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Abstract— The problem of private information retrieval with
graph-based replicated storage was recently introduced by Raviv,
Tamo and Yaakobi. Its capacity remains open in almost all
cases. In this work the asymptotic (large number of messages)
capacity of this problem is studied along with its generalizations
to include arbitrary T-privacy and X -security constraints, where
the privacy of the user must be protected against any set of up to
T colluding servers and the security of the stored data must be
protected against any set of up to X colluding servers. A general
achievable scheme for arbitrary storage patterns is presented that
achieves the rate (pmin— X —T') /N, where N is the total num-
ber of servers, and each message is replicated at least p,in times.
Notably, the scheme makes use of a special structure inspired
by dual Generalized Reed Solomon (GRS) codes. A general
converse is also presented. The two bounds are shown to match
for many settings, including symmetric storage patterns. Finally,
the asymptotic capacity is fully characterized for the case without
security constraints (X = 0) for arbitrary storage patterns
provided that each message is replicated no more than T + 2
times. As an example of this result, consider PIR with arbitrary
graph based storage (I'" = 1, X = 0) where every message is
replicated at exactly 3 servers. For this 3-replicated storage set-
ting, the asymptotic capacity is equal to 2/v2(G) where v2(G)
is the maximum size of a 2-matching in a storage graph G[V, E].
In this undirected graph, the vertices V' correspond to the set of
servers, and there is an edge uv € E between vertices v, v only
if a subset of messages is replicated at both servers v and v.

Index Terms— Security, privacy, capacity, graph theory, dis-
tributed storage.

I. INTRODUCTION

S DISTRIBUTED storage systems become increasingly
prevalent, there are mounting concerns regarding user
privacy and data security. The problem of X-secure and 7-
private information retrieval (XSTPIR) deals with both of these
issues [1]. In its basic form, private information retrieval (PIR)
involves K datasets (messages) that are replicated at N
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distributed servers, and a user who wishes to retrieve one
of these datasets without revealing any information about the
identity of his desired dataset to any of the servers [2], [3].
XSTPIR is a generalization of PIR where the stored data must
remain secure as long as the number of colluding servers is
not more than X, and the user’s privacy must be preserved
as long as the number of colluding servers is not more than
T [1]. The rate of a PIR scheme is the ratio of the number
of bits of desired message that are retrieved per bit of total
download from all servers. The supremum of achievable rates
is called the capacity of PIR [4].

The capacity of the basic PIR setting was characterized in
[4] for arbitrary number of messages replicated across arbitrary
number of servers. Following in the footsteps of [4] there
has been a wave of new results exploring the fundamental
limits of PIR under a variety of constraints. This includes
PIR with T-privacy and replicated storage [5], PIR with MDS
coded storage [6], [7], PIR with optimal storage and upload
cost [8], PIR with arbitrary message lengths [9], PIR with
restricted collusion patterns [10], [11], PIR with T-privacy
and MDS coded storage [12], [13], multi-message PIR [14],
PIR with asymmetric traffic constraints [15], multi-round PIR
[16], cache-aided and otherwise storage-constrained PIR [17],
[18], PIR with side-information [19], [20], PIR for compu-
tation [21]-[24], PIR for security against eavesdroppers [25],
[26], PIR with Byzantine adversaries [27]-[29], symmetrically
secure PIR [30]-[32], and PIR with secure storage [1], [33].

Most relevant to this work is the recent characterization
in [1] of the asymptotic (K — o0) capacity of XSTPIR as
Cyxsrw = 1 — (X + T)/N. Note that the XSTPIR setting
includes as special case the TPIR setting, obtained by setting
X =0, as well as the original PIR setting, obtained by setting
X =0 and T = 1. It is limited, however, by its assumption
of fully replicated storage, i.e., all messages are stored by all
servers, which can be burdensome for large data sets. Moti-
vated by the preference for simple storage, Raviv ef al. [34]
introduced a graph based replicated storage model. Instead
of full replication where every message is replicated at every
server, graph based replication assumes that each message
is replicated only among a subset of servers. This allows a
graph representation where the vertices are the NV servers and
each message is represented by a hyperedge comprised of
vertices (servers) where this message is replicated. Reference
[34] primarily focuses on GTPIR, i.e., PIR with graph based
replicated storage and T-privacy. An achievable scheme is
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proposed that achieves the rate 1/N as long as T' is smaller
than the replication factor of each message (the number of
servers where the message is replicated), and is shown to
be within a factor of 2 from optimality for some special
cases. Reference [35] presents capacity achieving schemes for
several cases of GPIR, i.e., GTPIR with 1-privacy where each
server stores 2 messages. However, optimal GTPIR schemes
remain unknown in almost all settings. Understanding the key
ideas that constitute optimal PIR schemes under graph based
replicated storage is our goal in this paper.

The main contributions of this work are as follows. We study
the asymptotic capacity of T-private and X-secure PIR with
graph-based replicated storage, in short GXSTPIR. Recall that
asymptotic capacity is quite meaningful for PIR because the
number of messages is typically large, and the convergence
of capacity to its asymptotic value tends to take place quite
rapidly [1]. GXSTPIR includes as special cases the settings
of GTPIR [34], XSTPIR [1], TPIR [5] and basic PIR [4],
and as such it presents a unified view of these settings.
Our first result is an achievable scheme for GXSTPIR that
achieves the rate (pmin — X — T)/N for arbitrary storage
patterns provided every message is replicated at least pmin
times. In addition to ideas like cross-subspace alignment,
Reed-Solomon (RS) coded storage and RS coded queries
that were previously used for XSTPIR [1], a key novelty of
our achievable scheme for GXSTPIR is how it creates and
takes advantage of a structure inspired by dual Generalized
Reed Solomon (GRS) codes. This is explained intuitively in
Section III-B. Our second contribution is a general converse
bound for asymptotic capacity of GXSTPIR with arbitrary
storage patterns. While the asymptotic capacity of GXSTPIR
remains open in general, it is remarkable that our converse
bound is tight in all settings where we are able to settle the
capacity. In particular, the general achievable scheme matches
the converse bound when the storage is symmetric, settling the
asymptotic capacity for those settings.! For several examples
with asymmetric storage, it turns out that the achievable
scheme can be improved to match the converse bound by
applying it only after eliminating® certain redundant servers.
Thus, the asymptotic capacity for such cases is settled as
well. In general however, with arbitrary graph based storage,
more sophisticated achievable schemes may be obtained by
combining our achievable scheme with ideas from private
computation [21]. To illustrate this, we consider the GTPIR
problem (X = 0) where every message is replicated no more
than 7'+ 2 times. As our final result, for this problem we fully
settle the asymptotic capacity for arbitrary storage patterns.
The asymptotic capacity depends strongly on the storage graph
structure, and requires a private computation scheme on top of
our general achievable scheme. As an example of this result,
consider GPIR, i.e., PIR with arbitrary graph based storage
(T'=1,X = 0) where every message is replicated at exactly
3 servers. For this 3-replicated storage setting, the asymptotic
capacity is exactly equal to 2/v2(G) where v2(G) is the

'We refer the reader to Section III for the definition of symmetric storage.
2By “eliminating a server” for an achievable scheme, we mean using an
achievable scheme that does not send any query to that server.
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maximum size of a 2-matching in a storage graph G[V, E].
In this storage graph, the vertices V' correspond to the set
of servers, and there is an edge uv € E between vertices
u, v only if a subset of messages is replicated at both servers
u and v. This is consistent with the intuition that storage
graph properties must be essential to the asymptotic capacity
of graph-based storage.

Notation: For a positive integer M the notation [M] denotes
the set {1,2,---,M}. The notation X[y stands for the
set {X1,Xo,...,Xn}. Similarly, for an index set Z =
{i1,42,...,in}, Xz denotes the set {X;,, X;,,..., X;, }.If A
is a set of random variables, then by H(A) we denote the
joint entropy of those random variables. Mutual informations
between sets of random variables are similarly defined. For
tuples such as A = (a1, a9, - ,a,) we allow set theoretic
notions of inclusion. For example, b € A denotes the relation-
ship b € {a1,az2,- - ,ay,}. Similarly, b € A\ {a1} denotes
b€ {az,as, - ,an}. The notation X ~ Y is used to indicate
that X and Y are identically distributed. When a natural
number, say ¢ € N, is used to represent an element of a finite
field F,, it denotes the sum of ¢ ones in F, i.e., ¢ £ Zle 1,
where the addition is over F,.

II. PROBLEM STATEMENT
We begin with a description of messages and storage
structure. Based on the storage structure we will partition
the set of messages into M subsets so that the messages
in the same subset have the same storage structure. Define
W= Wi, Wa, -+, Wxr) where W,,,, m € [M], are disjoint
message sets, each comprised of K, messages,

Wm - (Wm,lv Wm,Q; Tty Wm,Km)~ (1)

Messages are independent, and each message is composed of
L ii.d. uniform symbols from F, i.e.,

H(Wm,k) = H(ka(l)v Wm>k(2)a Tt Wm,k(L)) =1L,
VYm € [M], ke [Km,] (2)
M
HWig,- , Waky) = Y Kl 3
m=1

in g-ary units. There are a total of N servers. Corresponding
to W= (Wi, -, W), let us define

R=(Ri, -, Rm), “)
R = (Rm(1), -, Rin(pm)) , Ym € [M], 5)
Rm(r) € [N],V?“ € [pm]v (6)

where R,,, m € [M] contains the servers, R,,(r) € [N] that
store the m'" set of messages W,,. Without loss of generality
we will assume that the servers are listed in increasing order in
each tuple R,,. The cardinality of R,, is |R..| = pm, which
will be referred to as the replication factor for the messages
in Wp,. The minimum replication factor is defined as

@)

min_ p,.

p in —
min
me []\4]

It is important to note that the messages may not be directly
replicated at the servers. Because of security constraints, each
message Wy, € W,,, is represented by a total of py,
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shares (the nomenclature comes from secret-sharing), denoted
Wk = (W(") n € R, ), such that the share W( 3@ is

m,k>
stored at Server n, for all n € R,,. Messages are 1ndepen—
dently secured and must be recoverable from their shares,

as specified by the following constraints.
HWia, - Wwak,,) = Z
mE[M],k)E[KJW]
H (Wm,k’ | Wm,k) =0. )

HWng), 8

Let us define the index set of WV,,, that are stored at Server n,
as

M, ={me [M]‘Rm > nl. (10)
The information stored at Server n is defined as

For example, suppose we have M = 4 message sets (each
comprised of K, = 2 messages), stored at N = 4 servers as
shown.

