ARTICLE IN PRESS

Brain, Behavior, and Immunity xxx (xxxx) xxx

ELSEVIER

Contents lists available at ScienceDirect

Brain Behavior and Immunity

journal homepage: www.elsevier.com/locate/ybrbi

Gut microbiota composition is associated with newborn functional brain connectivity and behavioral temperament

Caroline M. Kelsey ^{a,b,c,*}, Stephanie Prescott ^{d,e}, John A. McCulloch ^d, Giorgio Trinchieri ^d, Tara L. Valladares ^a, Caitlin Dreisbach ^{f,g}, Jeanne Alhusen ^f, Tobias Grossmann ^{a,h,*}

- ^a Department of Psychology, University of Virginia, Charlottesville, VA, USA
- ^b Department of Pediatrics, Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
- ^c Harvard Medical School, MA, USA
- ^d National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- ^e College of Nursing, University of South Florida, Tampa, FL, USA
- f School of Nursing, University of Virginia, Charlottesville, VA, USA
- g Data Science Institute, Columbia University, NY, USA
- h Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

ARTICLE INFO

Keywords: Default mode network fNIRS Fronto-parietal network Functional connectivity Homologous-interhemispheric network Temperament

ABSTRACT

The gut microbiome appears to play an important role in human health and disease. However, only little is known about how variability in the gut microbiome contributes to individual differences during early and sensitive stages of brain and behavioral development. The current study examined the link between gut microbiome, brain, and behavior in newborn infants (N=63; M [age] = 25 days). Infant gut microbiome diversity was measured from stool samples using metagenomic sequencing, infant functional brain network connectivity was assessed using a resting state functional near infrared spectroscopy (rs-fNIRS) procedure, and infant behavioral temperament was assessed using parental report. Our results show that gut microbiota composition is linked to individual variability in brain network connectivity, which in turn mediated individual differences in behavioral temperament, specifically negative emotionality, among infants. Furthermore, virulence factors, possibly indexing pathogenic activity, were associated with differences in brain network connectivity linked to negative emotionality. These findings provide novel insights into the early developmental origins of the gut microbiome-brain axis and its association with variability in important behavioral traits. This suggests that the gut microbiome is an important biological factor to consider when studying human development and health.

1. Introduction

The human gut microbiome is a complex ecosystem comprised of the microorganisms lining the intestinal tract, including bacteria, viruses, fungi, and archaea. The gut microbiome is crucial to normal physiological, metabolic, and immune function (for an example of another paper using this method see (Qin et al., 2010). Infancy represents a sensitive period in gut microbiome formation as the gut microbiome changes from a relatively sterile environment to a diverse ecosystem with over 3×10^{13} species of microorganisms (Cryan and Dinan, 2012; Sender et al., 2016). Importantly, the gut microbiome is thought to impact psychological functioning and mental health through the microbiota-gut-brain axis (Borre et al., 2014; Cryan and Dinan, 2012;

Spichak et al., 2018). Yet, little is known about how the gut microbiome impacts developing brain function and psychological health during this sensitive period of early human development (Kelsey and Grossmann, 2019; Cowan et al., 2019; Kelsey et al., 2018).

Previous correlational studies in adults have shown that changes in the gut microbiome – referring to a general imbalance (but not a specific measure) of microorganisms in the gut – is linked to heightened negative affect and internalizing disorders such as anxiety and depression (Evrensel and Ceylan, 2015). Research more specifically assessing gut microbiome diversity in adulthood, however, has produced mixed results. For example, individuals with Major Depressive Disorder are reported as having increased, decreased, and no significant difference in alpha diversity (within-sample species diversity; Bastiaanssen et al.,

https://doi.org/10.1016/j.bbi.2020.11.003

Received 14 August 2020; Received in revised form 27 October 2020; Accepted 1 November 2020 Available online 4 November 2020 0889-1591/© 2020 Elsevier Inc. All rights reserved.

^{*} Corresponding authors at: Department of Psychology, University of Virginia, Charlottesville, VA, USA. *E-mail addresses*: C.Kelsey@virginia.edu (C.M. Kelsey), Grossmann@virginia.edu (T. Grossmann).

2020). Moreover, due to the correlational nature of these existing findings and its limitation to adult samples, the specific mechanisms and developmental history through which an association between the gut and psychological functioning are established remains elusive.

The majority of our understanding of the mechanisms by which the microbiome impacts mental health outcomes comes from research conducted with animal models. Specifically, there has been a focus in animal work to characterize how the gut signals to the brain. To date, a number of potential pathways have emerged, including activation of the vagus nerve, the production of metabolites, and immuno-signaling (Sherwin et al., 2019). In addition, germ-free mice, which are reared in an entirely sterile environment, have been used for a sledgehammer approach to facilitate discoveries pertaining to how the gut microbiota broadly impacts brain and behavioral development (Heijtz et al., 2011). For example, germ free mice exhibit increased myelination in the prefrontal cortex, immature microglia development, aberrant neurogenesis, differing grey matter volumes in social brain areas (e.g., neocortex and amygdala), and increased blood-brain barrier permeability, indexing specific differences in brain structure and physiology (Hoban et al., 2016; Sharon et al., 2016; Spichak et al., 2018). Furthermore, germ-free mice exhibit differences in their internalizing behaviors, such as aberrant fear conditioning (reduced freezing to the conditioned fear stimulus) and a decrease in species-typical anxiety behaviors (assessed through open field tests and elevated plus mazes; Chu et al., 2019; De Palma et al., 2015; Hsiao et al., 2013). In particular, it has been theorized that the initial commensal microbiome, or the founding microbial population, has an exceedingly large and lasting influence over the lifetime composition of the microbiota (Litvak and Bäumler, 2019). In line with this hypothesis, studies have shown that social deficits and aberrant stress responses in germ-free mice were reversed when recolonization of the gut microbiome occurred prior to but not after sexual maturity (Buffington et al., 2016; Heijtz et al., 2011; Sudo et al., 2004). Given the emerging evidence from animal models suggesting the existence of sensitive periods in the development of the gut microbiomebrain-behavior relations, research elucidating these links in early human development is much needed.

The prenatal and early postnatal life represent sensitive periods marked by tremendous growth in brain, behavioral, and gut microbiota development (Cowan et al., 2019). Specifically, new evidence has emerged that functional brain networks, or brain regions with high temporal correlations for low frequency oscillations, come online earlier than previously thought (Damoiseaux et al., 2006; Kaiser et al., 2015). Specifically, short range and interhemispheric (homologous) networks are detectable even before birth whereas long range networks (such as the default mode and fronto-parietal network) show a more protracted development across the first year of postnatal life (Gao et al., 2015; van den Heuvel and Thomason, 2016). Similar patterns are seen at the level of newborn behavior. Already within the first few hours of development, infants orient to the sight, sounds, and smells of other humans and their mothers (DeCasper and Fifer, 1980; Farroni et al., 2013; Farroni, Csibra, Simion, & Johnson, 2002; Farroni et al., 2005; Rattaz et al., 2005). These behavioral and regulatory capacities continue to grow and develop in step with improved sensory functions (Feldman, 2009; Sheese et al., 2008). During the same period and in a similar manner to brain and behavioral development, the gut microbiota also go from a sparse environment marked by high levels of Bifidobacteria (microbes involved in digestion of human milk oligosaccharides) to a diverse flora rich in Bacteroides (microbes involved in the digestion of complex starches) coinciding with the introduction of solid foods (Moore and Townsend,

Although the brain and microbiome share similar windows of rapid development, limited research has investigated this connection through direct assessment of the gut microbiota in humans (Kelsey et al., 2018). Across the five existing infant studies with four cohorts of infants, there lacks a conclusive and unifying link between gut microbiota alpha diversity and behavioral traits. Specifically, greater diversity of the gut

microbiota has been associated with heighted surgency/extraversion, decreased negative emotionality, increased internalizing symptoms, and decreased cognitive performance in human infants (Aatsinki et al., 2019a; Carlson et al., 2018; Christian et al., 2015; Loughman et al., 2020), making any clear conclusions regarding the link between diversity and positive infant mental health outcomes difficult to parse. Notably, these studies also relied upon taxa diversity as the main characterization of the gut microbiota; this limitation may have contributed to the mixed findings (Cowan et al., 2019). To advance our understanding of these relationships, there is a need to assess the functionality of the microbes, or the genes expressed in the microbiota, allowing insights into not only the taxonomy of microorganisms present, but also the relevant biological processes in which they are functionally contributing (Hooks et al., 2019; Knight et al., 2018).

The existing infant studies have relied on 16S rRNA gene sequencing which affords insight into the taxonomic composition of the bacterial species in the gut microbiota yet does not provide transcriptional information on the functional state of the microbiome. Therefore, any functional information provided is inferred from the present bacteria and not directly assessed (Aatsinki et al., 2019a; Carlson et al., 2018; Christian et al., 2015; Gao et al., 2019). Alternatively, shotgun metagenomics encompasses all DNA sequences within a given sample, characterizing the full contents of the microbial microorganisms (e.g., bacteria, viruses, and fungi) and their underlying functional pathways (e.g., gene products, virulence factors, and antibiotic resistance; Kelsey et al., 2018). The direct assessment of microbial functional pathways provides a more powerful tool to better characterize and understand the potential link with brain and psychological development.

The predicted functionality of protein coding genes found in a (meta) genome can be characterized at multiple levels, from simple annotation by homology to protein databases, to further grouping of functionally related genes into signatures. For the current study, we focused on three aspects of microbial function: 1) GO Terms (Gene Ontology Terms), characterizing how individual genes contribute to the biology of an organism at the molecular, cellular, and organism levels, 2) virulence factors, genes coding for molecules created by microorganisms to aid in their ability to colonize, suppress immunity, and divert nutrients away from the host, and 3) resistome, genes coding for products which are predicted to yield resistance to antibiotics characterizing overall antimicrobial susceptibility. In addition, it is important to more directly examine the potential effect the gut microbiome has on brain function in human infants, further contributing to individual differences in behavioral traits. Two published studies (using the same cohort of infants) have investigated the role of the gut microbiota in infant brain structure and function (Carlson et al., 2018; Gao et al., 2019). Across both studies, limited evidence points to some links between alpha diversity of taxa and brain structure and function (see supplemental materials for a summary). Specifically, increased alpha diversity was found to be associated with increased cortical volume in the parietal cortex and increased connectivity between the parietal cortex and supplemental motor area (Carlson et al., 2018; Gao et al., 2019). Given the limited current evidence suggesting the gut microbiome might be involved in brain development and brain connectivity, more systematic research investigating this link is needed. Therefore, the first goal of this study was to examine whether and how taxa diversity and functional diversity are linked to functional brain connectivity. In order to test whether gut microbiota composition is linked to functional brain connectivity in cortical networks, we used functional Near Infrared Spectroscopy (fNIRS) to characterize individual differences in spontaneous brain network activity in prefrontal and parietal cortical networks, previously linked to internalizing symptoms in adulthood and behavioral temperament in infancy (Kaiser et al., 2015; Wang et al., 2013). The second goal was to examine whether and how both taxa diversity and functional diversity are linked to behavioral temperament in the newborn period. Temperament refers to individual differences in an infant's emotional and attentional responses to everyday situations (Rothbart, 2007).

