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Abstract— The problem of private information retrieval with
graph-based replicated storage was recently introduced by Raviv,
Tamo and Yaakobi. Its capacity remains open in almost all
cases. In this work the asymptotic (large number of messages)
capacity of this problem is studied along with its generalizations
to include arbitrary T -privacy and X -security constraints, where
the privacy of the user must be protected against any set of up to
T colluding servers and the security of the stored data must be
protected against any set of up to X colluding servers. A general
achievable scheme for arbitrary storage patterns is presented that
achieves the rate (ρmin−X −T )/N , where N is the total num-
ber of servers, and each message is replicated at least ρmin times.
Notably, the scheme makes use of a special structure inspired
by dual Generalized Reed Solomon (GRS) codes. A general
converse is also presented. The two bounds are shown to match
for many settings, including symmetric storage patterns. Finally,
the asymptotic capacity is fully characterized for the case without
security constraints (X = 0) for arbitrary storage patterns
provided that each message is replicated no more than T + 2
times. As an example of this result, consider PIR with arbitrary
graph based storage (T = 1, X = 0) where every message is
replicated at exactly 3 servers. For this 3-replicated storage set-
ting, the asymptotic capacity is equal to 2/ν2(G) where ν2(G)
is the maximum size of a 2-matching in a storage graph G[V, E].
In this undirected graph, the vertices V correspond to the set of
servers, and there is an edge uv ∈ E between vertices u, v only
if a subset of messages is replicated at both servers u and v.

Index Terms— Security, privacy, capacity, graph theory, dis-
tributed storage.

I. INTRODUCTION

AS DISTRIBUTED storage systems become increasingly
prevalent, there are mounting concerns regarding user

privacy and data security. The problem of X-secure and T -
private information retrieval (XSTPIR) deals with both of these
issues [1]. In its basic form, private information retrieval (PIR)
involves K datasets (messages) that are replicated at N
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distributed servers, and a user who wishes to retrieve one
of these datasets without revealing any information about the
identity of his desired dataset to any of the servers [2], [3].
XSTPIR is a generalization of PIR where the stored data must
remain secure as long as the number of colluding servers is
not more than X , and the user’s privacy must be preserved
as long as the number of colluding servers is not more than
T [1]. The rate of a PIR scheme is the ratio of the number
of bits of desired message that are retrieved per bit of total
download from all servers. The supremum of achievable rates
is called the capacity of PIR [4].

The capacity of the basic PIR setting was characterized in
[4] for arbitrary number of messages replicated across arbitrary
number of servers. Following in the footsteps of [4] there
has been a wave of new results exploring the fundamental
limits of PIR under a variety of constraints. This includes
PIR with T -privacy and replicated storage [5], PIR with MDS
coded storage [6], [7], PIR with optimal storage and upload
cost [8], PIR with arbitrary message lengths [9], PIR with
restricted collusion patterns [10], [11], PIR with T -privacy
and MDS coded storage [12], [13], multi-message PIR [14],
PIR with asymmetric traffic constraints [15], multi-round PIR
[16], cache-aided and otherwise storage-constrained PIR [17],
[18], PIR with side-information [19], [20], PIR for compu-
tation [21]–[24], PIR for security against eavesdroppers [25],
[26], PIR with Byzantine adversaries [27]–[29], symmetrically
secure PIR [30]–[32], and PIR with secure storage [1], [33].

Most relevant to this work is the recent characterization
in [1] of the asymptotic (K → ∞) capacity of XSTPIR as
CXSTPIR = 1 − (X + T )/N . Note that the XSTPIR setting
includes as special case the TPIR setting, obtained by setting
X = 0, as well as the original PIR setting, obtained by setting
X = 0 and T = 1. It is limited, however, by its assumption
of fully replicated storage, i.e., all messages are stored by all
servers, which can be burdensome for large data sets. Moti-
vated by the preference for simple storage, Raviv et al. [34]
introduced a graph based replicated storage model. Instead
of full replication where every message is replicated at every
server, graph based replication assumes that each message
is replicated only among a subset of servers. This allows a
graph representation where the vertices are the N servers and
each message is represented by a hyperedge comprised of
vertices (servers) where this message is replicated. Reference
[34] primarily focuses on GTPIR, i.e., PIR with graph based
replicated storage and T -privacy. An achievable scheme is
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proposed that achieves the rate 1/N as long as T is smaller
than the replication factor of each message (the number of
servers where the message is replicated), and is shown to
be within a factor of 2 from optimality for some special
cases. Reference [35] presents capacity achieving schemes for
several cases of GPIR, i.e., GTPIR with 1-privacy where each
server stores 2 messages. However, optimal GTPIR schemes
remain unknown in almost all settings. Understanding the key
ideas that constitute optimal PIR schemes under graph based
replicated storage is our goal in this paper.

