Fail-slow fault tolerance needs programming support

Andrew Yoo
University of Illinois
Urbana-Champaign, IL, USA

Yuanli Wang
University of Minnesota
Twin Cities, MN, USA

Ritesh Sinha

Stony Brook University
Stony Brook, NY, USA

abyoo2@illinois.edu wang8662@umn.edu rksinha@cs.stonybrook.edu
Shuai Mu Tianyin Xu
Stony Brook University University of Illinois

Stony Brook, NY, USA
shuai@cs.stonybrook.edu

ABSTRACT

The need for fail-slow fault tolerance in modern distributed
systems is highlighted by the increasingly reported fail-slow
hardware/software components that lead to poor perfor-
mance system-wide. We argue that fail-slow fault tolerance
not only needs new distributed protocol designs, but also
desires programming support for implementing and verify-
ing fail-slow fault-tolerant code. Our observation is that the
inability of tolerating fail-slow faults in existing distributed
systems is often rooted in the implementations and is diffi-
cult to understand and debug. We designed the Dependably
Fast Library (DepFast) for implementing fail-slow tolerant
distributed systems. DepFast provides expressive interfaces
for taking control of possible fail-slow points in the program
to prevent unexpected slowness propagation once and for all.
We use DepFast to implement a distributed replicated state
machine (RSM) and show that it can tolerate various types
of fail-slow faults that affect existing RSM implementations.

KEYWORDS

Distributed systems, fail slow, fault tolerance, consensus

ACM Reference Format:

Andrew Yoo, Yuanli Wang, Ritesh Sinha, Shuai Mu, and Tianyin
Xu. 2021. Fail-slow fault tolerance needs programming support.
In Workshop on Hot Topics in Operating Systems (HotOS °21), May
31-FJune 2, 2021, Virtual Event. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3458336.3465299

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

HotOS ’21, May 31-June 2, 2021, Virtual Event

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8438-4/21/05.
https://doi.org/10.1145/3458336.3465299

228

Urbana-Champaign, IL, USA
tyxu@illinois.edu

1 INTRODUCTION

Fail-slow (a.k.a. fail-stutter) fault tolerance has long been
desired by computer systems [4]. A fail-slow fault causes
unexpected performance degradation of a hardware or a
software component, without terminating or crashing the
component (i.e., fail-stop) [4, 16]. A recent study shows that
fail-slow faults can occur on all major hardware components,
including CPU, memory, SSD, disk, and NICs [16]. Fail-slow
faults can also be introduced in software components due
to bugs and misconfigurations [15, 20, 27, 39]. Systems with-
out fail-slow fault tolerance are prone to poor performance
where just a single component fails slow [4].

Unfortunately, as shown in recent studies [4, 15, 16, 20, 23],
many widely-deployed distributed systems cannot tolerate
fail-slow faults. For example, Do et al. show that slowing
down one node in five scale-out distributed systems can lead
to cascading performance failures [15]. Gunawi et al. report
that fail-slow faults constantly lead to chained events with
cascading impacts across the cluster [16].

Recent efforts on combating fail-slow faults mainly focus
on detecting performance cascading bugs [27] monitoring
fail-slow runtime behavior [6, 19, 23, 34], and troubleshoot-
ing performance anomalies [3, 6, 29]. While those works
provide remedies to the manifestation of fail-slow faults, a
more fundamental direction is to build distributed systems
that are inherently fail-slow fault tolerant.

We argue that fail-slow fault tolerance not only needs new
distributed protocol designs, but also desires programming
support for implementing and verifying fail-slow tolerant
code. The argument is grounded by our observation that the
inability of tolerating fail-slow faults in existing distributed
systems is often rooted in the implementations and is difficult
to understand and debug. In this paper, we based our discus-
sion on RSM (Replicated State Machine) systems which are
commonly designed for critical infrastructures [8, 11, 21, 22].

A RSM system consists of linearizable, fault-tolerant groups
of distributed nodes coordinated using a consensus protocol
(e.g., Raft [32]). In principle, a RSM system is supposed to

https://doi.org/10.1145/3458336.3465299
https://doi.org/10.1145/3458336.3465299

HotOS 21, May 31-June 2, 2021, Virtual Event

tolerate any minority of faulty nodes, as long as the majority
are healthy. At the algorithm level, in a Raft-based system, a
fail-slow follower should not have any user-visible impact
by design. However, it is not the case for real-world RSM im-
plementations. Our measurement shows that existing RSM
implementations cannot consistently tolerate fail-slow faults
on a minority of follower nodes (Section 2). To make mat-
ters worse, our experience shows that it is painful and time-
consuming to debug the failures of fail-slow fault tolerance
due to the challenges in understanding spaghetti implemen-
tations of request handling and replication procedures.

We showcase the benefits of programming support for
fail-slow fault tolerance by designing the Dependably Fast
Library (DepFast). DepFast aims to help developers imple-
ment distributed systems that faithfully guarantee the fail-
slow fault-tolerance properties of the protocol algorithms
(e.g., tolerating a minority of fail-slow followers in a Raft-
based system). DepFast provides expressive interfaces for
taking control of possible fail-slow points in the program
to prevent unexpected slowness propagation once and for
all. In the context of RSM systems, DepFast empowers the
implementations not to wait on each event individually, but
wait for a group of events collectively, until a majority finish.
Furthermore, DepFast provides support for verifying and
analyzing runtime behavior with regard to fail-slow fault
tolerance (e.g., slowness propagation).