Specifically, the present investigation focused on the following, previously identified, dimensions of behavioral temperament: regulation/orienting, negative emotionality, and surgency/positive emotionality (Gartstein and Rothbart, 2003).

The present study examined the link between gut microbiome composition and brain and behavioral traits in newborn infants. This is the first study of its kind to use state-of-the art metagenomic sequencing, allowing not only insights into full taxonomic make-up but also the functionality of the microbes. To this end, the present study took a multifaceted approach to characterizing the gut microbiota to assess whether individual differences in behavioral temperament and functional brain connectivity measured using fNIRS could be captured by (1) alpha diversity of taxa, (2) alpha diversity of functional terms, and/or (3) specific taxa biomarkers. Based on the prior work linking alpha diversity of taxa with mental health outcomes in adults (Bastiaanssen et al., 2020) and the work with infants assessing the link between taxa diversity and behavioral temperament (Aatsinki et al., 2019a; Bastiaanssen et al., 2020; Carlson et al., 2018), we predicted alpha diversity of taxa would be associated with negative emotionality, and regulation/ orienting behaviors. Moreover, we hypothesized that alpha diversity of taxa would be associated with brain connectivity in resting-state brain networks previously linked to internalizing disorders in adults (Kaiser et al., 2015; Patashov et al., 2019). Specifically, we hypothesized that taxa diversity would be associated with hyperconnectivity in the Frontoparietal network (previously linked to cognitive control of attention and behavior in adults), hypoconnectivity in the Default mode network (previously linked to stimulus-independent thought and mindwandering in adults), and hypoconnectivity in the homologousinterhemispheric network (previously linked to emotional integration in adults; Patashov et al., 2019; Wang et al., 2013). Critically, we expected to see these associations only for the functional resting-state brain networks and not for the (non-functional) control network (see Methods). As a third goal, we were interested in exploring potential pathways by which the gut microbiota may influence behavioral temperament. Based on prior work linking gut microbiota to brain structure and function, and functional connectivity to behavioral temperament, we hypothesized that functional connectivity may be a significant mediator for the gut microbiota-behavioral temperament relation (Aatsinki et al., 2019; Carlson et al., 2018; Graham et al., 2016).

Moreover, we predicted specific functional profiles of the gut microbiome such as decreased GO Terms (indicative of genes that function together as part of a network), increased number of virulence factors genes (indicative of potential pathogenicity of the microbes present), and increased number of antibiotic resistance genes would be linked to negative behavioral traits, including reduced behavioral regulation and enhanced negative emotionality (Firestein et al., 2019; Slykerman et al., 2019). As a fourth, and final goal, we were interested in utilizing exploratory, unsupervised machine learning algorithms in order to identify potential microbial species as biomarkers of functional connectivity and behavioral temperament. The current study aimed to expound upon the influence of the gut microbiota on early-emerging individual differences in brain and behavior, providing foundational insights into gut microbiome-brain-behavior relations.

2. Materials and methods

Sixty-three newborns (M [age] = 25 days; Median [age] = 24 days; ranging from 9 days to 56 days; 26 females; 37 males) were included in the final sample used in the present analyses. Participants were recruited from a local academic medical center and are a representative sample of the surrounding Mid-Atlantic college town (for socio-demographic information see Table 1). All participants were born at term, with normal birth weight (>2,500 g) and did not have any hearing or visual impairments. Twenty-three additional infants were tested and subsequently excluded from the present analyses for the following reasons: n = 13 were excluded because they failed to reach our pre-determined

Table 1 Socio-demographic information for the present study sample (N=63).

Socio-demographic information		Mean/Count (SD/%)
Any antibiotic Treatments,		30 (48%)
	Prenatal antibiotics	8 (12%)
	During labor and delivery	26 (41%)
	Postpartum administration to mother	3 (5%)
	Administered directly to the infant between delivery and study appointment.	4 (6%)
Apgar Score at 1st Minute	**	8.19 (0.94)
Apgar Score at 5th Minute		8.94 (0.44)
Birth Length, inches		19.75 (0.82)
Birthweight, grams		3445.42
5 . 5		(466.24)
Bristol Stool Scale Score		6.41 (0.61)
Breastfeeding, n		56 (90%)
Epidural, n		37 (60%)
Gestational Age, weeks		39.43 (1.18)
Female, n		25 (40%)
Head Circumference, cm		34.74 (1.17)
Income, n		
	Less than \$15,000	5 (8%)
	\$15,001 to \$30,000	5 (8%)
	\$30,001 to \$45,000	3 (5%)
	\$45,001 to \$60,000	1 (2%)
	\$60,001 to \$75,000	2 (3%)
	\$75,001 to \$90,000	9 (15%)
	\$90,001 to \$110,000	7 (11%)
	\$110,001 to \$125,000	7 (11%)
	\$125,001 to \$175,000	2 (3%)
	\$175,001 to \$225,000	8 (13%)
	\$225,001 to \$275,000	8 (13%)
* 6 . 4 1 .	\$275,001+	3 (5%)
Infant Age at data		24.92
collection, days		(10.68)
Maternal Depression Maternal Education		10.92 (3.22)
	Some High School	2 (3%)
	High School Diploma/GED	11 (18%)
	Some College/Associates	7 (11%)
	Bachelor's Degree	16 (26%)
North and Ciblings	Graduate Degree	26 (42%)
Number of Siblings Hours between stool sample		2.13 (1.11)
collection and freezing		7.96 (8.57)
Lived with pet(s), n		37 (60%)
Pitocin, n		31 (50%)
Race white, n		45 (73%)
Vaginal Delivery, n		47 (76%)

Note: Maternal depression was assessed using the Edinburgh postnatal depression scale (Cox et al., 1987). There were two points of missing data for birth length and head circumference, one point missing for Pitocin use, and one point of missing data for the Bristol Stool Scale. Infants whose parent reported breastfeeding at any amount were considered breastfeed. Any antibiotic treatment included infants potentially exposed to antibiotics during labor and delivery and through administration of antibiotics directly to the infant.

inclusion criterion of having at least 100 s of continuous data during which the infant was not crying; n=4 were excluded because>30% of the measured fNIRS channels had poor light intensity readings, more specifically, a signal-to-noise ratio of<1.5 (Bulgarelli et al., 2019; Xu et al., 2015); n=4 were excluded because of bad capping; n=2 were excluded because their stool samples did not meet quality control thresholds for DNA sequencing. Note that the current attrition rate (36.5%) is lower than in previous infant fNIRS studies (Cristia et al., 2013). Furthermore, in order to test that the infants were excluded at random and that the criteria for inclusion were not related to outcomes of interest, we compared the temperament profiles (negative emotionality, regulation/orienting, and surgency/positive emotionality) of infants that were included to those that were excluded using independent

samples t-tests; However, no significant differences were found between the groups (all p-values > 0.30). All parents gave informed consent for their infants to participate in accordance with the Declaration of Helsinki, and families received a payment for their participation. All procedures were approved by and carried out in accordance with The University of Virginia Institutional Review Board for Health Sciences (Protocol number 20381).

2.1. Stool collection and processing.

Parents were instructed to collect infant stool samples at home using infant diapers within 24 h of the study visit. This instruction was based on previous work showing that microbial communities are stable at room temperature for up to 24 h (Cardona et al., 2012; Guo et al., 2016; Liang et al., 2020). The average time between infant reported defecation and freezing the samples was 7.96 h, which is well below the 24-hour recommendation. The average Bristol Stool Scale score was 6.41. Once received by the investigators, stool samples were immediately aliquoted into cryovials containing a 20% Glycerol and 80% Phosphate-Buffered Saline solution (this solution was used in order to preserve microbial species for future studies interested in reconstituting microbiome in animal models), and stored at -80 °C. Note, efforts were made by investigators to isolate the innermost portion of the stool sample, as it is least likely to be contaminated by urine. Bio-specimens were processed and sequenced at the National Cancer Institute (NCI). Automated DNA extraction was performed with the MagAttract PowerMicrobiome DNA/ RNA kit (Qiagen, Cat No./ID: 27500–4-EP) with QubitTM quantification following manufacturer's instructions. Samples that did not meet quality control thresholds for DNA concentration were removed from further analyses (n = 2). Library preparation and sequencing was completed using the Illumina Nextera DNA Flex Library Prep and Illumina NovaSeq 6000 sequencing platform, respectively.

2.2. Shotgun metagenomic Analysis.

Shotgun sequencing was analyzed using a series of pipelines and functions in the R language developed *in-house* and publicly available on Github under the package name JAMS, found at https://github.com/johnmcculloch/JAMS_BW (For an example of another paper using this method see (Rosshart et al., 2019). This package includes a pipeline (JAMSalpha) for obtaining taxonomic and functional relative abundance of features within each sample using FASTQ files as input and a series of functions in the R language for comparison between samples (beta analysis).

For each metagenomic shotgun sequencing sample in this study, the paired-end sequencing FASTQ files generated from the Illumina Nova-Seq platform were used as input for JAMSalpha, Version 1.39 in order to gauge counts for taxonomic and functional features (McCulloch, 2019). Briefly, paired-end sequencing reads were (1) quality trimmed using Trimmomatic (Bolger et al., 2014), (2) aligned to the human genome using Bowtie2 and host DNA was subsequently removed (Langmead and Salzberg, 2012), (3) were assembled into contigs, (overlapping sets of DNA fragments), using Megahit (Li et al., 2015). Contigs were taxonomically classified using k-mer analysis with kraken2 (Wood and Salzberg, 2014), using a custom-built database containing all draft and complete genomes of all Bacteria, Archaea, Fungi, Viruses and Protozoa deposited in NCBI GenBank. Contigs were also annotated, ab initio, using Prokka (Seemann, 2014), yielding the predicted proteome for the metagenomic sample. Sequencing reads were then aligned back to assembled contigs in order to gauge base pair counts for each contig, and thus, each predicted gene. The total basepair count for each last known taxon (LKT) - deepest taxonomic level up to species confidently classified using kraken2, was computed as the number of bases covering all contigs classified for each LKT. As of note, for other taxonomic classification methods, if there is no classification at the species level, sequences are simply deemed "unclassified". However, k-mer based classification of contigs rather than short reads or alignment to a reference genome, allows for a more granular assessment of these sequences by allowing them to be classified into their most appropriate taxomonic level even if it is above the species level.

The predicted proteome of each metagenomic sample (translated genes found within contigs) was further functionally classified using InterproScan (https://github.com/ebi-pf-team/interproscan) in order to attribute Gene Ontology Terms to each predicted protein. In parallel, the predicted proteome was also used as query against local instances of the VFDB database (Chen et al., 2016) and the ResFinder database (Zankari et al., 2012) using BLASTp. Hits with < 75% identity and/or < 75% query coverage were discarded.

For beta-diversity analyses, the relative abundance, in parts per million (PPM) of each feature was used. This is obtained by dividing the number of bases covering a feature by the total number of bases sequenced for that analysis in a sample multiplied by 10^6 .

For alpha-diversity analyses, alpha-diversity measures were obtained using the Vegan package in R (https://cran.r-project.org/web/packages/vegan/index.html).