The main contributions of this work are as follows. We study
the asymptotic capacity of T -private and X-secure PIR with
graph-based replicated storage, in short GXSTPIR. Recall that
asymptotic capacity is quite meaningful for PIR because the
number of messages is typically large, and the convergence
of capacity to its asymptotic value tends to take place quite
rapidly [1]. GXSTPIR includes as special cases the settings
of GTPIR [34], XSTPIR [1], TPIR [5] and basic PIR [4],
and as such it presents a unified view of these settings.
Our first result is an achievable scheme for GXSTPIR that
achieves the rate (ρmin − X − T )/N for arbitrary storage
patterns provided every message is replicated at least ρmin

times. In addition to ideas like cross-subspace alignment,
Reed-Solomon (RS) coded storage and RS coded queries
that were previously used for XSTPIR [1], a key novelty of
our achievable scheme for GXSTPIR is how it creates and
takes advantage of a structure inspired by dual Generalized
Reed Solomon (GRS) codes. This is explained intuitively in
Section III-B. Our second contribution is a general converse
bound for asymptotic capacity of GXSTPIR with arbitrary
storage patterns. While the asymptotic capacity of GXSTPIR
remains open in general, it is remarkable that our converse
bound is tight in all settings where we are able to settle the
capacity. In particular, the general achievable scheme matches
the converse bound when the storage is symmetric, settling the
asymptotic capacity for those settings.1 For several examples
with asymmetric storage, it turns out that the achievable
scheme can be improved to match the converse bound by
applying it only after eliminating2 certain redundant servers.
Thus, the asymptotic capacity for such cases is settled as
well. In general however, with arbitrary graph based storage,
more sophisticated achievable schemes may be obtained by
combining our achievable scheme with ideas from private
computation [21]. To illustrate this, we consider the GTPIR
problem (X = 0) where every message is replicated no more
than T +2 times. As our final result, for this problem we fully
settle the asymptotic capacity for arbitrary storage patterns.
The asymptotic capacity depends strongly on the storage graph
structure, and requires a private computation scheme on top of
our general achievable scheme. As an example of this result,
consider GPIR, i.e., PIR with arbitrary graph based storage
(T = 1, X = 0) where every message is replicated at exactly
3 servers. For this 3-replicated storage setting, the asymptotic
capacity is exactly equal to 2/ν2(G) where ν2(G) is the

1We refer the reader to Section III for the definition of symmetric storage.
2By “eliminating a server” for an achievable scheme, we mean using an

achievable scheme that does not send any query to that server.

maximum size of a 2-matching in a storage graph G[V, E].
In this storage graph, the vertices V correspond to the set
of servers, and there is an edge uv ∈ E between vertices
u, v only if a subset of messages is replicated at both servers
u and v. This is consistent with the intuition that storage
graph properties must be essential to the asymptotic capacity
of graph-based storage.

Notation: For a positive integer M the notation [M ] denotes
the set {1, 2, · · · , M}. The notation X[M ] stands for the
set {X1, X2, . . . , XM}. Similarly, for an index set I =
{i1, i2, . . . , in}, XI denotes the set {Xi1 , Xi2 , . . . , Xin}. If A
is a set of random variables, then by H(A) we denote the
joint entropy of those random variables. Mutual informations
between sets of random variables are similarly defined. For
tuples such as A = (a1, a2, · · · , an) we allow set theoretic
notions of inclusion. For example, b ∈ A denotes the relation-
ship b ∈ {a1, a2, · · · , an}. Similarly, b ∈ A \ {a1} denotes
b ∈ {a2, a3, · · · , an}. The notation X ∼ Y is used to indicate
that X and Y are identically distributed. When a natural
number, say # ∈ N, is used to represent an element of a finite
field Fq, it denotes the sum of # ones in Fq , i.e., # ! ∑!

l=1 1,
where the addition is over Fq.

II. PROBLEM STATEMENT

We begin with a description of messages and storage
structure. Based on the storage structure we will partition
the set of messages into M subsets so that the messages
in the same subset have the same storage structure. Define
W = (W1,W2, · · · ,WM ) where Wm, m ∈ [M ], are disjoint
message sets, each comprised of Km messages,

Wm = (Wm,1, Wm,2, · · · , Wm,Km). (1)

Messages are independent, and each message is composed of
L i.i.d. uniform symbols from Fq , i.e.,

H(Wm,k) = H(Wm,k(1), Wm,k(2), · · · , Wm,k(L)) = L,

∀m ∈ [M ], k ∈ [Km] (2)

H(W1,1, · · · , WM,KM ) =
M∑

m=1

KmL, (3)

in q-ary units. There are a total of N servers. Corresponding
to W = (W1, · · · ,WM ), let us define

R = (R1, · · · ,RM ), (4)

Rm = (Rm(1), · · · ,Rm(ρm)) , ∀m ∈ [M ], (5)

Rm(r) ∈ [N ], ∀r ∈ [ρm], (6)

where Rm, m ∈ [M ] contains the servers, Rm(r) ∈ [N ] that
store the mth set of messages Wm. Without loss of generality
we will assume that the servers are listed in increasing order in
each tuple Rm. The cardinality of Rm is |Rm| = ρm, which
will be referred to as the replication factor for the messages
in Wm. The minimum replication factor is defined as

ρmin ! min
m∈[M ]

ρm. (7)

It is important to note that the messages may not be directly
replicated at the servers. Because of security constraints, each
message Wm,k ∈ Wm, is represented by a total of ρm
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shares (the nomenclature comes from secret-sharing), denoted
Wm,k =

(
W (n)

m,k, n ∈ Rm

)
, such that the share W (n)

m,k is
stored at Server n, for all n ∈ Rm. Messages are indepen-
dently secured and must be recoverable from their shares,
as specified by the following constraints.

H
(
W 1,1, · · · , WM,Km

)
=

∑

m∈[M ],k∈[KM ]

H
(
Wm,k

)
, (8)

H
(
Wm,k | Wm,k

)
= 0. (9)

Let us define the index set of Wm that are stored at Server n,
as

Mn = {m ∈ [M ]
∣∣∣Rm ' n}. (10)

The information stored at Server n is defined as

Sn =
{
W (n)

m,k, m ∈ Mn, k ∈ [Km]
}

. (11)

For example, suppose we have M = 4 message sets (each
comprised of Km = 2 messages), stored at N = 4 servers as
shown.

