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ABSTRACT: Protein−protein binding is fundamental to most
biological processes. It is important to be able to use computation
to accurately estimate the change in protein−protein binding free
energy due to mutations in order to answer biological questions
that would be experimentally challenging, laborious, or time-
consuming. Although nonrigorous free-energy methods are faster,
rigorous alchemical molecular dynamics-based methods are
considerably more accurate and are becoming more feasible with
the advancement of computer hardware and molecular simulation
software. Even with sufficient computational resources, there are
still major challenges to using alchemical free-energy methods for
protein−protein complexes, such as generating hybrid structures
and topologies, maintaining a neutral net charge of the system
when there is a charge-changing mutation, and setting up the simulation. In the current study, we have used the pmx package to
generate hybrid structures and topologies, and a double-system/single-box approach to maintain the net charge of the system. To
test the approach, we predicted relative binding affinities for two protein−protein complexes using a nonequilibrium alchemical
method based on the Crooks fluctuation theorem and compared the results with experimental values. The method correctly
identified stabilizing from destabilizing mutations for a small protein−protein complex, and a larger, more challenging antibody
complex. Strong correlations were obtained between predicted and experimental relative binding affinities for both protein−protein
systems.

■ INTRODUCTION

Protein−protein binding is an essential phenomenon in
molecular biology and directly mediates most functions in
cells such as cellular metabolism, signal transduction, and
coagulation among many other biological processes.1,2 Muta-
tions of the amino acids in protein−protein complexes can
modulate or even disrupt protein−protein interactions by
changing the associated binding free energy (ΔG) of the
protein−protein complexes. The binding free energy of the
protein−protein complexes determines the stability of associ-
ation and the conditions for protein−protein complex
formation.3 It is important to be able to quantify the stabilities
of protein complexes and how they can be modified by amino
acid mutations and how they are affected by evolution.
Many techniques have been employed to determine the

change in the protein−protein binding free energy due to a
mutation (i.e., relative binding affinity, ΔΔG). Experimental
biophysical and biochemical methods are routinely used, but
these methods are laborious, expensive, and time-consuming
and are limited by technical challenges.4−7 By contrast,
computational methods can be relatively inexpensive, and the
accuracy of such methods has been improved with the
advancement of computational resources and better force

fields.8−10 Computational methods for estimating ΔΔG values
can be broadly classified as either nonrigorous or rigorous.11

Nonrigorous free-energy methods typically use a single, static
all-atom structure of the protein complex. These methods
typically have energy functions that are trained using
experimentally measured binding affinities or changes in
affinities.12,13 Many such semiempirical approaches have been
developed that combine molecular mechanics and various
optimized energy terms from available experimental data.14 For
example, BeAtMuSiC and mCSM use coarse-grained statistical
potentials derived from known 3-D structures of proteins and
machine learning.15,16 FoldX uses empirical force field trained by
experimentally measured binding free energies or changes in
affinities.12,13 The other so-called docking/scoring algorithms
can predict binding affinities based on predicted binding poses
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and putative binding interactions between protein−protein
complexes.17−19

Rigorous free-energy approaches are based on the principles
of statistical mechanics and use molecular simulations to explore
the conformational space.20 These methods typically provide
more accurateΔΔG predictions, compared to nonrigorous. One
reason for this is that they inherently consider the conforma-
tional flexibility of the proteins and hence the entropic
contribution. In recent years, rigorous approaches have made
tremendous efficiency and theoretical advancements.11,20