2.3. Infant temperament.

Infant behavioral temperament was assessed using parental reports the 91-item Infant Behavior Questionnaire Revised Short Form (IBQ-R; (Gartstein and Rothbart, 2003); Rigato, Stets, Bonneville-Roussy, & Holmboe, 2018; (Stifter and Fox, 1990; Worobey and Blajda, 1989). This measure has shown to be reliable and valid during the newborn period (for examples of other studies using this measure with newborn populations see: Rigato et al., 2018, (Stifter and Fox, 1990; Worobey and Blajda, 1989). Parents completed the questionnaire online using the Qualtrics platform prior to their appointment. Three general temperament dimensions were computed summarizing information from various sub-scales: (1) negative emotionality (contributing sub-scales: fear, distress to limitations, falling reactivity, sadness), (2) regulation/orienting (contributing sub-scales: low intensity pleasure, cuddliness, duration of orienting, soothability), and (3) surgency/positive emotionality (contributing sub-scales: activity level, smiling and laughing, high intensity pleasure, perceptual sensitivity, approach, and vocal reactivity; Gartstein and Rothbart, 2003). If parents reported the behavior was not applicable at the current time, then this item was given a value of 0.

2.4. Resting state fNIRS.

Procedure. The resting state (rs)-fNIRS task took place in a small, quiet testing area. Infants were seated on their parent's lap and placed approximately 60 cm from the screen (23-inch monitor). Parents were asked to remain quiet throughout the testing session. A fNIRS fabric cap (EasyCap, Germany) was fitted to each newborn and secured in place using a waist-band and outside netting. The presentation software package (Neurobehavioral Systems, USA) was used for the design and viewing of the experimental paradigm. A non-social stimulus was created by selecting non-social clips from a popular infant video (Baby Einstein) that featured videos of toys, stuffed animals, and still images of everyday objects. This stimulus was selected based on prior work that has shown that presenting a non-social video increases compliance and decreases movement for young infants, recent recommendations for the design of connectivity tasks for pediatric populations, and adult work suggesting that the presentation of non-social videos does not influence functional connectivity (Bulgarelli et al., 2020; Camacho et al., 2020; Vanderwal et al., 2015). Specifically, Vanderwal and colleagues (2015) showed children (ages 3-7) three sets of stimuli (a fixation cross, lowlevel movie, and a popular musical cartoon) during a resting state fMRI task. The authors concluded that a non-social movie was the best choice as it provided a functional connectivity metric that more closely matched the fixation cross while also providing higher quality (more

artifact free) data. These clips were shown in 30 s intervals, and the order of presentation was randomized for each infant. The full recording session took place over a 7-minute time period. Sessions were video-recorded using a camera mounted above the screen. This allowed for later offline coding of the infants' behavior, fussiness, and cap placement.

Data acquisition. Infants' fNIRS data were recorded using a NIRx Nirscout system and NirStar acquisition software. Concentration changes of oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) in the cerebral cortex are measured using fNIRS through the quantification of refracted light, (for more information regarding this technique see (Lloyd-Fox et al., 2010). The fNIRS system used contains 49 channels positioned over frontal and temporal-parietal regions and recorded measurements (as previously described in Altvater-Mackensen and Grossmann, 2016; Altvater-Mackensen and Grossmann, 2015; Grossmann et al., 2018; Kelsey et al., 2019; Krol et al., 2019). The system emits two wavelengths of light in the Near-Infrared spectrum, 760 nm and 850 nm, and captures both deoxyHb and oxyHb. The diodes have a power of 25 mW/wavelength and data were recorded at a preset default sampling rate of 3.91 Hz.

Behavioral Coding. Infants' behavior during the fNIRS recording session was coded by a trained research assistant using video recordings of the experimental session. Specifically, researchers coded for behavioral signs of fussiness/irritability and alertness displayed by infants during the testing session. To assess the reliability of the attentional coding done by the primary coder, an additional trained coder also coded infant behavior from selected subsample of infants (n = 19). This analysis showed that inter-rater reliability amount of data included was excellent (Cronbach's $\alpha = 0.94$). In line with previous studies, infants were only included in the present analysis if they had at least 100 s of data during which the infant was not crying (Bulgarelli et al., 2019). Moreover, as it takes a minimum of 8 s for the Hemodynamic response function to return to baseline after a stimulus-evoked event, the onset of useable data was delayed for 8 s (Bulgarelli et al., 2019, 2020). However, unlike Bulgarelli and colleagues (2019, 2020) the time series was continuous. On average, infants contributed 331.29 s of data (SD = 115.75 s). Note, this amount of data included is comparable to other fNIRS functional connectivity papers with young infant (see 11-month time point in (Bulgarelli et al., 2020). Finally, infants were rated on their levels of alertness during the task with 1 reflecting deep sleep and 6 reflecting crying (Brazelton et al., 1987). On average, infants were rated as being midway between an active light sleep to a drowsy state (M =2.55; SD = 1.26).

Functional Networks. The fNIRS data were analyzed using the functional connectivity program, FC-NIRS (Xu et al., 2015). First, channels were removed on the basis of poor light intensity (signal-to-noise ratio was<1.5) (please note, this value was selected by the author's in order to optimize the number and quality of channels being retained; Xu et al., 2015). In order to be included in the present analyses, infants needed to have at least 70% of their channels passing this predefined threshold (Bulgarelli et al., 2020). Next, data were band-pass filtered using a previously validated low frequency filter (0.01-0.08 Hz; Bulgarelli et al., 2019; Lu et al., 2009). Finally, concentration changes were calculated using the modified Beer-Lambert law [partial path length factor: 6.0] (Villringer and Chance, 1997).

For each infant, we obtained a 49 by 49 correlation matrix corresponding to all of the relations between all of the channels measured. Considering that negative values are difficult to interpret in terms of their neurobiological basis (and based on prior work), we replaced all negative correlation values with zeros (Fox et al., 2009; Murphy et al., 2009). Next, Fisher Z-transformations were performed on all correlation matrices. Networks of interest were created by selecting channels that corresponded to specific regions of interest. Brain networks were composed based on the anatomical information available in Kabdebon et al. (Kabdebon et al., 2014), a meta-analysis of resting state fMRI (Kaiser et al., 2015), and prior work using rs-fNIRS (Patashov et al.,

2019; Sasai et al., 2011). Based on this information, four networks were created: (1) The Fronto-parietal network, the average of all correlations between three channels in the dorsolateral prefrontal cortex (corresponding with the F3, F4, F5, F6 electrodes) and two channels in the parietal area (corresponding with CP3 and CP4 electrodes); 2) The Default mode network, the average of all correlations between three channels in the medial prefrontal cortex (corresponding with the Fpz electrode) and four channels in the superior temporal cortex (corresponding with FT7, T7, FT8, T8 electrodes; 3) The homologousinterhemispheric network, the average of all correlations between the 21 channels in the left hemisphere (including frontal, temporal and parietal cortical regions) with their corresponding (homologous) channels in the right hemisphere; and, (4) a (non-functional) control network, the average of all correlations between three channels in the left frontal area (corresponding with the F7 electrode) with three channels in the right temporal area (corresponding with the T8 electrode) and three channels in the right frontal area (corresponding with F8 electrode) with three channels in the left temporal area (corresponding with the T7 electrode; see Fig. 1 for schematic of network configurations; for more details on network configuration see Kelsey et al., 2020). Cortical projections were created using NIRSite by using 10–20 system references from the cap layout. The present study focused on oxyHb based on previous work by the authors that has found brainbehavior correlation for this chromophore (Kelsey et al., 2020). Based on prior infant work, which has found laterality differences, networks were separated into left and right hemispheres (Carlson et al., 2018). Moreover, statistical outliers – values that were > 3 SD above or below the mean or based on multivariate mahalanobis' distance - were removed for the subsequent analyses (functional connectivity data n =1, negative emotionality n = 1).

2.5. Analysis plan

Alpha diversity values (Shannon Diversity Index and Chao1) for both the taxa and functional terms were calculated using the vegan R-package. Associations between the covariates and the variables of interest were investigated using Wilcoxon's rank-sum test and Kruskal–Wallis Htest. We included covariates in the model based on previous identification in prior work and significant associations found in the present sample. For the covariate analyses, we used the less stringent p-value < 0.05 cutoffs in order to be conservative in our later assessments. To account for the use of multiple comparisons across our models, we adjusted our p-values against the False Discovery Rate (FDR), or expected proportion of type I errors (false positives). We considered results with FDR < 0.25 as significant (see Aatsinki et al., 2019a for another example of a paper using this threshold and Aatsinki et al., 2019b for a discussion of the use of a 0.25 FDR cutoff). FDR was estimated using the Benjamini & Hochberg method with the R function p.adjust.

Linear discriminant analysis of effect size (LefSE) and Microbiome Multivariate Association with Linear Models (Maaslin2) were used to identify potential microbial biomarkers of functional connectivity and behavioral temperament using the Galaxy tool (http://huttenhower. sph.harvard.edu/galaxy/) and R respectively (Mallick et al., In Submission). For LefSE, High and Low groupings were created for the outcome variable by applying a Median Split. The LefSE tool identifies the taxa and functional terms that are differentially abundant between groups by applying 1) non-parametric factorial Kruskal-Wallis (KW) test, 2) pairwise (unpaired) Wilcoxon rank-sum test and 3) Linear Discriminant analysis to estimate effect size of each differentially abundant feature (Segata et al., 2011). Per-sample normalization and an alpha value of 0.05 for the Kruskal-Wallis and Wilcoxin rank-sum test was used. The logarithmic LDA score for discriminative features was set at an absolute value of Log 3 fold change. For analysis with Maaslin2 the following default options were used: minimum abundance = 0, minimum prevalence = 10%, normalization = TSS, transformation = Log, qvalue threshold = 0.25.

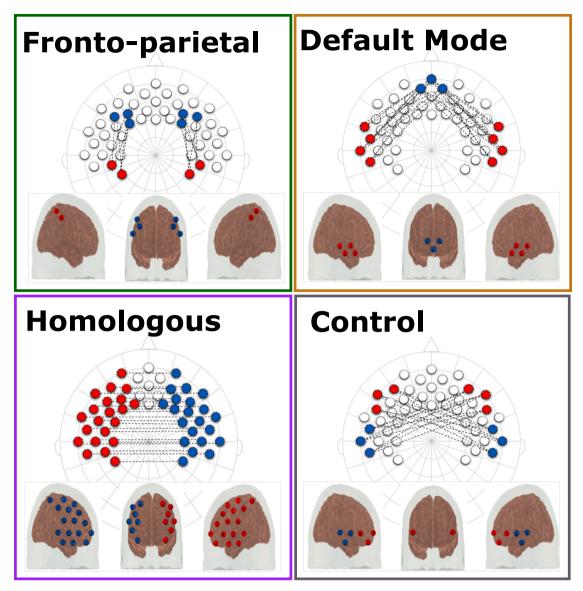


Fig. 1. Shows the configurations for each of the network patterns. Note, each network consists of the average of all of the connections between red and blue channels of the same letter. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3. Results

3.1. Associations with clinical covariates

A series of Wilcoxon's rank-sum test and Kruskal-Wallis H-tests were used to identify significant relationships between taxa diversity and potential clinical covariates (for a schematic representation for all associations see Fig. 2). Any clinical variables found to be significantly associated with a study variable of interest were then included in the subsequent models assessing differences in said study variable as a covariate. We found significant associations between the Shannon-Taxa and birthweight (Spearman's rank correlation $r_s=-0.40,\ p=.001),$ income (Spearman's rank correlation $r_s=-0.25,\ p=.049),$ breastfeeding (Kruskal-Wallis H X $^2=9.14,\ p=.002),$ gestational age (Spearman's rank correlation $r_s=-0.31,\ p=.016),$ and head circumference (Spearman's rank correlation $r_s=-0.37,\ p=.004).$ However, there were no significant associations found between the Chao1-Taxa diversity measure and any of the covariates.