Server 1 Server 2
Wi, Wa, W3 Wi, Wa
Server 3 Server 4
WQ,WZI W17W37W4
Then for this example,® we have,
Ml = {1)273}’ 721 = (1a274)a P1 = 3;
S1 = {Wl(,ll)v W1(12)7 WQ(,ll)? W2(12)7 W?S,ll)v W?SIQ)}v (12)
M2 = {152}7 RQ = (17253)7 p2 = 37
M3 = {254}7 R3 = (174)5 pP3 = 27
Sy = (Wi, Wi, wi, wily, (14)
M4={1 3,4}, Ra=(3,4), ps =2,
={W (4) (4) W?f41), W?f42), 241)7 (4)}7 (15)

and ppin = 2.
The X-secure constraint, 0 < X < N, requires that any X
(or fewer) colluding servers learn nothing about the messages.

I(Sx; W) =0, VX C[N],|X|<X. (16)

X = 0 represents the setting without security constraints.
If X = 0, then no secret sharing is needed, so each share
of a message is the message itself,

[X -Security]

X=0— w"m =

mk Wm,,ka Vn € Rop. (17)

This completes the description of the messages and the storage
at the N servers. Next, let us describe the private information
retrieval aspect.

The user desires the message W, ., where the indices
p and k are chosen privately and uniformly by the user

3Incidentally, our results will show that as K,, — oo, for this example
Coo = 1/3, and Server 2 is redundant.
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from 4 € [M],k € [K,], respectively. In order to

retrieve his desired message, the user generates N queries,

[1“"{], [2”’51, ceey E@’K], and sends the n'" query, Q#’K] to

the n-th server. The user has no prior knowledge of the

message realizations,

1,1 M,K

1 (S[N] ;M Ry Q{N]]’ T ’Q%N]/ M]) =0.

A T-private scheme, 1 < T < N, requires that any 7' (or
fewer) colluding servers learn nothing about (u, k).

(18)

[T-Privacy] I( ol ) =0, VT C[N],|T|<T.
(19)

Upon receiving the query QL{‘ ’F"], the n-th server generates an
answer string A;;""', which is a function of the query QL{"”]

and its stored information S,,.

H (AL;”

The correctness constraint guarantees that from all the
answers, the user is able to decode the desired message W, .,

K] | QL{”vk],Sn) —0, Vme[M],ke[Kn] (20)

[Correctness] H (W;m | A%’;\;f],QPf\;f],u,m) =0. 21

The rate of a GXSTPIR scheme is defined by the number
of g-ary symbols of desired message that are retrieved per
downloaded g-ary symbol,

H L
where D = Zne H A[” 1) is the expected* total number

of g-ary symbols downloaded by the user from all servers. The
capacity of GXSTPIR, denoted as C'(N, X, T, W, S), is the
supremum of R across all feasible schemes. In this work we
are interested in the setting where each subset of messages
is comprised of a large number of messages. Specifically,
we wish to characterize the asymptotic capacity, as K,,, — oo
for all m € [M]. In order to have K,, approach infinity
together for all m € [M], let us define,
so that x,,,, m € [M] are fixed constants, while K approaches
infinity. Then the asymptotic capacity is defined as

CoozKlim C(N, X, T, W,S). (24)
Note that the number of message sets, M, and the storage
pattern R remain unchanged, while K,,, i.e., the number of
messages in each W, approaches infinity.

4While the achievable schemes used in this work only download a deter-
ministic number of bits from each server, note that our capacity formulation
allows schemes for which the number of bits downloaded from each server
may be random. This means that our capacity results cannot be improved
upon by schemes that download a random number of bits from each server.
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III. RESULTS

Our first result is a general achievability argument that
provides us a lower bound on the asymptotic capacity of
GXSTPIR.

Theorem 1: The asymptotic capacity of GXSTPIR is
bounded below as follows,

Pmin — X - T
Coo > N .

The proof of Theorem 1 appears in Section IV. From a prac-
tical standpoint, it is worth noting that while the achievable
rate in (25) does not depend on the storage structure beyond
just the minimum replication factor pn,, the achievable
scheme does require that the user be aware of the storage struc-
ture for the construction of queries that are sent to the servers.
From a technical standpoint, the most interesting aspect of the
proof is the use of a structure inspired by dual GRS codes, that
is intuitively explained in Section III-B. Another interesting
aspect of Theorem 1 is that applying it to a subset of servers
(by eliminating the rest) may produce a higher achievable rate
than if all servers were used. Therefore, in order to find the best
achievable rate guaranteed by Theorem 1 we must choose the
best subset of servers. Example 4 in Section III-A illustrates
this idea. As a final remark, let us reiterate that the focus
of this work is on settings with large number of messages.
Indeed for smaller values of K and M the schemes presented
in [34], [35] can achieve better rates than the scheme presented
in Section IV.

Our next result is a converse argument that holds for
arbitrary storage patterns. Recall that D,, = H (AL? ’H]) /L is
the normalized download from Server n.

Theorem 2: The asymptotic capacity of GXSTPIR is
bounded above as follows,

(25)

0’ Pmin S X + T
Cx < max(p,.-,Dn)ED (D1+D2+"'+DN)_1a
Pmin > X +T
(26)

and D is defined as

DA (Dl,...,DN)eIRﬂ‘ > Dn>1, ¥me [M],
neR!

m

VR., C R, |RL| = [Rm| — X = T}.

m

27)

The proof of Theorem 2 appears in Section V. Since the
asymptotic capacity is zero for pyin < X+7, in the remainder
of this section we will assume that pp,i, > X + 7. Note that
since our focus is on settings with asymptotically large number
of messages, our coding schemes achieve rate zero for cases
where the asymptotic capacity is zero.

Remark: Note that (27) implies that the total normalized
download from any p,, — X — T servers in R,, must be at
least 1. A simple averaging argument implies that the total
normalized download from all p,, servers in any R,, must be
at least pp,/(pm — X = T).

The general lower bound in Theorem 1 is in closed form and
the general upper bound in Theorem 2 is essentially a linear
program, so for arbitrary settings it is possible to evaluate
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both to check if they match (provided the parameter values
are not too large to be computationally feasible). Conceptually,
the condition for them to match may be understood as follows.
Consider a hypergraph G(V, &) with the set of vertices V =
[N] representing the N servers, and the set of hyperedges &£
such that e € £ if and only if Im € [M] such that e C R,,
and |e| = |R,,| — X — T. For this graph, hyperedges ¢ €
&, with corresponding weights x. € R, are said to form a
fractional matching if for every vertex v € V the total weight
of the edges that include v is less than or equal to 1. The
largest possible total weight of a fractional matching is called
the fractional matching number of G [36]. The relationship
between the optimal converse bound from Theorem 2 on the
total normalized download, i.e., minp(D; + -+ + Dy) and
the fractional matching number of G[V, £] is characterized in
the following lemma.

Lemma 1: The optimal value of total normalized download,
minp(D; + Da + --- 4+ Dy), in Theorem 2 is equal to the
fractional matching number of G[V, £].

The proof of Lemma 1 is presented in Appendix A. From
Lemma 1, the following corollary immediately follows.

Corollary 1: The lower bound of Theorem 1 matches the
upper bound of Theorem 2 if and only if the fractional
matching number of G(V,€) is equal to pnn_% For all
such cases, the asymptotic capacity Coo = (pmin—X —T')/N.

Next let us identify some interesting special cases of
Corollary 1.

Let R g be a collection of the sets R,,,m € M’ C [M].
We define R ¢ to be an exact b-cover of [N] if p, = pmin for
all m € M’, and every element of [N] is contained in exactly
b sets in R . It follows that the asymptotic capacity Cyo =
(pmin—X —T')/N if there exists an exact b-cover for some b €
Z . This is easily seen because for each R, in R s we have
the bound EneRm Dy, > pmin/(pPmin — X — T) according to
(27). Adding all these bounds we obtain the desired converse
bound bzne[]v] D, > (bN/Pmin)(pmin/(pmin - X - T)),
e, > ey Pn 2 N/(pmin — X — T)), which is achievable
according to Theorem 1.

(Symmetric Storage) As a special case that is of particular
interest, define a symmetric storage setting as one where (after
some permutation of message and server indices) for all m €
[M], R = (pm+17 pm—f—?, s ,pm“‘pmin)» Here, P < Pmin
and server indices are interpreted modulo N, e.g., Server N+1
is the same as Server 1. Furthermore, b = M pp,in/N is an
integer value. Then any symmetric storage setting thus defined
has asymptotic capacity Coo = (pmin — X — T')/N because
the storage sets form an exact b-cover.

Based on these observations, here are some examples of
storage patterns where the asymptotic capacity is Con =
(pmin = X = T)/N.

1) R=1((1,2),(2,3),(3,1)) which is a symmetric storage
setting (forms an exact 2 cover).

)R = ((1,2,3),(3,4,5),(5,1,2),(2,3,4),(4,5,1))
which is a symmetric storage setting (forms an exact
3-cover).

3) R=((1,2),(2,3),(3,1),(4,5), (5,6), (6,4)) because it
forms an exact 2 cover.
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4) R=1((1,2,3),(4,5,6),(i,7,k), (a,b, c,d)) for arbitrary
{i,4,k}, {a,b,c,d} C [N] = [6] because it contains an
exact 1-cover, Ry = {(1,2,3),(4,5,6)}.

5) R:((172a3)7(3a4 1) ( 5a6) (4a576) (1 3, 6) ( 2,
5,6)) because it contains an exact 2-cover of [N] = [6]
in Rpme =4{(1,2,3),(3,4,1),(2,5,6),(4,5,6)}.

While the existence of an exact b-cover for some positive
integer b is sufficient to guarantee that the asymptotic capacity
is Coo = (pmin — X —T)/N, it is not a necessary condition.
Examples 1 and 2 in Section III-A show such settings.

On the other hand, it is also easy to see that the lower
bound of Theorem 1 and the upper bound of Theorem 2 do
not always match. Remarkably, in all such cases that we have
been able to settle so far, it is the upper bound that is tight,
and the achievability that needs to be improved. In many cases,
such as Example 4 in Section III-A, an improved achievability
result is found easily by eliminating a redundant server before
applying Theorem 1. However, more sophisticated achievable
schemes may be required in general.

Our final result emphasizes this point by settling the asymp-
totic capacity of GTPIR, i.e., T-private information retrieval
with arbitrary graph based storage and no security constraints
(X = 0), provided each message is replicated no more than
(T'+ 2) times. Because this result deals with arbitrary storage
patterns, for its precise statement we will need the following
definitions that follow the convention of Schrijver [36].

Definition 1: Define G = (V, E) as a simple undirected
graph with vertices V' = [N] corresponding to the N servers,
and with edges uwv € E if and only if {u,v} C R, for some
m € [M].

Definition 2: For a set U C V, we define G[U] as the
induced subgraph of G whose vertex set is U and whose edge
set, denoted F[U] consists of all edges uv € E such that
u,v € U.

Definition 3: A set U C V is called a stable set (also
called independent set) if there are no edges between any two
members of U.