Rigorous free-energy calculation approaches are typically
classified into three categories: endpoint methods, physical
path sampling, and alchemical transformation.20 Endpoint
methods typically use molecular mechanics force fields with
implicit solvent models such as molecular mechanics-general-
ized Born surface area (MMGB/SA) and molecular mechanics
Poisson−Boltzmann surface area (MMPB/SA).21,22 These
methods are computationally less expensive than other rigorous
approaches since simulations are only performed for two states;
however, their accuracy is system-dependent and sensitive to
simulation protocols such as sampling strategy and entropy
calculation. For path sampling approaches, the physical
unbinding and/or binding pathway of the protein with respect
to its partner is sampled to obtain the underlying free-energy
profile connecting bound and unbound states.23−25 This
category of methods can be very accurate but requires exhaustive
conformational sampling along the pathway making it computa-
tionally expensive. Finally, alchemical methods exploit un-
physical pathways by morphing, creating, and annihilating
atoms.26−29 These methods use molecular mechanics force
fields as an energy function and the sampling of the correct
thermodynamic ensemble is maintained by thermostatted and
barostatted dynamics. The primary advantage is that the
alchemical pathway does not need to be correlated with the
physical binding process. This is particularly advantageous when
considering relative binding affinity calculations due to single
amino acid mutations (such as the current study). In this case,
one needs to only calculate the free-energy change due to
alchemically mutating the amino acid to another type in both the
bound and unbound states.
Rigorous molecular dynamics (MD)-based alchemical free-

energy calculation can be performed using equilibrium (e.g.,
free-energy perturbation,30 thermodynamics integration31) or
nonequilibrium (e.g., the Jarzynski equality,32,33 Crooks
fluctuation theorem34) methods. The initial simulation setup
is the same for both equilibrium and nonequilibrium methods,
but the protocols used during the simulations and postanalyses
are different. The Hamiltonian H is coupled to a parameter λ
that navigates the system from wild-type (λ = 0) to mutant (λ =
1). While such alchemical methods can be very accurate, they
can also be computationally expensive since sufficient sampling
is required to overcome the energetic and entropic barriers. In
addition, the initial setup is not user-friendly, particularly when
there is a change in the net charge of the system.29,35,36

Specifically, the setup requires the topology of the protein
system to ensure that all bonded and nonbonded interactions
are correctly switched from λ = 0 to 1.
To enable more user-friendly alchemical free-energy calcu-

lations, de Groot et al. developed a package called pmx that
automatically generates hybrid protein structures and topologies
using force field-specific pregenerated mutation libraries.37−39

Moreover, to maintain the net charge of the system during
alchemical transformation, they developed an approach that

uses two protein systems in a single simulation box (double-
system/single-box).37,40 Their approach of using pmx-generated
topologies with a double-system/single-box approach was
previously used to predict protein folding ΔΔG values due to
mutations.37,38 Prior to the development of the pmx package, de
Groot et al. used the hybrid topology approach to calculate
binding free energies for ubiquitin in complex with different
protein substrates using a fast-growth thermodynamic integra-
tion approach with the Crooks−Gaussian intersection (CGI)
method.41 The main purpose of their study was to analyze
ubiquitin conformations due to point mutations and predict the
sign of ΔΔG for binding different substrates. They studied 11
mutations and obtained a Pearson correlation coefficient of 0.70
(p = 0.016). However, they have not explored the transition time
per snapshot for nonequilibrium simulations. Later, the same
group tested pmx with double-system/single-box approach to
predict ΔΔG binding free energies for the protein−protein
complex of α-chymotrypsin with its inhibitor Turkey Ovomu-
coid third domain with nine observed mutations of site L18 of
Turkey Ovomucoid third domain.40 The correlation coefficient
between predicted and experimental ΔΔG was 0.80. Although
promising, this protein−protein complex is small, all nine
mutations occurred at the same amino acid site and were
noncharge mutations.
Here, we tested the performance of using pmx with a double-

system/single-box approach in a systematic manner using two
protein−protein complexes of different sizes with a wide range
of experimentalΔΔG values. For each system, we selected eight
mutations from different sites with a broad range of experimental
ΔΔG values. We estimated ΔΔG values using pmx hybrid
topologies with a double-system/single-box approach and the
nonequilibrium CGI method. Predicted ΔΔG values were
compared with experimental values. In contrast to previous
studies by de Groot et al., we optimized the transition times for
the most stabilizing and themost destabilizing mutations of each
protein−protein system. Higher correlation was found for
smaller protein−protein complex as well as the larger, more
complex, antigen−antibody system. Our results suggest that
there is still room for improvement in rigorous binding free-
energy methods to reduce computational cost, especially for
large, complex protein−protein systems.

