
Reasoning about modern datacenter infrastructures
using partial histories

Xudong Sun
University of Illinois

Urbana-Champaign, IL, USA
xudongs3@illinois.edu

Lalith Suresh
VMware

Palo Alto, CA, USA
lsuresh@vmware.com

Aishwarya Ganesan
VMware

Palo Alto, CA, USA
aishwaryag@vmware.com

Ramnatthan Alagappan
VMware

Palo Alto, CA, USA
ralagappan@vmware.com

Michael Gasch
VMware

Palo Alto, CA, USA
mgasch@vmware.com

Lilia Tang
University of Illinois

Urbana-Champaign, IL, USA
liliat2@illinois.edu

Tianyin Xu
University of Illinois

Urbana-Champaign, IL, USA
tyxu@illinois.edu

ABSTRACT

Modern datacenter infrastructures are increasingly archi-

tected as a cluster of loosely coupled services. The cluster

states are typically maintained in a logically centralized,

strongly consistent data store (e.g., ZooKeeper, Chubby and

etcd), while the services learn about the evolving state by

reading from the data store, or via a stream of notifications.

However, it is challenging to ensure services are correct,

even in the presence of failures, networking issues, and the

inherent asynchrony of the distributed system. In this paper,

we identify that partial histories can be used to effectively

reason about correctness for individual services in such dis-

tributed infrastructure systems. That is, individual services

make decisions based on observing only a subset of changes

to the world around them. We show that partial histories,

when applied to distributed infrastructures, have immense

explanatory power and utility over the state of the art. We

discuss the implications of partial histories and sketch tool-

ing for reasoning about distributed infrastructure systems.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

HotOS ’21, May 31–June 2, 2021, Virtual Event

© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8438-4/21/05.

https://doi.org/10.1145/3458336.3465276

CCS CONCEPTS

•Computer systems organization→Distributed archi-

tectures; Reliability.

KEYWORDS

Distributed systems, datacenter infrastructure, reliability,

correctness, partial history

ACM Reference Format:

Xudong Sun, Lalith Suresh, Aishwarya Ganesan, Ramnatthan Ala-

gappan, Michael Gasch, Lilia Tang, and Tianyin Xu. 2021. Reasoning

about modern datacenter infrastructures using partial histories. In

Workshop on Hot Topics in Operating Systems (HotOS ’21), May 31–

June 2, 2021, Virtual Event. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3458336.3465276

1 INTRODUCTION

Modern datacenter infrastructures such as Kubernetes [12],

Twine [54] and Autopilot [34] are increasingly architected as

a cluster of loosely-coupled distributed services. These sys-

tems often use a logically centralized, strongly consistent and

persistent data store, such as ZooKeeper [33], Chubby [16]

or etcd [8], to maintain all cluster state (e.g., the inventory of

nodes, tasks, VMs, configurations, and other metadata). The

services in the cluster learn about the evolving state either by

reading from the data store, or via a stream of notifications

(e.g., watches in etcd, ZooKeeper, and Kubernetes [6, 9, 11]).

We refer to the sequence of changes to the cluster state in

the centralized data store as the history of the state [31].

A key challenge is that services need to perform correct

cluster management actions despite failures, networking

213



HotOS ’21, May 31–June 2, 2021, Virtual Event Sun, et al.

issues, and inherent asynchrony of the distributed infrastruc-

ture. This means that services might not see every update

made to the system. The challenge is further exacerbated

by layers of caches which are extensively employed by ser-

vices further away from the strongly-consistent data store

to achieve performance and scalability.

Unfortunately, there is an alarming lack of tooling for

developers to test how infrastructure services behave un-

der these conditions, leading to a broad range of bugs that

are hard to anticipate at development time. These bugs can

result in consequences such as job failure [29], leakage of

resources [17], temporary or permanent unavailability [19,

27, 28, 38], and even violations of critical safety guarantees

in applications [25, 39]. The state of the art is to rely on the

experts’ intuitions for where bugs may lie in a system (e.g.

Jepsen [4], CrashTuner [45], CoFI [20], Elle [36]) or rely on

tools that randomly generate inputs or faults [46, 48, 55]. In

practice, neither approach sufficiently coaxes infrastructure

systems into their buggy corners.

Our contribution. In this paper, we identify that partial his-

tories [31] can be used to effectively reason about correctness

for individual services in a broad range of distributed infras-

tructure systems, like Kubernetes, Twine, andAutopilot. That

is, individual services make decisions based on observing

only a partial history of changes to the world around them.

We show that partial histories, when applied to distributed

infrastructures, have immense explanatory power and utility.

A broad range of bugs affecting distributed systems can be

reasoned about cleanly using partial histories (Section 4). Not

only that, partial histories better explain why prior art that

used ad-hoc heuristics to find bugs actually work (Section 5).