Then for this example,3 we have,

M1 = {1, 2, 3}, R1 = (1, 2, 4), ρ1 = 3,

S1 = {W (1)
1,1 , W (1)

1,2 , W (1)
2,1 , W (1)

2,2 , W (1)
3,1 , W (1)

3,2 }, (12)

M2 = {1, 2}, R2 = (1, 2, 3), ρ2 = 3,

S2 = {W (2)
1,1 , W (2)

1,2 , W (2)
2,1 , W (2)

2,2 }, (13)

M3 = {2, 4}, R3 = (1, 4), ρ3 = 2,

S3 = {W (3)
2,1 , W (3)

2,2 , W (3)
4,1 , W (3)

4,2 }, (14)

M4 = {1, 3, 4}, R4 = (3, 4), ρ4 = 2,

S4 = {W (4)
1,1 , W (4)

1,2 , W (4)
3,1 , W (4)

3,2 , W (4)
4,1 , W (4)

4,2 }, (15)

and ρmin = 2.
The X-secure constraint, 0 ≤ X ≤ N , requires that any X

(or fewer) colluding servers learn nothing about the messages.

[X-Security] I(SX ;W) = 0, ∀X ⊂ [N ], |X | ≤ X. (16)

X = 0 represents the setting without security constraints.
If X = 0, then no secret sharing is needed, so each share
of a message is the message itself,

X = 0 =⇒ W (n)
m,k = Wm,k, ∀n ∈ Rm. (17)

This completes the description of the messages and the storage
at the N servers. Next, let us describe the private information
retrieval aspect.

The user desires the message Wµ,κ, where the indices
µ and κ are chosen privately and uniformly by the user

3Incidentally, our results will show that as Km → ∞, for this example
C∞ = 1/3, and Server 2 is redundant.

from µ ∈ [M ], κ ∈ [Kµ], respectively. In order to
retrieve his desired message, the user generates N queries,
Q[µ,κ]

1 , Q[µ,κ]
2 , . . . , Q[µ,κ]

N , and sends the nth query, Q[µ,κ]
n to

the n-th server. The user has no prior knowledge of the
message realizations,

I
(
S[N ] ; µ, κ, Q[1,1]

[N ] , · · · , Q[M,KM ]
[N ]

)
= 0. (18)

A T -private scheme, 1 ≤ T ≤ N , requires that any T (or
fewer) colluding servers learn nothing about (µ, κ).

[T -Privacy] I
(
Q[µ,κ]

T ; µ, κ
)

= 0, ∀T ⊂ [N ], |T | ≤ T.

(19)

Upon receiving the query Q[µ,κ]
n , the n-th server generates an

answer string A[µ,κ]
n , which is a function of the query Q[µ,κ]

n

and its stored information Sn.

H
(
A[m,k]

n | Q[m,k]
n , Sn

)
= 0, ∀m ∈ [M ], k ∈ [Km]. (20)

The correctness constraint guarantees that from all the
answers, the user is able to decode the desired message Wµ,κ,

[Correctness] H
(
Wµ,κ | A[µ,κ]

[N ] , Q[µ,κ]
[N ] , µ, κ

)
= 0. (21)

The rate of a GXSTPIR scheme is defined by the number
of q-ary symbols of desired message that are retrieved per
downloaded q-ary symbol,

R =
H(Wµ,κ)

∑
n∈[N ] H

(
A[µ,κ]

n

) =
L

D
, (22)

where D =
∑

n∈[N ] H
(
A[µ,κ]

n

)
is the expected4 total number

of q-ary symbols downloaded by the user from all servers. The
capacity of GXSTPIR, denoted as C(N, X, T,W ,S), is the
supremum of R across all feasible schemes. In this work we
are interested in the setting where each subset of messages
is comprised of a large number of messages. Specifically,
we wish to characterize the asymptotic capacity, as Km → ∞
for all m ∈ [M ]. In order to have Km approach infinity
together for all m ∈ [M ], let us define,

Km = +χmK,, (23)

so that χm, m ∈ [M ] are fixed constants, while K approaches
infinity. Then the asymptotic capacity is defined as

C∞ = lim
K→∞

C(N, X, T,W ,S). (24)

Note that the number of message sets, M , and the storage
pattern R remain unchanged, while Km, i.e., the number of
messages in each Wm approaches infinity.

4While the achievable schemes used in this work only download a deter-
ministic number of bits from each server, note that our capacity formulation
allows schemes for which the number of bits downloaded from each server
may be random. This means that our capacity results cannot be improved
upon by schemes that download a random number of bits from each server.
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III. RESULTS

Our first result is a general achievability argument that
provides us a lower bound on the asymptotic capacity of
GXSTPIR.

Theorem 1: The asymptotic capacity of GXSTPIR is
bounded below as follows,

C∞ ≥ ρmin − X − T

N
. (25)

The proof of Theorem 1 appears in Section IV. From a prac-
tical standpoint, it is worth noting that while the achievable
rate in (25) does not depend on the storage structure beyond
just the minimum replication factor ρmin, the achievable
scheme does require that the user be aware of the storage struc-
ture for the construction of queries that are sent to the servers.
From a technical standpoint, the most interesting aspect of the
proof is the use of a structure inspired by dual GRS codes, that
is intuitively explained in Section III-B. Another interesting
aspect of Theorem 1 is that applying it to a subset of servers
(by eliminating the rest) may produce a higher achievable rate
than if all servers were used. Therefore, in order to find the best
achievable rate guaranteed by Theorem 1 we must choose the
best subset of servers. Example 4 in Section III-A illustrates
this idea. As a final remark, let us reiterate that the focus
of this work is on settings with large number of messages.
Indeed for smaller values of K and M the schemes presented
in [34], [35] can achieve better rates than the scheme presented
in Section IV.