■ METHODS
Test System Selection. We selected two protein−protein

complexes from the SKEMPI database42 as test systems for this
study. We chose the relatively small Barnase (110 aa)−Barstar
(89 aa) complex (Protein Data Bank (PDB) ID: 1BRS)43 and
the larger, more challenging, antigen−antibody complex of
lysozyme (129 aa)−HY/HEL-10 FAB (429 aa) (PDB ID:
3HFM).44 1BRS has total 30 mutations, and 3HFM has 67
mutations reported with their binding constants (Kd) in
SKEMPI database. We wanted to shortlist eight mutations
from each system based on ΔΔG values. In order to do that we
first calculated ΔG values for wild-type and mutant using the
reported Kd and reported temperature (T) with eq 1

Δ = −G RT Kln d (1)

The ΔΔG values were calculated by taking the difference
between ΔG of the mutant and ΔG of wild-type. The average
ΔΔG value was used when multiple ΔΔG values for a single
mutation were in the database (Supporting Information Table
S1). We chose these systems and mutations based on several
criteria: (i) ΔΔG values should vary in signimportant since
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mutations with negative (stabilizing) values are often more
difficult to predict compared to positive (destabilizing) values;
(ii) there should be a small number of missing residues in the 3-
D structure of the protein complexes; (iii) chosen mutations
should be nonalanine-scanning point mutations at differing
amino acid sites; and (iv) reported mutations should be on
multiple chains (Figure 1, Supporting Information Table S1).
Preparation of Protein−Protein Complexes. The 3-D

structures of protein−protein complexes were downloaded from
the PDB server (https://www.rcsb.org) and edited to preserve
only the coordinates of the two or three interacting chains listed
in the SKEMPI database.42 All missing residues and atoms were
then added using MODELLER software.45 Mutants were
generated using the BuildModel command from FoldX
software.12,13 This process provided nine input structures for
each protein complex (a wild-type and eight mutant forms) to
carry out alchemical free-energy calculations.
Construction of Hybrid Residues. Alchemical binding

free-energy calculations require the construction of a non-
physical pathway of intermediate states connecting the wild-type
amino acid (λ = 0) to its mutant form (λ = 1). The pmx
webserver37,38 allows automatic generation of these intermedi-
ate states by producing hybrid amino acid states representing a
mixture of wild-type and mutant form (see Figure 2). Both wild-

type and mutant complex structure files were uploaded to the
pmx webserver. The pdb2gmx option to add hydrogen atoms,
and the Amber99SB*ILDN modified force field options were
selected. The pmx webserver output consisted of hybrid
structure and topology files compatible with GROMACS to
perform the alchemical MD simulations.
Free-Energy Calculation and the Thermodynamic

Cycle. To estimate relative binding free-energy values

(ΔΔG), we alchemically morphed the wild-type amino acids
to their mutated forms (Figure 2). This process was replicated
for both the bound and unbound states as indicated by
horizontal arrows in the thermodynamic cycle shown in Figure
3. We can efficiently obtain ΔG1 and ΔG3 values with high

accuracy using this approach.46−48 By contrast, to carry out
binding/unbinding simulations (vertical arrows in Figure 3), to
calculate ΔG2 and ΔG4 values would be considerably more
challenging and computationally expensive.
To estimate ΔG1 and ΔG3 (two horizontal arrows in Figure

3), we used the double-system/single-box approach developed
by Gapsys et al.40 Following this approach, we placed BoundWt

protein complex and UnboundMutant protein in a single
simulation box (λ = 0, Figure 4A) and similarly we placed
BoundMutant protein complex and UnboundMutant protein in a
second simulation box (λ = 1, Figure 4A). Figure 4B represents
the series of steps involved for setting up the system for MD
simulations and alchemical free-energy calculations. The
distance between the two protein systems in each simulation
box was maintained at 30 Å (Figure 4B) by applying position
restraints on a single backbone atom close to the center of mass
of each protein system. This separation distance was chosen to
be larger than the short-range electrostatics cutoff to ensure that
the two protein systems in a single simulation box did not
interact with each other. Alchemical transformation from λ = 0
to 1 is termed “forward”, where BoundWt was transformed into
BoundMutant and simultaneously UnboundMutant was transformed
into UnboundWt, that is, “backward” λ = 1 to 0. Two