Next, we assessed the relationship between functional term diversity (Chao1 index for resistome, virulence terms, and GO Terms) and clinical covariates. Here, we found that resistome diversity was significantly

associated with income (Spearman's rank correlation $r_s=-0.31,\ p=.016$), gestational age,(Spearman's rank correlation $r_s=-0.36,\ p=.004$), and maternal depression scores (Spearman's rank correlation $r_s=0.26,\ p=.044$). Similarly, virulence factor diversity was associated with income (Spearman's rank correlation $r_s=0.33,\ p=.008$) and antibiotics administered at the hospital after birth (Spearman's rank correlation $r_s=0.38,\ p=.002$). Furthermore, GO Term diversity was associated with sex (Kruskal-Wallis H X² = 5.37, p=.02) and head circumference (Spearman's rank correlation $r_s=-0.37,\ p=.004$).

Finally, we assessed the relation between clinical covariates and psychological outcome measures (behavioral temperament and functional brain connectivity). Here, we found significant associations between negative emotionality, infant age (Spearman's rank correlation $r_{\rm s}=0.43, p=.001$), and income (Spearman's rank correlation $r_{\rm s}=0.36, p=.005$). However, there were no other significant associations found between clinical covariates and psychological outcome measures.

3.2. Alpha diversity of last known taxa and functional connectivity.

A series of univariate regressions with alpha diversity of last known taxa (either Shannon Diversity Index or Chao1, separately) as the

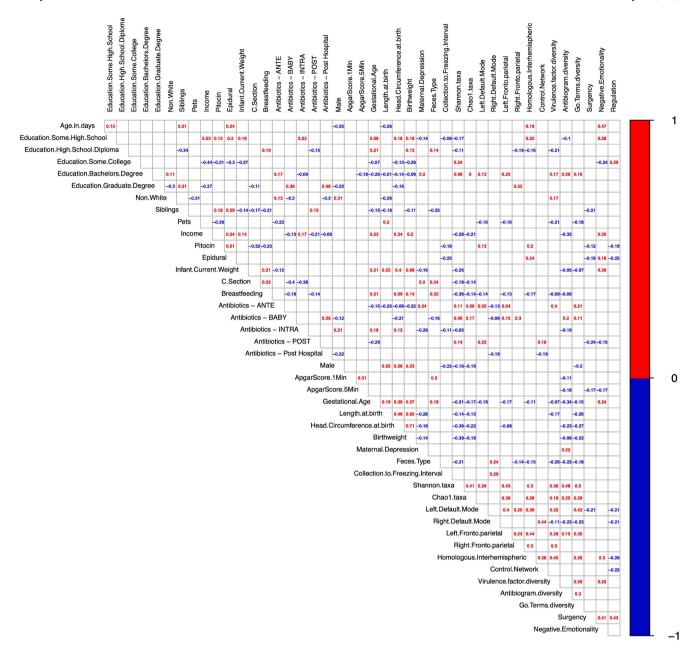


Fig. 2. Schematic representation of correlations between all clinical covariates and study variables. Note, blue text represents significant positive associations, red text represents significant negative associations, and blank cells represent nonsignificant associations. Note, statistical significance is defined here as p < .05. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

predictor variables and functional connectivity network patterns (fronto-parietal [left and right], default mode [left and right], homologous-interhemispheric, and control network) as the outcome variables were conducted. There was a significant positive association between alpha diversity and the left fronto-parietal network (Chao1-Taxa standardized $\beta = 0.71$, FDR = 0.07, adjusted R² = 0.13, Shannon-Taxa $\beta = 0.14$, FDR = 0.03, adjusted R² = 0.17), as well as alpha diversity of taxa and homologous-interhemispheric network connectivity (Chao1-taxa standardized $\beta = 0.16$, FDR = 0.10, adjusted R² = 0.07; Shannon-Taxa $\beta = 0.06$, FDR = 0.20, adjusted R² = 0.09; See Fig. 3). When the models were adjusted for significant covariate associations, both the relations between Shannon-taxa and Chao1-taxa with the left fronto-parietal network connectivity remained significant (Chao1-taxa standardized $\beta = 0.46$, FDR = 0.20, partial R² = 0.12; Shannon-taxa $\beta =$ 0.18, FDR = 0.07, partial $R^2 = 0.17$; covariates included: antibiotics, delivery method, breastfeeding, infant age, infant weight at birth and at

study visit, gestational age, income, sex, and head circumference at birth). Importantly, there was no association between alpha diversity and connectivity in the control network (Chao1-taxa FDR = 0.92; Shannon-Taxa FDR = 0.88).

3.3. Alpha diversity of functional terms and functional connectivity.

In order to examine how the particular functions of the microorganisms may be contributing to the functional connectivity differences, a series of univariate entry-method linear regressions were conducted with each of the Chao1 functional terms (virulence factors, resistome, and GO terms) entered together in the model predicting each of the previously identified functional connectivity networks (left frontoparietal and homologous-interhemispheric) in addition to the control network separately. Note, Chao1 (and not Shannon) index was used to test for how the number of functional terms (as opposed to the evenness)

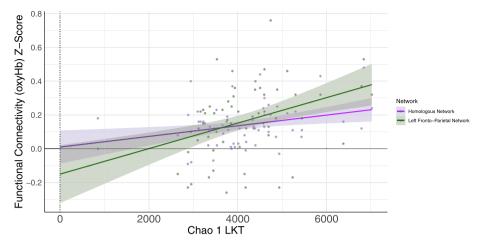


Fig. 3. Shows the unadjusted relation between Chao1-Taxa and functional connectivity (oxyHb) Z-score for the homologous-interhemispheric network and left Fronto-parietal network. Note, shaded regions represent 90% confidence intervals.

is related to the outcomes of interest. We observed that Chao1 functional terms predicted homologous-interhemispheric network connectivity. Specifically, virulence factor diversity was positively associated with the homologous-interhemispheric network connectivity (standardized β = 0.22, FDR = 0.12, partial $R^2 = 0.14$; See Fig. 4). Moreover, when the model was adjusted for significant covariate associations, the relation between Virulence factor diversity and homologous-interhemispheric network connectivity remained (standardized $\beta = 0.23$, FDR = 0.13, partial $R^2 = 0.16$; covariates included: antibiotics, delivery method, breastfeeding, infant age, infant weight at study visit, gestational age, income, sex, maternal depression, and head circumference at birth). However, none of the other functional terms significantly predicted homologous-interhemispheric network connectivity. Moreover, there were no significant associations found between Chao1 functional terms and the left frontal-parietal network (FDR > 0.26) or the control network (FDR > 0.31) for the unadjusted models.

3.4. Alpha diversity of last known taxa, alpha diversity of functional terms, and behavioral temperament.

A series of multivariate regressions with alpha diversity of taxa (Chao1-taxa, Shannon-taxa) and Chao1 functional terms (virulence factors, resistome, and GO terms) as the predictors and behavioral temperament (negative emotionality, regulation/orienting, surgency/

positive emotionality) as the outcome variables were conducted. We did not find any significant associations between either of the alpha diversity metrics for taxa and behavioral temperament. Similarly, we did not find any associations between the alpha diversity indices for the functional terms and behavioral temperament.

3.5. Assessment of indirect effects

Simple mediation analyses were conducted in order to test the hypothesis that the gut microbiota indirectly influences behavioral temperament (negative emotionality and regulation/orienting) through its effect on functional connectivity (for a schematic representation and relevant statistics see Fig. 5). Specifically, we were interested in the possible mediation effects of homologous-interhemispheric connectivity based on its significant association with negative emotionality ($\beta = 0.30$, FDR = 0.19, adjusted R² = 0.08) and regulation/orienting ($\beta = -0.26$, FDR = 0.20, adjusted R² = 0.07).

To do this, we used ordinary least squares path analysis and bootstrapped confidence intervals based on 5,000 bootstrap samples. First we tested possible mediation effects for the relation between alpha diversity of taxa and behavioral temperament. In line with previous findings from the present study, increased alpha diversity (Chao1-Taxa $\beta=0.29$; Shannon-Taxa $\beta=0.31$) was associated with increased homologous-interhemispheric connectivity. Additionally, homologous-

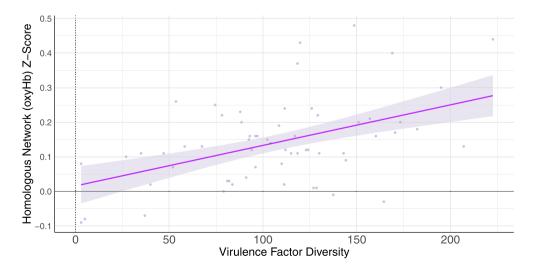
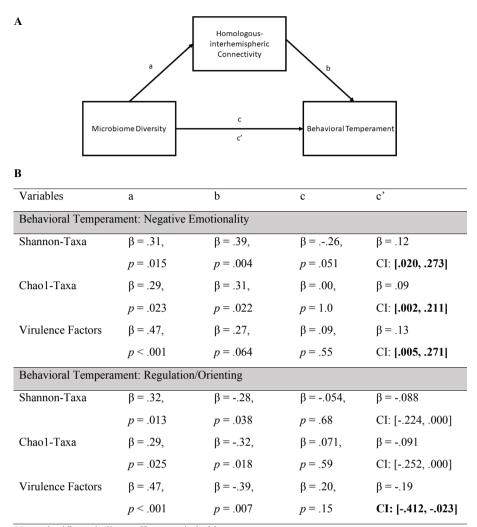


Fig. 4. Shows the unadjusted relation between virulence factor diversity and homologous-interhemispheric network connectivity. Note: shaded regions represent 90% confidence intervals.



Note: significant indirect effects are in bold.

Fig. 5. (A) The theorized mediation model where gut microbial diversity indirectly impacts behavioral temperament through its influence on functional brain connectivity, (B) Shows the corresponding statistical values for paths outlined in the mediation model.

interhemispheric connectivity was associated with increased negative emotionality ($\beta=0.31\text{-}0.39$). We also observed a significant indirect effect, suggesting the relationship between increased alpha diversity and negative emotionality may be mediated by homologous-interhemispheric connectivity (Chao1-taxa $\beta=0.09,\ CI=[0.002,0.211];\ Shannon-taxa <math display="inline">\beta=0.12,\ CI=[0.020,0.273]).$ There were, however, no significant indirect effects found for the relations between taxa diversity (Chao1-taxa and Shannon-taxa) and regulation/orienting.