Definition 4: For U C [N], define N(U) as the set of
vertices in V\U that are neighbors of vertices in U.

Definition 5: Define §(n) as the set of edges incident with
vertex n.

Definition 6: A function x : E — Z is denoted as a vector
T € Zf. A function y : V — Z, is similarly denoted as a
vector y € ZK. The size of a vector is defined as the sum of
its entries.

Definition 7: For any x € Z¥, and F C E, define x(F) =
> rer o(f):

Definition 8: For a positive integer b, a b-matching in G is
defined as a vector x € Z¥ satisfying z(6(v)) < b for each
vertex v € V. The maximum size of a b-matching in G is
defined as v,(G).

Definition 9: Define N, as the set of servers that do not
store any messages that are replicated fewer than r times.

N, = {ne[N]jmeM, = pn>r} (28)
It is worthwhile to recall that from basic results in graph theory
(see Chapter 30, Section 30.1 of Schrijver [36]), it is known
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that
va(G) = min { AU+ IN@)] | U c v,
and U is a stable set}. (29)

With this we are ready to state our final result.

Theorem 3: The asymptotic capacity of GTPIR with p,, <
T+2 for all m € [M], i.e., when each message set is replicated
no more than (T + 2) times, is

(30)

0,
Co = { 2
v2(GNT2]) +2[N1 1]

The proof of Theorem 3 appears in Section VI. While
the converse bound for Theorem 3 follows directly from
the general converse bound in Theorem 2, the achievability
goes beyond the scheme of Theorem 1, to involve a limited
generalization to private computation that is presented in
Section IV-C. As an interesting special case of Theorem 3,
note that if all messages are T'+ 2 replicated, i.e., N1 is an
empty set, then the asymptotic capacity is exactly 2/vs(G).

Remark: In general, for arbitrary positive integer b, any
bounds on b-matching will result in a corresponding lower
bound of Zne D,,. However, since the converse bounds for
2-matchings are found to be tight, there is no need to pursue
b # 2, because no more bounds are needed. For larger p,,,
perhaps similar results are possible in the hypergraph version,
but we have not been able to find meaningful generalizations
along these lines.

A. Examples

Let us consider a few more examples to illustrate our results.
For these examples we set X = 0,7 = 1 for simplicity, but
similar examples are easily constructed for X > 0,7 > 1 as
well.

1) Consider M = 3 message sets, stored at N = 4 servers
according to the replication pattern R; = (1,2,4),
Re = (1,2,3), Rg = (1,3,4). Since every message
is 3-replicated, according to Theorem 1 we have C, >
2/4 = 1/2. For the converse we note that Ry =—
Di+Dy >1, Ry = Dy+D3 >1, Ry =
D3+ Dy > 1,D4+ Dy > 1, and adding these bounds
gives us Dy + Dy + D3 + Dy > 2. Thus we have
Cs = 1/2 for this example. Note that this example
does not contain an exact b-cover for any positive integer
b, but the asymptotic capacity for this example is still
Coo = (pmin — X —T)/N.

2) Consider M = 3 message sets stored at N = 5 servers
according to the replication pattern R1 = (1,3,4), Ro =
(3,4,5),Rs = (2,3,5), so that every message is 3-
replicated, but the storage is not symmetric, nor does
it contain an exact b-cover. For the converse we note
that Riy = D4+ D1 >1,D1+ D3 >1;,Rs =
Ds+Dy >1,Ds4+D5 > 1; Ry = Ds+D4 > 1;and
combining these bounds gives us the converse bound as
Cs < maxp 1/(Zn€[5] D,,) < 2/5. Since pmin = 3,
Theorem 1 shows that the rate (pmin—X —T)/N =2/5
is achievable, so that C'n, = 2/5 for this example.
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3) Consider M = 3 message sets stored at N = 5 servers
according to the replication pattern Ry = (1, 3,4), Re =
(1,3,4,5),Rs = (2,3, 5), so that messages in Ws are 4-
replicated while those in W;, W5 are only 3-replicated.
For the converse we note that Ry — D; + D3 >
1,D3s + Dy > 1,Dy + Dy > 1; while Rg3 —
2Dy + 2D5 > 2. Adding them up we have the bound
Dy + D3 + D3 + Dy + D5 > 5/2, which gives us the
converse bound Co, < 2/5. Since ppmin = 3, the lower
bound from Theorem 1 is also 2/5, so that Co, = 2/5
for this example. Note that we could eliminate any one
element from R9 so that messages in WV, are also only
3-replicated, but that would not change the asymptotic
capacity. Or we could add one more element to Ra
so that messages in W, are replicated at every server,
and that would also not change the capacity. Thus, this
example illustrates redundant storage.

4) Consider M = 2 message sets stored at N = 5 servers
according to the replication pattern Ry = (1,2,3,4),
R2 = (2,3,4,5), so that each message is 4-replicated.
The converse from Theorem 2 says C, < 2/3, which
corresponds to D1 = D5 = 0,Dy = D3 = Dy = 1/2,
but since pmin = 4, Theorem 1 applied directly only
proves the achievability of rate (pmin—X —T)/N = 3/5
which does not match the converse bound. However,
note that if we eliminate Server 1 and Server 5, then
we are left with the same> M = 2 message sets stored
at N’ = 3 servers according to the replication pattern
R} =(2,3,4), R, = (2,3,4), for which p/ , =3, and
Theorem 1 shows that the rate (p/ ., — X —T)/N’' =
2/3 is achievable, which indeed matches the converse
bound. Thus, the asymptotic capacity for this example
is Coo = 2/3. The example shows that achievable rates
may be improved by eliminating redundant servers.

5) Consider M = 4 message sets stored at N = 5 servers
according to the storage pattern R = (1,2,3),Re =
(2,3,4),Rs = (1,3,5), R4y = (2,4), so that messages
in Wi, Ws, W5 are 3-replicated, while messages in Ry
are 2-replicated, and pnin = 2. The achievable scheme
from Theorem 1 achieves a rate 1/5, however Theo-
rem 3 builds upon that scheme to achieve the rate 2/7
which also matches the converse. Thus, for this setting,
the capacity is settled by Theorem 3 as Co, = 2/7.

6) Consider M = 5 message sets stored at N = 8 servers
according to the storage pattern Ry = (1,2,3), Ry =
(1a 3, 4); Rs = (4a 5, 7)a R4 = (47 6, 7)7 Rs = (77 8)
The capacity for this case is settled by Theorem 3 as 2/9.
To explicitly see the converse bound, note that in (27)
Ri1 = Di1+D3+D3>3/2;Rs = D7 >1,Dg >
1; and Rs = D4 + D5 > 1. Adding these bounds
we have Dy + Dy + D3+ Dy + D5+ D7+ Dg > 9/2,
which implies that asymptotically the total normalized
download D > 9/2 and the converse bound follows.
The graph representation for this setting, G(V, E) is

SNote that while some servers may be eliminated (i.e., not used) by an
achievable scheme, the message sets cannot be reduced because the achievable
scheme must still work for all messages.
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Fig. 1. The graph G|V, E] for Example 6.

shown in Figure 1. Vertices in A5 = {1,2,3,4,5,6} are
shown with a red border, while vertices in N2 = {7,8}
are shown with a black border. The maximum size of
a 2-matching on G[Nf3] is 5, corresponding to the 5
edges shown in red. Alternatively, it corresponds to the
choice of U = {5,6} C N3 in (29). Note that while U
has 2 neighbors in G, i.e., N(U) = {4, 7}, it has only
1 neighbor in N3, ie., N(U) N N3 = {4}. Therefore,
va(GIN3]) +2|Na| = INs\U|+ N (U)NN3|+2|N2| =
441+ 2(2) = 9. Achievability follows by the scheme
presented in the proof of Theorem 3, downloading a
symbol from each of [N]\ U = {1,2,3,4,7,8}, and
downloading another symbol from each of N (U)UN> =
{4,7,8} according to a private computation scheme
described in Section IV-C, for a total download of 9
symbols from which 2 desired symbols are retrieved.

B. Solution Structure Inspired by Dual GRS Codes

The most interesting aspect of the achievable scheme in
Theorem 1 is a generalized query and storage structure
that is inspired by dual GRS codes. Since the storage and
query structure for XSTPIR in [1] was based on RS codes,
the generalization to GRS code structure for GXSTPIR is
somewhat serendipitous (note that the G in GRS codes is not
automatically associated with the G in GXSTPIR which stands
for Graph based replicated storage). It is also surprisingly
effective, as explained intuitively in this section.

Before discussing how GRS codes are a part of the solution,
let us illustrate the nature of the problem with a simple
example. Let us consider a very basic setting, where we have
M = 4 subsets of messages, N = 4 servers, and Vm € [M],
we have R, = [N]\ {m}, i.e., messages in W,,, are stored at
all servers except Server m. Let V;,,, m € [M] be four vectors
in I, each of size N x 1, such that the vector V,,, has a zero
in its m!" coordinate (reflecting the fact that messages in W,),
are not stored at Server m) and all other coordinates are non-
zero. Then, as we will explain shortly, the rank of the matrix
[V1, Va, V3, V4] reflects the number of dimensions occupied by
interference, i.e., downloaded symbols that are undesired. For
example, suppose we are operating in 5 and we choose,

01 1 1

1 0 3 2
V:[Vlv‘/vi});Vd: 1 2 0 4 (31)

1 3 10

which has rank 2. Then this choice corresponds to a scheme
where interference occupies rank(V) = 2 out of the N =4
dimensions, leaving the remaining 2 dimensions available for
retrieving desired message symbols. To see this explicitly,
suppose each message is comprised of L = 2 symbols,
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Wik = (Wi (1), Wi (2)) in Fs, and the user desires the
message W, . € W,. The download from the n'" server is
the nt" row of the following NV x 1 vector.

V= > Wik Zige | VA

ke[K1],Le[L]

+ Z Wa ik (€)Za k) | Vo
ke[Ks]Le[L]

+ Z Wi k(€)Zs k) | V3
ke[K3),le[L]

+ Z Wi () Za ko) | Va
ke[Ka],L€[L]

+ Won(DELS™ + W, w(2)F " (32)

The vectors F([f"'i] ; F([g)’“] are two 4 x 1 vectors, called demand
vectors that help retrieve the desired message syrnbols Due
to storage constraints, the demand vectors F “ ) must
also have zeros in the coordinates where V has Zeros The
Z,m,(¢) random variables are i.i.d. uniform noise terms added
to hide the demand vectors contained in the query sent to each
server, thus ensuring privacy of user’s demand. The demand
vectors, which carry the 2 desired message symbols must
be linearly independent of Vi, Vs, V3, V, which carry only
interference. To retrieve his desired message, the user projects
V into the 2 dimensional null space of Vi, Vs, Vs, Vy, where
all interference disappears and only the two desired signal
dimensions remain, from which the 2 desired symbols are
retrieved. The rate achieved by this scheme is 2/4 = 1/2
which is also the asymptotic capacity for this setting (converse
follows from Theorem 2).