Figure 1. 3-D structures of the test systems used in the current study with the eight selected mutations shown as orange spheres. Left: Barnase
(purple)−Barstar (yellow) protein complex (PDB ID: 1BRS); Right: lysozyme−HY (yellow) HEL-10 FAB (purple and blue) antigen−antibody
complex (PDB ID: 3HFM).

Figure 2. Example of a pmx-generated hybrid amino acid structure for
serine (λ = 0) to glutamic acid (λ = 1). Dummy atoms are shown as
transparent orange spheres.

Figure 3. Schematic representation of the thermodynamic cycle used to
calculate relative binding free energies due to mutation (ΔΔG =ΔG1−
ΔG3). Horizontal arrows indicate the non-physical pathways used in
the current study where the amino acid was alchemically morphed from
wild-type to its mutant form for both bound and unbound states.
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independent simulations (forward and backward) were thus
performed to calculate theΔΔG value for each mutation. Use of
the double-system/single-box approach enabled us to maintain
charge neutrality of the simulation system, even when an
alchemical transformation involved a charge change between the
wild-type and a mutant state, for example, R83Q.
MD Simulations and Alchemical Free-Energy Calcu-

lations. All MD simulations were carried out with the
GROMACS-2018.349 MD simulation package using the
Amber99SB*ILDN force field and the TIP3P water model.50

The pmx-generated hybrid structures and modified force field
files were used as an input. For each mutation, we prepared two
simulation boxes (λ = 0 and λ = 1, Figure 4A) to carry out
forward and backward transitions using the steps shown in
Figure 4B. Both the states were solvated using dodecahedron
water boxes. Na+ and Cl− ions were added at a 0.15 M
concentration to neutralize the net charge. Both the simulation
boxes were then energy-minimized for 10,000 steps using the
steepest descent algorithm. Subsequent NVT followed by NPT
ensemble simulations were performed for 500 ps for each
simulation box. Note that in the scripts provided by pmx, NVT
equilibration simulations were not performed; however, we
included them in our study to reduce the system instability we
observed. During the MD simulation, constant pressure and
temperature were maintained using Parrinello−Rahman51

pressure coupling at 1 atm and v-rescale temperature52 coupling
at 300 K. A 2 fs time step was used and each snapshot was saved
at every 10 ps. Final production MD simulations were then
performed for 40 ns to ensure sufficient sampling under NPT
conditions. To prevent the diffusion of the proteins and
maintain a 30 Å distance between the two protein systems,
backbone carbons close to the center of mass were harmonically
restrained with a force constant of 1000 kJ/mol nm2. Choice of
backbone C atoms used to apply position restraints for 1BRS
was made based on the bound and unbound forms: (i) site A40
of bound-state Barstar; (ii) site A74 of unbound Barnase; and
(iii) site L20 of unbound Barstar. While for 3HFM, (i) site Q37
of the bound-state light chain; (ii) site H41 of unbound state of
the light chain; and (iii) site L56 of the antigen. The light chain is
always bound to the heavy chain regardless of whether the
antigen is bound or unbound. These positional restraints affect
only the translational degrees of freedom of the proteins, not the
overall structure or orientation of the proteins. The contribution

of the positional restraints to the estimation of ΔG will be the
same for the bound and unbound form of the proteins and thus
the bias cancels out when calculatingΔΔG, as is the case for the
current study.
After the equilibrium MD simulations, fast-growth non-

equilibrium alchemical simulations were performed to estimate
theΔΔG. From each equilibratedMD simulation, the first 10 ns
of the trajectory was discarded, and the last 30 ns was used to
generate 100 snapshots (i.e., every 300 ps). Each snapshot was
used to initialize a nonequilibrium simulation with a transition
time of 5 ns for 1BRS and 8 ns for 3HFM (see the Supporting
Information) where λ was continuously changed from 0 to 1 or
from 1 to 0. The speed of λ value change was set 2 × 10−7/fs for
all forward and backward transitions. The derivatives of the
Hamiltonian with respect to λ were recorded at every step and
free energies were calculated from the work (W) distributions
obtained from integration according to eq 2.

