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ARTICLE INFO ABSTRACT

Keywords: The gut microbiome appears to play an important role in human health and disease. However, only little is
Default mode network known about how variability in the gut microbiome contributes to individual differences during early and
fNIRS

sensitive stages of brain and behavioral development. The current study examined the link between gut
microbiome, brain, and behavior in newborn infants (N = 63; M [age] = 25 days). Infant gut microbiome di-
versity was measured from stool samples using metagenomic sequencing, infant functional brain network con-
nectivity was assessed using a resting state functional near infrared spectroscopy (rs-fNIRS) procedure, and infant
behavioral temperament was assessed using parental report. Our results show that gut microbiota composition is
linked to individual variability in brain network connectivity, which in turn mediated individual differences in
behavioral temperament, specifically negative emotionality, among infants. Furthermore, virulence factors,
possibly indexing pathogenic activity, were associated with differences in brain network connectivity linked to
negative emotionality. These findings provide novel insights into the early developmental origins of the gut
microbiome-brain axis and its association with variability in important behavioral traits. This suggests that the
gut microbiome is an important biological factor to consider when studying human development and health.
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Spichak et al., 2018). Yet, little is known about how the gut microbiome
impacts developing brain function and psychological health during this

1. Introduction

The human gut microbiome is a complex ecosystem comprised of the
microorganisms lining the intestinal tract, including bacteria, viruses,
fungi, and archaea. The gut microbiome is crucial to normal physio-
logical, metabolic, and immune function (for an example of another
paper using this method see (Qin et al., 2010). Infancy represents a
sensitive period in gut microbiome formation as the gut microbiome
changes from a relatively sterile environment to a diverse ecosystem
with over 3 x 10! species of microorganisms (Cryan and Dinan, 2012;
Sender et al., 2016). Importantly, the gut microbiome is thought to
impact psychological functioning and mental health through the
microbiota-gut-brain axis (Borre et al., 2014; Cryan and Dinan, 2012;

sensitive period of early human development (Kelsey and Grossmann,
2019; Cowan et al., 2019; Kelsey et al., 2018).

Previous correlational studies in adults have shown that changes in
the gut microbiome — referring to a general imbalance (but not a specific
measure) of microorganisms in the gut — is linked to heightened negative
affect and internalizing disorders such as anxiety and depression
(Evrensel and Ceylan, 2015). Research more specifically assessing gut
microbiome diversity in adulthood, however, has produced mixed re-
sults. For example, individuals with Major Depressive Disorder are re-
ported as having increased, decreased, and no significant difference in
alpha diversity (within-sample species diversity; Bastiaanssen et al.,
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2020). Moreover, due to the correlational nature of these existing
findings and its limitation to adult samples, the specific mechanisms and
developmental history through which an association between the gut
and psychological functioning are established remains elusive.

The majority of our understanding of the mechanisms by which the
microbiome impacts mental health outcomes comes from research
conducted with animal models. Specifically, there has been a focus in
animal work to characterize how the gut signals to the brain. To date, a
number of potential pathways have emerged, including activation of the
vagus nerve, the production of metabolites, and immuno-signaling
(Sherwin et al., 2019). In addition, germ-free mice, which are reared
in an entirely sterile environment, have been used for a sledgehammer
approach to facilitate discoveries pertaining to how the gut microbiota
broadly impacts brain and behavioral development (Heijtz et al., 2011).
For example, germ free mice exhibit increased myelination in the pre-
frontal cortex, immature microglia development, aberrant neurogenesis,
differing grey matter volumes in social brain areas (e.g., neocortex and
amygdala), and increased blood-brain barrier permeability, indexing
specific differences in brain structure and physiology (Hoban et al.,
2016; Sharon et al., 2016; Spichak et al., 2018). Furthermore, germ-free
mice exhibit differences in their internalizing behaviors, such as aber-
rant fear conditioning (reduced freezing to the conditioned fear stim-
ulus) and a decrease in species-typical anxiety behaviors (assessed
through open field tests and elevated plus mazes; Chu et al., 2019; De
Palma et al., 2015; Hsiao et al., 2013). In particular, it has been theo-
rized that the initial commensal microbiome, or the founding microbial
population, has an exceedingly large and lasting influence over the
lifetime composition of the microbiota (Litvak and Baumler, 2019). In
line with this hypothesis, studies have shown that social deficits and
aberrant stress responses in germ-free mice were reversed when
recolonization of the gut microbiome occurred prior to but not after
sexual maturity (Buffington et al., 2016; Heijtz et al., 2011; Sudo et al.,
2004). Given the emerging evidence from animal models suggesting the
existence of sensitive periods in the development of the gut microbiome-
brain-behavior relations, research elucidating these links in early human
development is much needed.

The prenatal and early postnatal life represent sensitive periods
marked by tremendous growth in brain, behavioral, and gut microbiota
development (Cowan et al., 2019). Specifically, new evidence has
emerged that functional brain networks, or brain regions with high
temporal correlations for low frequency oscillations, come online earlier
than previously thought (Damoiseaux et al., 2006; Kaiser et al., 2015).
Specifically, short range and interhemispheric (homologous) networks
are detectable even before birth whereas long range networks (such as
the default mode and fronto-parietal network) show a more protracted
development across the first year of postnatal life (Gao et al., 2015; van
den Heuvel and Thomason, 2016). Similar patterns are seen at the level
of newborn behavior. Already within the first few hours of development,
infants orient to the sight, sounds, and smells of other humans and their
mothers (DeCasper and Fifer, 1980; Farroni et al., 2013; Farroni, Csibra,
Simion, & Johnson, 2002; Farroni et al., 2005; Rattaz et al., 2005). These
behavioral and regulatory capacities continue to grow and develop in
step with improved sensory functions (Feldman, 2009; Sheese et al.,
2008). During the same period and in a similar manner to brain and
behavioral development, the gut microbiota also go from a sparse
environment marked by high levels of Bifidobacteria (microbes involved
in digestion of human milk oligosaccharides) to a diverse flora rich in
Bacteroides (microbes involved in the digestion of complex starches)
coinciding with the introduction of solid foods (Moore and Townsend,
2019).

Although the brain and microbiome share similar windows of rapid
development, limited research has investigated this connection through
direct assessment of the gut microbiota in humans (Kelsey et al., 2018).
Across the five existing infant studies with four cohorts of infants, there
lacks a conclusive and unifying link between gut microbiota alpha di-
versity and behavioral traits. Specifically, greater diversity of the gut
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microbiota has been associated with heighted surgency/extraversion,
decreased negative emotionality, increased internalizing symptoms, and
decreased cognitive performance in human infants (Aatsinki et al.,
2019a; Carlson et al., 2018; Christian et al., 2015; Loughman et al.,
2020), making any clear conclusions regarding the link between di-
versity and positive infant mental health outcomes difficult to parse.
Notably, these studies also relied upon taxa diversity as the main char-
acterization of the gut microbiota; this limitation may have contributed
to the mixed findings (Cowan et al., 2019). To advance our under-
standing of these relationships, there is a need to assess the functionality
of the microbes, or the genes expressed in the microbiota, allowing in-
sights into not only the taxonomy of microorganisms present, but also
the relevant biological processes in which they are functionally
contributing (Hooks et al., 2019; Knight et al., 2018).

The existing infant studies have relied on 16S rRNA gene sequencing
which affords insight into the taxonomic composition of the bacterial
species in the gut microbiota yet does not provide transcriptional in-
formation on the functional state of the microbiome. Therefore, any
functional information provided is inferred from the present bacteria
and not directly assessed (Aatsinki et al., 2019a; Carlson et al., 2018;
Christian et al., 2015; Gao et al., 2019). Alternatively, shotgun meta-
genomics encompasses all DNA sequences within a given sample,
characterizing the full contents of the microbial microorganisms (e.g.,
bacteria, viruses, and fungi) and their underlying functional pathways
(e.g., gene products, virulence factors, and antibiotic resistance; Kelsey
et al., 2018). The direct assessment of microbial functional pathways
provides a more powerful tool to better characterize and understand the
potential link with brain and psychological development.

