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ABSTRACT

Despite over a decade of research, it is still challenging for mobile
UI testing tools to achieve satisfactory effectiveness, especially on
industrial apps with rich features and large code bases. Our expe-
riences suggest that existing mobile UI testing tools are prone to
exploration tarpits, where the tools get stuck with a small fraction
of app functionalities for an extensive amount of time. For exam-
ple, a tool logs out an app at early stages without being able to
log back in, and since then the tool gets stuck with exploring the
app’s pre-login functionalities (i.e., exploration tarpits) instead of
its main functionalities. While tool vendors/users can manually
hardcode rules for the tools to avoid specific exploration tarpits,
these rules can hardly generalize, being fragile in face of diverted
testing environments, fast app iterations, and the demand of batch
testing product lines. To identify and resolve exploration tarpits,
we propose Vet, a general approach including a supporting system
for the given specific Android UI testing tool on the given specific
app under test (AUT). Vet runs the tool on the AUT for some time
and records UI traces, based on which Vet identifies exploration
tarpits by recognizing their patterns in the UI traces. Vet then pin-
points the actions (e.g., clicking logout) or the screens that lead to
or exhibit exploration tarpits. In subsequent test runs, Vet guides
the testing tool to prevent or recover from exploration tarpits. From
our evaluation with state-of-the-art Android UI testing tools on
popular industrial apps, Vet identifies exploration tarpits that cost
up to 98.6% testing time budget. These exploration tarpits reveal
not only limitations in UI exploration strategies but also defects in
tool implementations. Vet automatically addresses the identified
exploration tarpits, enabling each evaluated tool to achieve higher
code coverage and improve crash-triggering capabilities.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.
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1 INTRODUCTION

With the prosperity of mobile apps [19], especially their roles in
people’s daily life during pandemic (e.g., food ordering, grocery
delivery, and social networking), quality assurance of mobile apps
becomes crucially important. User Interfaces (UIs), as the primary
interface of user-app interactions, are natural entry points for app
testing. While manual UI testing is still often used in practice, auto-
mated UI testing is becoming popular [21, 29, 33, 36]. Automated
UI testing mimics how human users interact with apps through
the UIs and detects reliability and usability issues. Automated UI
testing complements manual testing with greater timing flexibility
and better code coverage, requiring little human intervention.

However, existing mobile UI testing tools are found to be inef-
fective in exploring app functionalities, despite their sophisticated
strategies for UI exploration. While recent proposals [1, 2, 7, 18, 22,
24–26, 35, 43, 44] have reported promising results, measurement
studies on comprehensive app benchmarks [8, 39] have drawn dif-
ferent conclusions. For example, a recent study [39] shows that
state-of-the-art mobile UI testing tools yield low code coverage
(about 30% in method coverage) after hours of testing on popular
industrial apps. Note that industrial apps typically have richer func-
tionalities and larger code bases, compared with open-source apps.
The findings suggest a significant effectiveness gap that needs to
be filled for automated mobile UI testing.

According to our experience, the ineffectiveness of existing mo-
bile UI testing tools often stems from their proneness to exploration
tarpits1, where tools get stuck with a small fraction of app func-
tionalities for an extensive amount of time. We show a real-world
example in §2, where a state-of-the-art Android UI testing tool
named Ape [17] decides to log itself out one minute after testing
an app starts, without being able to log back in, and since then
gets stuck with exploring the app’s pre-login functionalities (i.e.,
exploration tarpits) instead of its main functionalities. It is possible
that tool vendors/users manually hardcode rules for the tools to
avoid specific exploration tarpits, such as instructing Ape to avoid

1The name of exploration tarpits is inspired by the Mythical Man-Month book [4].
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tapping the “logout” button or writing a script to support automatic
login. However, these rules can hardly generalize, being fragile in
face of diverted testing environments (e.g., unreliable network to
process login requests), fast app iterations, and the demand of batch
testing product lines. Our findings in §5.2 show various cases as
such where exploration tarpits can be caused by unexpected flaws
in a tool’s exploration strategies and/or implementation defects.

To automatically identify and resolve exploration tarpits, in this
paper, we propose a general approach and its supporting system
named Vet for the given specific Android UI testing tool on the
given specific app under test (AUT). Vet works in three stages.
(1) Vet runs the tool on the AUT for some time and records the
interactions between the tool and AUT, in the form of UI traces. A
UI trace consists of app UIs interleaving with the actions taken by
the tool. (2) Vet then analyzes the collected traces to identify trace
subsequences (termed regions) that manifest exploration tarpits. (3)
Vet guides the tool in subsequent test runs to prevent or recover
from an exploration tarpit by monitoring the testing progress and
taking actions based on findings from the identified regions.

Vet includes two specialized algorithms targeting two corre-
sponding patterns of exploration tarpits: Exploration Space Partition
and Excessive Local Exploration (see §2 and §4). Exploration Space
Partition, corresponding to Figure 1a, indicates that the fraction of
app functionalities explored by the tool is disconnected from most
of the app functionalities after some specific action (e.g., tapping
“OK” in Screen C). Such situations can be prevented by disabling
the aforementioned action. Excessive Local Exploration indicates
that the tool enters a hard-to-escape fraction of the app UIs and
needs a significant amount of time to reach other functionalities,
as demonstrated in Figure 1b. This issue can be addressed by ei-
ther preventing the tool from entering (e.g., disabling “START” in
Screen E in Figure 1b) or assisting the tool to escape (e.g., restart the
app upon observation of Screen F). To design the two algorithms,
we first construct fitness value formulas that quantify how well
a region on the given trace matches a targeted pattern. We then
apply fitness value optimization on the entire trace to determine
the region that best fits our targeted patterns.

We evaluateVet using three state-of-the-art/practice Android UI
testing tools (Monkey [12], Ape [17], and WCTester [45, 53]) with
16 widely used industrial apps. We collect 144 traces by running
each tool on each app three times for one hour each (original runs).
Vet reports at least one exploration tarpit region in each (tool, app)
pair, with 131 regions in total, each spanning about 27 minutes on
average. The longest regions span over 59 minutes, about 98.6% of
the one-hour testing time budget. After inspecting the 131 reported
regions, we confirm the root causes of 96 regions, including both
limitations of UI exploration strategies (e.g., early logouts) and de-
fects in tool implementation (e.g., hanging), as shown in §5.2. We
then perform six other one-hour runs for each (tool, app) pair: (1)
three guided runs using Vet to automatically avoid all the explo-
ration tarpit regions identified in the original runs during testing
on three runs, and (2) three comparison runs not using Vet.

Based on the preceding evaluation setup, we compare the code
coverage (of the given app) achieved by applying each tool with and
without the assistance of Vet given the same time budget. Specifi-
cally, we compare the combined code coverage and the numbers of

distinct crashes for (1) original runs and guided runs, and (2) origi-
nal runs and comparison runs. The evaluation results show that on
average a tool assisted by Vet achieves up to a 15.3% relative code
coverage increment and triggers up to 2.1x distinct crashes than
the tool without the assistance of Vet.

In summary, this paper makes the following main contributions:
• A new perspective of improving the given automated UI testing
tool by automatically identifying and addressing exploration
tarpits for the given target AUT;
• Algorithms for effective identification of two manifestation pat-
terns of exploration tarpits;
• A practical system [37] that can be automatically applied to en-
hance any Android UI testing tool such as Monkey [12], Ape [17],
and WCTester [45, 53], on any AUT;
• Comprehensive evaluation of Vet, demonstrating that Vet re-
veals various issues related to tools or app usability, and that Vet
automatically resolves those issues, helping the tools achieve
up to a 15.3% relative code coverage increment and 2.1x distinct
crashes on 16 popular industrial apps.