We present a list of open challenges for the community that

come in the way of dealing with the implications of partial

histories in infrastructure systems (Section 6). Lastly, we

present preliminary evidence that modeling an infrastructure

service using partial histories lends itself cleanly towards

simple and automated testing tools, with whichwe have been

able to reproduce existing bugs caused by partial histories

and detect new bugs (Section 7).

2 PARTIAL HISTORIES BY EXAMPLE

We use Kubernetes [12] as a running example to convey the

idea behind partial histories.

Kubernetes is a widely-used cluster management system.

It represents the architecture of many existing datacenter

infrastructure systems. As shown in Figure 1, Kubernetes

stores the cluster state in etcd (a strongly-consistent data

store) as a collection of objects (e.g., nodes, pods, volumes). All

Kubernetes components, like the various controllers, sched-

ulers, and daemons, interact with the object-based cluster

state as exposed by an ensemble of apiservers. The apiservers

Figure 1: A simplified architecture of Kubernetes. etcd

stores the cluster state; each apiserver maintains a

cached state updated by etcd; other components like

kubeletsmaintain cached states updated by apiservers

use etcd as the persistent data store; all events that mod-

ify the cluster state (e.g., a pod creation) result in updates

to etcd. For scalability and performance reasons, many Ku-

bernetes components (including apiservers) maintain and

operate on partial histories by caching the cluster state lo-

cally and updating it via notifications that flow out from etcd

to apiservers and subsequently to all other components (via

etcd watches [9] and apiserver watches [11]).

The above design is a double-edged sword. The caches pre-

vent etcd from being the bottleneck of the entire system and

minimize the overhead of frequent etcd queries for the clus-

ter components [1]. It allows components to scan in-memory

data structures to make cluster management decisions. At

the same time, the design makes life hard for component

developers because events may not always be streamed in

time and each component will inevitably miss updates due to

failures such as crashes, reboots, and partitions. In essence,

these components have to make decisions by observing a

(potentially) partial history of changes made to the cluster.

A bug due to partial histories. Figure 2 illustrates a real-

world partial-history bug (Kubernetes-59848). It is considered

“the most severe possible known vulnerability in Kubernetes

safety guarantees” [2, 39].

Consider a setup with two apiservers (api-1, api-2) and

two kubelets (k1, k2, i.e., workers). By design, apiservers

and other components might operate on a partial history of

changes to the cluster, which leads to the following buggy

execution (simplified for ease of exposition):

• api-1 sends a pod creation request to k1, which then runs

pod p1 locally. Meanwhile, api-2 also learns via a notification

from etcd that p1 is created on k1 (Step 1 ).

• Then, api-1 migrates p1 to k2 as part of a rolling up-

grade. The global history at etcd now grows by two new

events: a pod deletion at k1 and a pod creation at k2. After

synchronizing with etcd, api-1 updates its own view with

the two new events (Step 2 ).

214



Reasoning about modern datacenter infrastructures using partial histories HotOS ’21, May 31–June 2, 2021, Virtual Event

Figure 2: Kubernetes-59848 [39]: A bug caused by in-

correctly operating on partial histories in Kubernetes.

k1 does not correctly handle a partial history from

api-2, violating safety guarantees.

• However, assume api-2 is experiencing network con-

nectivity issues with etcd and has yet to observe that p1 has

been migrated to k2 (i.e., a partial history).

• Now if k1 restarts, it might query api-2 to learn which

pods k1 has to bring up locally (Step 3 ). But api-2 still

believes p1 is on k1, and responds with that information to

k1. k1 will therefore run p1 as well — running two pods with

the same name, breaking a critical safety guarantee.

This bug further affects the correctness of services running

on top of Kubernetes. For example, services have to disable

multi-apiserver high-availability mode to ensure safety [5].

3 MODELING PARTIAL HISTORIES

Finding bugs like the one above is tricky. Heuristically or

randomly injecting failures can rarely trigger these cases.

Thus, we seek a more principled way to reason about such

bugs. As a first step towards this goal, we present a model

for partial histories.

We model the state S of the distributed infrastructure as

an object and the history H as the set of changes made to

S over time [31]. A partial history H ′ is a subset of H that

preserves the relative ordering.1

A distributed infrastructure system typically has a strongly-

consistent and persistent data store (e.g., ZooKeeper or etcd),

or a master node that records the history of changes H and

materializes the state S on each event.

1Note that a partial history H ′ is different from the partially-replicated logs

in consensus algorithms (e.g., Raft [47]), as H ′ (and H ) should only contain

fully committed events.