The predicted functionality of protein coding genes found in a (meta)
genome can be characterized at multiple levels, from simple annotation
by homology to protein databases, to further grouping of functionally
related genes into signatures. For the current study, we focused on three
aspects of microbial function: 1) GO Terms (Gene Ontology Terms),
characterizing how individual genes contribute to the biology of an
organism at the molecular, cellular, and organism levels, 2) virulence
factors, genes coding for molecules created by microorganisms to aid in
their ability to colonize, suppress immunity, and divert nutrients away
from the host, and 3) resistome, genes coding for products which are
predicted to yield resistance to antibiotics characterizing overall anti-
microbial susceptibility. In addition, it is important to more directly
examine the potential effect the gut microbiome has on brain function in
human infants, further contributing to individual differences in behav-
ioral traits. Two published studies (using the same cohort of infants)
have investigated the role of the gut microbiota in infant brain structure
and function (Carlson et al., 2018; Gao et al., 2019). Across both studies,
limited evidence points to some links between alpha diversity of taxa
and brain structure and function (see supplemental materials for a
summary). Specifically, increased alpha diversity was found to be
associated with increased cortical volume in the parietal cortex and
increased connectivity between the parietal cortex and supplemental
motor area (Carlson et al., 2018; Gao et al., 2019). Given the limited
current evidence suggesting the gut microbiome might be involved in
brain development and brain connectivity, more systematic research
investigating this link is needed. Therefore, the first goal of this study
was to examine whether and how taxa diversity and functional diversity
are linked to functional brain connectivity. In order to test whether gut
microbiota composition is linked to functional brain connectivity in
cortical networks, we used functional Near Infrared Spectroscopy
(fNIRS) to characterize individual differences in spontaneous brain
network activity in prefrontal and parietal cortical networks, previously
linked to internalizing symptoms in adulthood and behavioral temper-
ament in infancy (Kaiser et al., 2015; Wang et al., 2013). The second
goal was to examine whether and how both taxa diversity and functional
diversity are linked to behavioral temperament in the newborn period.
Temperament refers to individual differences in an infant’s emotional
and attentional responses to everyday situations (Rothbart, 2007).
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Specifically, the present investigation focused on the following, previ-
ously identified, dimensions of behavioral temperament: regulation/
orienting, negative emotionality, and surgency/positive emotionality
(Gartstein and Rothbart, 2003).

The present study examined the link between gut microbiome
composition and brain and behavioral traits in newborn infants. This is
the first study of its kind to use state-of-the art metagenomic sequencing,
allowing not only insights into full taxonomic make-up but also the
functionality of the microbes. To this end, the present study took a
multifaceted approach to characterizing the gut microbiota to assess
whether individual differences in behavioral temperament and func-
tional brain connectivity measured using fNIRS could be captured by (1)
alpha diversity of taxa, (2) alpha diversity of functional terms, and/or
(3) specific taxa biomarkers. Based on the prior work linking alpha di-
versity of taxa with mental health outcomes in adults (Bastiaanssen
et al., 2020) and the work with infants assessing the link between taxa
diversity and behavioral temperament (Aatsinki et al., 2019a; Bas-
tiaanssen et al., 2020; Carlson et al., 2018), we predicted alpha diversity
of taxa would be associated with negative emotionality, and regulation/
orienting behaviors. Moreover, we hypothesized that alpha diversity of
taxa would be associated with brain connectivity in resting-state brain
networks previously linked to internalizing disorders in adults (Kaiser
et al., 2015; Patashov et al., 2019). Specifically, we hypothesized that
taxa diversity would be associated with hyperconnectivity in the Fronto-
parietal network (previously linked to cognitive control of attention and
behavior in adults), hypoconnectivity in the Default mode network
(previously linked to stimulus-independent thought and mind-
wandering in adults), and hypoconnectivity in the homologous-
interhemispheric network (previously linked to emotional integration
in adults; Patashov et al., 2019; Wang et al., 2013). Critically, we ex-
pected to see these associations only for the functional resting-state
brain networks and not for the (non-functional) control network (see
Methods). As a third goal, we were interested in exploring potential
pathways by which the gut microbiota may influence behavioral
temperament. Based on prior work linking gut microbiota to brain
structure and function, and functional connectivity to behavioral
temperament, we hypothesized that functional connectivity may be a
significant mediator for the gut microbiota-behavioral temperament
relation (Aatsinki et al., 2019; Carlson et al., 2018; Graham et al., 2016).

Moreover, we predicted specific functional profiles of the gut
microbiome such as decreased GO Terms (indicative of genes that
function together as part of a network), increased number of virulence
factors genes (indicative of potential pathogenicity of the microbes
present), and increased number of antibiotic resistance genes would be
linked to negative behavioral traits, including reduced behavioral
regulation and enhanced negative emotionality (Firestein et al., 2019;
Slykerman et al., 2019). As a fourth, and final goal, we were interested in
utilizing exploratory, unsupervised machine learning algorithms in
order to identify potential microbial species as biomarkers of functional
connectivity and behavioral temperament. The current study aimed to
expound upon the influence of the gut microbiota on early-emerging
individual differences in brain and behavior, providing foundational
insights into gut microbiome-brain-behavior relations.

2. Materials and methods

Sixty-three newborns (M [age] = 25 days; Median [age] = 24 days;
ranging from 9 days to 56 days; 26 females; 37 males) were included in
the final sample used in the present analyses. Participants were recruited
from a local academic medical center and are a representative sample of
the surrounding Mid-Atlantic college town (for socio-demographic in-
formation see Table 1). All participants were born at term, with normal
birth weight (>2,500 g) and did not have any hearing or visual im-
pairments. Twenty-three additional infants were tested and subse-
quently excluded from the present analyses for the following reasons: n
= 13 were excluded because they failed to reach our pre-determined

Brain Behavior and Immunity xxx (xxxX) xxx

Table 1
Socio-demographic information for the present study sample (N = 63).
Socio-demographic Mean/Count
information (SD/%)
Any antibiotic Treatments, 30 (48%)
n
Prenatal antibiotics 8 (12%)
During labor and delivery 26 (41%)
Postpartum administration to 3 (5%)
mother
Administered directly to the infant 4 (6%)
between delivery and study
appointment.
Apgar Score at 1st Minute 8.19 (0.94)
Apgar Score at 5th Minute 8.94 (0.44)
Birth Length, inches 19.75 (0.82)
Birthweight, grams 3445.42
(466.24)
Bristol Stool Scale Score 6.41 (0.61)
Breastfeeding, n 56 (90%)
Epidural, n 37 (60%)
Gestational Age, weeks 39.43 (1.18)
Female, n 25 (40%)
Head Circumference, cm 34.74 (1.17)
Income, n
Less than $15,000 5 (8%)
$15,001 to $30,000 5 (8%)
$30,001 to $45,000 3 (5%)
$45,001 to $60,000 1 (2%)
$60,001 to $75,000 2 (3%)
$75,001 to $90,000 9 (15%)
$90,001 to $110,000 7 (11%)
$110,001 to $125,000 7 (11%)
$125,001 to $175,000 2 (3%)
$175,001 to $225,000 8 (13%)
$225,001 to $275,000 8 (13%)
$275,001+ 3 (5%)
Infant Age at data 24.92
collection, days (10.68)
Maternal Depression 10.92 (3.22)
Maternal Education
Some High School 2 (3%)
High School Diploma/GED 11 (18%)
Some College/Associates 7 (11%)
Bachelor’s Degree 16 (26%)
Graduate Degree 26 (42%)
Number of Siblings 2.13(1.11)
Hours between stool sample 7.96 (8.57)
collection and freezing
Lived with pet(s), n 37 (60%)
Pitocin, n 31 (50%)
Race white, n 45 (73%)
Vaginal Delivery, n 47 (76%)

Note: Maternal depression was assessed using the Edinburgh postnatal depression
scale (Cox et al., 1987). There were two points of missing data for birth length
and head circumference, one point missing for Pitocin use, and one point of
missing data for the Bristol Stool Scale. Infants whose parent reported breast-
feeding at any amount were considered breastfed. Any antibiotic treatment
included infants potentially exposed to antibiotics during labor and delivery and
through administration of antibiotics directly to the infant.