∫ δ λ=
δλλ

λ

=

=
W

H
d

0

1

(2)

ΔΔG was estimated by calculating the intersection of the
forward and backward work distributions according to the CGI
method as described in Goette and Grubmüller.53 The scripts
used for analysis and calculations of ΔΔG were obtained from
the pmx package.

■ RESULTS AND DISCUSSION
The purpose of our study is to test the accuracy of using pmx
hybrid topologies and alchemical free-energy calculations with
the double-system/single-box approach developed by Gapsys et
al. to estimate relative binding affinities of protein−protein
complexes. The pmx package allows for automated generation of
the necessary hybrid topologies that are otherwise challenging to
generate, and the double-system/single-box approach is a simple
approach to maintain a neutral charge even when a mutation
changes the protein charge. We tested this approach on two
protein−protein systems of varying sizes (1BRS and 3HFM).
For each system, we selected eight distinct mutations with
experimental ΔΔG values reported in the literature using the
criteria listed under the Methods section.
For alchemical nonequilibrium free-energy calculations using

the fast growthmethod,39,54,55 the transition time from λ = 0 to 1
or λ = 1 to 0 significantly influences the accuracy of ΔΔG

Figure 4. Double-system/single-box simulation setup. (A) Each colored cylinder represents a simulation box. During the forward alchemical
transition, double systems consisting of BoundWt and UnboundMutant (blue cylinder, λ = 0) are morphed into BoundMutant and UnboundWt (λ = 1)
states, respectively. Similarly, backward alchemical transition (λ = 1 to λ = 0) takes place in the red cylinder. (B) Schematic representation of the steps
involved for setting up one of the double-system/single-box simulations for a mutation of 1BRS protein complex.
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prediction. Short transition times lead the system far away from
the equilibrium leading to a heavily biased estimate, while long
transition times are less biased but more computationally costly,
so the right balance is required.39 To develop our simulation
protocol, we initially chose two mutations from the 1BRS and
3HFM as test cases. These cases represent the most stabilizing
(1BRS:D54A, ΔΔG = −0.53 kcal/mol; 3HFM:Y20F, ΔΔG =
−0.48 kcal/mol) and destabilizing (1BRS:D39A, ΔΔG = 6.79
kcal/mol; 3HFM:K97D, ΔΔG = 6.77 kcal/mol) charge-
changing mutations from the list of eight selected mutations
(See Tables 1 & 2). To determine a reasonable transition time
for our production simulations, we calculated ΔΔG values for
both the test case mutations of 1BRS and 3HFM using 100
snapshots with a range of transition times from 1 to 7 ns for
1BRS and 1 to 10 ns for 3HFM. Supporting Information Figure
1 shows that transition times of 5 ns for 1BRS and 8 ns for 3HFM
were sufficient to accurately estimate the free energies for these
challenging mutations.
ΔΔG values of the remaining six mutations of 1BRS and