From this example, it is clear that the problem is related
to min-rank of the V' matrix subject to constraints on which
terms take zero or non-zero values. These constraints are
affected not only by the given storage structure, but also from
the possibility of redundant servers® as well as privacy and
correctness constraints, e.g., because demand vectors must
share the same structure to ensure privacy. Evidently, PIR
with graph based storage is connected to other problems
such as index coding, where also min-rank is important [37].
For arbitrary storage patterns such min-rank problems can be
difficult to solve in general. However, now let us consider
what happens if every message is replicated the same number
of times, |Rym| = pm = pmin for all m € [M]. As will
be shown in the proof of Theorem 3, even if replication
factors vary across messages, schemes for such settings may
use the constant-replication-factor schemes as their essential
building blocks. Thus, the constant-replication-factor setting
is of fundamental significance. It is also the setting where we
exploit the structure of dual GRS codes.

For simplicity we will only consider a setting with X =0
and T' = 1. Consider such a setting with an arbitrary number

6As illustrated by examples in Section II-A the solution may be further
optimized on storage structure by ignoring redundant storage.
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of message sets M, with N = 5 servers, constant-replication-
factor p,,in, = 3, and an example of an arbitrary storage pattern
that satisfies these constraints (5 servers, every message repli-
cated at 3 servers) reflected in the structure of the following
V' matrix.

m=1 m=2 m=3 m=M
Server 1 V1,1 0 V3,1 UM,1
Server 2 0 V22 V32 - 0
V = Server 3 V1,3 V23 0 UM,3 (33)
Server 4 V1,4 0 V34 - 0
Server 5 0 V2.5 0 UM,5

Note that the m*" column has exactly p,, = 3 non-zero entries
corresponding to the 3 servers that store the messages in W,,.
The structure of each column is arbitrary, fixed by the given
storage pattern, but each column must have exactly 3 non-
zero entries. For this setting, it turns out that regardless of the
value of M, it is possible to choose non-zero values for vy,
such that the rank of this matrix is not more than 3, i.e., all
interference can be limited to 3 dimensions. This is done as
follows. Let (3,, be distinct non-zero constants for all n € [N].
Furthermore, let us define,

Um,n = H

n'€ERm \{n}

-1

(B — Bur) (34)

Based on dual GRS codes (see Lemma 2), it turns out that
this choice of v, , ensures that

> Umnl =0 (35)
nERm
for all 7 € {0,1,---, pmin — 2}. For this example, since

Pmin = 3, it means that Vm € [M], ZneRm Um,n = 0, and
Zn R, Um,nBn = 0. Writing this out explicitly, we have (36),
shown at the bottom of the next page which is easily verified
because for any n1,n2,n3 € [N],

Um,ny T Um,ns + Um,ng

na — Pns) + (Bns — Bny) + (Bny — Bna
- (mlﬁ— ﬂ)mggm - gm;(ﬂf— mf) -0 @
VUm.ni1Bni + VmonaBns + Vmong Ons
_ (Bns = Bns)Bny + (Bns = Bni)Bns + (Bny = Bns) B
By = Bnz)(Bny = Brg) (Brs — Bis)
=0. (38)
Thus, there are ppni, — 1 = 2 vectors along which V

has null projection, corresponding to 7 = 0 and j = 1
in (35). These two interference free dimensions allow us to
retrieve 2 desired symbols, achieving a rate of 2/5 for this
example.

As another example, consider a setting with an arbitrary
number of messages M and an arbitrary number of servers N,
where each message is replicated 4 times, i.e., Py, = Pmin =
4 for all m € [M]. Given an arbitrary 4-replicated storage
structure, choosing v, ,, according to (34) allows us to find

Pmin — 1 = 3 dimensions along which interference is nulled,
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corresponding to 7 = 0,7 = 1, and 7 = 2 in (35). This is
illustrated below.

Column m

0

vm,nl

0

vm,nz

row mq

1 1
B1 o
B B3

1 Tow ngo
By S B
B

(el e en]

row m3 Vn,ng

0

Um,ng

0

TOW T4

(39)

Column m corresponds to an arbitrary message set W, that
is replicated at the 4 servers mp,no,ns, nyg, and it is easily
verified that if v,, , are chosen according to (34) then

Um,ny + Um,ny + Um,ns + Um,ng = 0; (40)

ﬁnl Um,ny, T ﬁTLQ’UTYL,YLQ + Bn;;vm,n;; + Bnﬂ]m,m; =0, 41
2 2 2 2

ﬁnlvm,nl + ﬁnzvm,ng + Bn3vm,n3 + Bnﬂ]m,m; =0. 42

Thus, there are 3 interference-free dimensions which allow us
to retrieve 3 desired symbols for a rate of 3/N.

In general, if the V matrix has p,,;, non-zero entries in each
column, then by assigning vy, , according to (34) there are
pmin— 1 dimensions that are interference free, corresponding to
j€90,1, -, pmin— 2} in (35), along which pyi, — 1 desired
symbols can be retrieved to achieve the rate (pmin —
which matches (pmin — X — T)/N for X = 0,7 = 1.
When T > 1 and/or X > 0, then additional interference
terms enter into the picture due to the additional noise terms
needed to protect the messages (X -security) and the queries
(T-privacy). Following the construction previously introduced
for XSTPIR, these additional interference dimensions are
restricted by using cross-subspace alignment [1]. Fortunately,
since the storage and query structure used for XSTPIR in
[1] is also based on Reed Solomon Codes, it turns out to be
compatible with the additional structure imposed by the choice
of vy, in (34) according to dual Generalized Reed Solomon
Codes. Combining both ideas, it turns out that the number of
interference free dimensions that remain available for desired
message symbols is equal to ppin — X — 7', which allows us
to achieve a rate of (pmin — X — T')/N. The details are left
to the proof of Theorem 1.
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IV. PROOF OF THEOREM 1
A. A Simple Example

To make the proof more accessible, let us start with a simple
example, which is essentially derived from (33). Consider the
setting where N =5, T = 1 and X = 0. There are M = 4
message sets, Wy, = (W1, W2, , Wi k,.),m € [4],
that are stored in the 5 servers according to the replica-
tion pattern R = ((1, 3,4),(2,3,5),(1,2,4), (1, 3,5)), where
K,,,m € [M] are positive integers representing the number
of messages in the message set WW,,,. Note that this replication
pattern R corresponds to the four columns shown in the
V' matrix in (33). The scheme operates over a block where
each message is comprised of L = 2 symbols from F, with
characteristic greater than L — 1 = 1, and we will assume that
q> N+ L =17 Let 51,82, ---,05 be 5 distinct non-zero
elements in F, such that 3, + ¢ # 0,Vn € [5], ¢ € [2]. Since
q > 7, such 31, B2, -+ , 05 must exist. Now let us specify the
storage at each server. Server n stores all the L = 2 symbols
of messages from the message sets W,,, for all m € M,,, i.e.,

Sn = { Wi, 1), Wi, (2), Ym € M., } (43)
Wm,,([) = [Wm,l(g)v Wm,Q(g)v T 7Wm7Km (8)], vl e [2]
(44)

For example, consider the first server, we have M; =
{1, 3,4}, therefore,

Sy = {Wl,(l),wl,@)aW3,(1)7W3,(2)7W4,(1),W4,(2)}~
(45)
Notably, for all m € [4], the 1 x K, row vector W,
contains the ¢** symbol from every message in W,,. Sup-

pose the user wishes to retrieve the message W,, =
(Wpk(1), W, «(2)). The query sent to Server n is

1
(B1—B3)(B1—B4)

1 1 1 1 1

B1 B2 PBs Ba Ps (ﬂ:s*ﬁl)l(ﬂ:s*ﬁz;)

(B4—B1)(Ba—B3)

(Bs—B2)(B5—B3)

1)/N,
Qe = Qi Qi vme M} (o)
where,
(o] ”m_"( [11.%] / )
Q) = 7+ 5, Foo™ + (4 Bn)Z, 1 o) (47)
v
= T vl 0 (48)
the constant values vy, , are defined as
-1
U 2 I G.-8] . (49)
n’€Rm\{n}
F%’R] are demand vectors defined as
] _ | € ifm=p,
Fo ™ = { 0, otherwise. (50)
0 1 1
(ﬂ1*32)1(ﬂ1*,34) (B1—B3)(B1—PB5)
(B2—B3)(B2—B5)  (B2—PB1)(B2—B4) 0 0
(B3—PB2)(B3—PBs5) (B3—B1)(B3—PBs5) 0
0

1
(Ba—B1)(Ba—B2)

0 [ S
(B5—31)(B5—B3)
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where e, is the x*" column of the K,, x K, identity matrix.
The values of F[“'R] are kept private from any server, by the
K,, x 1 column vectors Z/ m.1,(¢) comprised of i.i.d uniform
noise symbols, for all m € [ ] ¢ € [2]. Thus, the scheme is
T = 1-private. To further clarify the construction of queries,
consider the first server, we have

K [ 75] [ 75] [ 75]
M - {Qlul (1)7 1 1 (2)’ Q3u1,(1)’ Q3“1 ,(2)
[Nv’i]l)’ Q[uﬁ]g)} (51)

The answer returned by Server n is

) — [ 7H]
A[# K] Z Z Wm,(Z)ngm,,(f) (52)
Le[2]l mEMy,
=2 > 3 Umn W, (o F
ee[Q]mEMn
A’[uw]
+Z Y W0 Zae (53
mEMn

Upon receiving all N = 5 answers, the user evaluates the
L = 2 values Y7, Ys, as follows.

e
K
vi] [1 1 - 1]|47 54
Yo |81 B o0 Bs :
Agﬂvﬁ]
Note that by the construction of A[lu’n],A[QM’H], e ,Ag“’n],

the column vector on the RHS of (54) can be written in the
following matrix form.