As a proof of concept, we use DepFast to build a fail-slow
fault-tolerant Raft implementation (named DepFastRaft). We
show that DepFastRaft can effectively tolerate various types
of fail-slow faults which can affect other existing Raft-based
systems. Specifically, the throughput, average latency, and
P99 latency of DepFastRaft only fluctuate within 5% ranges
with a minority of fail-slow followers.

2 CASE STUDY: RSMS

We discuss replicated state machines (RSMs) as a case study
to show that implementations could break the fail-slow fault
tolerance properties guaranteed by protocol algorithms. In
principle, a RSM system can tolerate a minority of faulty
nodes. We focus on fail-slow followers, instead of fail-slow
leaders. In existing RSM designs (e.g., Raft [32] and Paxos [25]),
a fail-slow leader would slow down the entire system, as-
suming no leader re-election. But, a minority of fail-slow
followers should not have visible impact by design—a write
can return after it is replicated to a majority of healthy nodes.

2.1 Measurement

We build a fail-slow fault injection tool. It injects different
types of fail-slow faults (related to CPU, memory, SSD, and
NIC) into the target systems and measures their impact on
system performance. The fail-slow faults are simulated based

229

Andrew Yoo, Yuanli Wang, Ritesh Sinha, Shuai Mu, and Tianyin Xu

Fail-slow type Fault injection

CPU (slow) Use cgroup to limit each RSM process to
utilize only 5% CPU

Run a contending program (assigned with
16x higher CPU share than the process)
Use cgroup to limit disk I/O bandwidth
available for the RSM process

Run a contending program that writes
heavily on the shared disk

Use cgroup to set the maximum amount
of user memory for the RSM process.
Add a delay of 400 milliseconds to the
network interface using tc

CPU (contention)
Disk (slow)

Disk (contention)
Memory (contention)

Network (slow)

Table 1: Simulated faults used for measuring fail-
slow fault tolerance of existing RSM implementations
(MongoDB, TiDB, and RethinkDB) and DepFastRaft.

on prior studies on fail-slow faults and represent common
fail-slow modes [15, 16]. Table 1 describes those faults and
the corresponding injection methods.

We run fail-slow fault injection testing on the RSM im-
plementations of MongoDB, TiDB, and RethinkDB. For fair
comparison, all the systems are set to use strong consistency
when the consistency level can be configured (e.g., in Mon-
goDB, WiriteConcern is set to majority [35]). We turned
off chained replication [37] which by design could propagate
fail-slow faults [1]. For MongoDB and RethinkDB that have
dedicated follower nodes, we inject the fault in randomly
selected followers. TiDB uses a MultiRaft architecture where
a node hosts both leaders and followers for different data
ranges [18]. We configure a node to only host follower ranges
and inject fail-slow faults on that node.

All the database systems are deployed on Azure cloud.
Each node is deployed on a Standard_D4s_v3 virtual ma-
chine instance with 4 CPUs, 16GB RAM, and 64GB SSD.
We only evaluate three-node deployments of the three RSM
implementations due to limited testing budgets.

We run Yahoo! Cloud Serving Benchmark (YCSB) [10]
with and without the fail-slow faults (Table 1). The workload
is a write workload that updates 500K records (we focus on
writes because a write involves a majority of nodes). We run
256-1200 concurrent clients that drive the CPU utilization
of the leader nodes to around 75% to represent a high load.

2.2 Results

Figure 1 shows the impact of a fail-slow follower in the
three-node deployment of the three RSM implementations.
We choose our baseline as the performance of each system
without injecting fail-slow faults. We then normalize the
performance of each system with specific fail-slow faults to

Fail-slow fault tolerance needs programming support

Ml No Slowness [CPU Slowness [CPU Contention

[0 Memory Contention

HotOS 21, May 31-June 2, 2021, Virtual Event

I Disk Slowness B Disk Contention B Network Slowness

._.
=
Q@
N
g

o
9
g
ey
q

Latency (norm.)
(=Y
=}

e
o

Throughput (norm.)
o o
v
o o

°
=)
S
e
=)

i MongoDB

" MongoDB TiDB RethinkDB

(a) Throughput

TiDB

(b) Average Latency

w

s

Latency (norm.)
L

[
L

=
88
g1

o
T

RethinkDB MongoDB TiDB RethinkDB

(c) P99 Latency

Figure 1: Performance of three RSM systems with a fail-slow follower (different types) under three-node setups.

its baseline performance. The normalization is necessary be-
cause different systems have different absolute performance.
Our measurement results show that existing RSM imple-
mentations cannot consistently tolerate fail-slow faults on
a follower node. Specifically, a fail-slow follower can result
in up to 17-41% decreases of system throughput decreases,
21-50% increases of average latency, and 1.6-3.46X increases
of P99 tail latency across the three RSM implementations. In
RethinkDB, fail-slow faults on CPUs crashed the leader.