To make cluster management decisions, services need a

way to observe the history H and the state S . A service might

receive notifications corresponding to new events forming

in the history, or it might issue reads to learn about the

current state S . The programming APIs for services and

their consistency semantics determine how a service’s view

(H ′, S ′) corresponds to the actual history and state of the

system (H , S) at any time t .
An important consequence of this model is that sparse

reads of the state S do not allow an observer to reconstruct

the history H that led to S .
Let’s apply this model to Kubernetes. In Kubernetes, ser-

vices rely on the Kubernetes client APIs which expose a set

of Kubernetes objects (e.g., pods, nodes, and other cluster

entities). These objects collectively form the state S of the

system. All updates to S are committed in etcd and form the

history H . Services can issue reads to see the latest state of

an object (in S) at any time. These reads are handled by the

apiservers, which translate them into quorum reads in etcd

to retrieve the latest state.

At the same time, services may also subscribe to notifica-

tions about changes to different types of Kubernetes objects.

That is, they can learn about new events in H , enabling a

reactive programming model. Specifically, handlers are in-

voked when an object is created, updated, or deleted. The

handlers also receive the corresponding state of the object

when invoked. However, services always operate on a partial

history H ′ ⊆ H due to several reasons. H ′ might lag behind

H due to the inherent asynchrony of the distributed system

or network failures. It may also happen because of layers of

caches in Kubernetes (e.g., at the apiserver and at the client).

Lastly, a service that restarts can potentially read the latest

state S , but has no way to recover H by simply inspecting S .

4 IMPLICATIONS OF PARTIAL HISTORY

In this section, we demonstrate that partial histories have

deep implications for building distributed infrastructures.

We then present representative challenges posed by partial

histories with real-world issues.

4.1 Partial histories are unavoidable

Ideally, a distributed infrastructure system can maintain

(H , S) at every component at any time t , which can signifi-

cantly ease programming and reduce bugs. However, such

an ideal is difficult to realize in practice; replicating (H , S) at
every node (using say, a state machine replication protocol)

is prohibitively expensive when there are clusters with thou-

sands of nodes and tens of thousands of components [15, 30].

As a result, modern datacenter infrastructures have two

key characteristics. They use a centralized, strongly-consistent

data store, built out of a small cluster of nodes (typically

215



HotOS ’21, May 31–June 2, 2021, Virtual Event Sun, et al.

(a) Staleness (b) Time traveling (c) Observability gaps

Figure 3: Three representative challenges caused by partial histories: (a) a partial history can be stale; (b) compo-

nents can go back in time after restarts; (c) events can be unobservable in a state.

one to nine). They then implement cluster management

services as layers on top of the strongly-consistent data

store [15, 30, 56]. Systems like Kubernetes [12], Twine [54],

Autopilot [34], Mesos [32], Borg [56], Omega [50], and Con-

figerator [53] all follow this pattern. This design, while suc-

cessful, has two architectural “pressures” that make partial

histories inevitable.

The first is a challenge around API design. Services built

around the data store typically expose a view of S via their

APIs, rather than H (in Kubernetes, S includes the current

pods, nodes, volumes, etc.). Furthermore, as we layer services

on top of one another, it becomes increasingly harder to

present APIs that capture layers of transformations over H
rather than S , as we get further away from the centralized

data store. In addition, H is typically not stored indefinitely

in a system; earlier events in H may not be available even if

a component could explicitly request it.

The second is the challenge of the data store being a per-

formance bottleneck. Today, the layers of services on top

inevitably cache their view of (H , S) to avoid hitting the

centralized data store for every read of the cluster state. As

a concrete example, to improve the overall system perfor-

mance, the Kubernetes developers decided to cache system

state at each apiserver and serve watch requests directly

from the cached S ′ instead of pounding etcd [1]. A similar

line of reasoning holds to make all services that interact with

the apiservers cache their view of (H , S).
The inconsistency between the cache layers and the cen-

tralized data store cannot be simply eliminated without hurt-

ing performance. For example, leases [23] provide exclusive

access to shared resources cached at different nodes. How-

ever, this sacrifices performance because writes are blocked

until every leaseholder approves the write or the lease term

expires. Furthermore, leases cannot fully eliminate staleness

as upper layer services built on top of leaseholders can still

cache the out-of-date data locally.

4.2 Challenges posed by partial histories

With partial histories being unavoidable, developers now

bear the additional burden of ensuring a service behaves

correctly despite acting on incomplete information [37, 40].

We find that developers have to be aware that S and S ′ can
diverge at any point due to the inherent asynchrony of the

distributed system; a divergence is further exacerbated by

host, component, and network failures. Furthermore, devel-

opers have to make sure that a component’s correctness does

not depend on observing the full history of changes (given

that sparse reads on S or S ′ cannot reconstruct the history
H or H ′). We highlight three representative challenges that

developers encounter. Note that the highlighted challenges

might not represent the whole set of partial-history bugs—

they are the ones that we have studied thus far.

4.2.1 Staleness. A service’s view (H ′, S ′) can be stale rela-

tive to (H , S). That is, (H ′, S ′)may not reflect recent changes

to (H , S). This is unavoidable due to asynchrony in a dis-

tributed system, but can also be exacerbated by failures and

network hiccups (Figure 3a). A service must be correct, even

when it operates on a stale view, but this can be hard for

developers to anticipate.