A[l"’“] All[“’”] vig 0 w31 wvan
A[Quw] A/Q[um] 0 w22 w32 O
= . + | vi,3 v23 0 w3
: . V1,4 0 V3,4 0
AL“ o+l A;,[“’”] 0 w5 0 wgs

WimZi o)+ WioZi
Wo )25, 1y + Wa,)Z | (o)
Wi )21,y + Wa,2)Z5 (o
WamZy1 )+ Wa)Zy ) o
(55)

As previously shown in (36), guaranteed by Lemma 2,
the choice of constant values v,, , satisfy the property that

V1,1 0 V3,1 V4,1
{1 1 - 1} UO e “582 vo H
1,3 V23 13 | = -
B1 B Bs R 0
0 V2,5 0 V4,5
(56)

Besides, we note that by the definition of demand vectors

WK
Lﬁf ], we have

Wye(€), if m=p,

0, otherwise. (57)

W, Fl = {
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Therefore, we have

[Yl} _[ 1 1 1 ]
Y2 |Br.1) Br.2 Pr.3)

vﬂ R;L(l) ’U/‘ R/A(l)

I+8r,1) 2+Br,1)

VR Cwre@ | [Wyk(l)
1+Br, 20  2+Br.(2) '
Uy, R;L(g) Uy, R:(3) VVN:R(Q)
1+8Rr .3 2+BRr,(3)

(58)

Guaranteed by Lemma 3, the product of the first two matrices
on the RHS is an invertible 2 x 2 matrix. Thus the user is able
to obtain the desired message W, .. = (W}, (1), W,, «(2)) by
inverting the matrix. Note that the 2 symbols of the desired
message are obtained from a total of 5 downloaded symbols,
the rate achieved by the scheme is R = 2/5, which achieves
the desired rate.

B. A General Scheme

Now let us we present the achievable scheme for GXSTPIR
for arbitrary N, T, X, M, K,,, p,, values that allows private
retrieval of any desired message at a rate R = %
Without loss of generality we will assume that p,,, = pmyin for
all m € [M]. For any message that is replicated more than
Pmin times, the scheme can be applied by arbitrarily choosing
any pmin replications of that message and ignoring the rest.
In order to achieve the rate R = %, the scheme will
retrieve pmin — X — 7' desired symbols by downloading one
symbol from each server.

The scheme operates over a block where each message is

comprised of L symbols and we have

L=pmin—X—T. (59)

All symbols are in IF;, with characteristic greater than L — 1
and without loss of generality we will assume that g > N + L.
Let (3]n) be distinct non-zero values in F; such that’

Bn+L#0, Vn € [N],¢ € [L].
Such (3,, must exist because ¢ > L + N. Server n stores,

n — {W(”)

(60)

W(")

(n)
2 Wi

’(L),VmEMn}
(61)

(62)

(1)

(n)
Wm (Z)

o+ Z (0 + Bn)"Z

z€[X]
W0y = [Win1(£), Win 2(0), - - -

m,x,(l)

s Wi i, (O], VE € [L].
(63)

Thus, for all m € [M], the 1 x K,, row vector W,
contains the ¢*" symbol from every message in W,,. For
all m € [M],z € [X],£ € [L], the 1 x K,, row vec-
tors Zyy, . ¢y are comprised of i.i.d. uniform noise sym-
bols. Any message symbol W, ;(¢) that is secret-shared
among servers R,,, is protected by the X noise symbols

TAs in subsequent constructions of CSA codes in [38], the construction can
be further generalized by replacing the values ¢ with arbitrary —¢ € [y such
that instead of (60) we only require that 31,32, - ,06n,1,2,---,L are
L + N arbitrary distinct values from Fg, and ¢ > N + L.
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Zmyl’(g) (k:), Zm,2,(£)(k)7 s ,Zm’X’(g)(k) that are i.i.d. uni-

form and coded according to an MDS(X, pn,in) code, so that

the shares accessible to any set of up to X colluding servers

are independent of W, (¢). Thus the scheme is X -secure.
The query sent to Server n is

Q) = QI vm e M, (€ (L]} (64)
where,
4, Um,n K
QE;;Z],(Z) T+ Florl 4+ Z (C+Bn) Loy | (65
" te[T]
%’R] are demand vectors defined as
(k] _ €k, if m= s
Fo ™ = { 0, otherwise. (66)

where e, is the x*" column of the K,, x K, identity matrix.
The values of F%’R] are kept private from any set of up to
T colluding servers, by the K,,, x 1 column vectors Z/ 40
comprised of i.i.d uniform noise symbols, for all m € [[M l,te
[T], ¢ € [L]. Note that the noise vectors that protect F%"! are
coded according to an MDS(T, pymin) code spread across the
queries sent to servers in R,,, i.e., all queries that contain
F%’K], so that the queries accessible to any set of up to T'
servers reveal no information about the demand vectors. Thus,
the scheme is T-private.
The constant values vy, , in (65) are defined as

A
Um,n =

n'€ERm\{n}

—1

(B — Bur) (67)

As shown in Lemma 2 in Appendix A using the properties
of dual GRS codes, this choice of vy, , satisfies the crucial
property that

Z Um,nﬁ% =0 (68)
nERm
for all m € [M] and for all j € {0,1, -, pmin — 2}.
The answer returned by Server n is
(n) [ K]
=2 > Wi (69)

Le[L] meMy,

Upon receiving all N answers, the user evaluates the L values

Y1,Ys, .-, Yy, as follows.
vy 1 1 .1 ] [aler
Ys B Ba oo By | A
L= . . . . (70)
)l e s L
so that for all ¢ € [L],
Yi= Y gitAk (71)
ne[N]
— 1 [1:K]
- Z 61 Z Z Wm ([)QYZ n,(£) (72)
ne([N] le[L] meM,
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[ 1K)
=3 > Y oartwraan, (73)
Le[L] me[M]nERm
P
CE[L] mE[M] nERm
W) + Z (€4 Bn) Lz, (0)
z€[X]
TS+ B2 0 74
te[T]
(¥
P IPIPS (;;@ P
CE[L] mE[M] nERm
Z Ul (U4 Bn) T W 024 1)
te[T)
+ D VB B) e ) F)
z€[X]

D B+ B) T o0 Zo 0

ze[X] te[T)
(75)
vm nﬁ K
ZEIZUM wmﬁ
Le[L] mE[M]n€ERm
2 2 | 22 W
Le[Llme[M] \te[T]
Z Um,nﬁz_lw + Bn)t_1>>
nERm,

m . (K)F[Hvﬁ]

< > vmnBy N+ )T ))
nERm

+zz(zzmwmm

Le[Llme[M] \z€[X]te[T]

< vmnﬁl 1(£+ﬂ )a:th 1))
nERm

(76)

The terms (XCner,, tmmBi (04 Ba)'1),
(Xner,, tmnBy 1€+ Bn)™" 1) and
(Xner,, tmmBi M€+ Bn)"t1)  are  equal to zero
because of (68). This is because all of these can be expanded
into weighted sums of terms of the form ZneRm vm,nﬁﬁ;
for j taking values in {0, 1, -, pmin — 2}. Let us show this
explicitly for Y- o v nBh (€ + Bn)' " as follows,

> vmaBl N+ B

nERm
) t—1
—1 t—1—
= > vmall > ( e
nERm 7€{0,1,---,t—1}

(77)
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_ Z (t :— 1>€t—1—7' < Z UTYI,,YLB:L—i_T_l)
t—1}

7€{0,1,--- t— nNERm
(78)
=0 (79)
because 0 < 1 +7 -1 < L+ T -1 -1 =
Pmin — X — 2 < pmin — 2. It can be similarly
shown that (EneRm VB (04 B,)"7') = 0 and

(Xner,, VmanfBi H(€+ Bn)"t71) = 0. Thus, we have,

vmn Ly K
vi=> > > ( Hﬁﬁ W (o Fl ]) (80)
Le[L]me[M]n€ERm
i—1
=3 Y W F < > —v?ﬁﬁg" ) (81)
¢e[L] me[M)] NERm "
UJ,.nﬁi_l
=Y Wupes| > - (82)
Le[L] neER, t+ fn
'U n
=) > Wuk(®) Z’fﬁ (83)
Le[LInER,

Note that we used (66) to obtain (82). In matrix notation,
we have,

Y, 1 ... 1
Ys ﬁ%zﬂ<1> ﬁ%zﬂ(pm)
i ﬁmu) ﬁm(m
A
lvﬂvﬁnu(l) ;’"g“(l) WM:K(]')
+ +
Ru(1) Ru(1) W/,L,I{(2)
Vp, Ry (pm) U, Ry (pm) :
48R 4 (om) LHBRupm) 4 | Wy (L)
B
(84)

Guaranteed by Lemma 3 and the the definitions of v, , and
Bn, Vm € [M],n € [N], the L x L matrix AB is invertible,
and the desired message is retrievable by inverting the matrix.
Thus the scheme is correct. This completes the proof of
Theorem 1. (]

C. A Private Computation Scheme for X = 0,
Pmin — T + 1

From the description of the scheme, it is evident that the
demand vectors are protected by the uniform noise, regardless
of how they are chosen. Modifying the choice of demand
vectors would allow the user to privately retrieve various forms
of desired information, generalizing the scheme to broader
applications. Here we present a simple example that will also
be useful for the proof of Theorem 3.

Suppose there are no security constraints (X = 0) and every
message is replicated 7'+ 1 times (pmin = T + 1), so that
our scheme operates over blocks comprised of L = pyin —
X — T = 1 symbol per message. Recall that our scheme

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 10, OCTOBER 2020

allows the user to retrieve an arbitrary message W, . at the
ratt R = (pmin — X —T)/N = 1/N in this setting. Now,
suppose instead of an arbitrary message, the user wants to
retrieve an arbitrary linear combination of all messages,

AW E ST Ak Wik (1)
me[M] k€K,
= > W mAm, VE[L] (85)
me[M]
where

A'm: [)\m,la)\m,Qa"' TeFé(m’Xl, Ym € [M],

(86)

7>\m;K7n]

are the combining coefficients to be kept private from any set
of up to T colluding servers. This is a form of the private
linear computation problem studied in [21] applied here to
graph based replicated storage. To apl[)ly our scheme to this

setting, replace the demand vectors Fi,,""™ with F ) defined
as follows.
—1
Fgr);] — < Z vm_v") Am (87)
nERm 1+ fn

so that continuing from (81) we have

Um,nﬁii1
V=) ZW "’(Zﬁ)’
Le[Llme[M NERm
i€ [L]={1} (88)
-1
vm n
=Y = Z Wm,,(l)Am Z :
1+ 5,
me[M] nNERm

(Umxn
: (89)
(=)
= > Wamdn =2W) (90)

me[M]

Thus, a private computation scheme is readily obtained for the
case where all messages are replicated at least 7'+ 1 times.
The rate of this scheme is (pmin — T)/N = 1/N. Just as in
[21], there is no rate loss relative to the case where the user
wants to retrieve only one message W, ;.