2 MOTIVATING EXAMPLES

We present two concrete examples from our experiments covering
Exploration Space Partition and Excessive Local Exploration (see
§4). These examples provide contexts for further discussion and
help illustrate the motivations that drive the design of Vet.

2.1 Exploration Space Partition

We run Ape [17], a state-of-the-art Android UI testing tool to test a
popular app, MicrosoftOneNote. The result is illustrated in Figure 1a.
We manually set up the account to log in to the app’s main func-
tionalities, and then start Ape. We run Ape without interruptions
for one hour and check the test results afterward.

In the one-hour testing period, Ape explores only 12% (9 out
of 76) activities. To understand the low testing effectiveness, we
investigate the UI trace captured during testing and find the root
cause to be exploration tarpits:
(1) Ape performs exploration around OneNote’s main function-

alities for about two minutes, covering 7 (out of 9) of all the
activities covered in the entire one-hour test run. We omit this
phase in Figure 1a.

(2) About two minutes after testing starts, Ape arrives at the “Set-
tings” screen (Screen A) and decides to click “Account” (the
red-boxed UI element) for further exploration.

(3) Ape arrives at the “Account” screen (Screen B) and clicks the
“Sign Out” button. The click pops up awindow (Screen C) asking
for confirmation of getting logged out.

(4) Ape clicks “CANCEL” first, and then goes back to the “Account”
screen. However, Ape clicks the “Sign Out” button again, know-
ing that there is one action not triggered yet in the confirmation
dialog. Subsequently, Ape clicks the “OK” button (Screen C) and
logs itself out.

(5) The logout leads to the entry screen (Screen D). From this point,
Ape has access to only a small number of functionalities (e.g.,
logging in). Ape cannot log in due to the difficulty of auto-
generating the username/password of the test account. In the
remaining 58 minutes, Ape explores two new activities in total.
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E F G

22 mins

(a) Exploration Space Partition (b) Excessive Local Exploration

Note: Colored bars on the top represent the progress of two 1-hour tests, where green bars refer to normal exploration and red bars refer to exploration
tarpits. Dashed straight arrows indicate visiting the screen from some other screen, and solid arrows show transitions between two screens after clicking the
red-boxed UI elements. The dashed curve arrow on Screen D depicts that Ape cycles around D until the end of testing. The dashed curve arrow on Screen F
shows that Monkey stays on F within the 22-minute exploration tarpit window.

Figure 1: Motivating examples of exploration tarpits described in §2.

This example represents Exploration Space Partition described
in §1. The essential problem is that Ape does not understand UI
semantics—it does not know that the majority of OneNote’s func-
tionalities will be unreachable by clicking the “OK” button at the
time of action.

2.2 Excessive Local Exploration

Figure 1b presents another example in which we run Monkey [12],
a widely adopted tool, to test another popular industry-quality
app, Nike Run Club. In this example, Monkey spends about 22
minutes trying to saturate one of the app’s functionalities. After
investigating into the collected UI trace, we find the following
behavior when Monkey interacts with the app:

(1) Monkey explores other functionalities normally before entering
Screen E that allows the tool to enter the functionality where the
tool later gets trapped. We name the functionality the trapping
functionality. Monkey clicks the “START” button and enters the
trapping functionality (Screen F).

(2) Monkey keeps clicking around in the trapping functionality.
To escape from the trapping functionality, Monkey first needs
to press the Back button, and a confirmation dialog (Screen
G) will pop up. Monkey then has to click the “OK” button to
finish escaping. However, due to being widget-oblivion, Mon-
key clicks only randomly on the screen, resulting in constant
failures to click “OK” when the confirmation dialog is shown.
Furthermore, the dialog disappears whenMonkey clicks outside
of its boundary, and Monkey needs to press the Back button
again to make the confirmation show up one more time. It takes
22 minutes for Monkey to find and execute an effective escaping
UI event sequence and finally leave the trapping functionality.

(3) The aforementioned behaviors are repeatedly observed in the
trace (with different amounts of time used for escaping).

This example represents Excessive Local Exploration behavior
described in §1. The essential problem is thatMonkey is bothwidget-
and state-oblivion, i.e., the tool is unable to locate actionable UI
elements efficiently or sense whether it has been trapped and react
accordingly (e.g., by restarting the target app).

2.3 Implications

To prevent such undesirable exploration behaviors, a conceptu-
ally simple idea is to de-prioritize exploring the entries to afore-
mentioned trapping states (i.e., the “OK” button in Screen C, and
“START” button in Screen F). One potential solution is to develop
natural language processing (NLP) or image processing based ap-
proaches that can infer the semantics of UI elements [23, 30, 41, 42].
While solutions based on understanding UI semantics are revolu-
tionary, they are challenging due to fundamental difficulties rooting
in NLP and image processing.

In this paper, we explore a more practical and evolutionary so-
lution based on understanding exploration tarpits by mining UI
traces. We show that it is feasible to identify the existence and
location of such behavior through pattern analysis on interaction
history. Given the location of exploration tarpits, we can further
identify which UI actions might have led to such behavior. Taking
the example of Figure 1, Ape starts to visit a very different set of
screens (e.g., the welcome screens in Screen D in Figure 1a) after
clicking “OK”, and the number of explored screens dramatically
decreases. Therefore, we can look at the screen history and find
the time point where the symptom starts to appear. The UI action
located at the aforementioned time point is then likely the cause of
the symptom. Our Vet system uses a specialized algorithm (§4.2)
to effectively locate the starting time point of exploration tarpits
similar to the aforementioned instance.

3 BACKGROUND

This section presents background knowledge about UI hierarchy to
help readers understand our algorithm design and implementations
in the scope of Android UI testing.

A UI hierarchy structurally represents the contents of app UI
shown at a time. Each UI hierarchy consists of UI properties (e.g.,
location, size) for individual UI elements (e.g., buttons, textboxes)
and hierarchical relations among UI elements. On Android, each
activity internally maintains the data structure for its current UI
hierarchy. Typically, UI elements are represented by View [13] sub-
class instances, and hierarchical relations are represented by child
Views of ViewGroup [14] subclass instances.
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A key component of UI testing is to identify the current app func-
tionality. The functionality is identified by equivalence check for UI
hierarchies, because UI hierarchies are usually used as indicators
of apps’ functionality scenarios. Thus, checking the equivalence
between the current and past UI hierarchies allows tools to identify
whether a new functionality is being exercised. If the current func-
tionality has been covered, the tool can additionally leverage the
knowledge associated with the functionality to decide on the next
actions. There are different ways to check UI hierarchy equivalence:

• Strict comparison. A simple way to check the equivalence of
two UI hierarchies is to compare their UI element trees and see
whether they have identical structure and UI properties at each
node. In practice, such simple equivalence checking is too strict.
For example, on an app accepting text inputs, a tool checking
exact equivalence can count a new functionality every time one
character is typed.
• Checking similarity. A workaround to the aforementioned is-
sue of strict comparison is to check similarities of two UI hierar-
chies against a threshold. However, ambiguity can become the
new issue, given that the similarity relation is not transitive: sup-
pose that A is similar to both B and C, it is still possible that B is
not similar to C. Then if both B and C are in the history (regarded
as different functionalities), and A comes as a new UI hierarchy,
the tool is unable to decide on which functionality to use the
associated knowledge from. To fix the ambiguity issue, we can
perform screen clustering, essentially putting mutually similar
screens into individual groups and regarding each group as rep-
resenting one single functionality. Then the downside is that
screen clustering can be a computationally expensive operation,
especially for traces with many screens.
• Comparing abstractions.Amore advanced solution is to check
the equivalence at an abstraction level, employed by many model-
based UI testing tools [3, 7, 16, 17, 35]. In the previous example,
one can leave out all user-controlled textual UI properties from
the hierarchy and the equivalence check can tell that the tool is
staying on the same screen regardless of what has been entered.
While abstracting UI hierarchies is conceptually effective, it is
challenging to design effective UI abstraction functions. The diffi-
culty lies in identifying UI properties or structural information to
distinguish different app functionalities, especially when screens
have variants with relatively subtle differences.
Ape [17] includes adaptive abstractions to address the chal-

lenge of automatically finding proper UI abstraction functions in
different scenarios. Ape dynamically adjusts its abstraction strat-
egy (e.g., which UI property values should be preserved) during
testing based on feedback from strategy execution (e.g., whether
invoking actions on UI hierarchies with the same abstraction
yields the same results). Unfortunately, the adaptive abstraction
idea assumes the availability of sufficiently diversified execution
history for feedback, and such history is not always available
when analyzing given traces as in our situation.