For example, in HBase-3136 [25], HBase runs region tran-

sitions using atomic compare-and-set operations which read

cached states at a ZooKeeper server, and staleness in the

cached states fails atomic region changes.

Explicitly synchronizing against H before reading H ′ can

eliminate staleness temporarily, but comes with performance

overheads. While the developers fixed HBase-3136 by forcing

ZooKeeper to refresh its cached state before every atomic

operation, a new issue HBase-3137 [26] was opened right af-

ter the fix was merged, reporting the decreased performance

caused by the refresh overhead.

4.2.2 Time traveling. Time traveling refers to a patternwhere

a component observes past events in its own history as H ′
b

216



Reasoning about modern datacenter infrastructures using partial histories HotOS ’21, May 31–June 2, 2021, Virtual Event

in Figure 3b. It is a pattern that emerges when a service can

synchronize its state with one of multiple upstream sources,

each of which could be potentially stale.

For example, consider Kubernetes-59848, discussed in Sec-

tion 2. This happens because a kubelet can synchronize its

state with one of multiple apiservers, and the apiservers

themselves can serve cached state from etcd (Figure 1). A

kubelet may perform operations based on an up-to-date apis-

erver, restart, but then re-synchronize with a stale apiserver.

The kubelet then re-performs operations it has already per-

formed in the past, that in turn leads to safety violations (e.g.,

bringing up a pod that was migrated to another node).

Time-traveling bugs are difficult to detect because their

manifestations require staleness in partial histories and events

that redirect a service to a different source.

4.2.3 Observability gaps. Observability gaps are patterns

where a component is unaware of events in the history. As

discussed in Section 4.1, when a service works with an API

designed to expose S instead ofH , the service cannot observe

every event in H . For example, in Figure 3c, the impact of e1
is cancelled by e2 in S ′, which makes e1 unobservable in S ′.

For example, this pattern leads to a Kubernetes controller

bug [17]. Here, the controller is a service that automatically

releases storage volumes when a pod is marked to be deleted.

The controller only learns of the state of the system via

sparse reads of its local view S ′. The bug happens when the

pod is marked for deletion (e1) and subsequently deleted

(e2) between two sparse reads of S ′ by the controller. The

controller therefore does not learn of the pod deletion (as

the logic expects to see e1) and does not release the storage

volumes of the deleted pod.

Observability gaps also happen even when events inH are

exposed as part of an API. For example, requests for earlier

events may fail when only recent events in H are saved by

design. As an example [7], the apiserver in Kubernetes only

saves a rolling window of recent events. Any requests for

events not appearing in the window will fail, which makes

earlier events unobservable.

Additionally, a partial history H ′ can be incomplete when

events are not observed due to network issues or implemen-

tation flaws. In Kubernetes-56261 [38], the scheduler falls

into a cycle of failing pod placement attempts after missing a

node deletion event. It keeps scheduling pods to the deleted

node without synchronizing S ′ with S .

5 EXPLAINING PRIOR ART

Partial histories can explain heuristics designed by prior art

for detecting distributed system bugs based on fault injection.

A useful heuristic is to inject faults into a component after

it updates its view of the cluster S ′, or before S ′ is read by

other components. This heuristic is used by state-of-the-art

tools such as CrashTuner [45] (for injecting node crashes)

and CoFI [20] (for injecting network partitions). In essence,

the heuristic attempts to test the system behavior under a

partial history H ′ or state S ′ (specific to cluster membership

related state) in which the injected fault forces (H ′, S ′) to
diverge from (H , S). Specifically, crashing a node immedi-

ately creates diverging (H ′, S ′) at other components until

the crash is discovered by health checking. Similarly, a net-

work partition prevents (H ′, S ′) at a component from being

synchronized with (H , S) during the partition and forces the

components to operate with a stale or incomplete view of

the membership. The fact that tools based on such heuris-

tics found many bugs shows the challenges of programming

with partial histories, even when applied only to state at

components specific to cluster membership.

Note that partial histories model broader and more generic

bug patterns than bugs that can be directly detected by inject-

ing node crashes or network partitions, and extend beyond

state related to membership.

6 CALL TO ARMS

In this section, we argue why existing tools do not help alle-

viate the perils caused by partial histories. We then present

some open questions posed by partial histories.

6.1 The need for new tools

A variety of tools for testing the correctness of distributed

systems already exists. For instance, Jepsen [4] checks for

consistency violations in the presence of network partitions

and node failures using domain knowledge. Similarly, a few

tools can check for correctness in the presence of network

partitions, crashes and storage faults [14, 21, 46]. Some other

tools detect guarantee violations in cloud databases by ob-

serving execution traces [22, 36, 52]. While these tools find

consistency violations in the underlying data stores (e.g.,

etcd in Kubernetes), they cannot reason about how layers

above are affected by partial histories.