V. PROOF OF THEOREM 2

Let 7 be a subset of Ry, such that |7| = max(|R,|,T).
Let X be a subset of R, \ 7, such that |X| = max(|R,| —
|7, X). Note that it follows from the definition that 7 N X =
(). From the decodability of message W,, ; we have,

L=1 (Wi ARG Q) ©1)
<1 (W s AR Spnr,.s Sx 1 Qi) 92)
=1 (W 5 Sivims Sx | QP )

1 (W s ARy | Sponr, S Q) 03)
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= 1 (W s AR | S, S, Q) (94)
m,k m,k m,k
=1 (ka ; A[ ! A[R ]\X n | SXvS[N]\RmaQ{N] ])
(95)

=1 (Wm,k;A[gl”k] | Sxas[N]\RmaQ%’k])

4lm m,k) [m, k]
+1 (Wm,k’7 A(RM\X)\’]’ | A SX; S NN\Rm>s Q[N] )

(96)
m,k
< I(Win s A7 | SX7S[N]\R,”;Q{1\/I'] )
+ Y HAM) 97)
n€(Rm \X)\T
< I(W; AT | S, S ugll
= m,ky | Xy P IN\Rpm» T )
+ ) HAMY) (98)
n€(Rm \X)\T
< I(Woi; AP | S, 8 [k
> ( m,ksy L | X N]\RmaQT )
+ > HA) (99)
ne€(Rm\X)\T

In (92) we used the fact that A[N]\(RM\X) is a function
of (S[N]\RM,SX,Qm]’k]), and I(A; f(B,C) | C) <
I(A;f(B,C),B | C) = I(A:B | C)+ I(4: f(B,C) |
B,C) = I(A;B | C) where f(B,C) is some function of
B, C. The chain rule of mutual information is used for (93).
For (94) we used the fact that (Siyj\%,,,Sx) is independent
of (Wm}k, Qm]k]) according to Lemma 4. The next step, (95)
simply re-writes the same expression in different notation,
while (96) follows from chain rule of mutual information.
For (97) we used the fact that I[(A;B | C) = H(B |
C)— H(B| A,C) < H(B) because entropy is non-negative
and conditioning reduces entropy. (98) follows from Lemma 5.
(99) follows because I(Q[Tm’ﬁ] , A[;—"”R}, S(n); &) = 0 according
to Lemma 6. Equivalently,

(Q[:?”’k],A[%”’k],S[N}) (Qm“ Akl SN) (100)

for all m € [M] and k, k' € [K,,], which in turn implies (99).
Summing (99) over all k € [K,,] we have

K,,L
< Z I(Wo s AR SX,S[N]\R,,,HQL}H’]C D)

kE[Km]
o HAMM)

+ K (101)
ne(Rm\X)\T

ST (W1, s Wan ke, A7 S, Sy, @)

K,y HAT) (102)
n€(Rm\X)\T

H(APM) + K > H(AM) (103)

ne(Rm \X)\T
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(102) follows from the chain rule of mutual information and
repeated use of the property that [(A;C | D)+I1(B;C | D) <
I(A;C | D)+ I(B;C | A,D) =I(A,B;C | D) when A, B
are independent conditioned on D, i.e., I(A;B | D) = 0.
This conditional independence property for (102) is proved in
Lemma 7. (103) follows from the facts that entropy is non-
negative and conditioning reduces entropy, i.e., I(4; B | C) =
HA|C)-H(A|B,C)<H(A|C)< H(A).

From (103) we note that if |R,,| < X + T then R,, \
X\T = /@, which means that as K,, — oo, we must have
H (A[Tm ow ]) — 00, and since the download approaches infinity,
the asymptotic capacity is zero. This is the degenerate case in
Theorem 2.

Having dealt with the degenerate setting, henceforth, let us
assume that |R,,| > X +T for all m € [M]. Since the capacity
for this case is not zero (follows from achievability), there is
no loss of generality in assuming that the/asyrnptotic value
of download cost is bounded, i.e., H(ALLm’]C ])/Km =o(1) as
a function of K, for all n € [N]. Recall that f(z) = o(1)
is equivalent to the condition that lim, .. f(z) = 0. In this
case we have

(A
AT s aow
n€(Rm \X)\T
= Z D, +o0(1) > 1. (105)

n€(Rm\X)\T
where D,, = HAPT) is defined as the value of download
from server n, normalized by L. As K — oo all o(1) terms
approach 0 and we obtain the set of conditions that define
D in (27). The capacity bound in Theorem 2 for the non-
degenerate setting follows from the definition of capacity as
the supremum of L/D = (Dy +---+ Dy)~ L. O

VI. PROOF OF THEOREM 3
A. Proof of Converse for Theorem 3

It already follows from Theorem 2 that if py,;, < 7 then the
capacity is zero. So let us assume that ppin > 7. Theorem 3
also limits p,, < T + 2 for all m € [M], therefore we must
have p,, € {T'+1,T+2} for all m € [M], i.e., every message
is either (T + 1)-replicated or (T + 2)-replicated. Recall that
N2 is the set of servers that do not store any messages that
are (T + 1)-replicated. The remaining servers are in N .

According to the general converse bound in Theorem 2,
the asymptotic capacity C'», is bounded above by the maxi-
mum value of (D +---+ Dx)~! subject to the constraints,

Yuv € E[NT+2]
Vit € [NT+1]

Dy+ D, > 1,
Dt217

(106)
(107)

We use the notation G[Np42] to represent the induced sub-
graph of G[V, E] whose vertex set is N2 and whose edge
set, denoted E[Np42] consists of all edges uv € E such that
u,v € Nryo. Recall that a 2-matching in G[Nr2] is a vector
x that assigns to each edge uv € E[Np42], a value from
{0,1,2} such that the sum of values assigned to all edges in
E[N7.2] that are incident with any vertex n € Ny is not
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more than 2. Let x be the vector that produces the maximum
size 2-matching in G[Nr42), i.e., the size of = is

Z z(uv) = vo(GNr42])-

wvEE[NT42]

(108)

Multiplying both sides of (106) by z(uv), summing up over
all uv € E[Nr42], and adding 2 x (107), we have

> (DutDyz(uv)+2 Y (D)

wv€E[Nr42] te[Nri1]
> Y w(w) + 2N (109)
UUEE[NT+2]
= > @0 NEWNr2)(Du)+2 Y (D)
uENT 2 te[Nry1]
> vo(G[Nry2]) + 2[N1 11 (110)
=2 > > (D)
UENT 42 tE[NT41]
> v2(GNr2]) + 2[Np 14| (111)
=2 Z ) > v2(GNT42]) + 2|N7 41| (112)

N
=(D1+ D2 + -+

vo(GIN- + 2|V

+ D) > 2(G] T+2]2) N7
(113)

In (111) we used the fact that the sum of values assigned by

x to all edges in E[Np42] that are incident with the vertex

v is not more than 2. Combining (113) with the result of

Theorem 2, we obtain the desired converse bound

2
vo(G[Nr42]) + 2[Npsa|

Thus, the proof of converse for Theorem 3 is complete. [

Cx < (114)

B. Proof of Achievability for Theorem 3

Let us define VNVTH as the set of messages that are
replicated 7'+ 1 times. Let U C N7 be a stable set. We will
show that it is possible to retrieve L = 2 desired symbols with
a total normalized download,

[1: N\UT+ N (U) UNT |
2

The achievable scheme does not use the servers in U. Let
Wu denote the set of messages that are stored at any of the
servers in U. Note that none of these messages is in Wy
because U C Nry2. Also note that no message is replicated
more than once in U because U is a stable set. After the
servers in U are eliminated, the messages W* = WU UWT+1
are now replicated exactly (7" + 1) times in the remaining
servers. All other messages are replicated (7' + 2) times.
As a thought experiment, suppose we add a genie server that
stores YW*. Now we have a storage system where all messages
are replicated (T + 2) times, so that the scheme presented
in the proof of Theorem 1 can be used to retrieve L = 2
desired symbols while downloading |[N]\U| + 1 symbols,
which includes one genie symbol, say A(WV*). In order to
obtain A(W*) without a genie, we will use the servers in

Di+---4+ Dy = (115)
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NT+2 NT+1

N(U)

Fig. 2. General setting of U C N2 which may have neighbors A(U)
both in Nr41 and N7 yo. Note that N'(U) does not include U.

the set N(U) U Npyq. Note that N(U) and Nryq may
have some servers in common. More importantly, note that
W* is replicated (T + 1) times within this set. Therefore,
we can privately retrieve A(W*) by downloading one symbol
from each of these servers, with the scheme described in
Section IV-C. Thus, we have a private and correct scheme
that retrieves L. = 2 desired symbols with a total download
of [[N\U|+ IN(U) UNpi1]|. Next, we note the following
identity,

IN\U|+ [N(U) UNT44|
t t
= [Nr2\U|+ [N(U) N Nrjo| + 2|Np 1]

t3 ty ts

(116)

Let us verify that the identity holds as follows. First consider
the servers in N'741. On the LHS all these servers are included
in t; as well as %9, i.e., they are counted twice. On the RHS
these servers are included only in ¢5 which is scaled by a
factor of 2, so both sides match. Now consider servers that
are in N742 and are neighbors of servers in U. On the LHS
these servers are included in t; as well as to, i.e., they are
counted twice. On the RHS, these servers are included in ¢3
as well as t4, so again they are counted twice and the two
sides match. Finally, consider the servers that are in Ny o
but are neither in U nor among the neighbors of the servers
in U. On the LHS all these servers are included in ¢, while
on the RHS they are included in ¢3. Thus on both sides these
servers are included once, and the two sides match. Finally,
note that the servers in U are not included in any term on
either the LHS or the RHS. Thus, we have verified that (116)
holds.
Now, let us recall that according to (29),

va(GINp42]) = min { [N 42\U| + [N (U) N Ny
such that U C N2, U is a stable set} .
(117)

Therefore, minimizing over U € N2, the scheme achieves
the normalized download,

v (GN-
D1+---+DNZM+|NT+1|, (113)
and therefore we have a lower bound on capacity,
2
C > (119)

v2(GINT42]) + 2N g |

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 19:41:43 UTC from IEEE Xplore. Restrictions apply.



JIA AND JAFAR: ON THE ASYMPTOTIC CAPACITY OF X-SECURE T-PRIVATE INFORMATION RETRIEVAL

Because the achievable scheme works for any number of
messages, it is notable that this lower bound holds not only for
asymptotic capacity, but also for capacity with arbitrary num-
ber of messages K,,,. This completes the proof of achievability
for Theorem 3. ]

VII. CONCLUSION

The asymptotic capacity of GXSTPIR studied in this work
reveals important insights into the structure of optimal schemes
for graph-based replicated storage. In particular the special
structure inspired by dual GRS codes emerges as a powerful
idea for GXSTPIR. Generalizations of the private computation
scheme presented in Section IV-C represent an interesting
problem for future work, especially because such private
computation schemes are needed for GXSTPIR, as evident
from the achievability proof of Theorem 3. Asymptotic capac-
ity for GPIR with arbitrary graph based storage when each
message is replicated 4 times is the next step for the direction
initiated by Theorem 3. The relationship between GXSTPIR
and index coding, through the connecting thread of min-rank
problems that arise in both contexts is another promising
research avenue. Finally, the tightness of the converse bound
in Theorem 2 remains an interesting question. Given that the
bound is tight in all cases for which the asymptotic capacity
is settled so far, it is tempting to conjecture that the converse
bound is tight in general. Settling this conjecture is perhaps
the most important immediate objective for future work on the
asymptotic capacity of GXSTPIR.