Given the pros and cons of the aforementioned ways, we empiri-
cally adopt a hybrid approach for UI hierarchy equivalence check.
First, we always abstract UI hierarchies: (1) we consider only visible
UI elements (i.e., View.getVisibility() == VISIBLE, and the
element’s bounding box intersects with its parent’s screen region),

Stage I: Trace Collection
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UI Testing
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Detection

Algorithms
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UI & Action Recording
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Stage II: Analysis

Stage III: Enhanced Exploration

Avoidable
Actions & 
Screens

Android Framework
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Infra+

UI Monitoring & Manipulation
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Figure 2: Overview of Vet.

(2) we keep the activity ID and the original hierarchical relations
among UI elements, and (3) we retain only UI element types and
IDs from UI properties. Second, we check the similarities of abstract
UI hierarchies and cluster them into groups only when the analysis
is sensitive to the absolute number of distinct screens. More details
on achieving clustering efficiently are elaborated in §4.3.

4 THE VET APPROACH

4.1 Overview

We propose Vet, a general approach and its supporting system that
automatically identifies and addresses exploration tarpits for any
given Android UI testing tool on any given AUT. Our implementa-
tion of Vet is publicly available at [37].

As illustrated in Figure 2, for a given tool and AUT, Vet works
in three stages. First, Vet runs the target tool on the AUT for a
certain amount of time and records the interactions between the
tool and AUT. With help from our Android framework extension
Toller [38], Vet collects trace(s) that consist of AUT UIs inter-
leaving with the tool’s actions. Then, Vet analyzes each individual
trace with specialized algorithms to identify trace subsequences
(termed regions) that manifest the tool’s exploration tarpits. Op-
tionally, one can rank the identified regions based on their time
lengths, where longer regions receive higher ranks, to prioritize
regions that are likely to exhibit exploration tarpits with higher
impacts (see §5.2). Finally, Vet learns from the identified regions
and guides the tool in subsequent runs to avoid exploration tarpits,
by monitoring the testing progress and taking actions based on
findings from the identified regions. With the support from Toller,
Vet is currently capable of (1) preventing specified actions by dis-
abling the corresponding UI elements at runtime and (2) assisting
the AUT to escape from the specified screens by restarting the AUT.
The identified regions additionally support manual investigations
of testing efficacy by providing localization help.

We equip Vetwith two specialized algorithms targeting two pat-
terns of exploration tarpits: Exploration Space Partition and Excessive
Local Exploration. Characteristics of the two algorithms’ targeted
patterns are illustrated in Figure 3 and discussed as follows:
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Note that each subgraph corresponds to an example trace, where each circle
represents a distinct screen in the trace (e.g., each subfigure in Figure 1),
each arrow indicates that action(s) is observed between two screens in the
trace, and each curved rectangle depicts a UI subspace. Red arrows denote
destructive actions (e.g., clicking “OK” in Screen C of Figure 1a, “START” in
Screen E of Figure 1b) while dashed arrows show where traces begin.

Figure 3: Two patterns of exploration tarpits.

• Exploration Space Partition. As shown in Figure 3a, the UI testing
tool traverses through a UI subspace (Subspace 2) for a long time
after the execution of some action (the red arrow), and the tool is
unable to return to the previously visited UI subspace (Subspace
1). Furthermore, the tool visits much fewer distinct screens af-
ter the action. The presence of the symptom suggests that the
tool has triggered a destructive action (effectively the partition
boundary of the entire trace and beginning of the exploration
tarpit) that prevents the tool from further exploring the app’s
major functionalities. The first motivating example from §2 cor-
responds to this symptom, where clicking the “OK” button is
the destructive action that gets Ape trapped in multiple screens
related to logging in (Subspace 2) and prevents Ape from further
accessing OneNote’s main functionalities (Subspace 1).
• Excessive Local Exploration. As shown in Figure 3b, the UI testing
tool is trapped in a small UI subspace (Subspace 2) for an ex-
tended amount of time after the execution of the corresponding
destructive action (the red arrow). However, the tool is capa-
ble of returning to the previously visited UI subspace (Subspace
1) despite the difficulties. It is also likely that the tool will get
trapped again within Subspace 2 after returning to Subspace
1. Consequently, the tool spends an excessive amount of time
repetitively testing limited functionalities in this hard-to-escape
subspace. The secondmotivating example from §2 corresponds to
this symptom, where clicking the “START” button gets Monkey
trapped in Screens F and G (Subspace 2). Clicking “OK” helps
Monkey go back to Screen E (within Subspace 1) and other func-
tionalities, but it does not take a long time before the tool gets
trapped again within Subspace 2.

As can be seen, Exploration Space Partition targets higher-level
irreversible transition of UI exploration space, while Excessive Local
Exploration focuses on lower-level difficulties of exercising a spe-
cific functionality. Note that it is possible for the regions reported
by the two algorithms on the same trace to overlap. For example,
Excessive Local Exploration might also capture exploration tarpits
within Exploration Space Partition’s trapped UI subspace (corre-
sponding to Subspace 2 in Figure 3). Such overlaps do not prevent us
from finding meaningful targeted exploration tarpits: different ex-
ploration tarpits revealed by regions identified by both algorithms
suggest the existence of different exploration difficulties.

Table 1: Notations and descriptions used in the algorithms

Notation Description

𝑆𝑖 Screen #𝑖 in the trace represented by the UI hierarchy.
𝑡𝑖 The timestamp of screen 𝑆𝑖 being observed.
𝑆𝑙,𝑟 A region of screens starting at Screen #𝑙 and ending at

Screen #𝑟 (with both ends included).
{𝑆𝑙,𝑟 } The set of distinct screens from 𝑆𝑙,𝑟 by de-duplicating

their UI hierarchies.
|𝑆𝑠
𝑙,𝑟
| The number of occurrences of 𝑠 in 𝑆𝑙,𝑟 .

𝑡min A predefined threshold that decides the minimum time
length of any 𝑆𝑙,𝑟 (i.e., 𝑡𝑟 − 𝑡𝑙 ⩾ 𝑡min) that may be
included in algorithm outputs.

In the remaining of this section, we describe the two algorithms
for capturing Exploration Space Partition and Excessive Local Explo-
ration in §4.2 and §4.3, respectively. We show that pattern capturing
can be expressed as optimization problems. Table 1 describes the
notations used to describe Vet’s algorithms.