Our next result is a converse argument that holds for
arbitrary storage patterns. Recall that Dn = H(A[µ,κ]

n )/L is
the normalized download from Server n.

Theorem 2: The asymptotic capacity of GXSTPIR is
bounded above as follows,

C∞ ≤






0, ρmin ≤ X + T
max(D1,··· ,DN )∈D (D1 + D2 + · · · + DN )−1 ,

ρmin > X + T

(26)

and D is defined as

D !




(D1, · · · , DN) ∈ RN
+

∣∣∣
∑

n∈R′
m

Dn ≥ 1, ∀m ∈ [M ],

∀R′
m ⊂ Rm, |R′

m| = |Rm|− X − T } . (27)

The proof of Theorem 2 appears in Section V. Since the
asymptotic capacity is zero for ρmin ≤ X+T , in the remainder
of this section we will assume that ρmin > X + T . Note that
since our focus is on settings with asymptotically large number
of messages, our coding schemes achieve rate zero for cases
where the asymptotic capacity is zero.

Remark: Note that (27) implies that the total normalized
download from any ρm − X − T servers in Rm must be at
least 1. A simple averaging argument implies that the total
normalized download from all ρm servers in any Rm must be
at least ρm/(ρm − X − T ).

The general lower bound in Theorem 1 is in closed form and
the general upper bound in Theorem 2 is essentially a linear
program, so for arbitrary settings it is possible to evaluate

both to check if they match (provided the parameter values
are not too large to be computationally feasible). Conceptually,
the condition for them to match may be understood as follows.
Consider a hypergraph G(V , E) with the set of vertices V =
[N ] representing the N servers, and the set of hyperedges E
such that e ∈ E if and only if ∃m ∈ [M ] such that e ⊂ Rm

and |e| = |Rm| − X − T . For this graph, hyperedges e ∈
E , with corresponding weights xe ∈ R+, are said to form a
fractional matching if for every vertex v ∈ V the total weight
of the edges that include v is less than or equal to 1. The
largest possible total weight of a fractional matching is called
the fractional matching number of G [36]. The relationship
between the optimal converse bound from Theorem 2 on the
total normalized download, i.e., minD(D1 + · · · + DN ) and
the fractional matching number of G[V , E ] is characterized in
the following lemma.

Lemma 1: The optimal value of total normalized download,
minD(D1 + D2 + · · · + DN ), in Theorem 2 is equal to the
fractional matching number of G[V , E ].

The proof of Lemma 1 is presented in Appendix A. From
Lemma 1, the following corollary immediately follows.

Corollary 1: The lower bound of Theorem 1 matches the
upper bound of Theorem 2 if and only if the fractional
matching number of G(V , E) is equal to N

ρmin−X−T . For all
such cases, the asymptotic capacity C∞ = (ρmin−X−T )/N .

Next let us identify some interesting special cases of
Corollary 1.

Let RM′ be a collection of the sets Rm, m ∈ M′ ⊂ [M ].
We define RM′ to be an exact b-cover of [N ] if ρm = ρmin for
all m ∈ M′, and every element of [N ] is contained in exactly
b sets in RM′ . It follows that the asymptotic capacity C∞ =
(ρmin−X−T )/N if there exists an exact b-cover for some b ∈
Z+. This is easily seen because for each Rm in RM′ we have
the bound

∑
n∈Rm

Dn ≥ ρmin/(ρmin −X − T ) according to
(27). Adding all these bounds we obtain the desired converse
bound b

∑
n∈[N ] Dn ≥ (bN/ρmin)(ρmin/(ρmin − X − T )),

i.e.,
∑

n∈[N ] Dn ≥ N/(ρmin − X − T ), which is achievable
according to Theorem 1.

(Symmetric Storage) As a special case that is of particular
interest, define a symmetric storage setting as one where (after
some permutation of message and server indices) for all m ∈
[M ], Rm = (ρm+1, ρm+2, · · · , ρm+ρmin). Here, ρ ≤ ρmin

and server indices are interpreted modulo N , e.g., Server N+1
is the same as Server 1. Furthermore, b = Mρmin/N is an
integer value. Then any symmetric storage setting thus defined
has asymptotic capacity C∞ = (ρmin − X − T )/N because
the storage sets form an exact b-cover.

Based on these observations, here are some examples of
storage patterns where the asymptotic capacity is C∞ =
(ρmin − X − T )/N .

1) R = ((1, 2), (2, 3), (3, 1)) which is a symmetric storage
setting (forms an exact 2 cover).

2) R = ((1, 2, 3), (3, 4, 5), (5, 1, 2), (2, 3, 4), (4, 5, 1))
which is a symmetric storage setting (forms an exact
3-cover).

3) R = ((1, 2), (2, 3), (3, 1), (4, 5), (5, 6), (6, 4)) because it
forms an exact 2 cover.
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4) R = ((1, 2, 3), (4, 5, 6), (i, j, k), (a, b, c, d)) for arbitrary
{i, j, k}, {a, b, c, d} ⊂ [N ] = [6] because it contains an
exact 1-cover, RM′ = {(1, 2, 3), (4, 5, 6)}.

5) R = ((1, 2, 3), (3, 4, 1), (2, 5, 6), (4, 5, 6), (1, 3, 6), (1, 2,
5, 6)) because it contains an exact 2-cover of [N ] = [6]
in RM′ = {(1, 2, 3), (3, 4, 1), (2, 5, 6), (4, 5, 6)}.