APPENDIX A
LEMMAS

Lemma 1: The optimal value of total normalized download,
minp(D; + Da + -+ 4+ Dy), in Theorem 2 is equal to the
fractional matching number of G[V, &].

Proof: Let us consider the non-degenerate scenario,
pmin > X + T, because otherwise the asymptotic capacity
is zero. According to Theorem 2, the optimal value of total
normalized download minp (D1 + Do+ - -+ Dy) is expressed
as the result of the following linear program.

D* =min Z D, (120)
n€[N]
such that, (121)
> D.>1, Ve € & (122)
n: n€e
D, >0, Vn € [N] (123)

Since the linear program is bounded and feasible, by the
strong duality of linear programming, we have as its dual the
following linear program.

D* = maXZ Te (124)
ec&
such that, (125)
> e <1, Vn € [N] (126)
e eon
Te >0, Ve € £ (127)
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Thus, the optimal converse bound D* is precisely the max-
imum weight of a fractional 1-matching in G. Therefore,
the converse bound in Theorem 2 coincides with the achiev-

ability bound in Theorem 1 if and only if D* = p._%.
This completes the proof of Lemma 1. g
Lemma 2: For distinct non-zero values (31, - - - , 3, and for
v, ,V, defined as
-1
v I B-8)] i € [n] (128)
Jeln\{i}
the following identity is satisfied,
> wipl =0, vjie{0,1,---,n—2}. (129)

1€[n]

Proof: The proof of Lemma 2 follows directly from the
properties of dual GRS codes for which we refer the reader to
[39]. For our purpose let us recall that given two n-dimensional
vectors

u:[U1,U2,"' ,Un] (130)
ﬁ:[ﬁlvﬁ%"' ;571] (131)
where w1, us, -+ ,u, are non-zero, while (31, B2, -, 3, are

non-zero and distinct, the canonical generator matrix for the
Generalized Reed-Solomon code GRSy, ,,(u, 3) is given by

U Uo e Unp,

’U,lﬁl UQBQ unﬁn
. (132)

wi Byt gy un By
The dual code of a GRS code is also a GRS code. Specifically,
the dual for GRSy ,(u,3) is GRS, _; n(v,3) where v =
1

[v1,v2,- -+ ,v,] and v; = (ui e iy (Bi —Bj)) . For
the purpose of Lemma 2 let us set g = ug = -+ = uy, = 1.
Since the dual of a code C is a code C* that spans the null
space of C', we have

U1 Vg e Up, 1 /81 e {likil
Ulﬁl U252 Unﬁn 1 52 v gikil
U16f71 V2 571 UTzﬁﬁ_l 1 By - :;I:_k_l
=0 (133)
which implies that
> wipl =0 (134)

i€ [n]

for j € {0,1,---,n — 2}. This completes the proof of
Lemma 2. O

Lemma 3: For two positive integers n, L such that n > L,
and for distinct non-zero values 31, - - - , 3, such that §; + ¢ #
0,Vi € [n],£ € [L] and for vy, - - - , vy, defined as

-1

I s-8)] .
Jen]\{i}

(1>

i€ n (135)

Vg
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the following L x L matrix

1 1 "

v
B - B, | | TP L+A:
. . . : : (136)
: : Un Un
1L*1 pL=1| LitBn " L+Ba
" B
is invertible.
Proof: Let us define the matrix C' as follows.
v v1fh Ulﬁn L=t
C=: : (137)
Un 'Unﬁn 'Unﬁg_L_l

Guaranteed by Lemma 5 in [1], which is also a standard
result for Cauchy-Vandermonde matrices [40], the n xn matrix
[B|C] is invertible. Besides, guaranteed by Lemma 2 and the
definitions of 81, , 8, and vy, - - , vy, the rows of the L xn
matrix A generate the null space of the matrix C'. Therefore,
we have rank(A) = rank(A4 x [B|C]) = rank([AB|AC]) =
rank([AB|0]) = rank(AB), where 0 is the L x (n — L)
zero matrix. Note that the rank of the transposed Vandermonde
matrix A is L, thus we have rank(AB) = L, which indicates
that the matrix AB is invertible. This completes the proof of

Lemma 3. U
Lemma 4: For all m € [M],k € [Kn], X C Ry, |X] <
X’
m,k

I (S[ ]\'RmaSXv mka%N] ]) =0. (138)

Proof:
I(SIN\R. > S mk,Qm]’k]) (139)
= I(Wonk; SIN[\R o> Sx) + I(ka]; SIN\Rum > Sx | Win k)
(140)
SI(ka;S[N]\Rm,SX)+I(Qm]k] SIN\R s S Win i)
(141)
< I(W,, k,W Wile) (143)
= 1(W, mk,Winzl)H(ka,W Wiah) (144)
=1I( mk,W|W ) (145)
< 1( Wy WU W) (146)
< I(Wonps W) (147)
= 0. (148)
where W = (W, ¥m' € [M],K € [Kn), (m/, k) #

( 77 ()

(m,k)), and W, = (W,,}.,n € X). Steps of the proof
are justified as follows. (140) and (141) follow from the
chain rule and the non-negativity of mutual information. (142)
follows from (18), while (143), follows from the definition
of replicated storage in (11). (144) is the chain rule of
mutual information, while (145) follows from the security
constraint in (16). (146) follows from chain rule and the non-
negativity of mutual information. In (147) we used the fact
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that (Wm,k,Wi,f ,)C) is function of W,, x, and the last step
follows from (8). This completes the proof of Lemma 4. [J
Lemma 5: For all m € [M|],k € [K.,], X, 7 C R,

I(W g AT SXv‘S[N]\Rva%m’k])

< I(Win s AFM | S, Sivp,n s QFF). (149)
Proof:
I(W i A | S, S, Q™)
H(ATM | Sx, Sinpr,. Q)
— H(APM | W 1, S, Sivpyr,, Q™) (150)
< H(AT™M | Sx, S, Q7
— H(APM | W 1, S, Sivpr,, Q™) (151)
= H(ATM | Sx, S, QF)
— HAPH | W, ks S, S| \R,,L7Q[f;n’k])
+ H(AY Mk |ka,5x,5 \RWQ;M)
~ H(AY i N W, S Sivpr Qi) (152)

= [(Wy 1 ATH | SXas[N]\Rva[Tymk])

+ (Al k],Q{m M Wi,k Sxs SIN\R e » [k (153)
< I(Wo s AT | S, SIN\R > QM

+ (A, Wm,k,SX,S[N]\Rm;Qm]’k] | QM) (154)
< I(Wo s AT | S, SIN\R > QM

LA S QUi | QM) (155)
= I(Wynp; AT | S, SIN\Rm s QM)
+ 1(Svy; Q™ | Q)
+I(AR" ’“];QEG]’” | St QM) (156)
= [(Wins AT | S, Sivp,n Q) (157)

(150) follows from the definition of mutual information, (151)
follows because dropping conditioning cannot reduce entropy,
(152) adds and subtracts the same term so nothing changes,
(153) uses the definition of mutual information, (154) uses
the chain rule of mutual information and the fact that mutual
information is always non-negative, (155) uses the fact that
(Wi, Sx, SiNj\®,,) is a function of Sjyj according to
(9) and (11), and (156) uses chain rule of mutual informa-
tion. For (157) we use the fact that S|y is independent of

Qm]’k] according to (18), and AL}”’k]

SNy Q[Tm k] according to (20). This completes the proof of
Lemma 5. g
Lemma 6: For any m € [M], T C R, |T| < T,

is fully determined by

I( ,[]r_n,,n],A,[]T_n,*i], S[N]N‘@) =0 (158)
Proof:
QY Al 50 k)
T ) + IS | Q)
+ (A | Spy ,@“” ) (159)
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= 1(@Q" k) + I(Spy F»IQ[’“) (160)
< IQY™: k) + (St 5, Q™) (161)
—0 (162)

(159) is the chain rule of mutual information, (160) follows
because A[” *l is fully determined by Sings Q[T"'€ according
to (20). The next step, (161) follows because of the chain
rule of mutual information and the non-negativity of mutual
information, and (162) follows from (18),(19). This completes
the proof of Lemma 6. (]

Lemma 7: Forany m € [M], k € [K,,] and subsets X', 7 C
R such that |X| < X,

(Wi s Waner | Sx, e, @) =0 (163)

where K C [K,], K' = [Kn] \ K, Wik = Wik, k € K)
and Wi, kv = (Wi i, k € K'). o
Proof: Let us define Wiy = (W g, Y/ e_[M],k: €

[Km/],m’ 7& m) WmJC = (ka,k S /C) m}o =

(W ook € K). Wea ko = (Wpm € X,k € K). W jf?c, -
(ng)k,n cX ke IC;).
I Wi s Wik | Sxy SIN\R e » Q[}n’kl]) (164)
< TWon i Waniers Soes Sivpyi s Q) (165)
= I(Wm.xc; Wik, Sx, SIN\R, )
+ I Wik Q[m o | Wi, Sx, SIN\ R, ) (166)
S I(Whnic; Winkrs S, SINp\R.)
+ IQY LW, o, Won ks Sx, Sivpr, ) (167)
= I(Wanjc; Wan i Sa Sinp\w.,,) (168)
< TWoc; Waniors Wt W, W k) (169)
< T(Winc; Won s, W, Whe 1) (170)
=I(Wpn, K,Win ,)C) + I Wi Wi W | Wﬁf,)c)
(171)
= TWonic; Wi, Winer | W) (172)
< I W, W ks Win i Wae) (173)
< I (W ic; Winor, W) (174)
=0 (175)

(165), (166), (167) follow from the chain rule and the non-
negativity of mutual information. (168) holds because of (18),
while in (169), we used the definition of the storage as in
(11). (170) follows because (Wm,,g,ijf,)o)

Win.xr- (171) is again the chain rule of mutual information,
and (172) follows from the X-security constraint as in (16).
(173) follows from the chain rule and the non-negativity of
mutual information, while in (174), we used the fact that

Wch,WS: z)c) is function of me. The last step holds
because of (8). This completes the proof of Lemma 7. U

is function of

REFERENCES

[1]1 Z. Jia, H. Sun, and S. A. Jafar, “Cross subspace alignment and the
asymptotic capacity of X-secure T-private information retrieval,” IEEE
Trans. Inf. Theory, vol. 65, no. 9, pp. 5783-5798, Sep. 2019.

6295

[2] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private informa-
tion retrieval,” in Proc. 36th Annu. Symp. Found. Comput. Sci., 1995,
pp. 41-50.

[3] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” J. ACM, vol. 45, no. 6, pp. 965-981, 1998.

[4] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4075—4088, Jul. 2017.