4.2 Capturing Exploration Space Partition

According to our introductions of Exploration Space Partition, we
need to find a destructive action exerted on screen 𝑆𝑛 as the partition
boundary such that the aforementioned characteristics from §4.1
can be best reflected. For instance, considering our first motivating
example in §2, we hope to pick up the screen shown in Figure 1c as
𝑆𝑛 . We optimize the following formula to find the most desirable
𝑆𝑛 from a trace with 𝑁 screens:

argmin
1⩽𝑛<𝐸𝑝

[
∑

𝑠∈{𝑆1,𝑛 }

|𝑆𝑠
𝑛+1,𝑁 |
𝑁 − 𝑛 ] + 2 · 𝜎 (

|{𝑆𝑛+1,𝑁 }|
|{𝑆𝐸𝑝+1,𝑁 }|

− 1) − 1

In the formula, 𝐸𝑝 is a pre-calculated limit indicating the upper
bound of𝑛 during optimization, and 𝜎 denotes the Sigmoid function.
Note that 𝑁 − 𝑛 can be pulled out of the sum subformula. The
intuition of the formula design is as follows:

(1) As part of the characteristics, the tool should ideally be able
to visit few to no screens that have appeared no later than 𝑆𝑛
after the tool passes 𝑆𝑛 . Correspondingly, in our motivating
example, screens shown before Figure 1c (depicting the app’s
main functionalities) are dramatically different from the screens
afterward (logging in, ToS, etc.). In the formula, the nomina-
tor of the first term (intended to be minimized) quantifies the
proportion of screens seen before 𝑆𝑛 within 𝑆𝑛+1,𝑁 .

(2) As the denominator of the first term, 𝑁 −𝑛 essentially calculates
how many (non-distinct) screens the tool visits after 𝑆𝑛 . There
are two purposes of this design. First, we hope to normalize the
first term in the formula (so that two terms can weigh the same).
Given that

∑
𝑠∈{𝑆1,𝑛 } |𝑆

𝑠
𝑛+1,𝑁 | =

∑
𝑠∈{𝑆1,𝑛 }∩{𝑆𝑛+1,𝑁 } |𝑆

𝑠
𝑛+1,𝑁 | ⩽∑

𝑠∈{𝑆𝑛+1,𝑁 } |𝑆
𝑠
𝑛+1,𝑁 | = 𝑁 − 𝑛, the first term is guaranteed to

fall within [0, 1]. Second, we want to push 𝑆𝑛 backward (note
that smaller 𝑛 makes the first term smaller) because we assume
that the design makes 𝑆𝑛 closer to the exploration tarpit’s root
cause, which should appear earlier than other causes.
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(3) As another part of the characteristics, the tool stays within
a certain UI subspace for a long time; thus, the tool will go
through screens within the subspace very often. If the tool gen-
erally uniformly visits most or all distinct screens within the
subspace, by observing a small period of exploration (corre-
sponding to 𝑆𝐸𝑝+1,𝑁 in the formula) we should have a fairly
precise estimation (i.e., {𝑆𝐸𝑝+1,𝑁 }) of the subspace boundary,
which is characterized by {𝑆𝑛+1,𝑁 }. The second term in the for-
mula corresponds to this intuition, where the closer {𝑆𝐸𝑝+1,𝑁 }
is to {𝑆𝑛+1,𝑁 } (note that {𝑆𝐸𝑝+1,𝑁 } ⊆ {𝑆𝑛+1,𝑁 }), the more fa-
vorable it becomes during optimization.

(4) By setting an upper bound 𝐸𝑝 on 𝑛 and regularizing the ra-
tio with a Sigmoid function and applying appropriate linear
transformations, we can guarantee that the second term in the
formula always ranges from 0 to 1, being the same as the first
term. In the end, two terms in the formula contribute equally
to optimization choices.
To determine 𝐸𝑝 on each trace, because our optimization scope

does not include any interval shorter than [𝐸𝑝 , 𝑁 ], we choose a
value such that 𝑡𝑁 − 𝑡𝐸𝑝 is closest to 𝑡min.

After obtaining a potentially suitable 𝑆𝑛 through optimizing the
aforementioned formula, we additionally check whether |{𝑆1,𝑛}| >
|{𝑆𝑛+1,𝑁 }| is satisfied, essentially enforcing the property that the
exploration space should be smaller after the partition. Finally, the
reported region is 𝑆𝑛+1,𝑁 .

4.3 Capturing Excessive Local Exploration

Based on the characteristics of Excessive Local Exploration from
§4.1, we should track the presence of a region showing that the tool
is trapped within a small UI subspace for an extended amount of
time. For our second motivating example in §2, one valid choice is
the 22-minute region starting from the button click in Screen E of
Figure 1b. We accordingly optimize the following formula to find
the boundaries 𝑆𝑙 and 𝑆𝑟 of the most suitable region on a trace:

argmin
1⩽𝑙⩽𝑟⩽𝑁

|Merge({𝑆𝑙,𝑟 }) |
𝑟 − 𝑙 + 1

In the formula, Merge denotes the operation of merging similar
screens and returning the groups of merged screens. As the opti-
mization formula suggests, we hope to find a suitable region such
that it covers few distinct screen groups despite that the tool tries
to explore diligently (by injecting numerous actions quantified by
𝑟 − 𝑙 +1). Then if 𝑡𝑟 − 𝑡𝑙 ⩾ 𝑡min, we regard that the exploration tarpit
region 𝑆𝑙,𝑟 can be reported. Accordingly in our motivating example,
the choice of 𝑆𝑙 is Screen F of Figure 1b and 𝑆𝑟 is the last instance
of Screen G of Figure 1b in the 22-minute region. 𝑆𝑙−1 corresponds
to Screen E of Figure 1b, and the destructive action is reported.

Note that there can be more than one region exhibiting Exces-
sive Local Exploration behavior within a single trace, given the
possibility for the tool to escape the UI subspaces where Excessive
Local Exploration behavior is observed. In order to find all potential
regions, we iterate the aforementioned optimization process on
remaining region(s) each time after one region is chosen, until no
more region can be divided.

Design of Merge. As mentioned in §3, involving screen merg-
ing is especially useful for handling Excessive Local Exploration,

Input: A set of abstract UI hierarchies 𝐻
Output: A mapping 𝑅 : 𝐻 ↦→ 𝑅, where 𝑅 ⊆ 𝐻

Sort ℎ ∈ 𝐻 by |ℎ | in ascending order
𝑅 ← {}
foreach ℎ ∈ 𝐻 do

𝑅 [ℎ] ← nil
end

foreach ℎ ∈ 𝐻 do

if 𝑅 [ℎ] = nil then
𝑅 [ℎ] ← ℎ

foreach ℎ′ ∈ 𝐻 do

if 𝑅 [ℎ′] = nil ∧ SimCheck(ℎ,ℎ′) then
𝑅 [ℎ′] ← ℎ

end

end

end

end

return 𝑅
Algorithm 1: Merge: Merging similar screens into groups
(each group is represented by its root screen in 𝑅)

given that the aforementioned optimization formula is very sensi-
tive to the absolute numbers of distinct screens. Being part of the
challenge, an efficient (and mostly effective) screen merging algo-
rithm requires careful design. Given a set of distinct abstract screens
(represented by UI hierarchies) to merge, a relatively straightfor-
ward (and precise) approach is to first calculate the tree editing
distance [46] for each pair of abstract UI hierarchies for similarity
check, and then use combinatorial optimization [40] to decide the
optimal grouping strategy (e.g., by converting to an Integer Linear
Programming [31] problem), such that all screens within the same
group are mutually similar and the total number of groups is mini-
mal. Unfortunately, such an algorithm requires exponential time in
regards to the number of distinct abstract screens to merge. The de-
sign will likely fall short on traces collected using industrial-quality
apps, from which we can easily capture hundreds to thousands of
distinct abstract screens.