inclusion criterion of having at least 100 s of continuous data during
which the infant was not crying; n = 4 were excluded because>30% of
the measured fNIRS channels had poor light intensity readings, more
specifically, a signal-to-noise ratio of<1.5 (Bulgarelli et al., 2019; Xu
et al., 2015) ; n = 4 were excluded because of bad capping; n = 2 were
excluded because their stool samples did not meet quality control
thresholds for DNA sequencing. Note that the current attrition rate
(36.5%) is lower than in previous infant fNIRS studies (Cristia et al.,
2013). Furthermore, in order to test that the infants were excluded at
random and that the criteria for inclusion were not related to outcomes
of interest, we compared the temperament profiles (negative emotion-
ality, regulation/orienting, and surgency/positive emotionality) of in-
fants that were included to those that were excluded using independent
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samples t-tests; However, no significant differences were found between
the groups (all p-values > 0.30). All parents gave informed consent for
their infants to participate in accordance with the Declaration of Hel-
sinki, and families received a payment for their participation. All pro-
cedures were approved by and carried out in accordance with The
University of Virginia Institutional Review Board for Health Sciences
(Protocol number 20381).

2.1. Stool collection and processing.

Parents were instructed to collect infant stool samples at home using
infant diapers within 24 h of the study visit. This instruction was based
on previous work showing that microbial communities are stable at
room temperature for up to 24 h (Cardona et al., 2012; Guo et al., 2016;
Liang et al., 2020). The average time between infant reported defecation
and freezing the samples was 7.96 h, which is well below the 24-hour
recommendation. The average Bristol Stool Scale score was 6.41. Once
received by the investigators, stool samples were immediately aliquoted
into cryovials containing a 20% Glycerol and 80% Phosphate-Buffered
Saline solution (this solution was used in order to preserve microbial
species for future studies interested in reconstituting microbiome in
animal models), and stored at —80 °C. Note, efforts were made by in-
vestigators to isolate the innermost portion of the stool sample, as it is
least likely to be contaminated by urine. Bio-specimens were processed
and sequenced at the National Cancer Institute (NCI). Automated DNA
extraction was performed with the MagAttract PowerMicrobiome DNA/
RNA kit (Qiagen, Cat No./ID: 27500-4-EP) with Qubit™ quantification
following manufacturer’s instructions. Samples that did not meet quality
control thresholds for DNA concentration were removed from further
analyses (n = 2). Library preparation and sequencing was completed
using the Illumina Nextera DNA Flex Library Prep and Illumina NovaSeq
6000 sequencing platform, respectively.

2.2. Shotgun metagenomic Analysis.

Shotgun sequencing was analyzed using a series of pipelines and
functions in the R language developed in-house and publicly available on
Github under the package name JAMS, found at https://github.
com/johnmcculloch/JAMS BW (For an example of another paper
using this method see (Rosshart et al., 2019). This package includes a
pipeline (JAMSalpha) for obtaining taxonomic and functional relative
abundance of features within each sample using FASTQ files as input
and a series of functions in the R language for comparison between
samples (beta analysis).

For each metagenomic shotgun sequencing sample in this study, the
paired-end sequencing FASTQ files generated from the Illumina Nova-
Seq platform were used as input for JAMSalpha, Version 1.39 in order to
gauge counts for taxonomic and functional features (McCulloch, 2019).
Briefly, paired-end sequencing reads were (1) quality trimmed using
Trimmomatic (Bolger et al., 2014), (2) aligned to the human genome
using Bowtie2 and host DNA was subsequently removed (Langmead and
Salzberg, 2012), (3) were assembled into contigs, (overlapping sets of
DNA fragments), using Megahit (Li et al., 2015). Contigs were taxo-
nomically classified using k-mer analysis with kraken2 (Wood and
Salzberg, 2014), using a custom-built database containing all draft and
complete genomes of all Bacteria, Archaea, Fungi, Viruses and Protozoa
deposited in NCBI GenBank. Contigs were also annotated, ab initio, using
Prokka (Seemann, 2014), yielding the predicted proteome for the met-
agenomic sample. Sequencing reads were then aligned back to assem-
bled contigs in order to gauge base pair counts for each contig, and thus,
each predicted gene. The total basepair count for each last known taxon
(LKT) — deepest taxonomic level up to species confidently classified
using kraken2, was computed as the number of bases covering all con-
tigs classified for each LKT. As of note, for other taxonomic classification
methods, if there is no classification at the species level, sequences are
simply deemed “unclassified”. However, k-mer based classification of
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contigs rather than short reads or alignment to a reference genome, al-
lows for a more granular assessment of these sequences by allowing
them to be classified into their most appropriate taxomonic level even if
it is above the species level.

The predicted proteome of each metagenomic sample (translated
genes found within contigs) was further functionally classified using
InterproScan (https://github.com/ebi-pf-team/interproscan) in order to
attribute Gene Ontology Terms to each predicted protein. In parallel, the
predicted proteome was also used as query against local instances of the
VFDB database (Chen et al., 2016) and the ResFinder database (Zankari
et al., 2012) using BLASTp. Hits with < 75% identity and/or < 75%
query coverage were discarded.

For beta-diversity analyses, the relative abundance, in parts per
million (PPM) of each feature was used. This is obtained by dividing the
number of bases covering a feature by the total number of bases
sequenced for that analysis in a sample multiplied by 10°.

For alpha-diversity analyses, alpha-diversity measures were ob-
tained using the Vegan package in R (https://cran.r-project.
org/web/packages/vegan/index.html).

2.3. Infant temperament.

Infant behavioral temperament was assessed using parental reports
the 91-item Infant Behavior Questionnaire Revised Short Form (IBQ-R;
(Gartstein and Rothbart, 2003); Rigato, Stets, Bonneville-Roussy, &
Holmboe, 2018; (Stifter and Fox, 1990; Worobey and Blajda, 1989). This
measure has shown to be reliable and valid during the newborn period
(for examples of other studies using this measure with newborn pop-
ulations see: Rigato et al., 2018, (Stifter and Fox, 1990; Worobey and
Blajda, 1989). Parents completed the questionnaire online using the
Qualtrics platform prior to their appointment. Three general tempera-
ment dimensions were computed summarizing information from various
sub-scales: (1) negative emotionality (contributing sub-scales: fear,
distress to limitations, falling reactivity, sadness), (2) regulation/ori-
enting (contributing sub-scales: low intensity pleasure, cuddliness,
duration of orienting, soothability), and (3) surgency/positive
emotionality (contributing sub-scales: activity level, smiling and
laughing, high intensity pleasure, perceptual sensitivity, approach, and
vocal reactivity; Gartstein and Rothbart, 2003). If parents reported the
behavior was not applicable at the current time, then this item was given
a value of 0.

2.4. Resting state fNIRS.

Procedure. The resting state (rs)-fNIRS task took place in a small,
quiet testing area. Infants were seated on their parent’s lap and placed
approximately 60 cm from the screen (23-inch monitor). Parents were
asked to remain quiet throughout the testing session. A fNIRS fabric cap
(EasyCap, Germany) was fitted to each newborn and secured in place
using a waist-band and outside netting. The presentation software
package (Neurobehavioral Systems, USA) was used for the design and
viewing of the experimental paradigm. A non-social stimulus was
created by selecting non-social clips from a popular infant video (Baby
Einstein) that featured videos of toys, stuffed animals, and still images of
everyday objects. This stimulus was selected based on prior work that
has shown that presenting a non-social video increases compliance and
decreases movement for young infants, recent recommendations for the
design of connectivity tasks for pediatric populations, and adult work
suggesting that the presentation of non-social videos does not influence
functional connectivity (Bulgarelli et al., 2020; Camacho et al., 2020;
Vanderwal et al., 2015). Specifically, Vanderwal and colleagues (2015)
showed children (ages 3-7) three sets of stimuli (a fixation cross, low-
level movie, and a popular musical cartoon) during a resting state
fMRI task. The authors concluded that a non-social movie was the best
choice as it provided a functional connectivity metric that more closely
matched the fixation cross while also providing higher quality (more
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artifact free) data. These clips were shown in 30 s intervals, and the
order of presentation was randomized for each infant. The full recording
session took place over a 7-minute time period. Sessions were video-
recorded using a camera mounted above the screen. This allowed for
later offline coding of the infants’ behavior, fussiness, and cap
placement.