3HFM were estimated using the optimized simulation protocol
and the transition time established through test case mutations.
The predicted ΔΔG values were within ±2 kcal/mol of
experimental ΔΔG values for optimized transition times for
both protein−protein systems. In addition, experimental ΔΔG
errors are within ±0.2 kcal/mol for both the test systems.
Figure 5 shows the correlation between the predicted and

experimental ΔΔG values for all mutations from both the test
systems. The calculated ΔΔG values correlate well with
experimental data (R2 = 0.85) for a smaller system of 1BRS

and (R2 = 0.81) for the larger, antigen−antibody complex
3HFM. The noncharge mutations from the 1BRS system such as
W44F and W38F have the predicted ΔΔG values within the
range of ±0.5 kcal/mol of experimental ΔΔG values. The
convergence time for these mutations was within 1−2 ns
transition time/snapshot. In the case of 3HFM, the noncharge
mutations Y20F, W98F, and Y50L have higher accuracy, within
range of ±1 kcal/mol of experimentalΔΔG values compared to
other charge-changing mutations. Conversely, the charge-
changing mutations are challenging to achieve convergence in
free-energy calculations with short transition time. Longer

Table 1. Predicted Relative Binding Free Energy of Each Mutation of 1BRS at Different Transition Times between 1 to 5 ns for
100 Independent Transitionsa

ΔΔG (kcal/mol)

mutations (1BRS) experimental 1 ns 2 ns 3 ns 4 ns 5 ns 6 ns 7 ns

D54A −0.53 17.71 15.77 11.94 4.92 −2.07 −2.46 −1.89
W44F 0.06 ± 0.2 0.48 0.23 0.41 0.61 0.32
W38F 1.64 ± 0.2 0.94 1.14 1.13 1.02 1.38
R59K 2.49 7.91 10.16 7.03 3.84 2.37
E73S 3.01 ± 0.2 −27.01 −19.31 −5.3 −1.30 1.49
H102D 4.55 12.39 10.98 9.86 7.87 5.05
R83Q 5.42 ± 0.2 −2.39 13.59 15.18 9.35 6.73
D39A 6.79 8.93 10.45 9.45 7.60 4.97 5.42 4.65

aEstimated ΔΔG values of all eight mutations of the 1BRS system for 100 independent transitions. The predicted ΔΔG values were compared with
the corresponding experimental data. ΔΔG values beyond 5 ns of transition time are for test mutations D54A and D39A as a part of the
convergence study.

Table 2. Predicted Relative Binding Free Energy of Each Mutation of 3HFM at Different Transition Times between 1 to 8 ns for
100 Independent Transitionsa

ΔΔG (kcal/mol)

mutations (3HFM) experimental 1 ns 2 ns 3 ns 4 ns 5 ns 6 ns 7 ns 8 ns 9 ns 10 ns

Y20F −0.48 −7.53 −6.34 −3.45 −2.95 −0.34 −1.02 −0.83 0.07 −0.69 −0.98
D32N 0.17 ± 0.3 −3.47 −5.67 −2.99 −1.32 −1.59 −1.98 −1.14 0.53
R21A 0.90 5.82 7.54 4.56 3.98 1.23 2.34 1.74 1.35
D101K 2.13 16.98 13.27 7.43 3.59 −0.46 −1.27 0.87 0.12
W98F 3.25 ± 0.16 7.49 5.89 6.78 2.35 −0.16 −0.87 0.46 2.23
Y50L 4.39 ± 0.12 9.65 6.37 2.36 1.33 0.10 1.37 2.89 3.26
N31E 5.71 ± 0.13 13.28 8.73 9.67 4.78 −1.26 0.56 2.34 3.52
K97D 6.77 ± 0.14 10.25 10.47 7.09 5.36 9.00 7.20 8.33 6.83 7.86 8.24

aEstimated ΔΔG values of all eight mutations of the 3HFM system for 100 independent transitions. The predicted ΔΔG values were compared
with the corresponding experimental data. ΔΔG values beyond 8 ns of transition time are for test mutations Y20F and K97D as a part of the
convergence study.