Root causes. We observed the following root-cause pat-
terns. First, fail-slow faults can be propagated due to syn-
chronous wait behavior (the leader waits for the fail-slow
follower). TiDB Raftstore uses a single thread for each data
region. A fail-slow follower could force the leader to read old
entries from the disk (those entries have been evicted from
the in-memory EntryCache), thus blocking the whole thread
during the disk I/O. Second, a fail-slow follower could lead
to excessive backlogs at the leader side, which causes expen-
sive processing and even resource exhaustion. RethinkDB
maintains an unbounded buffer at the leader for outgoing
writes—a slow follower can drive the leader to use excessive
an amount of memory, or even run out of memory. Third,
we observe that fail-slow followers have a significant impact
on tail latency. With three-node cloud deployments, when
one follower fails slow, transient performance issues on the
other follower inevitably prolong the tail. Note that all the
above root causes have been confirmed by the developers.

2.3 Discussion

In our experience, debugging failures of fail-slow fault toler-
ance is challenging and time consuming. It took two person-
years to analyze the three RSM implementations of Mon-
goDB, TiDB, and RethinkDB, regarding their behavior on
fail-slow followers discussed in Section 2.1. The debugging
process is mainly a binary search for the small fragments of
code that caused the slowness based on printing timestamps.
The process sounds easy, as we imagined it to be. However,

230

in reality it is painful. The code often looks like spaghetti: the
fragments that could affect a particular request are spread in
different components and can be invoked at different events.
Understanding where those code fragments are located and
how they interact is non-trivial. Our experience working
with developers of two of the three database systems shows
that this is a challenging task, as it requires knowledge of all
system components that a request could go through. These
components are developped and maintained by different
teams, which adds more difficulty in the diagnose.

Why spaghetti code? We do not have definitive answers.
We present a few reasonings based on our own experiences
and our discussions with the database developers. First, de-
velopers have been taught for a long time that non-blocking
function calls with callbacks (a.k.a., asynchronous program-
ming style) is preferred performance-wise over blocking
function calls with threading (a.k.a., synchronous program-
ming style) in building concurrent systems, especially in
distributed systems [33]. There are many widely-used asyn-
chronous event-driven libraries such as 1ibev and libuv.
In these libraries, developers write a “message loop”, which
parses the incoming messages and triggers relevant callbacks.
Second, many distributed algorithms are written in a “upon
receiving a particular message” style. For example, in Paxos
papers, it is very common to read “when receiving enough
Accept messages”. If one already is familiar with the asyn-
chronous message-loop programming style, it is very intu-
itive to translate the algorithm into the message loops. Over-
all, this will lead to the spaghetti code we discussed. Think
about a Paxos system, for each request that goes through the
3 phases (Prepare/Accept/Commit) of Paxos, its code will at
least be shredded into 3 callbacks. If this is a 5-replica system,
the callbacks will be executed 15 times. If we include disk
logging, there will be even more (at least double) callbacks.
It does not take long before a developer loses track of how
these callbacks could affect each other. It also painful (as we
lived through) to monitor and manage the wait process.

HotOS 21, May 31-June 2, 2021, Virtual Event

Logic versus framework. We also observed that there is not
a clear abstraction between the logic (e.g., the Raft logic) and
the framework (e.g., code that implements RPC, disk flush for
journaling, etc.). The problem of lacking the abstraction is
two-folded. First, if we have a buggy fail-slow propagation, it
is hard to know whether the bug is caused by the logic code
or the framework code. A framework bug is usually easier for
a systems programmer to identify and fix, compared with a
logic bug. Therefore, it would be helpful if we can guarantee
the logic does not have fail-slow issues. Second, lacking the
abstraction also means lacking knowledge across the two
parts. This means the framework code has to blindly execute
the requests from the logic code and cannot perform any
automatic optimizations to tolerate fail-slow failures, and
has to push the burden back to the logic code. For example,
the Raft logic broadcasts AppendEntries to all replicas and
waits for a quorum of replies to proceed. In the current im-
plementation, the Raft logic sends the same message to each
replica and the framework code faithfully puts the message
to the buffer of each replica. If one replica is slow, the con-
nection will be slow and the buffer would keep increasing,
leading to the backlog issue described in Section 2.1. If the
framework is aware that this is a broadcast that can succeed
with a quorum of replies, it can safely discard the messages
for the slow connection.

Seeking for programming support. Our experience drives
us to rethink the problem and seek for a more foundational
solution that treats fail-slow fault tolerance as a first-class
principle. We propose a framework that can solve the prob-
lem from the source. Specifically, this framework should: (1)
re-unite the shredded code of asynchronous event-driven
programming and make it easy to manage and monitor the
waiting points on slow events, (2) provide a clean abstraction
between the logic and framework code in order to support
analysis and verification of the system behavior with re-
gard to fail-slow fault tolerance, and (3) eliminate the cases
where a fail-slow fault can be propagated to affect the im-
plementation of other components. Overall, the goals of our
framework are to: (1) isolate the fail-slow components and
minimize their impact radius on their dependent components
and thus to prevent fail-slow fault propagation, and (2) make
it easy to understand and debug fail-slow behavior.