Data acquisition. Infants’ fNIRS data were recorded using a NIRx
Nirscout system and NirStar acquisition software. Concentration
changes of oxygenated hemoglobin (oxyHb) and deoxygenated hemo-
globin (deoxyHb) in the cerebral cortex are measured using fNIRS
through the quantification of refracted light, (for more information
regarding this technique see (Lloyd-Fox et al., 2010). The fNIRS system
used contains 49 channels positioned over frontal and temporal-parietal
regions and recorded measurements (as previously described in
Altvater-Mackensen and Grossmann, 2016; Altvater-Mackensen and
Grossmann, 2015; Grossmann et al., 2018; Kelsey et al., 2019; Krol et al.,
2019). The system emits two wavelengths of light in the Near-Infrared
spectrum, 760 nm and 850 nm, and captures both deoxyHb and
oxyHb. The diodes have a power of 25 mW/wavelength and data were
recorded at a preset default sampling rate of 3.91 Hz.

Behavioral Coding. Infants’ behavior during the fNIRS recording
session was coded by a trained research assistant using video recordings
of the experimental session. Specifically, researchers coded for behav-
ioral signs of fussiness/irritability and alertness displayed by infants
during the testing session. To assess the reliability of the attentional
coding done by the primary coder, an additional trained coder also
coded infant behavior from selected subsample of infants (n = 19). This
analysis showed that inter-rater reliability amount of data included was
excellent (Cronbach’s a = 0.94). In line with previous studies, infants
were only included in the present analysis if they had at least 100 s of
data during which the infant was not crying (Bulgarelli et al., 2019).
Moreover, as it takes a minimum of 8 s for the Hemodynamic response
function to return to baseline after a stimulus-evoked event, the onset of
useable data was delayed for 8 s (Bulgarelli et al., 2019, 2020). How-
ever, unlike Bulgarelli and colleagues (2019, 2020) the time series was
continuous. On average, infants contributed 331.29 s of data (SD =
115.75 s). Note, this amount of data included is comparable to other
fNIRS functional connectivity papers with young infant (see 11-month
time point in (Bulgarelli et al., 2020). Finally, infants were rated on
their levels of alertness during the task with 1 reflecting deep sleep and 6
reflecting crying (Brazelton et al., 1987). On average, infants were rated
as being midway between an active light sleep to a drowsy state (M =
2.55; SD = 1.26).

Functional Networks. The fNIRS data were analyzed using the
functional connectivity program, FC-NIRS (Xu et al., 2015). First,
channels were removed on the basis of poor light intensity (signal-to-
noise ratio was<1.5) (please note, this value was selected by the au-
thor’s in order to optimize the number and quality of channels being
retained; Xu et al., 2015). In order to be included in the present analyses,
infants needed to have at least 70% of their channels passing this pre-
defined threshold (Bulgarelli et al., 2020). Next, data were band-pass
filtered using a previously validated low frequency filter (0.01-0.08
Hz; Bulgarelli et al., 2019; Lu et al., 2009). Finally, concentration
changes were calculated using the modified Beer-Lambert law [partial
path length factor: 6.0] (Villringer and Chance, 1997).

For each infant, we obtained a 49 by 49 correlation matrix corre-
sponding to all of the relations between all of the channels measured.
Considering that negative values are difficult to interpret in terms of
their neurobiological basis (and based on prior work), we replaced all
negative correlation values with zeros (Fox et al., 2009; Murphy et al.,
2009). Next, Fisher Z-transformations were performed on all correlation
matrices. Networks of interest were created by selecting channels that
corresponded to specific regions of interest. Brain networks were
composed based on the anatomical information available in Kabdebon
et al. (Kabdebon et al., 2014), a meta-analysis of resting state fMRI
(Kaiser et al., 2015), and prior work using rs-fNIRS (Patashov et al.,
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2019; Sasai et al., 2011). Based on this information, four networks were
created: (1) The Fronto-parietal network, the average of all correlations
between three channels in the dorsolateral prefrontal cortex (corre-
sponding with the F3, F4, F5, F6 electrodes) and two channels in the
parietal area (corresponding with CP3 and CP4 electrodes); 2) The
Default mode network, the average of all correlations between three
channels in the medial prefrontal cortex (corresponding with the Fpz
electrode) and four channels in the superior temporal cortex (corre-
sponding with FT7, T7, FT8, T8 electrodes; 3) The homologous-
interhemispheric network, the average of all correlations between the
21 channels in the left hemisphere (including frontal, temporal and
parietal cortical regions) with their corresponding (homologous) chan-
nels in the right hemisphere; and, (4) a (non-functional) control
network, the average of all correlations between three channels in the
left frontal area (corresponding with the F7 electrode) with three
channels in the right temporal area (corresponding with the T8 elec-
trode) and three channels in the right frontal area (corresponding with
F8 electrode) with three channels in the left temporal area (corre-
sponding with the T7 electrode; see Fig. 1 for schematic of network
configurations; for more details on network configuration see Kelsey
et al., 2020). Cortical projections were created using NIRSite by using
10-20 system references from the cap layout. The present study focused
on oxyHb based on previous work by the authors that has found brain-
behavior correlation for this chromophore (Kelsey et al., 2020). Based
on prior infant work, which has found laterality differences, networks
were separated into left and right hemispheres (Carlson et al., 2018).
Moreover, statistical outliers — values that were > 3 SD above or below
the mean or based on multivariate mahalanobis’ distance — were
removed for the subsequent analyses (functional connectivity data n =
1, negative emotionality n = 1).

2.5. Analysis plan

Alpha diversity values (Shannon Diversity Index and Chao1) for both
the taxa and functional terms were calculated using the vegan R-pack-
age. Associations between the covariates and the variables of interest
were investigated using Wilcoxon’s rank-sum test and Kruskal-Wallis H-
test. We included covariates in the model based on previous identifica-
tion in prior work and significant associations found in the present
sample. For the covariate analyses, we used the less stringent p-value <
0.05 cutoffs in order to be conservative in our later assessments. To
account for the use of multiple comparisons across our models, we
adjusted our p-values against the False Discovery Rate (FDR), or ex-
pected proportion of type I errors (false positives). We considered results
with FDR < 0.25 as significant (see Aatsinki et al., 2019a for another
example of a paper using this threshold and Aatsinki et al., 2019b for a
discussion of the use of a 0.25 FDR cutoff). FDR was estimated using the
Benjamini & Hochberg method with the R function p.adjust.

Linear discriminant analysis of effect size (LefSE) and Microbiome
Multivariate Association with Linear Models (Maaslin2) were used to
identify potential microbial biomarkers of functional connectivity and
behavioral temperament using the Galaxy tool (http://huttenhower.
sph.harvard.edu/galaxy/) and R respectively (Mallick et al., In Sub-
mission). For LefSE, High and Low groupings were created for the
outcome variable by applying a Median Split. The LefSE tool identifies
the taxa and functional terms that are differentially abundant between
groups by applying 1) non-parametric factorial Kruskal-Wallis (KW)
test, 2) pairwise (unpaired) Wilcoxon rank-sum test and 3) Linear
Discriminant analysis to estimate effect size of each differentially
abundant feature (Segata et al., 2011). Per-sample normalization and an
alpha value of 0.05 for the Kruskal-Wallis and Wilcoxin rank-sum test
was used. The logarithmic LDA score for discriminative features was set
at an absolute value of Log 3 fold change. For analysis with Maaslin2 the
following default options were used: minimum abundance = 0, mini-
mum prevalence = 10%, normalization = TSS, transformation = Log, q-
value threshold = 0.25.
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Default Mode

Fig. 1. Shows the configurations for each of the network patterns. Note, each network consists of the average of all of the connections between red and blue channels
of the same letter. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3. Results
3.1. Associations with clinical covariates

A series of Wilcoxon’s rank-sum test and Kruskal-Wallis H-tests were
used to identify significant relationships between taxa diversity and
potential clinical covariates (for a schematic representation for all as-
sociations see Fig. 2). Any clinical variables found to be significantly
associated with a study variable of interest were then included in the
subsequent models assessing differences in said study variable as a co-
variate. We found significant associations between the Shannon-Taxa
and birthweight (Spearman’s rank correlation ry = -0.40, p = .001),
income (Spearman’s rank correlation ry = -0.25, p = .049), breast-
feeding (Kruskal-Wallis H X 2 = 9.14, p = .002), gestational age
(Spearman’s rank correlation rg = -0.31, p = .016), and head circum-
ference (Spearman’s rank correlation ry = -0.37, p = .004). However,
there were no significant associations found between the Chaol-Taxa
diversity measure and any of the covariates.