While the existence of an exact b-cover for some positive
integer b is sufficient to guarantee that the asymptotic capacity
is C∞ = (ρmin − X − T )/N , it is not a necessary condition.
Examples 1 and 2 in Section III-A show such settings.

On the other hand, it is also easy to see that the lower
bound of Theorem 1 and the upper bound of Theorem 2 do
not always match. Remarkably, in all such cases that we have
been able to settle so far, it is the upper bound that is tight,
and the achievability that needs to be improved. In many cases,
such as Example 4 in Section III-A, an improved achievability
result is found easily by eliminating a redundant server before
applying Theorem 1. However, more sophisticated achievable
schemes may be required in general.

Our final result emphasizes this point by settling the asymp-
totic capacity of GTPIR, i.e., T -private information retrieval
with arbitrary graph based storage and no security constraints
(X = 0), provided each message is replicated no more than
(T +2) times. Because this result deals with arbitrary storage
patterns, for its precise statement we will need the following
definitions that follow the convention of Schrijver [36].

Definition 1: Define G = (V, E) as a simple undirected
graph with vertices V = [N ] corresponding to the N servers,
and with edges uv ∈ E if and only if {u, v} ⊂ Rm for some
m ∈ [M ].

Definition 2: For a set U ⊂ V , we define G[U ] as the
induced subgraph of G whose vertex set is U and whose edge
set, denoted E[U ] consists of all edges uv ∈ E such that
u, v ∈ U .

Definition 3: A set U ⊂ V is called a stable set (also
called independent set) if there are no edges between any two
members of U .

Definition 4: For U ⊂ [N ], define N (U) as the set of
vertices in V \U that are neighbors of vertices in U .

Definition 5: Define δ(n) as the set of edges incident with
vertex n.

Definition 6: A function x : E → Z+ is denoted as a vector
x ∈ ZE

+. A function y : V → Z+ is similarly denoted as a
vector y ∈ ZV

+ . The size of a vector is defined as the sum of
its entries.

Definition 7: For any x ∈ ZE
+, and F ⊂ E, define x(F ) =∑

f∈F x(f).
Definition 8: For a positive integer b, a b-matching in G is

defined as a vector x ∈ ZE
+ satisfying x(δ(v)) ≤ b for each

vertex v ∈ V . The maximum size of a b-matching in G is
defined as νb(G).

Definition 9: Define Nr as the set of servers that do not
store any messages that are replicated fewer than r times.

Nr ! {n ∈ [N ]
∣∣∣m ∈ Mn =⇒ ρm ≥ r}. (28)

It is worthwhile to recall that from basic results in graph theory
(see Chapter 30, Section 30.1 of Schrijver [36]), it is known

that

ν2(G) = min
{
|V \U | + |N (U)|

∣∣∣ U ⊂ V,

and U is a stable set} . (29)

With this we are ready to state our final result.
Theorem 3: The asymptotic capacity of GTPIR with ρm ≤

T+2 for all m ∈ [M ], i.e., when each message set is replicated
no more than (T + 2) times, is

C∞ =
{

0, ρmin ≤ T
2

ν2(G[NT+2])+2|NT+1| , ρmin > T . (30)

The proof of Theorem 3 appears in Section VI. While
the converse bound for Theorem 3 follows directly from
the general converse bound in Theorem 2, the achievability
goes beyond the scheme of Theorem 1, to involve a limited
generalization to private computation that is presented in
Section IV-C. As an interesting special case of Theorem 3,
note that if all messages are T +2 replicated, i.e., NT+1 is an
empty set, then the asymptotic capacity is exactly 2/ν2(G).

Remark: In general, for arbitrary positive integer b, any
bounds on b-matching will result in a corresponding lower
bound of

∑
n∈[N ] Dn. However, since the converse bounds for

2-matchings are found to be tight, there is no need to pursue
b /= 2, because no more bounds are needed. For larger ρm,
perhaps similar results are possible in the hypergraph version,
but we have not been able to find meaningful generalizations
along these lines.

A. Examples

Let us consider a few more examples to illustrate our results.
For these examples we set X = 0, T = 1 for simplicity, but
similar examples are easily constructed for X > 0, T > 1 as
well.

1) Consider M = 3 message sets, stored at N = 4 servers
according to the replication pattern R1 = (1, 2, 4),
R2 = (1, 2, 3), R3 = (1, 3, 4). Since every message
is 3-replicated, according to Theorem 1 we have C∞ ≥
2/4 = 1/2. For the converse we note that R1 =⇒
D1 + D2 ≥ 1, R2 =⇒ D2 + D3 ≥ 1, R3 =⇒
D3 + D4 ≥ 1, D4 + D1 ≥ 1, and adding these bounds
gives us D1 + D2 + D3 + D4 ≥ 2. Thus we have
C∞ = 1/2 for this example. Note that this example
does not contain an exact b-cover for any positive integer
b, but the asymptotic capacity for this example is still
C∞ = (ρmin − X − T )/N .