We then assessed if virulence factors influence behavioral temperament through its effect on homologous-interhemispheric connectivity. Increased virulence factor diversity ($\beta=0.47$) was associated with increased homologous-interhemispheric connectivity. In addition, homologous-interhemispheric connectivity was associated with increased negative emotionality ($\beta=0.27$). There was a significant indirect effect found, suggesting the relation between virulence factor diversity and negative emotionality may be mediated by homologous-interhemispheric connectivity ($\beta=0.13,\ CI=[0.005\text{-}0.271]$). Similarly, we found evidence for a significant indirect effect, suggesting the relation between virulence factor diversity and regulation/orienting may also be mediated by homologous-interhemispheric connectivity through a negative association ($\beta=\text{-}0.19,\ CI=[\text{-}0.412,\text{-}0.023]$).

3.6. Taxa biomarker identification

Functional connectivity. LefSE identified fourteen total potential microbial biomarkers for the functional connectivity networks (LDA log fold change cut-off = 3) and are described in Table 2. The left frontoparietal network was marked by an overall enrichment of *Clostridium* taxa in the high connectivity group. In particular, the species *C. perfringens* was a shared feature of both high connectivity group for the left fronto-parietal network (log fold change = 3.41) and low connectivity group for the left default mode network (log fold change = 3.56). For the high connectivity homologous-interhemispheric network, there was an increased enrichment of *E. coli* (Log fold change = 4.36) whereas the low connectivity homologous-interhemispheric network group had an increased enrichment of *B. dentium* (Log fold change = 4.01).

An alternative biomarker discover technique, MaAslin2, was performed to validate findings. More specifically, a linear model with the five functional networks (fronto-parietal [left and right], default mode [left and right], homologous-interhemispheric) included as fixed effects was conducted (an additional model with covariates included as random effects was run and included in supplementary materials). For the unadjusted model, Maaslin2 identified 479 total potential microbial biomarkers for the functional connectivity networks (q-value < 0.25) and the top fifty hits are summarized in Fig. 6. Again, we see the left fronto-

 Table 2

 LefSE identified taxa biomarkers of functional connectivity networks.

Phylum	Family	Genus	Species	Log fold change	Group with thehighest Median Connectivity			
Left Default mode ne	Left Default mode network							
Firmicutes	Clostridiaceae	Clostridium	perfringens	3.559	Low			
Left Fronto-parietal r	Left Fronto-parietal network							
Firmicutes	Enterococcaceae	Enterococcus	faecalis	3.765	High			
Actinobacteria	Coriobacteriaceae	Collinsella	Unclassified	3.665	High			
Firmicutes	Clostridiaceae	Clostridium	disporicum	3.548	High			
Bacteroidetes	Prevotellaceae	Prevotella	copri	3.523	High			
Firmicutes	Clostridiaceae	Clostridium	perfringens	3.415	High			
Firmicutes	Clostridiaceae	Clostridium	tertium	3.367	High			
Firmicutes	Lachnospiraceae	Robinsoniella	peoriensis	3.265	High			
Firmicutes	Clostridiaceae	Clostridium	Unclassified	3.167	High			
Bacteroidetes	Bacteroidaceae	Bacteroides	caccae	3.164	High			
Firmicutes	Streptococcaceae	Streptococcus	salivarius	3.397	Low			
Firmicutes	Enterococcaceae	Enterococcus	Unclassified	3.042	Low			
Homologous-interhemispheric network								
Proteobacteria	Enterobacteriaceae	Escherichia	coli	4.357	High			
Actinobacteria	Bifidobacteriaceae	Bifidobacterium	dentium	4.012	Low			

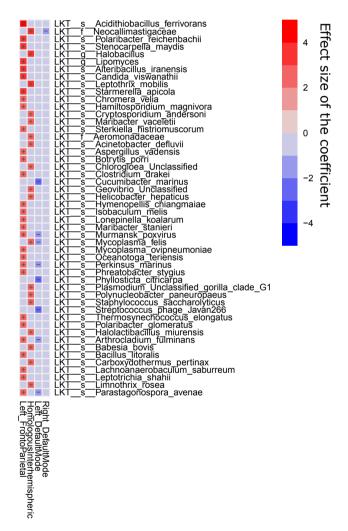


Fig. 6. MaAslin2 top fifty taxa biomarkers of functional connectivity identified in the unadjusted model. Taxa with the lowest q-values are at the top.

parietal network was marked by an overall enrichment of *Clostridium* taxa (21 taxa identified; $\beta = 1.76$ –2.99, q-values = 0.06-0.25) and the left default mode network was associated with a diminution of *Clostridium* (2 taxa identified, $\beta = -2.59$ to -2.68, q-values = 0.19-0.25).

 ${\bf Temperament.} \ \ {\bf LefSE} \ \ identified \ a \ total \ of five \ microorganisms \ as \ potential \ biomarkers for temperament \ and \ are \ described \ in \ {\bf Table \ 3}.$

Both negative emotionality and regulation/orienting were marked by an enrichment of *Bifidobacterium*. In particular, *B. pseudocatenulatum* was enriched in the high negative emotionality group (Log fold change = 4.09) and the high regulation/orienting group (Log fold change = 4.48).

Similarly, MaAslin2 was performed as an additional biomarker discovery tool for behavioral temperament. More specifically, a linear model with the three temperament domains (regulation/orienting, negative emotionality, and surgency) included as fixed effects was conducted (an additional model with covariates included as random effects was run and included in supplementary materials). For the unadjusted model, Maaslin2 identified one biomarker for Negative emotionality, *Thermovibrio guaymasensis* ($\beta = 0.37$, q-value = 0.087).

4. Discussion

The current study examined the relations between gut microbiota composition, functional brain network connectivity, and behavioral temperament in newborn infants. Our results show gut microbiota composition is linked to individual variability in brain network connectivity, which in turn, mediates individual differences in behavioral temperament among infants. Furthermore, using shotgun metagenomic sequencing, our results provide new evidence for an association between genes coding for microbial virulence factors and brain network connectivity. These findings provide novel insights into the early developmental origins of the gut microbiome-brain axis and its association with variability in important behavioral traits, potentially affecting long-term development.

Our results demonstrate gut microbiota taxa diversity is positively associated with functional connectivity in two resting-state brain networks in newborn infants. In concordance with our hypotheses, increased taxa diversity was linked to fronto-parietal connectivity, a brain network previously associated with positive mental health outcomes in adults and positive behavioral traits in infants (Kaiser et al., 2015; Rothbart, 2007). Specifically, greater connectivity in the frontalparietal network has been linked to decreased incidence of internalizing disorder in adulthood and increased regulation and orienting behaviors in infancy (Kaiser et al., 2015). Our findings, in addition, corroborate data from previous infant studies, showing a positive association between taxa diversity and parietal cortex structure and function (Carlson et al., 2018; Gao et al., 2019). This points to a consistent pattern of association between gut microbiome diversity and the developing brain. It is important to consider potential mechanisms by which such an association may arise. In previous studies with mice, antibiotic administration during pregnancy induced a dysregulated state of microglia localized to the prefrontal and parietal cortices (Lebovitz et al., 2019), suggesting one potential mechanism by which chemical intervention

Table 3LefSE identified taxa biomarkers of behavioral temperament.

Phylum	Family	Genus	Species	Log fold change	Group with the highest Median abundance	
Negative emotionality						
Actinobacteria	Bifidobacteriaceae	Bifidobacterium	pseudocatenulatum	4.085	High	
Firmicutes	Streptococcaceae	Streptococcus	vestibularis	3.120	Low	
Actinobacteria	Actinomycetaceae	Schaalia	radingae	3.385	Low	
Regulation/orienting						
Actinobacteria	Bifidobacteriaceae	Bifidobacterium	catenulatum	4.177	High	
Actinobacteria	Bifidobacteriaceae	Bifidobacterium	pseudocatenulatum	4.047	High	

affecting the microbiota composition may impact brain development in

Contrary to our hypothesis, in the current study, taxa diversity was positively associated with connectivity in infants' homologousinterhemispheric network, consequently linked to heightened negative emotionality and decreased regulatory behaviors. While this finding was in opposition to our hypothesis partly based on prior work with adults, it is similar to prior work with infants. In particular, a study by Carlson et al. (Carlson et al., 2018) found that increased alpha diversity assessed at 1 year of age was associated with decreased cognitive performance at two years of age. In addition, a Christian et al. (Christian et al., 2015) study reported that increased alpha diversity was associated with decreased regulatory behaviors both of which were assessed at same time (18-27 months). It is interesting to consider the possibility that these results, like the present results, may be attributed to an increase in microorganisms that are high in virulence factors. Given that certain external factors such as cesarean section and cessation of breastfeeding contribute to a premature progression of the gut microbiota, it is possible that lower taxa diversity is developmentally appropriate at this stage of life (Bäckhed et al., 2015). Taken together, our findings are thus in line with previous results from studies performed with infants.

To further examine the association between gut microbial composition and homologous-interhemispheric connectivity, we assessed the diversity of genes coding for various functions within the microbiota (The Gene Ontology Consortium, 2019; Li et al., 2015). Using this approach, we found that an increase in microbial genes coding for virulence factors was linked to increased homologous-interhemispheric connectivity among infants. Taken together with the taxa diversity findings, it appears that the aforementioned increase in taxa diversity may be driven, at least partly, by an increase in virulence factors. This result further highlights the limitations of 16S rDNA sequencing methods (Cowan et al., 2019), and how this can be addressed through shotgun metagenomics. It is also interesting to consider the possibility that the increase in virulence factors may be seen in infants who are more susceptible to, or currently experiencing subacute infection. In this context, only a few studies with adults have reported associations between somatic symptoms (e.g., stomach ache and irritable bowel syndrome) and mental health outcomes (Callaghan et al., 2020; Lee et al., 2009); however, little is known about the directionality or causality of such associations. It is important to mention that the stool samples and temperament measurements were taken at the same time point in the current study. As a result, we are not able to address questions concerning potential directionality. Nonetheless, the current findings with newborn infants point to a remarkably early emergence of the association markers between microbial genes for virulence and brain function. Longitudinal studies will be required to unpack more fully the association between gut microbiota composition, infection status, and the influence of microbial virulence on the brain and behavioral traits during infancy. Furthermore, as evidence is accumulating in support of the gutbrain axis being mediated by microbiota-immune signaling, future work should consider collecting pre-inflammatory cytokines and other inflammatory markers (Fung, 2020). This would allow for a better understanding of these associations and may identify possible points of intervention (Fung, 2020). Moreover, while we do see a positive association between virulence factor diversity and taxa diversity, we are not currently able to determine whether this is driven by an increase of pathogenic microbes or just an increase in genetic machinery and potential to be pathogenic under the right circumstances. Therefore, future work should carefully characterize the microbial profile of high and low diversity microbiomes in infants.