Next, we assessed the relationship between functional term diversity
(Chaol index for resistome, virulence terms, and GO Terms) and clinical
covariates. Here, we found that resistome diversity was significantly

associated with income (Spearman’s rank correlation rs = -0.31, p =
.016), gestational age,(Spearman’s rank correlation ry = -0.36, p
.004), and maternal depression scores (Spearman’s rank correlation rs =
0.26, p = .044). Similarly, virulence factor diversity was associated with
income (Spearman’s rank correlation r; = 0.33, p = .008) and antibiotics
administered at the hospital after birth (Spearman’s rank correlation r;
= 0.38, p = .002). Furthermore, GO Term diversity was associated with
sex (Kruskal-Wallis H X2 = 5.37, p = .02) and head circumference
(Spearman’s rank correlation rs = -0.37, p = .004).

Finally, we assessed the relation between clinical covariates and
psychological outcome measures (behavioral temperament and func-
tional brain connectivity). Here, we found significant associations be-
tween negative emotionality, infant age (Spearman’s rank correlation rg
= 0.43, p =.001), and income (Spearman’s rank correlation rs = 0.36, p
= .005). However, there were no other significant associations found
between clinical covariates and psychological outcome measures.

3.2. Alpha diversity of last known taxa and functional connectivity.

A series of univariate regressions with alpha diversity of last known
taxa (either Shannon Diversity Index or Chaol, separately) as the
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Age.in.days 013 021 0.24 -0.35 ~0.26 0.19 0.47 1
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Education.Bachelors.Degree 0.1 0.17 -0.09 -0.18-0.26-0.01-0.14-0.09 0.2 008/ 0 |012 0.25 0.17 0.06 | 0.16
Education.Graduate.Degree 0.3 0.31 027 ~0.11 038 048 -0.22 -0.16 032
Non.White ~0.31 013 -0.2 -0.30.31 -0.26 047
Siblings 018 0.29 -0.14-0.17-0.21 015 ~0.15-018  -0.11 -0.25 -0.21
Pets ~0.29 ~0.22 0.2 -0.16 -0.16 ~0.21 -0.18
Income 0.24|0.14 ~0.13 0.17 ~0.21-0.09 023 034 02 -0.28-0.21 -0.32 035
Pitocin 051 ~0.32-0.23 -0.18 013 02 -0.12 -0.19
Epidural —0.25 0.24 -0.19 0.18 -0.25
Infant.Current. Weight 021 -0.12 0.21/053| 0.4 | 0.68 -0.16 -0.26 ~0.05-0.07 036
C.Section  |032 -0.4-0.38 02 |0.24 ~0.18-0.14
Breastfeeding -0.18  -0.14 021 009 0.14 032 -036-0.14-014  -013  -017  -0.09-0.09
Antibiotics - ANTE ~0.15-0.25-0.09-0.22 0.24 0.11/0.06 | 0.05 -0.13 0.04 04 021
Antibiotics - BABY 038 -0.12 -0.21 -0.16 0.060.17 -0.08 0.15 0.3 02 |01
Antibiotics — INTRA 021 018 013 ~029  -0.11-005 ~0.19
Antibiotics - POST 029 014 0.22 016 ~0.24-0.15
Antibiotics — Post Hospital ~ -0.22 -0.19 -0.19
Male 0.25/0.26 0.23 ~0.22-0.16-0.19 -02
ApgarScore.1Min  0.31 03 -0.11 0
ApgarScore.5Min 018 -0.17-0.17
Gestational.Age  0.19 039 037 0.18 -031-017-018  -017  -0.11 -0.07-0.34-0.15 024
Length.at.birth  0.46 0.65 -0.28 ~0.14-0.13 ~0.17 -0.26
Head.Circumference.at.birth 071 -0.18 -0.38-0.22 ~0.08 ~0.23-0.27
Birthweight  -0.14 -0.39-0.18 ~0.08-0.22
Maternal.Depression 0.22
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Left.Default. Mode 04 025 039 032 0.42 -0.21 -0.21
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Control.Network -0.22
Virulence.factor.diversity 059 023
Antibiogram.diversity | 03
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Fig. 2. Schematic representation of correlations between all clinical covariates and study variables. Note, blue text represents significant positive associations, red
text represents significant negative associations, and blank cells represent nonsignificant associations. Note, statistical significance is defined here as p < .05. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

predictor variables and functional connectivity network patterns
(fronto-parietal [left and right], default mode [left and right],
homologous-interhemispheric, and control network) as the outcome
variables were conducted. There was a significant positive association
between alpha diversity and the left fronto-parietal network (Chaol-
Taxa standardized p = 0.71, FDR = 0.07, adjusted R? = 0.13, Shannon-
Taxa p = 0.14, FDR = 0.03, adjusted R? = 0.17), as well as alpha di-
versity of taxa and homologous-interhemispheric network connectivity
(Chaol-taxa standardized p = 0.16, FDR = 0.10, adjusted R? = 0.07;
Shannon-Taxa p = 0.06, FDR = 0.20, adjusted R? = 0.09; See Fig. 3).
When the models were adjusted for significant covariate associations,
both the relations between Shannon-taxa and Chaol-taxa with the left
fronto-parietal network connectivity remained significant (Chaol-taxa
standardized p = 0.46, FDR = 0.20, partial RZ = 0.12; Shannon-taxa p =
0.18, FDR = 0.07, partial R? = 0.17; covariates included: antibiotics,
delivery method, breastfeeding, infant age, infant weight at birth and at

study visit, gestational age, income, sex, and head circumference at
birth). Importantly, there was no association between alpha diversity
and connectivity in the control network (Chaol-taxa FDR = 0.92;
Shannon-Taxa FDR = 0.88).

3.3. Alpha diversity of functional terms and functional connectivity.

In order to examine how the particular functions of the microor-
ganisms may be contributing to the functional connectivity differences,
a series of univariate entry-method linear regressions were conducted
with each of the Chaol functional terms (virulence factors, resistome,
and GO terms) entered together in the model predicting each of the
previously identified functional connectivity networks (left fronto-
parietal and homologous-interhemispheric) in addition to the control
network separately. Note, Chaol (and not Shannon) index was used to
test for how the number of functional terms (as opposed to the evenness)
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Fig. 3. Shows the unadjusted relation between Chaol-Taxa and functional connectivity (oxyHb) Z-score for the homologous-interhemispheric network and left

Fronto-parietal network. Note, shaded regions represent 90% confidence intervals.

is related to the outcomes of interest. We observed that Chaol functional
terms predicted homologous-interhemispheric network connectivity.
Specifically, virulence factor diversity was positively associated with the
homologous-interhemispheric network connectivity (standardized p =
0.22, FDR = 0.12, partial R? = 0.14; See Fig. 4). Moreover, when the
model was adjusted for significant covariate associations, the relation
between Virulence factor diversity and homologous-interhemispheric
network connectivity remained (standardized p = 0.23, FDR = 0.13,
partial R2 = 0.16; covariates included: antibiotics, delivery method,
breastfeeding, infant age, infant weight at study visit, gestational age,
income, sex, maternal depression, and head circumference at birth).
However, none of the other functional terms significantly predicted
homologous-interhemispheric network connectivity. Moreover, there
were no significant associations found between Chaol functional terms
and the left frontal-parietal network (FDR > 0.26) or the control
network (FDR > 0.31) for the unadjusted models.