Apart from the above tools, model checkers [24, 35, 41,

57, 58] and concurrency bug detection tools [43, 44, 48, 60]

can permute events (e.g., message orders) in different compo-

nents of a system. These tools do not focus on partial histories

and many event reorderings may be irrelevant. Thus, they

may be ineffective to uncover partial-history bugs or must

search a vast state space to do so; in contrast, a tool focusing

on partial histories can reorder only selected events (e.g.,

cache updates) and detect partial-history bugs efficiently. A

few recent tools like CrashTuner [45] and CoFI [20] employ

heuristics to find vulnerable execution points to crash or

partition a node; such approaches force (H ′, S ′) to diverge

from (H , S). However, they cannot trigger all cases modeled

by partial histories (see Section 5).

217



HotOS ’21, May 31–June 2, 2021, Virtual Event Sun, et al.

In summary, critical infrastructure systems today are de-

void of testing tools that focus on partial histories. We believe

that such tools can improve the reliability of these systems

significantly. Next, we highlight some key challenges to be

addressed in building the desired tools.

6.2 Open research questions

How to identify code that depends on histories? To build

tools that test systems with partial histories, we first need

to identify how (H ′, S ′) is maintained at each component. A

challenge is that services might cache histories and states ar-

bitrarily, making it hard to identify (H ′, S ′) especially when

it is stored in generic data structures. In practice, a com-

mon shared library often contains the caches for (H ′, S ′),
such as the client-side cache employed by all Kubernetes

services [10]. Provenance analysis can help identify variables

whose values originate from the data store (as used in prior

work [43, 44]). Once the target (H ′, S ′) is identified, system-

atic testing could force (H ′, S ′) to diverge from (H , S). The
representative patterns discussed in Section 4.2 can guide

such an approach: staleness in H ′ can be created by delay-

ing cache updates; time-traveling behavior can be tested by

restarting and switching between upstream sources.

What workloads and test oracles to use? A classical problem

plaguing dynamic bug detection tools is that the coverage of

the tool depends on the coverage of test workloads. Further-

more, coming up with the set of invariants for a complex sys-

tem is challenging, and expressing such specificationsmay be

more complicated than building the original system itself. We

can expect developers to supply a corpus of system-specific

test workloads and oracles like existing tools [49, 59]. We

could also leverage ideas of prior work [51] that repurpose

an existing corpus of tests to reuse workloads and assertions.

How to bound partial histories? Besides bug detection, an-

other approach to address partial-history bugs is to provide

developers with a new programmingmodel which can bound

the divergence between (H ′, S ′) and (H , S). For example, a hy-

pothetical programming model might explicitly break down

H into epochs (as in streaming systems [3]), and guarantee

that if a service can see one event within an epoch, it should

be able to see all other events within that epoch. Such an

approach would make partial histories explicit for develop-

ers and eliminate staleness and observability gaps within

epochs. The granularity of an epoch can be adjusted to bal-

ance performance and coordination costs.

7 NEXT STEPS

Reasoning with partial histories advances our ability to find

bugs. Conceptually, an automated testing tool can discover

partial-history bugs by regulating how (H ′, S ′) advances at

one component relative to (H ′′, S ′′) at other components

or the ground truth (H , S) in a distributed system. More

concretely, with the bug patterns posed by partial histories

(as discussed in Section 4.2), the tool can focus on perturbing

events and injecting failures in a way that the components

will suffer from staleness, time traveling and observability

gaps. With appropriate test workloads and oracles, a testing

tool can check whether the system behaves correctly when

experiencing partial-history bug patterns.

The key challenge is to perturb events and trigger failures

in a way that efficiently covers the large state space. To do so,

recording causal relationships between events can be useful.

For example, perturbing events that are causally related to

a component’s action are likely to trigger bugs. Causality

inference techniques (e.g., static or dynamic analysis) used

by prior tools [42–44] can be helpful here.

We are building new tools based on the above ideas. To

find bugs caused by mishandling staleness, our tool creates

staleness in H ′ by delaying updates to H ′ against H . To

find bugs caused by time traveling, our tool injects node

crashes and forces the restarted component to synchronize

with a stale H ′ and receive replayed events from H ′. To find

bugs caused by observability gaps, we force the component

to miss important events in its view H ′ by dropping event

notifications; we alsomanipulate the order between updating

and consuming S ′ so that H ′ cannot be reconstructed by

sparse reads on S ′.
Despite being in an early stage, our tool has reproduced

two known bugs in Kubernetes [38, 39]. One is caused by

staleness and the other is caused by observability gaps. Our

tool has also detected three new bugs [17–19] in a Kubernetes

controller for Cassandra [13]. As we evolve the tool, we

hope to uncover numerous partial-history bugs in various

distributed infrastructure systems. More importantly, we

hope that such a tool would be useful for developers to catch

partial-history bugs during development.