2) Consider M = 3 message sets stored at N = 5 servers
according to the replication pattern R1 = (1, 3, 4),R2 =
(3, 4, 5),R3 = (2, 3, 5), so that every message is 3-
replicated, but the storage is not symmetric, nor does
it contain an exact b-cover. For the converse we note
that R1 =⇒ D4 + D1 ≥ 1, D1 + D3 ≥ 1; R3 =⇒
D3+D2 ≥ 1, D2+D5 ≥ 1; R2 =⇒ D5+D4 ≥ 1; and
combining these bounds gives us the converse bound as
C∞ ≤ maxD 1/(

∑
n∈[5] Dn) ≤ 2/5. Since ρmin = 3,

Theorem 1 shows that the rate (ρmin−X−T )/N = 2/5
is achievable, so that C∞ = 2/5 for this example.
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3) Consider M = 3 message sets stored at N = 5 servers
according to the replication pattern R1 = (1, 3, 4),R2 =
(1, 3, 4, 5),R3 = (2, 3, 5), so that messages in W2 are 4-
replicated while those in W1,W3 are only 3-replicated.
For the converse we note that R1 =⇒ D1 + D3 ≥
1, D3 + D4 ≥ 1, D4 + D1 ≥ 1; while R3 =⇒
2D2 + 2D5 ≥ 2. Adding them up we have the bound
D1 + D2 + D3 + D4 + D5 ≥ 5/2, which gives us the
converse bound C∞ ≤ 2/5. Since ρmin = 3, the lower
bound from Theorem 1 is also 2/5, so that C∞ = 2/5
for this example. Note that we could eliminate any one
element from R2 so that messages in W2 are also only
3-replicated, but that would not change the asymptotic
capacity. Or we could add one more element to R2

so that messages in W2 are replicated at every server,
and that would also not change the capacity. Thus, this
example illustrates redundant storage.

4) Consider M = 2 message sets stored at N = 5 servers
according to the replication pattern R1 = (1, 2, 3, 4),
R2 = (2, 3, 4, 5), so that each message is 4-replicated.
The converse from Theorem 2 says C∞ ≤ 2/3, which
corresponds to D1 = D5 = 0, D2 = D3 = D4 = 1/2,
but since ρmin = 4, Theorem 1 applied directly only
proves the achievability of rate (ρmin−X−T )/N = 3/5
which does not match the converse bound. However,
note that if we eliminate Server 1 and Server 5, then
we are left with the same5 M = 2 message sets stored
at N ′ = 3 servers according to the replication pattern
R′

1 = (2, 3, 4),R′
2 = (2, 3, 4), for which ρ′min = 3, and

Theorem 1 shows that the rate (ρ′min − X − T )/N ′ =
2/3 is achievable, which indeed matches the converse
bound. Thus, the asymptotic capacity for this example
is C∞ = 2/3. The example shows that achievable rates
may be improved by eliminating redundant servers.

5) Consider M = 4 message sets stored at N = 5 servers
according to the storage pattern R1 = (1, 2, 3),R2 =
(2, 3, 4),R3 = (1, 3, 5),R4 = (2, 4), so that messages
in W1,W2,W3 are 3-replicated, while messages in R4

are 2-replicated, and ρmin = 2. The achievable scheme
from Theorem 1 achieves a rate 1/5, however Theo-
rem 3 builds upon that scheme to achieve the rate 2/7
which also matches the converse. Thus, for this setting,
the capacity is settled by Theorem 3 as C∞ = 2/7.

6) Consider M = 5 message sets stored at N = 8 servers
according to the storage pattern R1 = (1, 2, 3),R2 =
(1, 3, 4),R3 = (4, 5, 7),R4 = (4, 6, 7),R5 = (7, 8).
The capacity for this case is settled by Theorem 3 as 2/9.
To explicitly see the converse bound, note that in (27)
R1 =⇒ D1+D2+D3 ≥ 3/2; R5 =⇒ D7 ≥ 1, D8 ≥
1; and R3 =⇒ D4 + D5 ≥ 1. Adding these bounds
we have D1 + D2 + D3 + D4 + D5 + D7 + D8 ≥ 9/2,
which implies that asymptotically the total normalized
download D ≥ 9/2 and the converse bound follows.
The graph representation for this setting, G(V, E) is

5Note that while some servers may be eliminated (i.e., not used) by an
achievable scheme, the message sets cannot be reduced because the achievable
scheme must still work for all messages.

Fig. 1. The graph G[V, E] for Example 6.

shown in Figure 1. Vertices in N3 = {1, 2, 3, 4, 5, 6} are
shown with a red border, while vertices in N2 = {7, 8}
are shown with a black border. The maximum size of
a 2-matching on G[N3] is 5, corresponding to the 5
edges shown in red. Alternatively, it corresponds to the
choice of U = {5, 6} ⊂ N3 in (29). Note that while U
has 2 neighbors in G, i.e., N (U) = {4, 7}, it has only
1 neighbor in N3, i.e., N (U) ∩ N3 = {4}. Therefore,
ν2(G[N3])+2|N2| = |N3\U |+ |N (U)∩N3|+2|N2| =
4 + 1 + 2(2) = 9. Achievability follows by the scheme
presented in the proof of Theorem 3, downloading a
symbol from each of [N ] \ U = {1, 2, 3, 4, 7, 8}, and
downloading another symbol from each of N (U)∪N2 =
{4, 7, 8} according to a private computation scheme
described in Section IV-C, for a total download of 9
symbols from which 2 desired symbols are retrieved.

B. Solution Structure Inspired by Dual GRS Codes

The most interesting aspect of the achievable scheme in
Theorem 1 is a generalized query and storage structure
that is inspired by dual GRS codes. Since the storage and
query structure for XSTPIR in [1] was based on RS codes,
the generalization to GRS code structure for GXSTPIR is
somewhat serendipitous (note that the G in GRS codes is not
automatically associated with the G in GXSTPIR which stands
for Graph based replicated storage). It is also surprisingly
effective, as explained intuitively in this section.