Contrary to prior work with infants (Aatsinki, Lahti, Uusitupa, et al., 2019; (Christian et al., 2015), we did not find evidence for a direct association between taxa diversity and infant behavioral temperament. There are several possible differences accounting for the mixed findings. For example, though prior work has examined the gut microbiota within the first few months of life (Aatsinki, Lahti, Uusitupa, et al., 2019; (Loughman et al., 2020), our study examined the behavioral temperament in the youngest sample of infants studied to date. It is therefore possible that the predicted association between gut microbiota and behavioral traits only emerges later in infant development. Related, certain components of behavioral temperament, such as fear behaviors, do not emerge until later during the first year of life (Grossmann and Jessen, 2017). In line with this potential explanation, Aatsinki et al. (Aatsinki, Lahti, Uusitupa, et al., 2019) reported a significant association between taxa diversity (assessed at 2.5 months) and fear behaviors (assessed at 6 months). This suggests gut microbiota influences on brain network connectivity may precede the direct associations with behavioral traits

We also explored the possibility of a link between taxa diversity and behavioral temperament and found this link to be mediated by functional brain network connectivity. Indeed, the current results demonstrate that infants' taxa diversity and virulence factor diversity are associated with homologous-interhemispheric brain network connectivity and indirectly associated with negative emotionality (Fig. 5). Gao et al. (Gao et al., 2019) obtained a similar pattern in infants that was suggestive of a mediation but they did not test this directly. They found that alpha diversity was linked to increased connectivity between the parietal lobe and supplemental motor area, and functional connectivity in this network was associated with behavioral (cognitive) performance. Therefore, in conjunction with prior work, our findings support the notion that the gut microbiome may be more directly linked to or impacting the brain through the gut-brain axis, whereas links between the gut microbiome and overt behaviors are possibly harder to detect or emerge only later in development. More generally, in order to better characterize the link between the gut microbiome and behavioral traits, the current data indicate that it is critical to include measures of brain function.

To identify candidate biomarkers for behavioral temperament and brain connectivity, we took an unbiased and thorough approach through using both LefSE and MaAslin2. Across both analyses we identified multiple microbial species associated with early functional brain connectivity, including several microbes from the orders *Clostridiales* (including *Lachnospiraceae*, and *Bacteroides*) which have been previously identified as a microbe of interest due to its role in serotonin modulation (Yano et al., 2015). To this end, microbes from the order *Clostridiales* have previously been associated with global brain connectivity metrics in both cortical and subcortical areas in adults (Labus et al., 2019). Our analysis showed that *Lachnospiraceae* and *Bacteroides* were associated with infants' fronto-parietal brain network connectivity. Interestingly, the same microbes have been shown to be associated with brain

Brain Behavior and Immunity xxx (xxxx) xxx

development in adolescents in a previous study (Callaghan et al., 2020). In this study by Callaghan et al. (2020) Clostridiales was significantly lower among adolescents that had experienced early adversity (institutionalization during infancy) compared to a control group. Furthermore, this study also identified Lachnospiraceae and Bacteroides as being linked to heightened medial Prefrontal Cortex responses to fearful faces assessed using fMRI. This prior study with adolescents shows early life experiences may shape the colonization of the gut with these microbes, and that this may affect brain development. Our study adds important evidence directly from infants to further support the role that these microbes play in early human brain function. Our analysis also identified a particular species of bacteria, C. perfringens, linked to both hyperconnectivity in the left fronto-parietal network and hypoconnectivity in the left default mode network, suggesting this microbe may disrupt early brain network formation. This is of particular interest as C. perfringens is one of the most common causes of food poisoning in the United States (CDC, 2020), and preliminary work suggests strains of C. perfringens may cause brain lesions similar to what is seen in multiple sclerosis (Rumah et al., 2013).

With respect to negative emotionality and regulation/orienting temperamental domains, our analysis identified five associated microbes using unadjusted analyses, with two belonging to the genus Bifidobacterium. Specifically, Bifidobacterium was enriched for high levels of negative emotionality (Bifidobacterium pseudocatenulatum) and regulation/orienting (Bifidobacterium pseudocatenulatum and Bifidobacterium catenulatum). Prior work with infants has also identified Bifidobacterium as a potential biomarker for behavioral temperament linked to decreased regulation/orienting and increased surgency/positive emotionality (Aatsinki et al., 2019a). In addition, this genus of microbes is thought to play an important role in fighting infections. Many Bifidobacterium species are involved in the conversion of lactose, found in breastmilk, to lactic acid. The accumulation of lactic acid lowers the overall pH and makes it a less hospitable environment for pathogens (Liévin et al., 2000). Overall, our current findings, together with prior work, hint at the involvement of Clostridiales and Bifidobacterium in brain and behavioral development; however, more careful experimental work is required to fully characterize and understand the associations revealed here using LefSE and MaAslin2.

Furthermore, while our results show some agreement between the two analysis methods, there were also significant differences in the biomarkers identified depending on the analysis method used. These differences can likely be attributed to specific difference across analytical methods. Specifically, LefSE first screens out candidates using nonparametric tests and then uses linear discriminant analysis to maximize the differences between groups (created in the present study by using a median split). On the other hand, MaAslin uses a form of generalized linear model and examines associations based on continuous outcome measures. Future work should continue to use both methods in conjunction to identify biomarkers more reliably.

Our current study may have a number of strengths and include novel methods, such as the use of shotgun-metagenomic sequencing and rsfNIRS to index functional brain network connectivity, but there are some limitations that merit acknowledgement. First, our analysis is limited to one time point in early development. It will be important for future studies to assess the development and variability in the gut microbiota composition and its association with brain network connectivity and behavioral temperament over time to determine its longterm effects and better understand directionality of the associations seen in the current study (Kelsey et al., 2020). Relatedly, another limitation of the present study is the assessment of a single stool sample per infant which was collected in the home (and not in the laboratory) environment. In this context is important to note that prior work has highlighted significant temporal variation in the adult gut microbiome (Davenport et al., 2014; Riddle and Connor, 2016). However, the present study elected to collect a single sample in order to decrease burden on participants and reduce study drop-out. Moreover, other evidence

has emerged suggesting intraindividual variability in key groups of microorganisms remains relatively low during infancy (Raman et al., 2019; Subramanian et al., 2014). Second, although we selected the current approach of rs-fNIRS to examine brain connectivity because it is relatively non-confining, allows the infant to remain with their mother, and it is a relatively affordable tool, fNIRS is limited in monitoring activity from (superficial) cortical structures (Lloyd-Fox et al., 2010) and prevents us from gleaning insights into networks including deeper cortical and subcortical structures. Third, by adjusting our analytical models for potential confounds (covariates), some association effects are no longer statistically significant. Accordingly, it is unclear if the absence of significant effects when making these adjustments in the current analysis is due to reduced power or the covariate adjustment itself, as it is known that power can be reduced with an increase in the number of variables in a model. To address these and other potential statistical limitations, the field needs to move beyond single time point, low sample size studies, and take an unbiased data science approach utilizing machine learning techniques to better characterize the nuances and complexities of the gut microbiota-brain interactions (Kelsey, Dreisbach, et al., 2018). Fourth, it is important to note that even though parents were instructed to collect stool samples at home within 24 h before bringing their infants into the laboratory, it was not possible to freeze stool samples immediately after collection. This was done because, as for all developmental studies, the goal is to develop reliable and high-quality collection and storage methods that place the lowest possible burden on the participating families. Prior work has obtained mixed results in regards to room temperature stool storage. For example, Shaw et al. (2016) found significant differences in microbiome communities after storage at room temperature for 48 h. However, other work suggests that stool samples stored at room temperature from anywhere between 2 h to 52 h have microbiome communities that remain relatively stable (Cardona et al., 2012; Guo et al., 2016; Liang et al., 2020). In the present study samples had on average been stored at room temperature for only about 8 h. Moreover, in line with the latter set of studies (Cardona et al., 2012; Guo et al., 2016; Liang et al., 2020), we found no associations between amount of time passed between stool collection and freezing and microbial composition measures (both taxa and functional group diversity). Future research should continue efforts to better understand and monitor how stool collection and storage procedures account for inter- and intra-study variability in microbiome analysis. Finally, it is important to acknowledge that our use of stool samples provides an incomplete view of the entire intestinal tract (Donaldson et al., 2016). Stool samples are most reflective of the lumen and outer mucosa layers of the gastrointestinal tract due to the continuous secretion of the outer layers shedding into the stool sample (Donaldson et al., 2016). Thus, while stool samples might be limited in their ability to characterize gut microbiota across the entire intestinal tract, relying on stool samples is still the preferred method in developmental work given the low burden on infants and families and minimally invasive collection compared to other more comprehensive methodologies (e.g., colonoscopies or biopsies of the mucosa or small intestine tissue).

In summary, the current study provides novel insights into the early emergence of the gut-brain axis and supports that the connection between the gut microbial composition and functional brain connectivity is already present in newborn infants. These findings shed new light on the microbial origins of individual differences in early-emerging functional brain networks and behavioral traits and provide the basis for future research examining the long-term consequences of this gut-brain-behavioral correlation on mental health outcomes.

Funding

This research was supported by Danone North America, Gut Microbiome, Yogurt and Probiotics Fellowship Grant (C.M.K) and UVA Data Science Fellowship (C.M.K, C.D.), Jefferson Scholars Foundation (C.M.

Brain Behavior and Immunity xxx (xxxx) xxx

C.M. Kelsey et al.

K), NSF Award #2017229 and UVA Brain Institute Seed fund (to T.G). This material is also based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1842490 (T.L.V). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We are grateful to all families who participated in this study as well as Sarah Thomas, Christina Marlow, Kate Haynes, Carolynn McElroy, Julia Larsen, Heath Yancey, Sujal Sigdel, Laura Habermeyer, and Shefalika Prasad for assistance with infant data collection at the University of Virginia.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bbi.2020.11.003.

References

- Aatsinki, A.-K., Lahti, L., Uusitupa, H.-M., Munukka, E., Keskitalo, A., Nolvi, S., Karlsson, L., 2019. Gut microbiota composition is associated with temperament traits in infants. Brain Behav. Immun. 80, 849–858. https://doi.org/10.1016/j.bbi.2019.05.035
- Aatsinki, A.K., Lahti, L., Munukka, E., Keskitalo, A., Karlsson, H., Karlsson, L., 2019. Reply to the Letter to the Editor: Gut microbiota composition is associated with temperament traits in infants. Brain Behav. Immun. 81, 671–672. https://doi.org/ 10.1016/i.bbi.2019.07.006.
- Altvater-Mackensen, N., Grossmann, T., 2016. The role of left inferior frontal cortex during audiovisual speech perception in infants. Neuroimage 133, 14–20. https:// doi.org/10.1016/j.neuroimage.2016.02.061.
- Altvater-Mackensen, N., Grossmann, T., 2015. Learning to match auditory and visual speech cues: Social influences on acquisition of phonological categories. Child Dev. 86 (2), 362–378. https://doi.org/10.1111/cdev.12320.
- Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Wang, J., 2015. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17 (5), 690–703. https://doi.org/10.1016/j. chom.2015.04.004.
- Bastiaanssen, T.F., Cussotto, S., Claesson, M.J., Clarke, G., Dinan, T.G., Cryan, J.F., 2020. Gutted! Unraveling the Role of the Microbiome in Major Depressive Disorder. Harvard Rev. Psych. 28 (1), 26–39.
- Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 (15), 2114–2120. https://doi.org/10.1093/ bioinformatics/btu170.
- Borre, Y.E., O'Keeffe, G.W., Clarke, G., Stanton, C., Dinan, T.G., Cryan, J.F., 2014. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol. Med. 20 (9), 509–518. https://doi.org/10.1016/j.molmed.2014.05.002.
- Brazelon, T.B., Nugent, J.K., Lester, B.M., 1987. Neonatal behavioral assessment scale. In: Osofsky, J.D. (Ed.), Wiley series on personality processes. Handbook of infant development. John Wiley & Sons, pp. 780–817.
- Buffington, S.A., Di Prisco, G.V., Auchtung, T.A., Ajami, N.J., Petrosino, J.F., Costa-Mattioli, M., 2016. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165 (7), 1762–1775.
- Bulgarelli, C., Blasi, A., de Klerk, C.C., Richards, J.E., Hamilton, A., Southgate, V., 2019. Fronto-temporoparietal connectivity and self-awareness in 18-month-olds: A resting state fNIRS study. Dev. Cogn. Neurosci. 100676 https://doi.org/10.1016/j.dcn.2019.100676.
- Bulgarelli, C., de Klerk, C., Richards, J.E., Southgate, V., Hamilton, A., Blasi, A., 2020. The developmental trajectory of fronto-temporoparietal connectivity as a proxy of the default mode network: a longitudinal fNIRS investigation. Hum. Brain Mapp. 41 (10), 2717–2740. https://doi.org/10.1002/hbm.24974.
- Callaghan, B.L., Fields, A., Gee, D.G., Gabard-Durnam, L., Caldera, C., Humphreys, K.L., Shapiro, M., 2020. Mind and gut: associations between mood and gastrointestinal distress in children exposed to adversity. Dev. Psychopathol. 32 (1), 309–328. https://doi.org/10.1017/S0954579419000087
- Camacho, M.C., Quiñones-Camacho, L.E., Perlman, S.B., 2020. Does the child brain rest?: An examination and interpretation of resting cognition in developmental cognitive neuroscience. Neuroimage 212, 116688. https://doi.org/10.1016/j. neuroimage.2020.116688.