Aiming to make the algorithm practically efficient, we relax
the definition of similarity and the goal of optimization from the
aforementioned merging algorithm based on insights from our ob-
servations. Specifically, we find that in many cases, similar screens
can be seen as screen variants derived from base screens by insert-
ing a small number of leaf nodes or subtrees into the abstract UI
hierarchy. Based on this assumption with some tolerance for inac-
curacy, we can (1) design a more efficient tree similarity checker
(Algorithm 2), which considers only node insertion distances and
has Θ( |ℎ1 | · |ℎ2 |) time complexity (compared with 𝑂 ( |ℎ1 | · |ℎ2 | ·
Height(ℎ1) ·Height(ℎ2)) for full tree edit distance), and (2) replace
the inefficient combinatorial optimization with a highly efficient
greedy algorithm (Algorithm 1), which tries to find all the base
screens with 𝑂 ( |𝐻 |2 · maxℎ∈𝐻 |ℎ |2) time complexity. In practice,
with multiple other optimizations not affecting the level of time
complexity, the algorithm needs only several seconds on average
to process a trace. Even for a very long trace with 2,000 distinct
abstract screens and tens of thousands of concrete screens, the
algorithm runs for only several minutes.
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Input: Abstract UI hierarchies ℎ1, ℎ2
Output:Whether ℎ1, ℎ2 are similar enough
Const:Max allowed distance 𝑑max, empirically set to 3
𝑠𝑒𝑞1 ← []
foreach 𝑛𝑜𝑑𝑒 ∈ DepthFirstTraverse(ℎ1) do

𝑠𝑒𝑞1 ← 𝑠𝑒𝑞1 :: (Props(𝑛𝑜𝑑𝑒),Depth(𝑛𝑜𝑑𝑒))
// Props obtains the node’s UI properties that are preserved
during abstraction. See more details in §3.

end

𝑠𝑒𝑞2 ← []
foreach 𝑛𝑜𝑑𝑒 ∈ DepthFirstTraverse(ℎ2) do

𝑠𝑒𝑞2 ← 𝑠𝑒𝑞2 :: (Props(𝑛𝑜𝑑𝑒),Depth(𝑛𝑜𝑑𝑒))
end

𝑙𝑐𝑠 ← LongestCommonSeqence(𝑠𝑒𝑞1, 𝑠𝑒𝑞2)
if |𝑙𝑐𝑠 | < min( |ℎ1 |, |ℎ2 |) then

return false
else

return max( |ℎ1 |, |ℎ2 |) − |𝑙𝑐𝑠 | ⩽ 𝑑max
end

Algorithm 2: SimCheck: UI hierarchy similarity checker

5 EVALUATION

Our evaluation answers the following research questions:
• RQ1: How effectively can Vet help reveal Android UI testing
tool issues with the identified exploration tarpit regions?
• RQ2:What is the extent of effectiveness improvement of Android
UI testing tools through automatic enhancement by Vet?
• RQ3: How likely do Vet algorithms miss tool issues in their
identified exploration tarpit regions?

5.1 Evaluation Setup

Android UI Testing Tools and Android Apps. We use three
state-of-the-art/practice Android UI testing tools: Monkey [12],
Ape [17], and WCTester [45, 53]. We use 16 popular industry An-
droid apps from the Google Play Store, as shown in Table 2. These 16
apps are from a previous study [39], which picks the most popular
apps from each of the categories on Google Play and compares mul-
tiple testing tools applied on these apps. The apps that we choose
need to work properly on our testing infrastructure: (1) they need
to provide x86/x64 variants of native libraries (if they have any),
(2) they do not constantly crash on our emulators, and (3) Toller
is able to obtain UI hierarchies on most of the functionalities. We
additionally skip apps that (1) have relatively limited sets of func-
tionalities, or (2) require logging in for access to most features and
we are unable to obtain a consistently usable test account (e.g.,
some apps have disabled our test accounts after some experiments).

Trace Collection.We run each tool on every app for three times
to alleviate the potential impacts of non-determinism in testing.
Each run takes one hour without interruption, and we restart the
tool if it exits before using up the allocated run time. Toller records
one UI trace for each test run. While Vet runs separately on each
UI trace, results are grouped for each (tool, app) pair. In total, we
collect 144 one-hour UI traces from 48 (tool, app) pairs.

Testing Platform.All experiments are conducted on the official
Android x64 emulators running Android 6.0 on a server with Xeon
E5-2650 v4 processors. Each emulator is allocated with 4 dedicated
CPU cores, 2 GiB of RAM, and 2 GiB of internal storage space.
Emulators are stored on a RAM disk and backed by discrete graphics

Table 2: Overview of industrial apps used for evaluation

App Name Version Category #Inst Login

AccuWeather 5.3.5-free Weather 50m+ ✗
AutoScout24 9.3.14 Auto & Vehicles 10m+ ✗
Duolingo 3.75.1 Education 100m+ ✗
Flipboard 4.1.1 News & Magazines 500m+ ✓
Merriam-Webster 4.1.2 Books & Reference 10m+ ✗
Nike Run Club 2.14.1 Health & Fitness 10m+ ✓
OneNote 16.0.9126 Business 100m+ ✓
Quizlet 3.15.2 Education 10m+ ✓
Spotify 8.4.48 Music & Audio 100m+ ✓
TripAdvisor 25.6.1 Food & Drink 100m+ ✓
trivago 4.9.4 Travel & Local 10m+ ✗
Wattpad 6.82.0 Books & Reference 100m+ ✓
WEBTOON 2.4.3 Comics 10m+ ✗
Wish 4.16.5 Shopping 100m+ ✓
YouTube 15.35.42 Video Player & Editor 1b+ ✗
Zedge 7.2.2 Personalization 100m+ ✗

Notes: ‘#Inst’ denotes the approximate number of downloads. ‘Login’
indicates whether the app requires logging in to access most features.

cards for minimal mutual influences caused by disk I/O bottlenecks
and CPU-intensive graphical rendering. We manually write auto-
login scripts for apps with “Login” ticked in Table 2, and each of
these scripts is executed only once before the corresponding app
starts to be tested in each run. To alleviate the flakiness of these
auto-login scripts, wemanually check the collected traces afterward
and rerun the experiments with failed login attempts.

Overall Statistics. Vet reports 131 regions to exhibit explo-
ration tarpits, averaging 2.7 on each (tool, app) pair. Based on Vet’s
reports, the average amount of time involved in exploration tarpits
is about 27 minutes per region, with the maximum being 59 minutes
and minimum being slightly more than 10 minutes (given that we
empirically set 𝑡min = 10 minutes for all the experiments).

5.2 RQ1. Detected Tool Issues

5.2.1 Methodology. We evaluate the effectiveness of Vet algo-
rithms in capturing exploration tarpits that reveal issues of testing
tools upon AUTs. Specifically, we first group exploration tarpit
regions by the (tool, app) pairs that these regions are observed on.
Then, we rank the regions within each (tool, app) pair by their time
lengths as mentioned in §4.1. Finally, we manually investigate each
of 131 regions from all (tool, app) pairs. We report any issue for
each of these regions with manual judgment. Note that we count
only the issue that we consider most specific to the exploration
tarpit revealed by each region: if both issues A and B contribute
to the exploration tarpit on some region, and A also contributes to
other regions on the same trace, we count only B in the statistics.

5.2.2 Results. We are able to determine tool issues on 96 of 131
manually investigated regions. Table 3 shows the distribution of
issue types w.r.t the tool and region ranking. Note that we find
each (tool, app) pair to have up to three regions reported by Vet;
thus, rank-1/2/3 regions cover all 131 regions (with 48/43/40 regions
each). The tool issues can be traced to two root causes: apps under
test require extra knowledge for effective testing, and tool defects
prevent themselves from progressing. We discuss specific issues w.r.t.
these two root causes:
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Table 3: Distribution of confirmed issue types

Issue
Rank-1 Rank-2 Rank-3

TotalApe Mk Wt Sum Ape Mk Wt Sum Ape Mk Wt Sum
LOUT 5 2 1 8 5 2 1 8 4 1 1 6 22

UI 0 4 0 4 0 3 0 3 2 4 0 6 13

NTWK 0 5 0 5 0 3 0 3 0 3 0 3 11

LOOP 0 0 7 7 0 0 8 8 0 0 5 5 20

ESC 0 4 0 4 0 2 0 2 0 2 0 2 8

ABS 0 0 2 2 0 0 2 2 0 0 1 1 5

MISC 5 1 2 8 5 1 0 6 3 0 0 3 17

Total 10 16 12 38 10 11 11 32 9 10 7 26 96

Notes: ‘Mk’ and ‘Wt’ refer to Monkey and WCTester, respectively.
Issue type details are discussed in §5.2.