3 THE DEPFAST FRAMEWORK

To achieve the aforementioned goals, we built the Depend-
ably Fast Library (or DepFast). To give a highlight of the
DepFast design: (1) DepFast provides programmers with a
coroutine interface to support synchronous programming
and to avoid shredded code; it provides programmers with
the event interfaces to wrap the waiting points, (2) Dep-
Fast implements utilities including networking, disk I/0, etc.,

231

Andrew Yoo, Yuanli Wang, Ritesh Sinha, Shuai Mu, and Tianyin Xu

and uses advanced event types as a clean abstraction be-
tween framework and logic code, and (3) DepFast supports
fail-slow tolerant events, and these events can prevent the
uncontrolled propagation of fail-slow faults.

It is worth pointing out that DepFast’s design is based
on the wisdoms in the discussions of asynchronous versus
synchronous programming model [2, 7, 12, 14, 24]: we choose
a synchronous programming model, but with lightweight
and cooperative task scheduling (instead of a preemptive
scheduling with heavy kernel threads).

In this section, we present how DepFast supports the im-
plementations of replicated state machines.

3.1 Interface

The programming interface of DepFast mainly consists of
two parts: (1) a coroutine interface for launching tasks and
(2) an event abstraction for wrapping waiting points.

Coroutines and events. We provide a coroutine interface
for a programmer to implement the logic of processing a
user request. An event represents a wait point that will tra-
ditionally break the code into callbacks in an asynchronous
model (e.g., an RPC). The following code snippet shows an
example of Raft’s algorithm using the coroutine interface
and RPC interface of DepFast:

Coroutine::Create([] O {

for (auto rpc_proxy : servers) {
auto entries = ...;
// the next line bears possible slowness
auto rpc_event = rpc_proxy.AppendEntries(entries);
rpc_event.Wait(); // possible slowness
if (rpc_event.timeout()) {
... // failure process
} else {
... // process response
}
}

b

The example using coroutine can address the problem
of spaghetti callbacks in the traditional asynchronous pro-
gramming model. However, it is not fail-slow fault tolerant
because a rpc_event could lead to slowness propagation—
one slow RPC will slow down the entire loop, not mentioning
that the RPCs are not sent in parallel as they should be.

Quorum events. To address the above issues, we intro-
duce a new event type, QuorumEvent. As its name sug-
gests, an QuorumEvent waits for a quorum or a collection
of events (e.g., any majority). It allows the coroutine to toler-
ate fail-slow faults in any minority. The QuorumEvent is a
key building block of DepFastRaft and prevents any single
fail-slow component from straggling the entire system. With
QuorumEvent, we can rewrite the previous example into the
following code snippet:

Fail-slow fault tolerance needs programming support

Coroutine::Create([] O {
auto quorum_event = QuorumEvent();
for (auto rpc_proxy : servers) {
auto entries = ...;
auto rpc_event = rpc_proxy.AppendEntries(entries);
quorum_event.add(rpc_event) ;
// no longer wait for any single event

}

// wait for a majority
quorum_event .Wait (FLAG_MAJORITY);
b

In the example, the RPCs are sent out in parallel, and
the coroutine does not wait on any single RPC. In theory,
any slow connection (or target server) should not affect the
wait time, assuming the latency of waiting on each target is
independent and stable. Therefore, we define code that only
uses QuorumEvent and has no other waiting points as fail-
slow fault-tolerant code. The principle of using the DepFast
framework to write the logic code of a system is waiting
on QuorumEvent as much as possible and avoid waiting on
other types of singular-point events.

3.2 More on events

In general, DepFast provides two event types: basic events
and compound events. Basic events are mostly for network
and disk I/O events as well as other simple conditions such
as waiting for a variable to be set certain value. Compound
events are combinations of events.

QuorumEvent is a compound event and we have intro-
duced it in Section 3.1. Other compound events in Dep-
Fast includes AndEvent and OrEvent. An AndEvent is trig-
gered when all its subevents are triggered; an OrEvent is
triggered when one of its subevents is triggered. Note that
Events can be nested, e.g.,an AndEvent can contain many
QuorumEvents as its subevents.

Nesting events can express complex waiting conditions. In
many quorum-based systems, besides waiting for replies un-
til “majority-ok”, the algorithm either explicitly or implicitly
states a different condition that is “minority-plus-one-reject”.
With a traditional programming model, this is hard to capture
precisely and thus is often simplified to something easier to
implement such as “majority-reject”. However, in many cases,
the waiting conditions could become complex to simplify,
such as with “fast-quorum” based conditions [26, 30, 40].
With the OrEvent and QuorurmEvent, these conditions can
be fairly easy to describe as follows:

QuorumEvent fast_ok = ...

QuorumEvent fast_reject = ...

OrEvent fastpath(fast_ok, fast_reject);

fastpath.Wait(/*timeout=*/1000); // 1000 ms

if (fast_ok.Ready()) {

... // process fast path

} else if (fast_reject.Ready() || fastpath.Timeout()) {
QuourmEvent slow_ok = ...