3.4. Alpha diversity of last known taxa, alpha diversity of functional
terms, and behavioral temperament.

A series of multivariate regressions with alpha diversity of taxa
(Chaol-taxa, Shannon-taxa) and Chaol functional terms (virulence
factors, resistome, and GO terms) as the predictors and behavioral
temperament (negative emotionality, regulation/orienting, surgency/

0.5
0.4
0.3
0.2
0.1

0.0

positive emotionality) as the outcome variables were conducted. We did
not find any significant associations between either of the alpha di-
versity metrics for taxa and behavioral temperament. Similarly, we did
not find any associations between the alpha diversity indices for the
functional terms and behavioral temperament.

3.5. Assessment of indirect effects

Simple mediation analyses were conducted in order to test the hy-
pothesis that the gut microbiota indirectly influences behavioral
temperament (negative emotionality and regulation/orienting) through
its effect on functional connectivity (for a schematic representation and
relevant statistics see Fig. 5). Specifically, we were interested in the
possible mediation effects of homologous-interhemispheric connectivity
based on its significant association with negative emotionality (f = 0.30,
FDR = 0.19, adjusted R> = 0.08) and regulation/orienting (§ = -0.26,
FDR = 0.20, adjusted R? = 0.07).

To do this, we used ordinary least squares path analysis and boot-
strapped confidence intervals based on 5,000 bootstrap samples. First
we tested possible mediation effects for the relation between alpha di-
versity of taxa and behavioral temperament. In line with previous
findings from the present study, increased alpha diversity (Chaol-Taxa
f = 0.29; Shannon-Taxa p = 0.31) was associated with increased
homologous-interhemispheric connectivity. Additionally, homologous-

Homologous Network (oxyHb) Z-Score

0 50 100

150 200

Virulence Factor Diversity

Fig. 4. Shows the unadjusted relation between virulence factor diversity and homologous-interhemispheric network connectivity. Note: shaded regions represent

90% confidence intervals.
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A
Homologous-
interhemispheric
Connectivity
a b
Microbiome Diversity Behavioral Temperament
B
Variables a b c c’
Behavioral Temperament: Negative Emotionality
Shannon-Taxa B=.31, p=.39, =.-.26, p=.12
p=.015 p=.004 p=.051 CI: [.020, .273]
Chaol-Taxa p=.29, B=.31, p=.00, B=.09
p=.023 p=.022 p=10 CIL: [.002, .211]
Virulence Factors p=.47, B=.27, p=.09, B=.13
p<.001 p=.064 p=.55 CI: [.005, .271]

Behavioral Temperament: Regulation/Orienting

Shannon-Taxa B=.32, B=-.28, B=-.054, B =-.088
p=.013 p=.038 p=.68 CI: [-.224, .000]
Chaol-Taxa B=.29, p=-.32, B=.071, B=-.091
p=.025 p=.018 p=.59 CIL: [-.252, .000]
Virulence Factors B=.47, B=-.39, B=.20, B=-.19
p<.001 p=.007 p=.15 CI: [-.412, -.023]

Note: significant indirect effects are in bold.

Fig. 5. (A) The theorized mediation model where gut microbial diversity indirectly impacts behavioral temperament through its influence on functional brain
connectivity, (B) Shows the corresponding statistical values for paths outlined in the mediation model.

interhemispheric connectivity was associated with increased negative
emotionality (f = 0.31-0.39). We also observed a significant indirect
effect, suggesting the relationship between increased alpha diversity and
negative emotionality may be mediated by homologous-
interhemispheric connectivity (Chaol-taxa p = 0.09, CI = [0.002,
0.211]; Shannon-taxa § = 0.12, CI = [0.020, 0.273]). There were,
however, no significant indirect effects found for the relations between
taxa diversity (Chaol-taxa and Shannon-taxa) and regulation/orienting.
We then assessed if virulence factors influence behavioral tempera-
ment through its effect on homologous-interhemispheric connectivity.
Increased virulence factor diversity (8 = 0.47) was associated with
increased homologous-interhemispheric connectivity. In addition,
homologous-interhemispheric connectivity was associated with
increased negative emotionality (p = 0.27). There was a significant in-
direct effect found, suggesting the relation between virulence factor
diversity and negative emotionality may be mediated by homologous-
interhemispheric connectivity (3 = 0.13, CI = [0.005-0.271]). Simi-
larly, we found evidence for a significant indirect effect, suggesting the
relation between virulence factor diversity and regulation/orienting
may also be mediated by homologous-interhemispheric connectivity
through a negative association (f = -0.19, CI = [-0.412, -0.023]).

3.6. Taxa biomarker identification

Functional connectivity. LefSE identified fourteen total potential
microbial biomarkers for the functional connectivity networks (LDA log
fold change cut-off = 3) and are described in Table 2. The left fronto-
parietal network was marked by an overall enrichment of Clostridium
taxa in the high connectivity group. In particular, the species
C. perfringens was a shared feature of both high connectivity group for
the left fronto-parietal network (log fold change = 3.41) and low con-
nectivity group for the left default mode network (log fold change =
3.56). For the high connectivity homologous-interhemispheric network,
there was an increased enrichment of E. coli (Log fold change = 4.36)
whereas the low connectivity homologous-interhemispheric network
group had an increased enrichment of B. dentium (Log fold change =
4.01).

An alternative biomarker discover technique, MaAslin2, was per-
formed to validate findings. More specifically, a linear model with the
five functional networks (fronto-parietal [left and right], default mode
[left and right], homologous-interhemispheric) included as fixed effects
was conducted (an additional model with covariates included as random
effects was run and included in supplementary materials). For the un-
adjusted model, Maaslin2 identified 479 total potential microbial bio-
markers for the functional connectivity networks (q-value < 0.25) and
the top fifty hits are summarized in Fig. 6. Again, we see the left fronto-
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Table 2
LefSE identified taxa biomarkers of functional connectivity networks.
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Phylum Family Genus Species Log fold change Group with thehighest Median Connectivity
Left Default mode network

Firmicutes Clostridiaceae Clostridium perfringens 3.559 Low
Left Fronto-parietal network

Firmicutes Enterococcaceae Enterococcus faecalis 3.765 High
Actinobacteria Coriobacteriaceae Collinsella Unclassified 3.665 High
Firmicutes Clostridiaceae Clostridium disporicum 3.548 High
Bacteroidetes Prevotellaceae Prevotella copri 3.523 High
Firmicutes Clostridiaceae Clostridium perfringens 3.415 High
Firmicutes Clostridiaceae Clostridium tertium 3.367 High
Firmicutes Lachnospiraceae Robinsoniella peoriensis 3.265 High
Firmicutes Clostridiaceae Clostridium Unclassified 3.167 High
Bacteroidetes Bacteroidaceae Bacteroides caccae 3.164 High
Firmicutes Streptococcaceae Streptococcus salivarius 3.397 Low
Firmicutes Enterococcaceae Enterococcus Unclassified 3.042 Low
Homologous-interhemispheric network

Proteobacteria Enterobacteriaceae Escherichia coli 4.357 High
Actinobacteria Bifidobacteriaceae Bifidobacterium dentium 4.012 Low
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Fig. 6. MaAslin2 top fifty taxa biomarkers of functional connectivity identified
in the unadjusted model. Taxa with the lowest g-values are at the top.

parietal network was marked by an overall enrichment of Clostridium
taxa (21 taxa identified; p = 1.76-2.99, gq-values = 0.06-0.25) and the
left default mode network was associated with a diminution of Clos-
tridium (2 taxa identified, p = -2.59 to —2.68, g-values = 0.19-0.25).
Temperament. LefSE identified a total of five microorganisms as
potential biomarkers for temperament and are described in Table 3.