• App logout or equivalent (abbreviated as “LOUT” in Table
3) accounts for exploration tarpits on 23% (22 out of 96) of in-
vestigated regions with identified issues. Some apps essentially
require login states for the majority of their functionalities to
be accessible. However, the tools used in our experiments have
no knowledge about the consequences of clicking the “logout”
buttons in different apps before the tools actually try clicking
these buttons. Unfortunately, after the tools try out such actions
(driven by their exploration strategies), the apps’ login states
(both on-device and on-server) have been destroyed. The tools
then have to spend all remaining time on a limited number of
functionalities, leading to exploration tarpits. This case reveals
a common weakness of existing UI testing tools—they have a
limited understanding of action semantics. As can be seen from
Table 3, Ape is more likely to be affected by this type of issues.
• Unresponsive UIs (“UI”) are found in 14% (13 out of 96) of re-
gions. We find that some apps stop responding to UI actions
after the advertisement banner is clicked, even though the apps’
UI threads are not blocked. The issue is likely caused by the UI
design defects in the Google AdMob SDK. The AUTs should be
restarted as soon as possible to resume access to their functional-
ities. According to Table 3, Monkey is most vulnerable to such
issues. One interesting finding is that Ape is actually also vul-
nerable to unresponsive UIs although the tool’s implementation
is capable of identifying such situations. However, while Ape
proceeds to restart the app most of the times when Ape finds the
app unresponsive, Ape fails to do so occasionally.
• Network disconnections (“NTWK”) are found in 11% (11 out
of 96) of regions. We find that turning networking off is undesir-
able for some apps, especially when the disconnection lasts for a
long time. Consequently, these apps may show only messages
prompting users to check their networks, leaving nothing for
exploration. Tools such as Monkey can control network connec-
tions through Android system UI (e.g., by clicking the “Airplane
Mode” icon). While the capability helps test app logic in edge
conditions in general, it might hurt the tool’s effectiveness on
apps heavily relying on network access. All regions with the
aforementioned issue come from Monkey’s traces.
• Restart/action loops (“LOOP”) are found in 21% (20 out of 96)
of regions. The tool essentially keeps restarting or performing the
same actions on the target app after some point. One potential
cause for such issues is that the tool thinks that all UI elements
in the target app’s main screen have been explored. The tool

might need to revise its exploration strategy for discovering
more explorable functionalities.
• Obscure escapes (“ESC”) are found in 8% (8 out of 96) of regions.
Defects in a tool’s design or implementation can make it diffi-
cult for the tool to escape from certain app functionalities, and
consequently, the tool loses opportunities to explore other func-
tionalities. For instance, Monkey finds it challenging to escape
a screen where the only exit is a tiny button on the screen (see
the second motivating example in §2), due to the tool’s lack of
understanding of UI hierarchies.
• UI abstraction defects (“ABS”) are found in 5% (5 out of 96) of
regions. Defects in a tool’s UI abstraction strategies can trick the
tool into incorrectly understanding the testing progress. Seen
from collected traces, WCTester considers all texts as part of
abstract UI hierarchies. While the strategy works well in a wide
range of testing scenarios, it keeps the tool repetitively triggering
actions on UI elements with changing texts (such as counting
down), given that the tool incorrectly thinks that new function-
alities are being covered.
• Miscellaneous tool implementation defects (“MISC”) are in
18% (17 out of 96) of regions. In our case, we find potential im-
plementation defects in three tools: (1) Ape and Monkey fail to
handle unresponsive apps (“Injection failed” or being unable to
obtain UI hierarchies), and (2) WCTester is found to explore only
a certain fraction of app functionalities after some point.
Another finding is that the ratio of confirmed issues decreases

when the rank goes lower (38/48 = 79% for rank-1, 32/43 = 74%
for rank-2, and 26/40 = 65% for rank-3), suggesting the usefulness
of prioritizing regions based on their lengths.

5.3 RQ2. Improvement of Testing Performance

This section shows that the identified exploration tarpit regions by
Vet can be used to automatically address tool issues.

5.3.1 Automatic fix application. The essential idea is to prevent
some tool issues from happening again or getting rid of tool issues
quickly by controlling the interactions between tools and apps.
Specifically, given an exploration tarpit region, we identify the UI
element that the tool acts on right before the region begins, and then
we use Toller to disable the UI element for Vet-guided runs. Many
tool issues can be targeted by this simple approach. For example, if
we disable the advertisement banners that lead to Unresponsive UIs
in §5.2, tools will simply not run into the undesirable situation, and
they can focus on testing other more valuable app functionalities.
In some cases when there are multiple entries to the region and
existing traces do not reveal all the entries, the aforementioned
approach might fail. We mitigate this limitation by monitoring
and controlling the testing progress—currently, if we observe any
of the most frequently appearing screens from Excessive Local
Exploration regions, we restart the AUT in Vet-guided runs.

We implement UI element disablement by relying on Toller
to monitor screen changes during testing and dynamically mod-
ify UI element properties. When a target screen (i.e., a UI screen
containing any target UI element, as determined by UI hierarchy
equivalence check) shows up, we pinpoint the target UI element by
matching with the path to each UI element from the root UI element.
Once we confirm that the target UI element exists on the current
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screen, we instruct Toller to disable the UI element, which will not
respond to any further action on itself. For the edge case where the
action is not on any UI element (e.g., pressing the Back button), we
restart the target app once we see the corresponding target screen.
Note that there is no need to modify the app installation packages
given that we manipulate app UIs dynamically.

5.3.2 Methodology of experiments. We aim to measure the testing
effectiveness throughout the entire process of applying Vet. For
each (tool, app) pair, in addition to the three initial runs for trace
collection, we perform the experiments for three runs in each of
these three settings: (1) Disabling UI elements based on rank-1 re-
gions (rank-1 guided runs; see §4.1 for our ranking strategy), (2)
Disabling UI element based on rank-1, rank-2, and rank-3 regions
(rank-1/2/3 guided runs), and (3) Keep the same settings as ini-
tial runs (comparison runs). Note that each run also lasts for one
hour, and all experiments are conducted in the same hardware and
software environment regardless of different settings.

We measure method coverage (numbers of uniquely covered
methods in app bytecode) as one testing effectiveness metric in our
experiments. Note that methods involved by app initialization (i.e.,
before tools start to test) are excluded for a more precise compari-
son of code coverage gain. Upon each (tool, app) pair, we use the
following Test Groups (TGs) for effectiveness comparison:
• TG-1: three initial runs and three comparison runs.
• TG-2: three initial runs and three rank-1 guided runs.
• TG-3: three initial runs and three rank-1/2/3 guided runs.

Each group consists of six one-hour runs, intended for reducing
random biases. We accumulate the method coverage of all runs
within a group for the group’s method coverage. Test Group 1 serves
as the baseline, while the other two test groups aim to measure
how much testing effectiveness gain can Vet users expect. The
main reason for experimenting with exploration tarpit regions of
different ranks is that there can be multiple tool issues on an AUT,
and addressing only one of the issues might not suffice.

We also measure the crash triggering capabilities with cumula-
tive numbers of distinct crashes. We consider only crashes from
bytecode given that Android apps are predominantly written in
JVM languages (Java and Kotlin). Crashes are identified by hashing
the code locations in stack traces. We additionally leverage Toller
to disable each app’s UncaughtExceptionHandler, which is widely
used by industrial apps to collect crash reports and might prevent
crash information from being exposed to the Android log system
(i.e., Logcat [15]) and captured by our scripts.