ACKNOWLEDGMENTS

We thank Mihai Budiu, Irina Calciu, Jacques Chester, Jon

Howell, Wenqing Luo, Darko Marinov, Davanum Srinivas,

Adriana Szekeres, David Tennenhouse, and Shuai Wang for

the invaluable discussions and feedback. Xu’s group is sup-

ported in part by NSF grants CCF-1816615, CCF-2029049,

CNF-1956007, a FacebookDistributed Systems Research award,

Microsoft Azure credits, and Google Cloud credits.

REFERENCES
[1] apiserver-watch.md. https://github.com/kubernetes/community/blob/

master/contributors/design-proposals/api-machinery/apiserver-

watch.md, 2017.

[2] Comment on Kubernetes-59848: Kubernetes is vulnerable to stale

reads, violating critical pod safety guarantees. https://github.com/

218



Reasoning about modern datacenter infrastructures using partial histories HotOS ’21, May 31–June 2, 2021, Virtual Event

kubernetes/kubernetes/issues/59848#issuecomment-525833106, Aug.

2019.

[3] Differential Dataflow. https://github.com/frankmcsherry/differential-

dataflow, 2019.

[4] Jepsen. https://jepsen.io/, 2020.

[5] P0.5: Disallow ApiServer HA for Pod Safety. https://github.com/

microsoft/pai/issues/4120, 2020.

[6] ZooKeeper Watches. https://zookeeper.apache.org/doc/r3.3.3/

zookeeperProgrammers.html#ch_zkWatches, 2020.

[7] Efficient watch resumption after kube-apiserver reboot.

https://github.com/kubernetes/enhancements/blob/master/keps/sig-

api-machinery/1904-efficient-watch-resumption/README.md, 2021.

[8] etcd. https://etcd.io/, 2021.

[9] etcd API. https://etcd.io/docs/v3.4.0/learning/api/, 2021.

[10] k8s.io/client-go/tools/cache. https://pkg.go.dev/k8s.io/client-go/tools/

cache, 2021.

[11] Kubernetes API Concepts. https://kubernetes.io/docs/reference/using-

api/api-concepts, 2021.

[12] Kubernetes Components. https://kubernetes.io/docs/concepts/

overview/components/, 2021.

[13] Kubernetes Operator for Cassandra. https://github.com/instaclustr/

cassandra-operator, 2021.

[14] Alagappan, R., Ganesan, A., Patel, Y., Pillai, T. S., Arpaci-Dusseau,

A. C., and Arpaci-Dusseau, R. H. Correlated Crash Vulnerabilities.

In Proceedings of the 12th USENIX Conference on Operating Systems

Design and Implementation (OSDI’16) (Nov. 2016).

[15] Brooker, M. The Fundamental Mechanism of Scaling. http://brooker.

co.za/blog/2021/01/22/cloud-scale.html, 2020.

[16] Burrows, M. The Chubby Lock Service for Loosely-Coupled Dis-

tributed Systems. In Proceedings of the 7th Symposium on Operating

Systems Design and Implementation (OSDI’06) (Nov. 2006).

[17] Cassandra-operator-398. Reconcile() fails to delete the corre-

sponding pvc if missing deletionTimestamp of Cassandra pod. https:

//github.com/instaclustr/cassandra-operator/issues/398, Jan. 2021.

[18] Cassandra-operator-400. Cassandra node can be decommissioned

wrongly which blocks scale down. https://github.com/instaclustr/

cassandra-operator/issues/400, Jan. 2021.

[19] Cassandra-operator-402. PVC can be accidentally deleted when con-

troller reads stale data from apiserver. https://github.com/instaclustr/

cassandra-operator/issues/402, Jan. 2021.

[20] Chen, H., Dou, W., Wang, D., and Qin, F. CoFI: Consistency-Guided

Fault Injection for Cloud Systems. In Proceedings of the 35th ACM/IEEE

International Conference on Automated Software Engineering (ASE’20)

(Sept. 2020).

[21] Ganesan, A., Alagappan, R., Arpaci-Dusseau, A. C., and Arpaci-

Dusseau, R. H. Redundancy Does Not Imply Fault Tolerance: Analysis

of Distributed Storage Reactions to Single Errors and Corruptions. In

Proceedings of the 15th USENIX Conference on File and Storage Tech-

nologies (FAST’17) (Feb. 2018).

[22] Golab, W., Li, X., and Shah, M. A. Analyzing Consistency Properties

for Fun and Profit. In Proceedings of the 30th Annual ACM SIGACT-

SIGOPS Symposium on Principles of Distributed Computing (PODC’11)

(June 2011).

[23] Gray, C., and Cheriton, D. Leases: An Efficient Fault-Tolerant Mech-

anism for Distributed File Cache Consistency. In Proceedings of the

Twelfth ACM Symposium on Operating Systems Principles (SOSP’89)

(Nov. 1989).