10

Both negative emotionality and regulation/orienting were marked by an
enrichment of Bifidobacterium. In particular, B. pseudocatenulatum was
enriched in the high negative emotionality group (Log fold change =
4.09) and the high regulation/orienting group (Log fold change = 4.48).
Similarly, MaAslin2 was performed as an additional biomarker dis-
covery tool for behavioral temperament. More specifically, a linear
model with the three temperament domains (regulation/orienting,
negative emotionality, and surgency) included as fixed effects was
conducted (an additional model with covariates included as random
effects was run and included in supplementary materials). For the un-
adjusted model, Maaslin2 identified one biomarker for Negative
emotionality, Thermovibrio guaymasensis ( = 0.37, g-value = 0.087).

4. Discussion

The current study examined the relations between gut microbiota
composition, functional brain network connectivity, and behavioral
temperament in newborn infants. Our results show gut microbiota
composition is linked to individual variability in brain network con-
nectivity, which in turn, mediates individual differences in behavioral
temperament among infants. Furthermore, using shotgun metagenomic
sequencing, our results provide new evidence for an association between
genes coding for microbial virulence factors and brain network con-
nectivity. These findings provide novel insights into the early develop-
mental origins of the gut microbiome-brain axis and its association with
variability in important behavioral traits, potentially affecting long-term
development.

Our results demonstrate gut microbiota taxa diversity is positively
associated with functional connectivity in two resting-state brain net-
works in newborn infants. In concordance with our hypotheses,
increased taxa diversity was linked to fronto-parietal connectivity, a
brain network previously associated with positive mental health out-
comes in adults and positive behavioral traits in infants (Kaiser et al.,
2015; Rothbart, 2007). Specifically, greater connectivity in the frontal-
parietal network has been linked to decreased incidence of internalizing
disorder in adulthood and increased regulation and orienting behaviors
in infancy (Kaiser et al., 2015). Our findings, in addition, corroborate
data from previous infant studies, showing a positive association be-
tween taxa diversity and parietal cortex structure and function (Carlson
et al., 2018; Gao et al., 2019). This points to a consistent pattern of as-
sociation between gut microbiome diversity and the developing brain. It
is important to consider potential mechanisms by which such an asso-
ciation may arise. In previous studies with mice, antibiotic administra-
tion during pregnancy induced a dysregulated state of microglia
localized to the prefrontal and parietal cortices (Lebovitz et al., 2019),
suggesting one potential mechanism by which chemical intervention
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Table 3
LefSE identified taxa biomarkers of behavioral temperament.

Brain Behavior and Immunity xxx (xxxX) xxx

Phylum Family Genus Species Log fold change Group with the highest Median abundance
Negative emotionality

Actinobacteria Bifidobacteriaceae Bifidobacterium pseudocatenulatum 4.085 High

Firmicutes Streptococcaceae Streptococcus vestibularis 3.120 Low

Actinobacteria Actinomycetaceae Schaalia radingae 3.385 Low

Regulation/orienting

Actinobacteria Bifidobacteriaceae Bifidobacterium catenulatum 4.177 High

Actinobacteria Bifidobacteriaceae Bifidobacterium pseudocatenulatum 4.047 High

affecting the microbiota composition may impact brain development in
utero.

Contrary to our hypothesis, in the current study, taxa diversity was
positively associated with connectivity in infants’ homologous-
interhemispheric network, consequently linked to heightened negative
emotionality and decreased regulatory behaviors. While this finding was
in opposition to our hypothesis partly based on prior work with adults, it
is similar to prior work with infants. In particular, a study by Carlson
et al. (Carlson et al., 2018) found that increased alpha diversity assessed
at 1 year of age was associated with decreased cognitive performance at
two years of age. In addition, a Christian et al. (Christian et al., 2015)
study reported that increased alpha diversity was associated with
decreased regulatory behaviors both of which were assessed at same
time (18-27 months). It is interesting to consider the possibility that
these results, like the present results, may be attributed to an increase in
microorganisms that are high in virulence factors. Given that certain
external factors such as cesarean section and cessation of breastfeeding
contribute to a premature progression of the gut microbiota, it is
possible that lower taxa diversity is developmentally appropriate at this
stage of life (Backhed et al., 2015). Taken together, our findings are thus
in line with previous results from studies performed with infants.

To further examine the association between gut microbial composi-
tion and homologous-interhemispheric connectivity, we assessed the
diversity of genes coding for various functions within the microbiota
(The Gene Ontology Consortium, 2019; Li et al., 2015). Using this
approach, we found that an increase in microbial genes coding for
virulence factors was linked to increased homologous-interhemispheric
connectivity among infants. Taken together with the taxa diversity
findings, it appears that the aforementioned increase in taxa diversity
may be driven, at least partly, by an increase in virulence factors. This
result further highlights the limitations of 16S rDNA sequencing
methods (Cowan et al., 2019), and how this can be addressed through
shotgun metagenomics. It is also interesting to consider the possibility
that the increase in virulence factors may be seen in infants who are
more susceptible to, or currently experiencing subacute infection. In this
context, only a few studies with adults have reported associations be-
tween somatic symptoms (e.g., stomach ache and irritable bowel syn-
drome) and mental health outcomes (Callaghan et al., 2020; Lee et al.,
2009); however, little is known about the directionality or causality of
such associations. It is important to mention that the stool samples and
temperament measurements were taken at the same time point in the
current study. As a result, we are not able to address questions con-
cerning potential directionality. Nonetheless, the current findings with
newborn infants point to a remarkably early emergence of the associa-
tion markers between microbial genes for virulence and brain function.
Longitudinal studies will be required to unpack more fully the associa-
tion between gut microbiota composition, infection status, and the in-
fluence of microbial virulence on the brain and behavioral traits during
infancy. Furthermore, as evidence is accumulating in support of the gut-
brain axis being mediated by microbiota-immune signaling, future work
should consider collecting pre-inflammatory cytokines and other in-
flammatory markers (Fung, 2020). This would allow for a better un-
derstanding of these associations and may identify possible points of
intervention (Fung, 2020). Moreover, while we do see a positive asso-
ciation between virulence factor diversity and taxa diversity, we are not
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currently able to determine whether this is driven by an increase of
pathogenic microbes or just an increase in genetic machinery and po-
tential to be pathogenic under the right circumstances. Therefore, future
work should carefully characterize the microbial profile of high and low
diversity microbiomes in infants.

Contrary to prior work with infants (Aatsinki, Lahti, Uusitupa, et al.,
2019; (Christian et al., 2015), we did not find evidence for a direct as-
sociation between taxa diversity and infant behavioral temperament.
There are several possible differences accounting for the mixed findings.
For example, though prior work has examined the gut microbiota within
the first few months of life (Aatsinki, Lahti, Uusitupa, et al., 2019;
(Loughman et al., 2020), our study examined the behavioral tempera-
ment in the youngest sample of infants studied to date. It is therefore
possible that the predicted association between gut microbiota and
behavioral traits only emerges later in infant development. Related,
certain components of behavioral temperament, such as fear behaviors,
do not emerge until later during the first year of life (Grossmann and
Jessen, 2017). In line with this potential explanation, Aatsinki et al.
(Aatsinki, Lahti, Uusitupa, et al., 2019) reported a significant association
between taxa diversity (assessed at 2.5 months) and fear behaviors
(assessed at 6 months). This suggests gut microbiota influences on brain
network connectivity may precede the direct associations with behav-
ioral traits.

We also explored the possibility of a link between taxa diversity and
behavioral temperament and found this link to be mediated by func-
tional brain network connectivity. Indeed, the current results demon-
strate that infants’ taxa diversity and virulence factor diversity are
associated with homologous-interhemispheric brain network connec-
tivity and indirectly associated with negative emotionality (Fig. 5). Gao
et al. (Gao et al., 2019) obtained a similar pattern in infants that was
suggestive of a mediation but they did not test this directly. They found
that alpha diversity was linked to increased connectivity between the
parietal lobe and supplemental motor area, and functional connectivity
in this network was associated with behavioral (cognitive) performance.
Therefore, in conjunction with prior work, our findings support the
notion that the gut microbiome may be more directly linked to or
impacting the brain through the gut-brain axis, whereas links between
the gut microbiome and overt behaviors are possibly harder to detect or
emerge only later in development. More generally, in order to better
characterize the link between the gut microbiome and behavioral traits,
the current data indicate that it is critical to include measures of brain
function.