Before discussing how GRS codes are a part of the solution,
let us illustrate the nature of the problem with a simple
example. Let us consider a very basic setting, where we have
M = 4 subsets of messages, N = 4 servers, and ∀m ∈ [M ],
we have Rm = [N ]\{m}, i.e., messages in Wm are stored at
all servers except Server m. Let Vm, m ∈ [M ] be four vectors
in F, each of size N × 1, such that the vector Vm has a zero
in its mth coordinate (reflecting the fact that messages in Wm

are not stored at Server m) and all other coordinates are non-
zero. Then, as we will explain shortly, the rank of the matrix
[V1, V2, V3, V4] reflects the number of dimensions occupied by
interference, i.e., downloaded symbols that are undesired. For
example, suppose we are operating in F5 and we choose,

V = [V1, V2, V3, V4] =





0 1 1 1
1 0 3 2
1 2 0 4
1 3 1 0



 (31)

which has rank 2. Then this choice corresponds to a scheme
where interference occupies rank(V ) = 2 out of the N = 4
dimensions, leaving the remaining 2 dimensions available for
retrieving desired message symbols. To see this explicitly,
suppose each message is comprised of L = 2 symbols,
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Wm,k = (Wm,k(1), Wm,k(2)) in F5, and the user desires the
message Wµ,κ ∈ Wµ. The download from the nth server is
the nth row of the following N × 1 vector.

V =




∑

k∈[K1],!∈[L]

W1,k(#)Z1,k,(!)



V1

+




∑

k∈[K2],!∈[L]

W2,k(#)Z2,k,(!)



V2

+




∑

k∈[K3],!∈[L]

W3,k(#)Z3,k,(!)



V3

+




∑

k∈[K4],!∈[L]

W4,k(#)Z4,k,(!)



V4

+ Wµ,κ(1)F [µ,κ]
(1) + Wµ,κ(2)F [µ,κ]

(2) (32)

The vectors F [µ,κ]
(1) , F [µ,κ]

(2) are two 4×1 vectors, called demand
vectors that help retrieve the desired message symbols. Due
to storage constraints, the demand vectors F [µ,κ]

(1) , F [µ,κ]
(2) must

also have zeros in the coordinates where Vµ has zeros. The
Zk,m,(!) random variables are i.i.d. uniform noise terms added
to hide the demand vectors contained in the query sent to each
server, thus ensuring privacy of user’s demand. The demand
vectors, which carry the 2 desired message symbols must
be linearly independent of V1, V2, V3, V4 which carry only
interference. To retrieve his desired message, the user projects
V into the 2 dimensional null space of V1, V2, V3, V4, where
all interference disappears and only the two desired signal
dimensions remain, from which the 2 desired symbols are
retrieved. The rate achieved by this scheme is 2/4 = 1/2
which is also the asymptotic capacity for this setting (converse
follows from Theorem 2).

From this example, it is clear that the problem is related
to min-rank of the V matrix subject to constraints on which
terms take zero or non-zero values. These constraints are
affected not only by the given storage structure, but also from
the possibility of redundant servers6 as well as privacy and
correctness constraints, e.g., because demand vectors must
share the same structure to ensure privacy. Evidently, PIR
with graph based storage is connected to other problems
such as index coding, where also min-rank is important [37].
For arbitrary storage patterns such min-rank problems can be
difficult to solve in general. However, now let us consider
what happens if every message is replicated the same number
of times, |Rm| = ρm = ρmin for all m ∈ [M ]. As will
be shown in the proof of Theorem 3, even if replication
factors vary across messages, schemes for such settings may
use the constant-replication-factor schemes as their essential
building blocks. Thus, the constant-replication-factor setting
is of fundamental significance. It is also the setting where we
exploit the structure of dual GRS codes.

For simplicity we will only consider a setting with X = 0
and T = 1. Consider such a setting with an arbitrary number

6As illustrated by examples in Section III-A the solution may be further
optimized on storage structure by ignoring redundant storage.

of message sets M , with N = 5 servers, constant-replication-
factor ρmin = 3, and an example of an arbitrary storage pattern
that satisfies these constraints (5 servers, every message repli-
cated at 3 servers) reflected in the structure of the following
V matrix.

V =





m=1 m=2 m=3 ··· m=M

Server 1 v1,1 0 v3,1 · · · vM,1

Server 2 0 v2,2 v3,2 · · · 0
Server 3 v1,3 v2,3 0 · · · vM,3

Server 4 v1,4 0 v3,4 · · · 0
Server 5 0 v2,5 0 · · · vM,5




(33)

Note that the mth column has exactly ρm = 3 non-zero entries
corresponding to the 3 servers that store the messages in Wm.
The structure of each column is arbitrary, fixed by the given
storage pattern, but each column must have exactly 3 non-
zero entries. For this setting, it turns out that regardless of the
value of M , it is possible to choose non-zero values for vm,n

such that the rank of this matrix is not more than 3, i.e., all
interference can be limited to 3 dimensions. This is done as
follows. Let βn be distinct non-zero constants for all n ∈ [N ].
Furthermore, let us define,

vm,n =




∏

n′∈Rm\{n}

(βn − βn′)




−1

(34)

Based on dual GRS codes (see Lemma 2), it turns out that
this choice of vm,n ensures that

∑

n∈Rm

vm,nβj
n = 0 (35)

for all j ∈ {0, 1, · · · , ρmin − 2}. For this example, since
ρmin = 3, it means that ∀m ∈ [M ],