[5] H. Sun and S. A. Jafar, “The capacity of robust private information
retrieval with colluding databases,” IEEE Trans. Inf. Theory, vol. 64,
no. 4, pp. 2361-2370, Apr. 2018.

[6] R. Tajeddine, O. W. Gnilke, and S. El Rouayheb, “Private information
retrieval from MDS coded data in distributed storage systems,” I[EEE
Trans. Inf. Theory, vol. 64, no. 11, pp. 7081-7093, Nov. 2018.

[7]1 K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” IEEE Trans. Inf. Theory, vol. 64, no. 3,
pp. 1945-1956, Mar. 2018.

[8] C. Tian, H. Sun, and J. Chen, “Capacity-achieving private information
retrieval codes with optimal message size and upload cost,” IEEE Trans.
Inf. Theory, vol. 65, no. 11, pp. 7613-7627, Nov. 2019.

[9]1 H. Sun and S. A. Jafar, “Optimal download cost of private information
retrieval for arbitrary message length,” IEEE Trans. Inf. Forensics
Security, vol. 12, no. 12, pp. 2920-2932, Dec. 2017.

[10] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, C. Hollanti,
and S. E. Rouayheb, “Private information retrieval schemes for coded
data with arbitrary collusion patterns,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2017, pp. 1908-1912.

[11] Z.Jia, H. Sun, and S. Jafar, “The capacity of private information retrieval
with disjoint colluding sets,” in Proc. IEEE GLOBECOM, Dec. 2017,
pp. 1-6.

[12] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk,
“Private information retrieval from coded databases with colluding
servers,” SIAM J. Appl. Algebra Geometry, vol. 1, no. 1, pp. 647-664,
Jan. 2017.

[13] H. Sun and S. A. Jafar, “Private information retrieval from MDS coded
data with colluding servers: Settling a conjecture by Freij-Hollanti,”
IEEE Trans. Inf. Theory, vol. 64, no. 2, pp. 1000-1022, Feb. 2018.

[14] K. Banawan and S. Ulukus, “Multi-message private information
retrieval: Capacity results and near-optimal schemes,” IEEE Trans. Inf.
Theory, vol. 64, no. 10, pp. 6842-6862, Oct. 2018.

[15] K. Banawan and S. Ulukus, “Asymmetry hurts: Private information
retrieval under asymmetric traffic constraints,” IEEE Trans. Inf. Theory,
vol. 65, no. 11, pp. 7628-7645, Nov. 2019.

[16] H. Sun and S. A. Jafar, “Multiround private information retrieval:
Capacity and storage overhead,” IEEE Trans. Inf. Theory, vol. 64, no. 8,
pp. 5743-5754, Aug. 2018.

[17] R. Tandon, “The capacity of cache aided private
tion retrieval,” 2017, arXiv:1706.07035. [Online].
http://arxiv.org/abs/1706.07035

[18] Y.-P. Wei, K. Banawan, and S. Ulukus, “Fundamental limits of
cache-aided private information retrieval with unknown and uncoded
prefetching,” IEEE Trans. Inf. Theory, vol. 65, no. 5, pp. 3215-3232,
May 2019.

[19] S. Kadhe, B. Garcia, A. Heidarzadeh, S. El Rouayheb, and A. Sprintson,
“Private information retrieval with side information,” IEEE Trans. Inf.
Theory, vol. 66, no. 4, pp. 2032-2043, Apr. 2020.

[20] Z. Chen, Z. Wang, and S. A. Jafar, “The capacity of T-private informa-
tion retrieval with private side information,” IEEE Trans. Inf. Theory,
vol. 66, no. 8, pp. 4761-4773, Aug. 2020.

[21] H. Sun and S. A. Jafar, “The capacity of private computation,” /IEEE
Trans. Inf. Theory, vol. 65, no. 6, pp. 3880-3897, Jun. 2019.

[22] M. Mirmohseni and M. Ali Maddah-Ali, “Private func-
tion retrieval,” 2017, arXiv:1711.04677. [Online]. Available:
http://arxiv.org/abs/1711.04677

[23] S. A. Obead and J. Kliewer, “Achievable rate of private function retrieval
from MDS coded databases,” 2018, arXiv:1802.08223. [Online]. Avail-
able: http://arxiv.org/abs/1802.08223

[24] D. Karpuk, “Private computation of systematically encoded data
with colluding servers,” 2018, arXiv:1801.02194. [Online]. Available:
http://arxiv.org/abs/1801.02194

[25] K. Banawan and S. Ulukus, “Private information retrieval through
wiretap channel II: Privacy meets security,” I[EEE Trans. Inf. Theory,
vol. 66, no. 7, pp. 4129-4149, Jul. 2020.

[26] Q. Wang, H. Sun, and M. Skoglund, “The capacity of private information
retrieval with eavesdroppers,” IEEE Trans. Inf. Theory, vol. 65, no. 5,
pp. 3198-3214, May 2019.

informa-
Available:

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 19:41:43 UTC from IEEE Xplore. Restrictions apply.



6296

[27] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from byzantine and colluding databases,” IEEE Trans. Inf.
Theory, vol. 65, no. 2, pp. 1206-1219, Feb. 2019.

[28] Y. Zhang and G. Ge, “Private information retrieval from MDS coded
databases with colluding servers under several variant models,” 2017,
arXiv:1705.03186. [Online]. Available: http:/arxiv.org/abs/1705.03186

[29] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, and
C. Hollanti, “Private information retrieval from coded storage systems
with colluding, byzantine, and unresponsive servers,” IEEE Trans. Inf.
Theory, vol. 65, no. 6, pp. 3898-3906, Jun. 2019.

[30] H. Sun and S. A. Jafar, “The capacity of symmetric private informa-
tion retrieval,” IEEE Trans. Inf. Theory, vol. 65, no. 1, pp. 322-329,

Jan. 2019.

[311 Q. Wang and M. Skoglund, “Linear symmetric private
information retrieval for MDS coded distributed storage with
colluding servers,” 2017, arXiv:1708.05673. [Online]. Available:

http://arxiv.org/abs/1708.05673

[32] Q. Wang and M. Skoglund, ‘“Secure symmetric private informa-
tion retrieval from colluding databases with adversaries,” 2017,
arXiv:1707.02152. [Online]. Available: http://arxiv.org/abs/1707.02152

[33] H. Yang, W. Shin, and J. Lee, “Private information retrieval for secure
distributed storage systems,” IEEE Trans. Inf. Forensics Security, vol. 13,
no. 12, pp. 2953-2964, Dec. 2018.

[34] N. Raviv, I. Tamo, and E. Yaakobi, “Private information retrieval in
graph-based replication systems,” IEEE Trans. Inf. Theory, vol. 66, no. 6,
pp- 3590-3602, Jun. 2020.

[35] K. Banawan and S. Ulukus, “Private information retrieval from non-
replicated databases,” 2019, arXiv:1901.00004. [Online]. Available:
http://arxiv.org/abs/1901.00004

[36] A. Schrijver, Combinatorial Optimization: Polyhedra Efficiency, vol. 24.
Springer, 2003.

[37] Y. Birk and T. Kol, “Informed-source coding-on-demand (ISCOD) over
broadcast channels,” in Proc. IEEE INFOCOM Conf. Comput. Commun.
17th Annu. Joint Conf. IEEE Comput. Commun. Soc. Gateway 21st
Century, vol. 3, Mar. 1998, pp. 1257-1264.

[38] Z. Jia and S. A. Jafar, “X-secure 7T-private information retrieval from
MDS coded storage with byzantine and unresponsive servers,” 2019,
arXiv:1908.10854. [Online]. Available: http://arxiv.org/abs/1908.10854

[39] E J. MacWilliams and N. J. A. Sloane, The Theory Error-Correcting
Codes, vol. 1. Amsterdam, The Netherlands: Elsevier, 1977.

[40] M. Gasca, J. J. Martinez, and G. Miihlbach, “Computation of rational
interpolants with prescribed poles,” J. Comput. Appl. Math., vol. 26,
no. 3, pp. 297-309, Jul. 1989.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 10, OCTOBER 2020

Zhugqing Jia (Graduate Student Member, IEEE) received the B.E. degree in
electronic information engineering from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2015, and the M.S. degree in electrical
and computer engineering from the University of California at Irvine, CA,
USA, in 2019, where he is currently pursuing the Ph.D. degree. His research
interests include information theory and its applications to security, privacy,
computation, and storage.

Syed Ali Jafar (Fellow, IEEE) received the B.Tech. degree from IIT Delhi,
India, in 1997, the M.S. degree from Caltech, USA, in 1999, and the Ph.D.
degree from Stanford University, USA, in 2003, all in electrical engineering.

His industrial experience includes positions at Lucent Bell Labs and Qual-
comm. He is currently a Chancellor’s Professor of electrical engineering and
computer science at the University of California at Irvine, Irvine, CA, USA.
His research interests include multiuser information theory, wireless commu-
nications, and network coding. He was a recipient of the New York Academy
of Sciences Blavatnik National Laureate in Physical Sciences and Engineering,
the NSF CAREER Award, the ONR Young Investigator Award, the UCI
Academic Senate Distinguished Mid-Career Faculty Award for Research,
the School of Engineering Mid-Career Excellence in Research Award, and the
School of Engineering Maseeh Outstanding Research Award. His coauthored
articles have received the IEEE Information Theory Society Paper Award,
the IEEE Communication Society and Information Theory Society Joint
Paper Award, the IEEE Communications Society Best Tutorial Paper Award,
the IEEE Communications Society Heinrich Hertz Award, the IEEE Signal
Processing Society Young Author Best Paper Award, the IEEE Information
Theory Society Jack Wolf ISIT Best Student Paper Award, and the three IEEE
GLOBECOM Best Paper Awards. He also received the UC Irvine EECS
Professor of the Year Award six times in 2006, 2009, 2011, 2012, 2014,
and 2017 from the Engineering Students Council, the School of Engineering
Teaching Excellence Award in 2012, and the Senior Career Innovation in
Teaching Award in 2018. He was a University of Canterbury Erskine Fellow
in 2010, an IEEE Communications Society Distinguished Lecturer from
2013 to 2014, and an IEEE Information Theory Society Distinguished Lecturer
from 2019 to 2020. He was recognized as a Thomson Reuters/Clarivate
Analytics Highly Cited Researcher and included by Sciencewatch among The
World’s Most Influential Scientific Minds in 2014, 2015, 2016, 2017, and
2018. He served as an Associate Editor for the IEEE TRANSACTIONS ON
COMMUNICATIONS from 2004 to 2009, the IEEE COMMUNICATIONS LET-
TERS from 2008 to 2009, and the IEEE TRANSACTIONS ON INFORMATION
THEORY from 2009 to 2012.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 19:41:43 UTC from IEEE Xplore. Restrictions apply.