To identify candidate biomarkers for behavioral temperament and
brain connectivity, we took an unbiased and thorough approach through
using both LefSE and MaAslin2. Across both analyses we identified
multiple microbial species associated with early functional brain con-
nectivity, including several microbes from the orders Clostridiales
(including Lachnospiraceae, and Bacteroides) which have been previously
identified as a microbe of interest due to its role in serotonin modulation
(Yano et al., 2015). To this end, microbes from the order Clostridiales
have previously been associated with global brain connectivity metrics
in both cortical and subcortical areas in adults (Labus et al., 2019). Our
analysis showed that Lachnospiraceae and Bacteroides were associated
with infants’ fronto-parietal brain network connectivity. Interestingly,
the same microbes have been shown to be associated with brain
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development in adolescents in a previous study (Callaghan et al., 2020).
In this study by Callaghan et al. (2020) Clostridiales was significantly
lower among adolescents that had experienced early adversity (institu-
tionalization during infancy) compared to a control group. Furthermore,
this study also identified Lachnospiraceae and Bacteroides as being linked
to heightened medial Prefrontal Cortex responses to fearful faces
assessed using fMRI. This prior study with adolescents shows early life
experiences may shape the colonization of the gut with these microbes,
and that this may affect brain development. Our study adds important
evidence directly from infants to further support the role that these
microbes play in early human brain function. Our analysis also identi-
fied a particular species of bacteria, C. perfringens, linked to both
hyperconnectivity in the left fronto-parietal network and hypo-
connectivity in the left default mode network, suggesting this microbe
may disrupt early brain network formation. This is of particular interest
as C. perfringens is one of the most common causes of food poisoning in
the United States (CDC, 2020), and preliminary work suggests strains of
C. perfringens may cause brain lesions similar to what is seen in multiple
sclerosis (Rumah et al., 2013).

With respect to negative emotionality and regulation/orienting
temperamental domains, our analysis identified five associated mi-
crobes using unadjusted analyses, with two belonging to the genus
Bifidobacterium. Specifically, Bifidobacterium was enriched for high
levels of negative emotionality (Bifidobacterium pseudocatenulatum) and
regulation/orienting (Bifidobacterium pseudocatenulatum and Bifido-
bacterium catenulatum). Prior work with infants has also identified Bifi-
dobacterium as a potential biomarker for behavioral temperament linked
to decreased regulation/orienting and increased surgency/positive
emotionality (Aatsinki et al., 2019a). In addition, this genus of microbes
is thought to play an important role in fighting infections. Many Bifi-
dobacterium species are involved in the conversion of lactose, found in
breastmilk, to lactic acid. The accumulation of lactic acid lowers the
overall pH and makes it a less hospitable environment for pathogens
(Liévin et al., 2000). Overall, our current findings, together with prior
work, hint at the involvement of Clostridiales and Bifidobacterium in brain
and behavioral development; however, more careful experimental work
is required to fully characterize and understand the associations
revealed here using LefSE and MaAslin2.

Furthermore, while our results show some agreement between the
two analysis methods, there were also significant differences in the
biomarkers identified depending on the analysis method used. These
differences can likely be attributed to specific difference across analyt-
ical methods. Specifically, LefSE first screens out candidates using
nonparametric tests and then uses linear discriminant analysis to
maximize the differences between groups (created in the present study
by using a median split). On the other hand, MaAslin uses a form of
generalized linear model and examines associations based on contin-
uous outcome measures. Future work should continue to use both
methods in conjunction to identify biomarkers more reliably.

Our current study may have a number of strengths and include novel
methods, such as the use of shotgun-metagenomic sequencing and rs-
fNIRS to index functional brain network connectivity, but there are
some limitations that merit acknowledgement. First, our analysis is
limited to one time point in early development. It will be important for
future studies to assess the development and variability in the gut
microbiota composition and its association with brain network con-
nectivity and behavioral temperament over time to determine its long-
term effects and better understand directionality of the associations
seen in the current study (Kelsey et al., 2020). Relatedly, another limi-
tation of the present study is the assessment of a single stool sample per
infant which was collected in the home (and not in the laboratory)
environment. In this context is important to note that prior work has
highlighted significant temporal variation in the adult gut microbiome
(Davenport et al., 2014; Riddle and Connor, 2016). However, the pre-
sent study elected to collect a single sample in order to decrease burden
on participants and reduce study drop-out. Moreover, other evidence
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has emerged suggesting intraindividual variability in key groups of
microorganisms remains relatively low during infancy (Raman et al.,
2019; Subramanian et al., 2014). Second, although we selected the
current approach of rs-fNIRS to examine brain connectivity because it is
relatively non-confining, allows the infant to remain with their mother,
and it is a relatively affordable tool, fNIRS is limited in monitoring ac-
tivity from (superficial) cortical structures (Lloyd-Fox et al., 2010) and
prevents us from gleaning insights into networks including deeper
cortical and subcortical structures. Third, by adjusting our analytical
models for potential confounds (covariates), some association effects are
no longer statistically significant. Accordingly, it is unclear if the
absence of significant effects when making these adjustments in the
current analysis is due to reduced power or the covariate adjustment
itself, as it is known that power can be reduced with an increase in the
number of variables in a model. To address these and other potential
statistical limitations, the field needs to move beyond single time point,
low sample size studies, and take an unbiased data science approach
utilizing machine learning techniques to better characterize the nuances
and complexities of the gut microbiota-brain interactions (Kelsey,
Dreisbach, et al., 2018). Fourth, it is important to note that even though
parents were instructed to collect stool samples at home within 24 h
before bringing their infants into the laboratory, it was not possible to
freeze stool samples immediately after collection. This was done
because, as for all developmental studies, the goal is to develop reliable
and high-quality collection and storage methods that place the lowest
possible burden on the participating families. Prior work has obtained
mixed results in regards to room temperature stool storage. For example,
Shaw et al. (2016) found significant differences in microbiome com-
munities after storage at room temperature for 48 h. However, other
work suggests that stool samples stored at room temperature from
anywhere between 2 h to 52 h have microbiome communities that
remain relatively stable (Cardona et al., 2012; Guo et al., 2016; Liang
et al., 2020). In the present study samples had on average been stored at
room temperature for only about 8 h. Moreover, in line with the latter
set of studies (Cardona et al., 2012; Guo et al., 2016; Liang et al., 2020),
we found no associations between amount of time passed between stool
collection and freezing and microbial composition measures (both taxa
and functional group diversity). Future research should continue efforts
to better understand and monitor how stool collection and storage
procedures account for inter- and intra-study variability in microbiome
analysis. Finally, it is important to acknowledge that our use of stool
samples provides an incomplete view of the entire intestinal tract
(Donaldson et al., 2016). Stool samples are most reflective of the lumen
and outer mucosa layers of the gastrointestinal tract due to the contin-
uous secretion of the outer layers shedding into the stool sample
(Donaldson et al., 2016). Thus, while stool samples might be limited in
their ability to characterize gut microbiota across the entire intestinal
tract, relying on stool samples is still the preferred method in develop-
mental work given the low burden on infants and families and minimally
invasive collection compared to other more comprehensive methodol-
ogies (e.g., colonoscopies or biopsies of the mucosa or small intestine
tissue).

In summary, the current study provides novel insights into the early
emergence of the gut-brain axis and supports that the connection be-
tween the gut microbial composition and functional brain connectivity
is already present in newborn infants. These findings shed new light on
the microbial origins of individual differences in early-emerging func-
tional brain networks and behavioral traits and provide the basis for
future research examining the long-term consequences of this gut-brain-
behavioral correlation on mental health outcomes.
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