Figure 5.Correlation between predicted and experimentalΔΔG values
for 1BRS (red) and 3HFM (blue) systems. The dashed black line shows
perfect correlation.
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transition times are likely needed in these cases to allow for
sufficient conformational sampling. All the charge-changing
mutations of the 1BRS system converged at around a 5 ns
transition time with relatively high accuracy (±2 kcal/mol of
experimental ΔΔG). However, in 3HFM, the charge-changing
mutations show convergence at around 8 ns transition time with
an accuracy of ±2.5 kcal/mol of experimental ΔΔG.
Both the test systems in this study were previously used by our

laboratory to predict ΔΔG values for the same eight mutations
using the nonrigorous methods FoldX and MD + FoldX and
rigorous coarse-grained umbrella sampling MD simulations.56

The pmx with a double-system/single-box approach signifi-
cantly outperforms the accuracy our previous FoldX12,13

(1BRS:R2 = 0.59, 3HFM:R2 = −0.005), MD + FoldX57−59

(1BRS:R2 = 0.62, 3HFM:R2 = 0.04), and coarse-grained
umbrella sampling (1BRS:R2 = 0.85, 3HFM:R2 = 0.35)
estimates in both the complexes. There is an especially large
improvement in the accuracy of predicted ΔΔG values for the
antigen−antibody complex, 3HFM, with all-atom pmx with a
double-system/single-box approach.
In this study, we used 100 snapshots per mutation to initiate

the alchemical transitions and each snapshot was simulated for 5
ns. This means that 500 ns total simulation time was used to
estimate ΔΔG for both forward and backward directions. The
equilibration simulation required ∼4500 CPUh for one
mutation for the 1BRS system while in the case of 3HFM, it
required ∼85,300 CPUh. With pmx with a double-system/
single-box approach, the alchemical nonequilibrium simulation
time is the major contributing factor to estimate the computa-
tional cost for the calculation of one ΔΔG. In the 1BRS system,
nonequilibrium simulations required ∼45,000 CPUh for 100
transitions per ΔΔG prediction, however almost 30 times more
CPUh (∼1,364,800) required in the case of the 3HFM system.
It should also be noted that nonequilibrium alchemical
transition is trivially parallelizable in that each of the 100
transitions can be run independently without relying on the
completion of the previous simulation.
In order to obtain accurate binding free-energy values for

protein−protein complex, exhaustive conformational sampling
is required in order to sufficiently explore conformational space.
Larger protein−protein complexes, such as antigen−antibody
complex 3HFM studied here, require longer simulations to
obtain convergence compared to smaller protein−protein
complexes such as 1BRS.60−62 In our study, we first optimized
the protocol to calculateΔΔG values for themost stabilizing and
the most destabilizing mutations of 1BRS and 3HFM systems
and then applied the same protocol to rest of the mutations. We
note that the accuracy of the nonequilibrium method could
possibly be improved39 via (i) longer equilibrium simulations to
generate snapshots with more distant conformations, (ii)
increasing the transition time per snapshot, and (iii) increasing
number of independent transitions.We observed that in the case
of 3HFM, the accuracy of ΔΔG values was improved with
increasing the transition time per snapshot.
Future work could involve using the alchemical double-

system/single-box method but with coarse-grained protein
models. Based on results from our previous study,56 this may
significantly reduce computational cost and still retain similar
accuracy. However, coarse-grained hybrid topologies of the
proteins have not yet been developed. Another approach to
reducing computational cost could be use of a dual-resolution
water model where water around the protein is atomistic and the
rest of the water molecules coarse-grained.63−65

■ CONCLUSIONS
In this study, we have estimated protein−protein relative
binding affinities due to single amino acid mutations using pmx
hybrid topologies with a double-system/single-box approach.
Nonequilibrium alchemical methods were used to generate
ΔΔG estimates for one small and one large protein−protein
complex, and results were compared with experimental values.
We obtained a significantly higher correlation between
predicted and experimental ΔΔG values for the small complex
as well as the larger one. We were able to successfully distinguish
stabilizing mutations from nonstabilizing mutations for all
mutations in small complex and the large antigen−antibody
complex. The accuracy of the predictions for the large complex is
improved compared to previously tested rigorous and non-
rigorous methods. Our results suggest that there are still
potential areas for improvement in the reduction of computa-
tional cost for binding free-energy calculations, especially for
larger protein−protein complexes. Future work could also be
devoted to estimating binding free energies due to multiple
mutations.
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