232

HotOS 21, May 31-June 2, 2021, Virtual Event

QuorumEvent slow_reject = ...
OrEvent slowpath(slow_ok, slow_reject);
slowpath.Wait(/*timeout=*/1000); // 1000 ms
if (slow_ok.Ready()) {
... // proceed slow path
} else if (slow_reject.Ready()) {
... // retry
} else {
... // timeout: disconnect from group;
}
}

3.3 Runtime

A DepFast runtime instance consists of four major compo-
nents: coroutines, events, a scheduler, and I/O helper threads.
As discussed in Section 3.1, coroutines are the units for exe-
cuting user tasks and events mark the waiting points in the
tasks. Each DepFast runtime instance has one scheduler to
be in charge of suspending and resuming the execution of
all coroutines. The I/O helper threads run in the background
to deal with synchronous I/O events, e.g., the £sync calls
that ensure that all disk writes have arrived at disks.

Runtime verification. Having events as trace points, Dep-
Fast supports runtime verification and trace analysis for fail-
slow fault tolerance. This not only helps detect unexpected
implementing bugs but can also be used to reason about
design tradeoffs between fail-slow fault tolerance and other
properties (e.g., load balancing in chained replications [1]).

Multiple DepFast runtime instances will work together
for the tracing. DepFast links coroutines in different servers
through the events. For example, a RpcEvent links the caller
and the callee coroutines through a waiting-for relation-
ship. We demonstrate an example of an analysis DepFast can
provide. Based on linking the coroutines, DepFast can gen-
erate slowness propagation graphs (SPGs) at runtime. SPGs

Figure 2: The slowness propagation graph. The labels
on the edge represent the quorum of the event. “2/3”
refers to the case where 2 responses are needed out of
3 RPCs; “1/1” refers to waiting on a single RPC.

HotOS °21, May 31-June 2, 2021, Virtual Event

Ml No Slowness [CPU Slowness [CPU Contention

[0 Memory Contention

Andrew Yoo, Yuanli Wang, Ritesh Sinha, Shuai Mu, and Tianyin Xu

I Disk Slowness B Disk Contention B Network Slowness

8000 500
)
86000 g‘mo'
= 2300
24000 B
) 52001
3 =
48: 2000 31001
[_1
0- 0
3 Nodes 5 Nodes 3 Nodes
(a) Throughput

(b) Average Latency

500

4001
g
<3001
[&]
52001
g
o]
~1001

0_

5 Nodes 3 Nodes 5 Nodes

(c) P99 Latency

Figure 3: Performance of DepFastRaft with a minority of fail-slow followers (different types of fail-slow faults).

can be used for analyzing fail-slow fault propagation. Fig-
ure 2 provides an example of SPG for DepFastRaft, which
is deployed with three shards, i.e., three quorums ({s1-s3},
{s4-s6}, and {s7-s9}). The SPG is visualization at a node
granularity by aggregating thousands of coroutines per node.
Each vertex represents a node (s1-s9) or a client (c1-c3).
Each edge is directed—the direction suggests the waiting-for
relationship. Each edge is colored: a wait on a basic event
(e.g., an RpcEvent) contributes to a red edge; a wait on a
QuorumEvent contributes to a green edge. The SPG shows
that there is no single-event wait in the interactions within
each quorum (thanks to the uses of QuorumEvent). How-
ever, the clients wait for leader nodes—if a leader fails slow,
the corresponding client will be affected.

We plan to extend the analysis to support more advanced
and versatile analysis by integrating the probability models
that consider transient fail-slow events.

3.4 DepFastRaft

To demonstrate the effectiveness of DepFast, we use DepFast
to implement a Raft-based replicated key-value store, named
DepFastRaft. Raft’s protocol mainly consists of two parts,
leader election and data replication [32]. Both follow the
same pattern: a node broadcasts requests to other nodes and
proceeds after it receives a quorum of acknowledgements.
The pattern can be well expressed by QuorumEvent. Using
DepFast, a Master student translated Raft pseudocode into
stable C++ code in less than two weeks.

We evaluated DepFastRaft using the same fault injection
based methodology for measuring existing RSM implemen-
tations (Section 2.1) and found that DepFastRaft is fail-slow
fault tolerant, as shown in Figure 3. In all cases where a
minority of follower(s) are slowed down, DepFastRaft’s per-
formance does not show performance drift over 5% in both
latency and throughput. This is in contrast to existing RSM
implementations (see Section 2.2). The base performance of

233

DepFastRaft is at about 5K requests per second and outper-
forms other RSM implementations (so, the low drift is not
because we have a smaller base performance).

4 RELATED WORK

Fail-slow faults have been actively studied recently, including
both long-lived slowdowns and transient faults, with diverse
root causes [5, 15, 16, 20, 28, 34, 36, 41]. Recent studies report
that state-of-the-art distributed systems often cannot toler-
ant fail-slow faults [15, 27, 28]. For example, Do et al. show
that fail-slow hardware can drive distributed systems into
limplocks—cascading impacts where the entire system pro-
gresses slowly and is not capable of failing over to healthy
components [15].