- Cardona, S., Eck, A., Cassellas, M., Gallart, M., Alastrue, C., Dore, J., Manichanh, C., 2012. Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol. 12 (1), 158. https://doi.org/10.1186/1471-2180-12-158.
- Carlson, A.L., Xia, K., Azcarate-Peril, M.A., Goldman, B.D., Ahn, M., Styner, M.A., Knickmeyer, R.C., 2018. Infant gut microbiome associated with cognitive development. Biol. Psychiatry 83 (2), 148–159. https://doi.org/10.1016/j. bioseych.2017.06.021
- CDC (2020). Foodborne Germs and Illnesses. Retrieved from https://www.cdc.gov/foodsafety/foodborne-germs.html.
- Chen, L., Zheng, D., Liu, B., Yang, J., Jin, Q., 2016. VFDB 2016: hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res. 44 (D1), D694–D697. https://doi.org/10.1093/nar/gkv1239.
- Christian, L.M., Galley, J.D., Hade, E.M., Schoppe-Sullivan, S., Kamp Dush, C., Bailey, M. T., 2015. Gut microbiome composition is associated with temperament during early childhood. Brain Behav. Immun. 45, 118–127. https://doi.org/10.1016/j.bbi.2014.10.018.
- Chu, C., Murdock, M.H., Jing, D., Won, T.H., Chung, H., Kressel, A.M., Zhou, L., 2019. The microbiota regulate neuronal function and fear extinction learning. Nature 574 (7779), 543–548.
- The Gene Ontology Consortium, 2019. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47 (D1), D330–D338. https://doi.org/10.1093/nar/gky1055.
- Cowan, C.S., Dinan, T.G., Cryan, J.F., 2019. Annual Research Review: Critical windows-the microbiota-gut-brain axis in neurocognitive development. J. Child Psychol. Psych.
- Cox, J.L., Holden, J.M., Sagovsky, R., 1987. Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. British J. Psych. 150 (6), 782–786.
- Cristia, A., Dupoux, E., Hakuno, Y., Lloyd-Fox, S., Schuetze, M., Kivits, J., Minagawa-Kawai, Y., 2013. An online database of infant functional near infrared spectroscopy studies: a community-augmented systematic review. PLoS ONE 8 (3), e58906. https://doi.org/10.1371/journal.pone.0058906.
- Cryan, J.F., Dinan, T.G., 2012. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13 (10), 701. https://doi. org/10.1038/nrn3346.
- Damoiseaux, J.S., Rombouts, S.A., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., Beckmann, C.F., 2006. Consistent resting-state networks across healthy subjects. PNAS 103 (37), 13848–13853. https://doi.org/10.1073/pnas.0601417103.
- Davenport, E.R., Mizrahi-Man, O., Michelini, K., Barreiro, L.B., Ober, C., Gilad, Y., 2014. Seasonal variation in human gut microbiome composition. PLoS ONE 9 (3), e90731.
- De Palma, G., Blennerhassett, P., Lu, J., Deng, Y., Park, A., Green, W., Sanz, Y., 2015. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat. Commun. 6, 7735. https://doi.org/10.1038/ncomms8735.
- DeCasper, A.J., Fifer, W.P., 1980. Of human bonding: Newborns prefer their mothers' voices. Science 208 (4448), 1174–1176.
- Donaldson, G.P., Lee, S.M., Mazmanian, S.K., 2016. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14 (1), 20. https://doi.org/10.1038/nrmicro3552.
- Evrensel, A., Ceylan, M.E., 2015. The gut-brain axis: the missing link in depression. Clin. Psychopharmacol. Neurosci. 13 (3), 239. https://doi.org/10.9758/cpn.2015.13.3.239.
- Farroni, T., Chiarelli, A.M., Lloyd-Fox, S., Massaccesi, S., Merla, A., Di Gangi, V., Johnson, M.H., 2013. Infant cortex responds to other humans from shortly after birth. Sci. Rep. 3 https://doi.org/10.1038/srep02851.
- Farroni, T., Csibra, G., Simion, F., Johnson, M.H., 2002. Eye contact detection in humans from birth. Proceedings of the National Academy of Sciences of the United States of America 99 (14), 9602–9605.
- Farroni, T., Johnson, M.H., Menon, E., Zulian, L., Faraguna, D., Csibra, G., 2005. Newborns' preference for face-relevant stimuli: Effects of contrast polarity. PNAS 102 (47), 17245–17250. https://doi.org/10.1073/pnas.0502205102.
- Feldman, R., 2009. The development of regulatory functions from birth to 5 years: Insights from premature infants. Child Dev. 80 (2), 544–561.
- Firestein, M.R., Myers, M.M., Austin, J., Stark, R.I., Barone, J.L., Ludwig, R.J., Welch, M. G., 2019. Perinatal antibiotics alter preterm infant EEG and neurobehavior in the Family Nurture Intervention trial. Dev. Psychobiol. 61 (5), 661–669.
- Fox, M.D., Zhang, D., Snyder, A.Z., Raichle, M.E., 2009. The global signal and observed anticorrelated resting state brain networks. J. Neurophysiol. 101 (6), 3270–3283. https://doi.org/10.1152/jn.90777.2008.
- Fung, T.C., 2020. The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiol. Dis. 136, 104714 https://doi.org/10.1016/j. nbd.2019.104714.
- Gao, W., Alcauter, S., Smith, J.K., Gilmore, J.H., Lin, W., 2015. Development of human brain cortical network architecture during infancy. Brain Struct. Funct. 220 (2), 1173–1186. https://doi.org/10.1007/s00429-014-0710-3.
- Gao, W., Salzwedel, A.P., Carlson, A.L., Xia, K., Azcarate-Peril, M.A., Styner, M.A., Knickmeyer, R.C., 2019. Gut microbiome and brain functional connectivity in infants-a preliminary study focusing on the amygdala. Psychopharmacology 236 (5), 1641–1651. https://doi.org/10.1007/s00213-018-5161-8.
- Gartstein, M.A., Rothbart, M.K., 2003. Studying infant temperament via the revised infant behavior questionnaire. Infant Behav. Dev. 26 (1), 64–86. https://doi.org/ 10.1016/S0163-6383(02)00169-8.
- Graham, A.M., Buss, C., Rasmussen, J.M., Rudolph, M.D., Demeter, D.V., Gilmore, J.H., Fair, D.A., 2016. Implications of newborn amygdala connectivity for fear and cognitive development at 6-months-of-age. Dev. Cogn. Neurosci. 18, 12–25. https:// doi.org/10.1016/j.den.2015.09.006.
- Grossmann, T., Jessen, S., 2017. When in infancy does the "fear bias" develop? J. Exp. Child Psychol. 153, 149–154. https://doi.org/10.1016/j.jecp.2016.06.018.