[24] Guo, H., Wu, M., Zhou, L., Hu, G., Yang, J., and Zhang, L. Practical

Software Model Checking via Dynamic Interface Reduction. In Pro-

ceedings of the Twenty-Third ACM Symposium on Operating Systems

Principles (SOSP’11) (Oct. 2011).

[25] HBASE-3136. Stale reads fromZK can break the atomic CAS operations

we have in ZKAssign. https://issues.apache.org/jira/browse/HBASE-

3136, Oct. 2010.

[26] HBASE-3137. Optimize CAS operations in ZKAssign by being opti-

mistic rather than always doing a sync(). https://issues.apache.org/

jira/browse/HBASE-3137, Oct. 2010.

[27] HBASE-575. Region sever looking for master forever with cached stale

data. https://issues.apache.org/jira/browse/HBASE-5755, Apr. 2012.

[28] HDFS-11708. Positional read will fail if replicas moved to different DNs

after stream is opened. https://issues.apache.org/jira/browse/HDFS-

11708, Apr. 2017.

[29] HDFS-5322. HDFS delegation token not found in cache errors seen on

secure HA clusters. https://issues.apache.org/jira/browse/HDFS-5322,

Oct. 2013.

[30] Hellerstein, J. M., and Alvaro, P. Keeping CALM:When Distributed

Consistency is Easy. Communications of the ACM 63, 9 (Sept. 2020),

72–81.

[31] Herlihy, M. P., and Wing, J. M. Linearizability: A Correctness Con-

dition for Concurrent Objects. ACM Transactions on Programming

Languages and Systems 12, 3 (July 1990), 463–492.

[32] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D.,

Katz, R., Shenker, S., and Stoica, I. Mesos: A Platform for Fine-

Grained Resource Sharing in the Data Center. In Proceedings of the 8th

USENIX Conference on Networked Systems Design and Implementation

(NSDI’11) (Mar. 2011).

[33] Hunt, P., Konar, M., Junqeira, F. P., and Reed, B. ZooKeeper:

Wait-Free Coordination for Internet-Scale Systems. In Proceedings of

the 2010 USENIX Conference on USENIX Annual Technical Conference

(USENIX ATC’10) (June 2010).

[34] Isard, M. Autopilot: Automatic Data Center Management. SIGOPS

Oper. Syst. Rev. 41, 2 (Apr. 2007), 60–67.

[35] Killian, C. E., Anderson, J. W., Braud, R., Jhala, R., and Vahdat,

A. M. Mace: Language Support for Building Distributed Systems. In

Proceedings of the 28th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI’07) (June 2007).

[36] Kingsbury, K., and Alvaro, P. Elle: Inferring Isolation Anomalies

from Experimental Observations. In Proceedings of the 46th Interna-

tional Conference on Very Large Data Bases (VLDB’20) (Aug. 2020).

[37] Kubernetes-30698. Make it possible to write a sound client from

a distributed-systems perspective. https://github.com/kubernetes/

kubernetes/issues/30698, Aug. 2016.

[38] Kubernetes-56261. Scheduler should delete a node from its cache

if it gets "node not found" error. https://github.com/kubernetes/

kubernetes/issues/56261, Nov. 2017.

[39] Kubernetes-59848. Kubernetes is vulnerable to stale reads, violat-

ing critical pod safety guarantees. https://github.com/kubernetes/

kubernetes/issues/59848, Feb. 2018.

[40] Kubernetes-website-26064. Clarify "resourceVersion unset" seman-

tics in Watch. https://github.com/kubernetes/website/issues/26064,

Jan. 2021.

[41] Leesatapornwongsa, T., Hao, M., Joshi, P., Lukman, J. F., and Gu-

nawi, H. S. SAMC: Semantic-Aware Model Checking for Fast Discov-

ery of Deep Bugs in Cloud Systems. In Proceedings of the 11th USENIX

Conference on Operating Systems Design and Implementation (OSDI’14)

(Oct. 2014).

[42] Li, G., Lu, S., Musuvathi, M., Nath, S., and Padhye, R. Efficient

Scalable Thread-Safety-Violation Detection: Finding Thousands of

Concurrency Bugs during Testing (SOSP’19). In Proceedings of the 27th

ACM Symposium on Operating Systems Principles (Oct. 2019).

[43] Liu, H., Li, G., Lukman, J. F., Li, J., Lu, S., Gunawi, H. S., and Tian,

C. DCatch: Automatically Detecting Distributed Concurrency Bugs

in Cloud Systems. In Proceedings of the 22nd International Conference

219



HotOS ’21, May 31–June 2, 2021, Virtual Event Sun, et al.

on Architecture Support for Programming Languages and Operating

Systems (ASPLOS’17) (Apr. 2017).