The main research efforts in addressing fail-slow faults
focus on detecting and localizing fail-slow failures based on
performance metrics [34], runtime monitoring [20, 28], and
active measurements [5, 36, 41]. While detection and local-
ization can greatly help resolve fail-slow faults, they do not
eliminate the occurrence of the faults and are reactive to
their manifestations. Our goal is to build distributed systems
that tolerate various fail-slow faults in the first place.

Recently, Ngo et al. designed the first one-slowdown toler-
ant consensus protocol, Copilot [31]. It aims to address the
algorithmic weakness of leader-based consensus protocols,
i.e., the fail-slow leader (discussed in Section 2). Complemen-
tarily, DepFast focuses on system implementation. DepFast
tries to guarantee that the implementation faithfully carries
out the algorithm design properties. One can use DepFast
to implement Copilot to avoid fail-slow fault tolerance at
multiple levels. The design of DepFast is generic and is not
specific to any distributed protocols.

In our experience, the interfaces DepFast provides can also
help achieve a cleaner and more readable implementation of
fault-tolerant (RSM) algorithms, which has its own merits
because “fault-tolerant algorithms are notoriously hard to
express correctly” [9]. On the direction of ensuring that the

Fail-slow fault tolerance needs programming support

algorithms are faithfully and correctly implemented, there
are more rigorous approaches such as writing the algorithms
with a specification model and later mechanically converting
it to runnable code [9], or formal verifications [17, 38]. These
works could also benefit from DepFast’s interfaces.

5 SUMMARY AND FUTURE WORK

Our experience of developing and using DepFast is encour-
aging. As demonstrated by DepFastRaft, DepFast can help
programmers implement fail-slow fault tolerant systems and
be able to verify their runtime behavior.

We are working on enhancing DepFast for building differ-
ent types of distributed systems other than RSMs, such as
sharded data stores with distributed transaction protocols
which also have complicated waiting conditions. We are also
working on providing more observability through the event
interface. We realize that the events in principle provide
trace points needed by existing monitoring techniques [19]
and the traces can be used for performance analysis [13, 29].
Therefore, we plan to implement failure detectors based on
those trace points. Lastly, we will develop mitigation proce-
dures specific to the detected failure modes. For instance, in
DepFastRaft, if the leader is detected to fail-slow, a leader
re-election can be triggered to turn the fail-slow leader into
a fail-slow follower, which is well tolerated by DepFastRaft,
as shown in Section 3.4.

ACKNOWLEDGMENTS

We thank David Daly, Indranil Gupta, Ger Hartnett, Jianjun
Li, Darko Marinov, Madhusudan Parthasarathy, Liquan Pei,
Alex Podelko, Xudong Sun, Yi Wu, Erez Zadok, and Siyuan
Zhou for invaluable discussions and feedback. Yoo is sup-
ported in part by the Siebel Scholar award. Xu’s group is
supported in part by NSF grants CCF-1816615, CCF-2029049,
CNF-1956007, and a Facebook Distributed Systems Research
award. The evaluation is supported by Microsoft Azure cred-
its and Google Cloud credits.

REFERENCES

[1] Manage Chained Replication. https://docs.mongodb.com/manual/
tutorial/manage-chained-replication/.

ADYA, A., HOWELL, J., THEIMER, M., BoLosky, W. J., AND DOUCEUR, J. R.
Cooperative Task Management without Manual Stack Management. In
Proceedings of the 2019 USENIX Annual Technical Conference (USENIX
ATC’02) (June 2002).

AGUILERA, M. K., MoguL, J. C., WIENER, J. L., REYNOLDS, P., AND MUTHI-
TACHAROEN, A. Performance Debugging for Distributed Systems of
Black Boxes. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP’03) (Oct. 2003).

ARPACI-DUSSEAU, R. H., AND ARPACI-DUssEAU, A. C. Fail-Stutter Fault
Tolerance. In Proceedings of the 8th Workshop on Hot Topics in Operating
Systems (HotOS’01) (May 2001).

Arzani, B., Ciracy, S., CHAMON, L., ZHU, Y., L1u, H. H., PADHYE, J.,
Loo, B. T., AND OUTHRED, G. 007: Democratically Finding the Cause

(2]

234

(6

—

[7

—

8

[t

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

HotOS 21, May 31-June 2, 2021, Virtual Event

of Packet Drops. In Proceedings of the 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI'18) (Apr. 2018).
BaruAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R. Using Magpie
for request extraction and workload modelling. In Proceedings of the 6th
USENIX Conference on Operating Systems Design and Implementation
(OSDI’04) (Dec. 2004).

BOUCHER, S., KaLIA, A., ANDERSEN, D. G., AND KaMINSKY, M. Light-
weight Preemptible Functions. In Proceedings of the 2019 USENLX
Annual Technical Conference (USENIX ATC’20) (July 2020).

Burrows, M. The Chubby lock service for loosely-coupled distributed
systems. In Proceedings of the 7th USENIX Conference on Operating
Systems Design and Implementation (OSDI’06) (Nov. 2006).