- Grossmann, T., Missana, M., Krol, K.M., 2018. The neurodevelopmental precursors of altruistic behavior in infancy. PLoS Biol. 16 (9), e2005281 https://doi.org/10.1371/
- Guo, Y., Li, S.-H., Kuang, Y.-S., He, J.-R., Lu, J.-H., Luo, B.-J., Qiu, X., 2016. Effect of short-term room temperature storage on the microbial community in infant fecal samples. Sci. Rep. 6 (1), 26648. https://doi.org/10.1038/srep26648.
- Heijtz, R.D., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., Pettersson, S., 2011. Normal gut microbiota modulates brain development and behavior. PNAS 108 (7), 3047–3052. https://doi.org/10.1073/pnas.1010529108.
- Hoban, A.E., Stilling, R.M., Ryan, F.J., Shanahan, F., Dinan, T.G., Claesson, M.J., Cryan, J.F., 2016. Regulation of prefrontal cortex myelination by the microbiota. Transl. Psychiatry 6 (4), e774. https://doi.org/10.1038/tp.2016.42.
- Hooks, K.B., Konsman, J.P., O'Malley, M.A., 2019. Microbiota-gut-brain research: a critical analysis. Behav. Brain Sci. 42.
- Hsiao, E.Y., McBride, S.W., Hsien, S., Sharon, G., Hyde, E.R., McCue, T., Petrosino, J.F., 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155 (7), 1451–1463. https://doi.org/ 10.1016/j.cell.2013.11.024.
- Kabdebon, C., Leroy, F., Simmonet, H., Perrot, M., Dubois, J., Dehaene-Lambertz, G., 2014. Anatomical correlations of the international 10–20 sensor placement system in infants. Neuroimage 99, 342–356. https://doi.org/10.1016/j. neuroimage 2014 05 046
- Kaiser, R.H., Andrews-Hanna, J.R., Wager, T.D., Pizzagalli, D.A., 2015. Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity. JAMA Psychiatry 72 (6), 603–611. https://doi.org/ 10.1001/jamapsychiatry.2015.0071.
- Kelsey, C.M., Dreisbach, C., Alhusen, J., Grossmann, T., 2018. A primer on investigating the role of the microbiome in brain and cognitive development. Dev. Psychobiol. 1–9. https://doi.org/10.1002/dev.21778.
- Kelsey, C.M., Farris, K., Grossmann, T., 2020. Variability in functional brain network connectivity is associated with differences in newborn infants' affect and behavior. https://doi.org/10.1101/2020.07.15.204271 bioRxiv, 2020.2007.2015.204271.
- Kelsey, Caroline, Grossmann, Tobias, 2019. A call for mapping the development of the microbiota-gut-brain axis during human infancy. Brain Behav. Sci. 42, e60. https:// doi.org/10.1017/S0140525X18002923.
- Kelsey, C.M., Krol, K.M., Kret, M.E., Grossmann, T., 2019. Infants' brain responses to pupillary changes in others are affected by race. Sci. Rep. 9 (1), 4317. https://doi. org/10.1038/s41598-019-40661-z.
- Knight, R., Vrbanac, A., Taylor, B.C., Aksenov, A., Callewaert, C., Debelius, J., McDonald, D., 2018. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16 (7), 410–422.
- Krol, K.M., Puglia, M.H., Morris, J.P., Connelly, J.J., Grossmann, T., 2019. Epigenetic modification of the oxytocin receptor gene is associated with emotion processing in the infant brain. Dev. Cogn. Neurosci. 37, 100648 https://doi.org/10.1016/j. dcn.2019.100648.
- Labus, J.S., Osadchiy, V., Hsiao, E.Y., Tap, J., Derrien, M., Gupta, A., Mayer, E.A., 2019. Evidence for an association of gut microbial Clostridia with brain functional connectivity and gastrointestinal sensorimotor function in patients with irritable bowel syndrome, based on tripartite network analysis. Microbiome 7 (1), 45. https://doi.org/10.1186/s40168-019-0656-z.
- Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9 (4), 357–359. https://doi.org/10.1038/nmeth.1923.
- Lebovitz, Y., Kowalski, E.A., Wang, X., Kelly, C., Lee, M., McDonald, V., Theus, M.H., 2019. Lactobacillus rescues postnatal neurobehavioral and microglial dysfunction in a model of maternal microbiome dysbiosis. Brain Behav. Immun. 81, 617–629. https://doi.org/10.1016/j.bbi.2019.07.025.
- Lee, S., Wu, J., Ma, Y., Tsang, A., Guo, W.J., Sung, J., 2009. Irritable bowel syndrome is strongly associated with generalized anxiety disorder: a community study. Aliment. Pharmacol. Ther. 30 (6), 643–651. https://doi.org/10.1111/j.1365-2036-2009.04074.x
- Li, D., Liu, C.M., Luo, R., Sadakane, K., Lam, T.W., 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31 (10), 1674–1676. https://doi.org/10.1093/bioinformatics/btx032
- Liang, Y., Dong, T., Chen, M., He, L., Wang, T., Liu, X., et al., 2020. Systematic analysis of impact of sampling regions and storage methods on fecal gut microbiome and metabolome profiles. mSphere 5 (1), e00763–00719. https://doi.org/10.1128/ mSphere.00763-19.
- Liévin, V., Peiffer, I., Hudault, S., Rochat, F., Brassart, D., Neeser, J.R., Servin, A.L., 2000. Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut 47 (5), 646–652. https://doi.org/10.1136/gut.47.5.646.
- Litvak, Y., Bäumler, A.J., 2019. The founder hypothesis: A basis for microbiota resistance, diversity in taxa carriage, and colonization resistance against pathogens. PLoS pathogens 15 (2). https://doi.org/10.1371/journal.ppat.1007563 e1007563e1007563.
- Lloyd-Fox, S., Blasi, A., Elwell, C., 2010. Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci. Biobehav. Rev. 34 (3), 269–284. https://doi.org/10.1016/j.neubiorev.2009.07.008.
- Loughman, A., Ponsonby, A.-L., O'Hely, M., Symeonides, C., Collier, F., Tang, M.L., Pezic, A., 2020. Gut microbiota composition during infancy and subsequent behavioural outcomes. EBioMedicine 52, 102640.
- Lu, C., Zhang, Y.-J., Biswal, B., Zang, Y.-F., Peng, D., Zhu, C.-Z., 2009. Use of fNIRS to assess resting state functional connectivity. J. Neurosci. Methods 186, 242–249. https://doi.org/10.1016/j.jneumeth.2009.11.010.
- Mallick, H., Mclever, L. J., Rahnavard, A., Ma, S., Zhang, Y., Nguyen, L. H., et al., In Submission. Multivariable Association in Population-scale Meta-omics Studies.

- McCulloch, J., 2019. JAMS_BW Wiki. Retrieved from https://github.com/johnmcculloch/JAMS_BW/wiki.
- Moore, R.E., Townsend, S.D., 2019. Temporal development of the infant gut microbiome. Open Biol. 9 (9) https://doi.org/10.1098/rsob.190128, 190128-190128.
- Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B., Bandettini, P.A., 2009. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44 (3), 893–905. https://doi.org/10.1016/j. neuroimage.2008.09.036.
- Patashov, D., Goldstein, D., Balberg, M., 2019. Homologous connectivity maps can discriminate diseased from healthy brains. Paper presented at the Optics and the Brain.
- Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Yamada, T., 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464 (7285), 59–65. https://doi.org/10.1038/nature08821.
- Raman, A.S., Gehrig, J.L., Venkatesh, S., Chang, H.-W., Hibberd, M.C., Subramanian, S., Gordon, J.I., 2019. A sparse covarying unit that describes healthy and impaired human gut microbiota development. Science 365 (6449), eaau4735. https://doi.org/ 10.1126/science.aau4735.
- Rattaz, C., Goubet, N., Bullinger, A., 2005. The calming effect of a familiar odor on full-term newborns. J. Dev. Behav. Pediatr. 26 (2), 86–92.
- Riddle, M.S., Connor, B.A., 2016. The traveling microbiome. Current infectious disease reports 18 (9), 29.
- Rigato, S., Stets, M., Bonneville-Roussy, A., Holmboe, K., 2018. Impact of maternal depressive symptoms on the development of infant temperament: Cascading effects during the first year of life. Social Development 29 (4), 1115–1133. https://doi.org/ 10.1111/sode.12448.
- Rosshart, S.P., Herz, J., Vassallo, B.G., Hunter, A., Wall, M.K., Badger, J.H., Rehermann, B., 2019. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science (New York, N.Y.) 365 (6452), eaaw4361. https://doi.org/10.1126/science.aaw4361.
- Rothbart, M.K., 2007. Temperament, development, and personality. Curr. Dir. Psychol. Sci. 16 (4), 207–212. https://doi.org/10.1111/j.1467-8721.2007.00505.x.
- Rumah, K.R., Linden, J., Fischetti, V.A., Vartanian, T., 2013. Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease. PLoS One 8 (10). https:// doi.org/10.1371/journal.pone.0076359.e76359-e76359.
- Sasai, S., Homae, F., Watanabe, H., Taga, G., 2011. Frequency-specific functional connectivity in the brain during resting state revealed by NIRS. Neuroimage 56 (1), 252–257. https://doi.org/10.1016/j.neuroimage.2010.12.075.
- Seemann, T., 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30 (14), 2068–2069. https://doi.org/10.1093/bioinformatics/btu153.
- Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., Huttenhower, C., 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12 (6), R60. https://doi.org/10.1186/gb-2011-12-6-r60.
- Sender, R., Fuchs, S., Milo, R., 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14 (8), e1002533 https://doi.org/10.1371/ journal.pbjo.1002533.
- Sharon, G., Sampson, T.R., Geschwind, D.H., Mazmanian, S.K., 2016. The Central Nervous System and the Gut Microbiome. Cell 167 (4), 915–932. https://doi.org/ 10.1016/i.cell.2016.10.027.
- Shaw, A.G., Sim, K., Powell, E., Cornwell, E., Cramer, T., McClure, Z.E., Kroll, J.S., 2016. Latitude in sample handling and storage for infant faecal microbiota studies: the elephant in the room? Microbiome 4 (1), 40. https://doi.org/10.1186/s40168-016-0186-x
- Sheese, B.E., Rothbart, M.K., Posner, M.I., White, L.K., Fraundorf, S.H., 2008. Executive attention and self-regulation in infancy. Infant Behav. Dev. 31 (3), 501–510. https://doi.org/10.1016/j.infbeh.2008.02.001.
- Sherwin, E., Bordenstein, S.R., Quinn, J.L., Dinan, T.G., Cryan, J.F., 2019. Microbiota and the social brain. Science 366 (6465).
- Slykerman, R., Coomarasamy, C., Wickens, K., Thompson, J., Stanley, T., Barthow, C., Mitchell, E., 2019. Exposure to antibiotics in the first 24 months of life and neurocognitive outcomes at 11 years of age. Psychopharmacology 236 (5), 1573–1582.
- Spichak, S., Guzzetta, K.E., O'Leary, O.F., Clarke, G., Dinan, T.G., Cryan, J.F., 2018. Without a bug's life: Germ-free rodents to interrogate microbiota-gut-neuroimmune interactions. Drug Discov. Today Dis. Models 28, 79–93. https://doi.org/10.1016/j. ddmod.2019.08.002.
- Stifter, C.A., Fox, N.A., 1990. Infant reactivity: Physiological correlates of newborn and 5-month temperament. Dev. Psychol. 26 (4), 582. https://doi.org/10.1037/0012-1640.96.4.582
- Subramanian, S., Huq, S., Yatsunenko, T., Haque, R., Mahfuz, M., Alam, M.A., Gordon, J. I., 2014. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510 (7505), 417–421. https://doi.org/10.1038/nature13421.
- Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.N., Koga, Y., 2004. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558 (1), 263–275.
- van den Heuvel, M.I., Thomason, M.E., 2016. Functional connectivity of the human brain in Utero. Trends Cogn. Sci. 20 (12), 931–939. https://doi.org/10.1016/j. tics.2016.10.001.
- Vanderwal, T., Kelly, C., Eilbott, J., Mayes, L.C., Castellanos, F.X., 2015. Inscapes: A movie paradigm to improve compliance in functional magnetic resonance imaging. Neuroimage 122, 222–232. https://doi.org/10.1016/j.neuroimage.2015.07.069.
- Villringer, A., Chance, B., 1997. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 20 (10), 435–442. https://doi.org/10.1016/ s0166-2236(97)01132-6.

ARTICLE IN PRESS

C.M. Kelsey et al.

Brain Behavior and Immunity xxx (xxxx) xxx

- Wang, L., Li, K., Zhang, Q.-E., Zeng, Y.-W., Jin, Z., Dai, W.-J., Yu, X., 2013. Interhemispheric functional connectivity and its relationships with clinical characteristics in major depressive disorder: a resting state fMRI study. PLoS ONE 8 (3), e60191. https://doi.org/10.1371/journal.pone.0060191.
- Wood, D.E., Salzberg, S.L., 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15 (3), R46. https://doi.org/10.1186/gb-2014-15-3-r46.
- Worobey, J., Blajda, V.M., 1989. Temperament ratings at 2 weeks, 2 months, and 1 year: Differential stablity of activity and emotionality. Dev. Psychol. 25 (2), 257. https://doi.org/10.1037/0012-1649.25.2.257.
- Xu, J., Liu, X., Zhang, J., Li, Z., Wang, X., Fang, F., Niu, H., 2015. FC-NIRS: a functional connectivity analysis tool for near-infrared spectroscopy data. Biomed. Res. Int. 2015 https://doi.org/10.1155/2015/248724.
- Yano, J.M., Yu, K., Donaldson, G.P., Shastri, G.G., Ann, P., Ma, L., Hsiao, E.Y., 2015. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161 (2), 264–276. https://doi.org/10.1016/j.cell.2015.02.047.
- Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., Larsen, M.V., 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67 (11), 2640–2644. https://doi.org/10.1093/jac/dks/361