenport et al., 2014; Riddle and Connor, 2016). However, the pre
sent study elected to collect a single sample in order to decrease burden 
on participants and reduce study drop-out. Moreover, other evidence 

has emerged suggesting intraindividual variability in key groups of 
microorganisms remains relatively low during infancy (Raman et al., 
2019; Subramanian et al., 2014). Second, although we selected the 
current approach of rs-fNIRS to examine brain connectivity because it is 
relatively non-confining, allows the infant to remain with their mother, 
and it is a relatively affordable tool, fNIRS is limited in monitoring ac
tivity from (superficial) cortical structures (Lloyd-Fox et al., 2010) and 
prevents us from gleaning insights into networks including deeper 
cortical and subcortical structures. Third, by adjusting our analytical 
models for potential confounds (covariates), some association effects are 
no longer statistically significant. Accordingly, it is unclear if the 
absence of significant effects when making these adjustments in the 
current analysis is due to reduced power or the covariate adjustment 
itself, as it is known that power can be reduced with an increase in the 
number of variables in a model. To address these and other potential 
statistical limitations, the field needs to move beyond single time point, 
low sample size studies, and take an unbiased data science approach 
utilizing machine learning techniques to better characterize the nuances 
and complexities of the gut microbiota-brain interactions (Kelsey, 
Dreisbach, et al., 2018). Fourth, it is important to note that even though 
parents were instructed to collect stool samples at home within 24 h 
before bringing their infants into the laboratory, it was not possible to 
freeze stool samples immediately after collection. This was done 
because, as for all developmental studies, the goal is to develop reliable 
and high-quality collection and storage methods that place the lowest 
possible burden on the participating families. Prior work has obtained 
mixed results in regards to room temperature stool storage. For example, 
Shaw et al. (2016) found significant differences in microbiome com
munities after storage at room temperature for 48 h. However, other 
work suggests that stool samples stored at room temperature from 
anywhere between 2 h to 52 h have microbiome communities that 
remain relatively stable (Cardona et al., 2012; Guo et al., 2016; Liang 
et al., 2020). In the present study samples had on average been stored at 
room temperature for only about 8 h. Moreover, in line with the latter 
set of studies (Cardona et al., 2012; Guo et al., 2016; Liang et al., 2020), 
we found no associations between amount of time passed between stool 
collection and freezing and microbial composition measures (both taxa 
and functional group diversity). Future research should continue efforts 
to better understand and monitor how stool collection and storage 
procedures account for inter- and intra-study variability in microbiome 
analysis. Finally, it is important to acknowledge that our use of stool 
samples provides an incomplete view of the entire intestinal tract 
(Donaldson et al., 2016). Stool samples are most reflective of the lumen 
and outer mucosa layers of the gastrointestinal tract due to the contin
uous secretion of the outer layers shedding into the stool sample 
(Donaldson et al., 2016). Thus, while stool samples might be limited in 
their ability to characterize gut microbiota across the entire intestinal 
tract, relying on stool samples is still the preferred method in develop
mental work given the low burden on infants and families and minimally 
invasive collection compared to other more comprehensive methodol
ogies (e.g., colonoscopies or biopsies of the mucosa or small intestine 
tissue). 

In summary, the current study provides novel insights into the early 
emergence of the gut-brain axis and supports that the connection be
tween the gut microbial composition and functional brain connectivity 
is already present in newborn infants. These findings shed new light on 
the microbial origins of individual differences in early-emerging func
tional brain networks and behavioral traits and provide the basis for 
future research examining the long-term consequences of this gut-brain- 
behavioral correlation on mental health outcomes. 
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