CHANDRA, T. D., GRIESEMER, R., AND REDSTONE, J. Paxos Made Live —
An Engineering Perspective. In Proceedings of the 26th annual ACM
symposium on Principles of Distributed Computing (PODC’07) (Aug.
2007).

COOPER, B. F.,, SILBERSTEIN, A., TAM, E., RAMAKRISHNAN, R., AND SEARS,
R. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SOCC’10) (June 2010).
CORBETT, J. C, DEAN, J., EPSTEIN, M., FIKES, A., FrROsT, C., FURMAN,
J. J., GHEMAWAT, S., GUBAREV, A., HEISER, C., HocHsCHILD, P., HSIEH,
W., KANTHAK, S., KoGaN, E., L1, H,, LLoYD, A., MELNIK, S., MWAURA, D.,
NAGLE, D., QUINLAN, S, Rao, R, RoLIG, L., SarTo, Y., SZYMANIAK, M.,
TAYLOR, C., WANG, R., AND WOODFORD, D. Spanner: Google’s Globally-
Distributed Database. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (OSDI’12) (Oct. 2012).
CUNNINGHAM, R., AND KoHLER, E. Making Events Less Slippery With
eel. In Proceedings of the 10th Workshop on Hot Topics in Operating
Systems (HotOS’05) (June 2005).

CURTSINGER, C., AND BERGER, E. D. COZ: Finding Code that Counts
with Causal Profiling. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP’15) (Oct. 2015).

DABEK, F., ZELDOVICH, N., KAASHOEK, F., MAZIERES, D., AND MORRIS,
R. Event-Driven Programming for Robust Software. In Proceedings of
the 10th Workshop on ACM SIGOPS European Workshop (July 2002).
Do, T., HAo, M., LEESATAPORNWONGSA, T., PATANA-ANAKE, T., AND
Gunawl, H. S. Limplock: Understanding the Impact of Limpware on
Scale-out Cloud Systems. In Proceedings of the 4th ACM Symposium
on Cloud Computing (SOCC’13) (Oct. 2013).

Gunawiy, H. S, SuminTo, R. O, SEARS, R., GOLLIHER, C., SUNDARARA-
MAN, S., LiN, X., EMami, T., SHENG, W., BIDOKHTI, N., MCCAFFREY,
C., SRINIVASAN, D., PANDA, B., BAPTIST, A., GRIDER, G., FIELDS, P. M.,
Harwms, K., Ross, R. B., JacoBson, A., Riccr, R., WEBB, K., ALVARO, P.,
RunEesHA, H. B., Hao, M., AND L1, H. Fail-Slow at Scale: Evidence of
Hardware Performance Faults in Large Production Systems. In Pro-
ceedings of the 16th USENIX Conference on File and Storage Technologies
(FAST’18) (Feb. 2018).

HawsLiTzeL, C., HowELL, J., KapriTsos, M., LorcH, J. R., PArNO, B.,
ROBERTS, M. L., SETTY, S., AND ZILL, B. IronFleet: Proving Practical
Distributed Systems Correct. In Proceedings of the 25th Symposium on
Operating Systems Principles (SOSP’15) (Oct. 2015).

Huang, D., L1y, Q., Cur, Q., FANG, Z., Ma, X, Xu, F,, SHEN, L., TANG, L.,
Zuou, Y., Huang, M., WE1, W, L1u, C., ZHANG,]., L1, J., Wu, X., SONG,
L., Sun, R, Yu, S., ZHAo, L., CAMERON, N, PEI1, L., AND TANG, X. TiDB:
A Raft-based HTAP Database. In Proceedings of the 46th International
Conference on Very Large Data Bases (VLDB’20) (Sept. 2020).

Huang, P, Guo, C., LorcH,]. R., ZHou, L., AND DANG, Y. Capturing
and Enhancing In Situ System Observability for Failure Detection. In
Proceedings of the 13th USENLX Conference on Operating Systems Design
and Implementation (OSDI’18) (Oct. 2018).

Huang, P., Guo, C., ZHou, L., LorcH, J. R,, DANG, Y., CHINTALAPATI, M.,
AND Yao, R. Gray Failure: The Achilles’ Heel of Cloud-Scale Systems.

https://docs.mongodb.com/manual/tutorial/manage-chained-replication/
https://docs.mongodb.com/manual/tutorial/manage-chained-replication/

[l

HotOS 21, May 31-June 2, 2021, Virtual Event

In Proceedings of the 16th Workshop on Hot Topics in Operating Systems
(Hot0S’17) (May 2017).

HunT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B. ZooKeeper:
Wait-free Coordination for Internet-scale Systems. In Proceedings of
the 2010 USENIX Conference on USENIX Annual Technical Conference
(USENIX ATC’10) (June 2010).

IsArRD, M. Autopilot: Automatic Data Center Management. SIGOPS
Operating System Review 41, 2 (Apr. 2007), 60-67.

JHA, S, Cut, S., BANERJEE, S., Xu, T., ENOs, J., SHOWERMAN, M., KALBAR-
czyK, Z. T., AND IYER, R. K. Live Forensics for HPC Systems: A Case
Study on Distributed Storage Systems. In Proceedings of the Interna-
tional Conference for High-Performance Computing, Networking, Storage
and Analysis (SC°20) (Nov. 2020).