It should also be noted that Toller monitors, captures, and ma-
nipulates UIs with negligible overheads; thus, the testing effective-
ness of original runs should remain comparable with and without
Toller in use. In addition, Vet analyzes traces very efficiently, usu-
ally requiring only a few seconds on a single trace, while analysis
of multiple traces can be trivially parallelized.

5.3.3 Results. Tables 4 and 5 show the effectiveness improvements
by comparing three test groups. As can be seen from the results,
automatically applying fixes based on Vet’s identified exploration
tarpit regions helps Ape, Monkey, and WCTester achieve up to
4.4%, 15.3%, and 11.3% cumulative code coverage improvements
relatively on 16 apps using the same amount of time. Additionally,

Vet helps Ape, Monkey, and WCTester achieve up to 2.1x, 2.1x, and
1.9x overall distinct crashes, respectively. It should be noted that
Vet’s automatic approach does not address all the tool issues—some
issues, especially those rooting in tool implementations, are likely
addressable by only humans.

For most (tool, app) pairs with improvements, considering only
rank-1 exploration tarpit regions is sufficient for code coverage gain.
However, there are cases where code coverage increases consider-
ably when we consider rank top-3 regions instead. One explanation
is that there are multiple applicability issues, or multiple instances
of exploration tarpit corresponding to the same applicability issue.
For example, when applying Monkey on the app Nike Run Club,
there are multiple ways to enter a hard-to-escape functionality as
depicted by the motivating example in §2. If we block only one
entry, Monkey can still find other ways to enter the functionality
(despite being more difficult) and waste time there.

There are also cases where code coverage decreases when we
consider rank-3 exploration tarpit regions. One reason is that lower-
ranked regions might not capture real issues, but Vet tries to “fix”
them anyway, indeliberately interfering with normal functionali-
ties. In the case of applying WCTester on Spotify, the rank-3 region
does not reveal any tool issue, according to our observation. “Fixing”
this region can cause Vet to restart the app when one major func-
tionality shows up. Consequently, WCTester is unable to explore
that functionality to achieve more coverage in guided runs.

5.4 RQ3. Missed Tool Issues

We show our analysis of tool issues that are not revealed by any
exploration tarpit regions (i.e., false negatives) reported by Vet.

5.4.1 Methodology. Wepropose using issue-specific detection tools
to discover hidden tool issues (in all the collected traces), which
can provide an estimation of how likely any issue is missed. Specifi-
cally, we summarize the characteristics of two issues from §5.2, App
logout and Unresponsive UIs, to design two approaches specifically
targeting these two issues. The reason for choosing the aforemen-
tioned issues is that (1) they have a substantial appearance among
all issues that we have identified, and (2) their existence is relatively
more straightforward to be determined using our infrastructure.
We do not adopt manual inspection due to the subjectivity and the
error-prone nature of manual judgments, especially given that we
need to look at all the collected traces entirely.

Our issue-specific detection approaches work as follows:
• App logout.We first manually look into the activity list of each
app with ‘Login’ ticked in Table 2 and identify the subset of
activities that are used for logging in to the app. Then, when we
analyze a given trace, we find the first and the last occurrence of
any activity that belongs to the aforementioned list. If there is
any occurrence, and the time distance between the first and the
last occurrence is at least 𝑡min, we regard that an issue of App
logout is found in the trace.
• Unresponsive UIs. In our investigation, we find only one case
that leads to Unresponsive UIs: when an advertisement banner
is clicked. Consequently, a new activity can be observed, where
the activity belongs to the Google AdMob SDK and has the same
activity ID across different apps. Thus, we simply look for con-
tinuous appearance (i.e., there is no other activity in between)
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Table 4: Cumulative code coverage statistics.

App Name

Ape Monkey WCTester

#M1
Rank-1 Rank-1/2/3

#M1
Rank-1 Rank-1/2/3

#M1
Rank-1 Rank-1/2/3

#M2 ΔM2 #M3 ΔM3 #M2 ΔM2 #M3 ΔM3 #M2 ΔM2 #M3 ΔM3
AccuWeather 21977 22485 2.3% 22538 2.6% 14830 29266 97.3% 24990 68.5% 14982 15104 0.8% 14797 -1.2%
AutoScout24 17245 17274 0.2% 22713 31.7% 23455 23270 -0.8% 23085 -1.6% 18637 22157 18.9% 22154 18.9%
Duolingo 15186 15299 0.7% 15510 2.1% 13676 14598 6.7% 14582 6.6% 12319 14625 18.7% 14450 17.3%
Flipboard 9594 9742 1.5% 9510 -0.9% 5949 7482 25.8% 7125 19.8% 7872 7901 0.4% 8265 5.0%
Merriam-Webster 9056 9093 0.4% 9093 0.4% 5617 8992 60.1% 9275 65.1% 9328 9089 -2.6% 9010 -3.4%
Nike Run Club 30523 29937 -1.9% 29939 -1.9% 24472 24592 0.5% 26645 8.9% 19754 21936 11.0% 22460 13.7%
OneNote 6681 7134 6.8% 7028 5.2% 7131 7114 -0.2% 7381 3.5% 6453 6675 3.4% 6933 7.4%
Quizlet 17000 17114 0.7% 16900 -0.6% 13722 13995 2.0% 13995 2.0% 14679 14865 1.3% 14448 -1.6%
Spotify 19759 21475 8.7% 21475 8.7% 20616 22200 7.7% 21486 4.2% 18897 29298 55.0% 19632 3.9%
TripAdvisor 29857 30645 2.6% 31006 3.8% 16773 20919 24.7% 20919 24.7% 26773 28467 6.3% 28180 5.3%
trivago 20706 20710 0.0% 20711 0.0% 20216 20489 1.4% 20482 1.3% 19952 19964 0.1% 20032 0.4%
Wattpad 22960 22668 -1.3% 22447 -2.2% 14541 13717 -5.7% 15276 5.1% 15067 15884 5.4% 15982 6.1%
WEBTOON 32933 31674 -3.8% 31599 -4.1% 31477 30176 -4.1% 30176 -4.1% 25720 27659 7.5% 27659 7.5%
Wish 8829 8850 0.2% 9106 3.1% 8490 8522 0.4% 8269 -2.6% 6948 7191 3.5% 7207 3.7%
Youtube 26874 33301 23.9% 33757 25.6% 29316 32087 9.5% 35892 22.4% 22179 29143 31.4% 30233 36.3%
Zedge 42899 43074 0.4% 43433 1.2% 31245 38103 21.9% 44931 43.8% 36671 37464 2.2% 38343 4.6%
Average 20755 21280 2.5% 21673 4.4% 17595 19720 12.1% 20282 15.3% 17264 19214 11.3% 18737 8.5%

Notes: ‘#M𝑛 ’ shows the total number of covered methods in Test Group 𝑛. ΔM𝑛 = (#M𝑛 − #M1) ÷ #M1 × 100%.

Table 5: Distinct crash statistics.

App Name
Ape Monkey WCTester

#C1 #C2 #C3 #C1 #C2 #C3 #C1 #C2 #C3
AccuWeather 2 4 9 0 5 4 0 2 4
AutoScout24 1 1 1 2 1 1 0 0 0
Duolingo 1 2 2 0 0 0 1 1 1
Flipboard 0 0 1 0 0 1 1 1 0
Merriam-Webster 2 3 3 0 5 7 0 0 0
Nike Run Club 1 1 1 6 3 5 0 0 1
OneNote 0 2 5 0 2 1 0 1 0
Quizlet 0 1 0 0 0 0 1 1 1
Spotify 1 1 1 0 0 0 0 0 0
TripAdvisor 3 5 5 0 1 1 1 1 1
trivago 1 1 2 0 1 2 2 1 2
Wattpad 2 2 2 0 0 0 2 3 2
WEBTOON 1 1 1 1 0 0 0 3 3
Wish 2 4 2 2 1 1 0 0 0
Youtube 0 0 0 0 0 0 1 1 2
Zedge 0 0 0 0 0 0 0 0 0
Total 17 28 35 11 19 23 9 15 17

Notes: ‘#C𝑛 ’ is for total # triggered unique crashes in Test Group 𝑛.

of the aforementioned activity ID on the given trace. Note that
we require the appearance to be continuous so as to exclude the
cases where the tool (such as Ape) chooses to restart the app. If
the appearance lasts for at least 𝑡min, we regard that an issue of
Unresponsive UIs is found in the trace.
In order for a detected issue to be considered covered by our

general-purpose algorithms, we require that at least one algorithm-
identified exploration tarpit region covers at least 1/2 of the time
length within which the detected issue appears.