[44] Liu, H., Wang, X., Li, G., Lu, S., Ye, F., and Tian, C. FCatch: Automati-

cally Detecting Time-of-fault Bugs in Cloud Systems. In Proceedings of

the 23rd International Conference on Architecture Support for Program-

ming Languages and Operating Systems (ASPLOS’18) (Mar. 2018).

[45] Lu, J., Liu, C., Li, L., Feng, X., Tan, F., Yang, J., and You, L. CrashTuner:

Detecting Crash-Recovery Bugs in Cloud Systems via Meta-Info Anal-

ysis. In Proceedings of the 26th ACM Symposium on Operating System

Principles (SOSP’19) (Oct. 2019).

[46] Majumdar, R., and Niksic, F. Why is Random Testing Effective for

Partition Tolerance Bugs? In Proceedings of the 45th ACM SIGPLAN

Symposium on Principles of Programming Languages (POPL’18) (Jan.

2018).

[47] Ongaro, D., and Ousterhout, J. In Search of an Understandable

Consensus Algorithm. In Proceedings of the 2014 USENIX Conference

on USENIX Annual Technical Conference (USENIX ATC’14) (June 2014).

[48] Ozkan, B. K., Majumdar, R., Niksic, F., Befrouei, M. T., and Weis-

senbacher, G. Randomized Testing of Distributed Systems with Prob-

abilistic Guarantees. In Proceedings of 2018 ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA’18) (Nov. 2018).

[49] Pillai, T. S., Chidambaram, V., Alagappan, R., Al-Kiswany, S.,

Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. All File Sys-

tems Are Not Created Equal: On the Complexity of Crafting Crash-

consistent Applications. In Proceedings of the 11th Symposium on

Operating Systems Design and Implementation (OSDI’14) (Oct. 2014).

[50] Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., and Wilkes, J.

Omega: Flexible, Scalable Schedulers for Large Compute Clusters. In

Proceedings of the 8th ACM European Conference on Computer Systems

(EuroSys’13) (Apr. 2013).

[51] Sun, X., Cheng, R., Chen, J., Ang, E., Legunsen, O., and Xu, T. Testing

Configuration Changes in Context to Prevent Production Failures. In

Proceedings of the 14th USENIX Symposium on Operating Systems Design

and Implementation (OSDI’20) (Nov. 2020).

[52] Tan, C., Zhao, C., Mu, S., and Walfish, M. Cobra: Making Transac-

tional Key-Value Stores Verifiably Serializable. In Proceedings of the

14th USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI’20) (Nov. 2020).

[53] Tang, C., Kooburat, T., Venkatachalam, P., Chander, A., Wen, Z.,

Narayanan, A., Dowell, P., and Karl, R. Holistic Configuration

Management at Facebook. In Proceedings of the 25th ACM Symposium

on Operating System Principles (SOSP’15) (Oct. 2015).

[54] Tang, C., Yu, K., Veeraraghavan, K., Kaldor, J., Michelson, S.,

Kooburat, T., Anbudurai, A., Clark, M., Gogia, K., Cheng, L.,

Christensen, B., Gartrell, A., Khutornenko, M., Kulkarni, S.,

Pawlowski, M., Pelkonen, T., Rodrigues, A., Tibrewal, R., Venkate-

san, V., and Zhang, P. Twine: A Unified Cluster Management System

for Shared Infrastructure. In Proceedings of the 14th USENIX Conference

on Operating Systems Design and Implementation (OSDI’20) (Nov. 2020).

[55] Tseitlin, A. The Antifragile Organization. Communications of the

ACM 56, 8 (Aug. 2013), 40–44.

[56] Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E.,

and Wilkes, J. Large-Scale Cluster Management at Google with Borg.

In Proceedings of the Tenth European Conference on Computer Systems

(EuroSys’15) (Apr. 2015).

[57] Yabandeh, M., Knezevic, N., Kostic, D., and Kuncak, V. CrystalBall:

Predicting and Preventing Inconsistencies in Deployed Distributed

Systems. In Proceedings of the 6th USENIX Symposium on Networked

Systems Design and Implementation (NSDI’09) (Apr. 2009).

[58] Yang, J., Chen, T., Wu, M., Xu, Z., Liu, X., Lin, H., Yang, M., Long,

F., Zhang, L., and Zhou, L. MODIST: Transparent Model Checking

of Unmodified Distributed Systems. In Proceedings of the 6th USENIX

Symposium on Networked Systems Design and Implementation (NSDI’09)

(Apr. 2009).

[59] Yang, J., Sar, C., and Engler, D. EXPLODE: a Lightweight, General

System for Finding Serious Storage System Errors. In Proceedings of

the 7th Symposium on Operating Systems Design and Implementation

(OSDI’06) (Nov. 2006).

[60] Yuan, X., and Yang, J. Effective Concurrency Testing for Distributed

Systems. In Proceedings of the 25th International Conference on Ar-

chitecture Support for Programming Languages and Operating Systems

(ASPLOS’20) (Mar. 2018).

220