KrouN, M., KOHLER, E., AND KaAasHOEK, M. F. Events Can Make Sense.
In Proceedings of the 2019 USENIX Annual Technical Conference (USENIX

Andrew Yoo, Yuanli Wang, Ritesh Sinha, Shuai Mu, and Tianyin Xu

36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’15) (June 2015).

Xu, T., ZHANG,]., HUANG, P., ZHENG,]., SHENG, T., YuaN, D., ZHOU,
Y., AND PasupaTHY, S. Do Not Blame Users for Misconfigurations.
In Proceedings of the 24th Symposium on Operating System Principles
(SOSP’13) (Nov. 2013).

ZHANG, L, SHARMA, N. K., SZEKERES, A., KRISHNAMURTHY, A., AND
Ports, D. R. K. Building consistent transactions with inconsistent
replication. In Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP’15) (Oct. 2015).

ZHANG, Q., YU, G., Guo, C., DANG, Y., SWANSoN, N., YanG, X, Yao, R,,
, CHINTALAPATI, M., KRISHNAMURTHY, A., AND ANDERSON, T. Deep-
view: Virtual Disk Failure Diagnosis and Pattern Detection for Azure.
In Proceedings of the 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’18) (Apr. 2018).

ATC’07) (June 2007).

LAMPORT, L. Paxos Made Simple. ACM SIGACT News (Distributed

Computing Column) 32, 4 (Dec. 2001), 51-58.

LAaMPORT, L. Fast Paxos. Tech. Rep. MSR-TR-2005-112, Microsoft

Research, 2005.

[27] Ly], CHEN, Y., Liu, H, Lu, S., ZHANG, Y., Gunawy, H. S, Gu, X, Lu, X.,
AND L1, D. PCatch: Automatically Detecting Performance Cascading
Bugs in Cloud Systems. In Proceedings of the 39th ACM European
Conference in Computer Systems (EuroSys’18) (Apr. 2018).

[28] Lou, C., HUuANG, P, AND SMmITH, S. Understanding, Detecting and
Localizing Partial Failures in Large System Software. In Proceedings of
the 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI'20) (Feb. 2020).

[29] MACE, J., ROELKE, R., AND FoNsEca, R. Pivot Tracing: Dynamic Causal
Monitoring for Distributed Systems. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP’15) (Oct. 2015).

[30] Moraru, L, ANDERSEN, D. G., AND Kaminsky, M. There is more
consensus in egalitarian parliaments. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP’13) (Nov. 2013).

[31] Noo, K., SEN, S., AND LLoYD, W. Tolerating Slowdowns in Replicated

State Machines using Copilots. In Proceedings of the 14th USENIX

Conference on Operating Systems Design and Implementation (OSDI’20)

(Nov. 2020).

ONGARO, D., AND OUSTERHOUT, J. In Search of an Understandable

Consensus Algorithm. In Proceedings of the 2014 USENIX Annual

Technical Conference (USENIX ATC’14) (June 2014).

OUSTERHOUT,]. Why threads are a bad idea (for most purposes). In

Presentation at the 1996 USENIX Annual Technical Conference (Sept.

1995).

PaNDA, B., SRIN1VASAN, D., Kg, H., Guprta, K., KHOT, V., AND GUNAWI,

H. S. IASO: A Fail-Slow Detection and Mitigation Framework for

Distributed Storage Services. In Proceedings of the 2019 USENIX Annual

Technical Conference (USENLX ATC’19) (July 2019).

ScHuLTZ, W., AVITABILE, T., AND CABRAL, A. Tunable consistency in

MongoDB. In Proceedings of the 45th International Conference on Very

Large Data Bases (VLDB’19) (Aug. 2019).

[36] Tan, C., JiN, Z., Guo, C., ZHANG, T., Wu, H,, DENG, K., Br, D., AND
X1ANG, D. NetBouncer: Active Device and Link Failure Localization in
Data Center Networks. In Proceedings of the 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI'19) (Feb. 2019).

[37] vAN RENESSE, R., AND SCHNEIDER, F. B. Chain Replication for Sup-

porting High Throughput and Availability. In Proceedings of the 6th

USENIX Conference on Operating Systems Design and Implementation

(OSDI’04) (Dec. 2004).

WiLcox, J. R., Woos, D., PANCHEKHA, P., TATLOCK, Z., WANG, X., ERNST,

M. D., AND ANDERSON, T. Verdi: A Framework for Implementing

and Formally Verifying Distributed Systems. In Proceedings of the

[25

=

[26

—

(32

—

(33

—_

[34

[l

(35

[

(38

—

235

	Abstract
	1 Introduction
	2 Case study: RSMs
	2.1 Measurement
	2.2 Results
	2.3 Discussion

	3 The DepFast framework
	3.1 Interface
	3.2 More on events
	3.3 Runtime
	3.4 DepFastRaft

	4 Related work
	5 Summary and future work
	Acknowledgments
	References