5.4.2 Results. We apply the specialized approaches on all 144 col-
lected traces. As a sanity check, we find that all the manually-
discovered App logout and Unresponsive UIs issues are covered by
the specialized approaches. We compare the results against identi-
fied regions from Vet’s general-purpose algorithms and perform
manual confirmation. We find only several cases where the Vet
algorithms do not yield accurate results, discussed as follows:
• On one trace from applying Monkey on Zedge, Vet misses one
Unresponsive UIs issue by not reporting any covered region. We

find that the Excessive Local Exploration algorithm prioritizes
another region over any region covering this issue. However, we
find that this issue is also present in other traces from the same
(tool, app) pair, and Vet identifies and addresses this issue.
• On each of two other traces from Ape on Duolingo and Monkey
on Zedge, there are two instances of the same Unresponsive
UIs issue, and Vet reports only one of them. The inaccuracy is
also caused by the prioritization strategy of the Excessive Local
Exploration algorithm. However, since two instances point to the
same issue on both traces, Vet is still effective.
• On one trace from Ape on Quizlet, Ape logs out about only 5
minutes after testing starts, but Vet reports only 22 minutes of
exploration tarpit. We find Quizlet’s UI design to be somewhat
unique: the app has a special entry to some of the main function-
alities in its landing page that is accessible without logging in.
The entry is buried within a paragraph of texts, and the texts
are shown only after a specific combination of swiping. Ape is
able to find this special entry in this run, making Vet confused.
Nevertheless, Vet is still able to find the correct trigger action
from other traces.

6 DISCUSSION AND LIMITATION

We are mainly focusing on making Vet useful in the context of au-
tomated UI testing. However, it should be noted that Vet’s potential
usage scenarios are beyond automated UI testing. One usage case
is for app UI quality assurance, where an app might have UI design
issues with one or more functionalities. As a result, human users
may face difficulties locating their desired features. When a human
user runs into such situations, he/she will then likely search for
the desired features through repeated (and ineffective) exploration
around a few functionalities, and the difficulties can be reflected
by the collected user behavior statistics. By subsequently utilizing
Vet’s identification of exploration tarpits, we can quickly know
which functionalities likely have the aforementioned UI design
issues, potentially from numerous traces collected from end-users,
and address these issues in a more timely manner.
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One question is whether Vet is capable of differentiating testing
scenarios (1) that a tool is supposed to handle but does not (i.e., tool
issues), and (2) that a tool is not expected to handle (i.e., beyond tool
capabilities, such as apps requiring special inputs). We would like
to point out that it is inherently difficult to differentiate these two
types of scenarios due to lacking specifications over tool capabilities.
On the other hand, Vet can help users identify (and mitigate) the
cases beyond a tool’s capabilities, being already useful.

We acknowledge that Toller, the utility that monitors, captures,
and manipulates UIs for Vet, still has limitations. For example, the
current implementation of Toller does not capture text inputs.
However, adding support for text capturing is achievable with en-
gineering efforts. Moreover, Toller’s limitations do not prevent
Vet from being generalizable.

7 THREATS OF VALIDITY

A major external threat to the validity of our work is the environ-
mental dependencies of our subject apps. More specifically, many of
the industrial apps in our experiments require networking for main
functionalities to be usable, and it is possible for such dependency
to change the behaviors of these apps despite our efforts to make
our experiment environment consistent across different runs. In
order to reduce the influences of environmental dependencies in
our experiments, we repeat each experiment setting by three times
and use aggregated metrics in our paper. We additionally control
each tool’s internal randomness by setting a constant random seed
for each app. Nevertheless, this threat can be further reduced by
involving more repetitions in our experiments.

Amajor internal threat to the validity of ourwork comes from the
manual analysis of collected traces. We need to manually determine
whether the exploration tarpit regions reported by Vet indeed
reveal any tool issue. Consequently, related evaluation results can
be influenced by subjective judgments. However, it should be noted
that any work involving manual judgments in the evaluation is
vulnerable to this threat.

8 RELATEDWORK

Automated UI testing for Android. There have been various
tools over years of development. The earliest efforts include Mon-
key [12], a randomized tool that does not consider app UIs or
coverage information. The superior efficiency brings strong com-
petitiveness to the simple tool. Subsequent efforts result in tools
mainly driven by randomness/evolution [24, 26, 44], UI model-
ing [7, 17, 18, 22, 35], and systematic exploration [1, 2, 25]. Re-
cent work [10] proposes time-travel testing (referred to as TTT)
to help Android UI testing escape from ineffective AUT states in-
cluding loops and dead ends. TTT uses checkpoint and restore—
checkpointing progressive states and restoring those states after
loops and dead ends are detected.

Vet is different from TTT in terms of design goals. First, TTT
aims to recover from ineffective exploration, while Vet mainly
focuses on prevention. Second, exploration tarpits in Vet are more
general than TTT’s lack-of-progress definitions. One example is
logging out, where tools assisted by Vet can still explore a fraction
of app functionalities, such as registering and resetting passwords.
Loops and dead ends are not necessarily present when exploring

an app with only a few functionalities. Third, Vet aims to enhance
existing testing tools without the need to understand their internal
design or implementation, instead of building a new testing tool
that excels at all apps.

The design of Vet brings a few advantages. First, as acknowl-
edged by TTT [10], the state recovery may lead to inconsistent
app states when testing apps with external state dependencies that
are maintained at the server side. Note that controlling server-side
states is challenging, e.g., many industrial apps use external services
that the apps have no control of. Vet’s preventive strategy avoids
this limitation. Second, Vet’s preventive strategy does not incur
overhead for lack-of-progress detection or state recovery in guided
runs. This strategy is specifically useful when a tool repeatedly
gets into exploration tarpits. Third, Vet does not require additional
device support for state recovery (such as RAM data restoring).

Trace Analysis. Our work is related to log and trace analysis.
Existing work has been focusing on analyzing the logs generated by
program code through techniques including anomaly detection [11,
28, 47, 52], cause analysis [6, 9, 32, 49, 54], failure reproduction [48],
and performance-issue detection [50, 51]. Our work focuses on UI
traces with the goal of understanding UI exploration tarpits, which
are different from logs produced by program code.

Parallel Testing. Our work is also related to parallel testing
in the sense of producing multiple variants of the target program
(i.e., customizing the AUT by manipulating the UI entries) for the
testing tool to work on. Related work on parallel testing includes
parallelizing mutation testing [27], symbolic execution [5, 34], and
the debugging process [20].

9 CONCLUSION

We have exploited the opportunities of improving Android UI test-
ing via automatically identifying and addressing exploration tarpits.
Specifically, we have presented Vet, a general approach and sup-
porting system for effectively identifying and addressing explo-
ration tarpits. We have designed specialized algorithms to support
Vet’s concepts. Our evaluation results have shown that Vet identi-
fies exploration tarpits that cost up to 98.6% of testing time budget,
revealing various issues hindering testing efficacy. By trying to
automatically fix the discovered issues, Vet helps the Android UI
testing tools under evaluation with achieving up to 15.3% higher
code coverage relatively and triggering up to 2.1x distinct crashes.
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