∑
n∈Rm

vm,n = 0, and∑
n∈Rm

vm,nβn = 0. Writing this out explicitly, we have (36),
shown at the bottom of the next page which is easily verified
because for any n1, n2, n3 ∈ [N ],

vm,n1 + vm,n2 + vm,n3

=
(βn2 − βn3) + (βn3 − βn1) + (βn1 − βn2)

(βn1 − βn2)(βn1 − βn3)(βn2 − βn3)
= 0, (37)

vm,n1βn1 + vm,n2βn2 + vm,n3βn3

=
(βn2 − βn3)βn1 + (βn3 − βn1)βn2 + (βn1 − βn2)βn3

(βn1 − βn2)(βn1 − βn3)(βn2 − βn3)

= 0. (38)

Thus, there are ρmin − 1 = 2 vectors along which V
has null projection, corresponding to j = 0 and j = 1
in (35). These two interference free dimensions allow us to
retrieve 2 desired symbols, achieving a rate of 2/5 for this
example.

As another example, consider a setting with an arbitrary
number of messages M and an arbitrary number of servers N ,
where each message is replicated 4 times, i.e., ρm = ρmin =
4 for all m ∈ [M ]. Given an arbitrary 4-replicated storage
structure, choosing vm,n according to (34) allows us to find
ρmin − 1 = 3 dimensions along which interference is nulled,
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corresponding to j = 0, j = 1, and j = 2 in (35). This is
illustrated below.




1 1 · · · 1
β1 β2 · · · βN

β2
1 β2

2 · · · β2
N









Column m

... 0
...

row n1 · · · vm,n1 · · ·
... 0

...
row n2 · · · vm,n2 · · ·

... 0
...

row n3 · · · vm,n3 · · ·
... 0

...
row n4 · · · vm,n4 · · ·

... 0
...





=




0
0
0



 .

(39)

Column m corresponds to an arbitrary message set Wm that
is replicated at the 4 servers n1, n2, n3, n4, and it is easily
verified that if vm,n are chosen according to (34) then

vm,n1 + vm,n2 + vm,n3 + vm,n4 = 0, (40)

βn1vm,n1 + βn2vm,n2 + βn3vm,n3 + βn4vm,n4 = 0, (41)

β2
n1

vm,n1 + β2
n2

vm,n2 + β2
n3

vm,n3 + β2
n4

vm,n4 = 0. (42)

Thus, there are 3 interference-free dimensions which allow us
to retrieve 3 desired symbols for a rate of 3/N .

In general, if the V matrix has ρmin non-zero entries in each
column, then by assigning vm,n according to (34) there are
ρmin−1 dimensions that are interference free, corresponding to
j ∈ {0, 1, · · · , ρmin−2} in (35), along which ρmin−1 desired
symbols can be retrieved to achieve the rate (ρmin − 1)/N ,
which matches (ρmin − X − T )/N for X = 0, T = 1.
When T > 1 and/or X > 0, then additional interference
terms enter into the picture due to the additional noise terms
needed to protect the messages (X-security) and the queries
(T -privacy). Following the construction previously introduced
for XSTPIR, these additional interference dimensions are
restricted by using cross-subspace alignment [1]. Fortunately,
since the storage and query structure used for XSTPIR in
[1] is also based on Reed Solomon Codes, it turns out to be
compatible with the additional structure imposed by the choice
of vm,n in (34) according to dual Generalized Reed Solomon
Codes. Combining both ideas, it turns out that the number of
interference free dimensions that remain available for desired
message symbols is equal to ρmin − X − T , which allows us
to achieve a rate of (ρmin − X − T )/N . The details are left
to the proof of Theorem 1.

IV. PROOF OF THEOREM 1

A. A Simple Example

To make the proof more accessible, let us start with a simple
example, which is essentially derived from (33). Consider the
setting where N = 5, T = 1 and X = 0. There are M = 4
message sets, Wm = (Wm,1, Wm,2, · · · , Wm,Km), m ∈ [4],
that are stored in the 5 servers according to the replica-
tion pattern R = ((1, 3, 4), (2, 3, 5), (1, 2, 4), (1, 3, 5)), where
Km, m ∈ [M ] are positive integers representing the number
of messages in the message set Wm. Note that this replication
pattern R corresponds to the four columns shown in the
V matrix in (33). The scheme operates over a block where
each message is comprised of L = 2 symbols from Fq with
characteristic greater than L−1 = 1, and we will assume that
q > N + L = 7. Let β1, β2, · · · , β5 be 5 distinct non-zero
elements in Fq such that βn + # /= 0, ∀n ∈ [5], # ∈ [2]. Since
q > 7, such β1, β2, · · · , β5 must exist. Now let us specify the
storage at each server. Server n stores all the L = 2 symbols
of messages from the message sets Wm, for all m ∈ Mn, i.e.,

Sn = {Wm,(1),Wm,(2), ∀m ∈ Mn} (43)

Wm,(!) = [Wm,1(#), Wm,2(#), · · · , Wm,Km(#)], ∀# ∈ [2].
(44)

For example, consider the first server, we have M1 =
{1, 3, 4}, therefore,

S1 = {W1,(1),W1,(2),W3,(1),W3,(2),W4,(1),W4,(2)}.
(45)

Notably, for all m ∈ [4], the 1 × Km row vector Wm,(!)

contains the #th symbol from every message in Wm. Sup-
pose the user wishes to retrieve the message Wµ,κ =
(Wµ,κ(1), Wµ,κ(2)). The query sent to Server n is

Q[µ,κ]
n = {Q[µ,κ]

m,n,(1),Q
[µ,κ]
m,n,(2), ∀m ∈ Mn} (46)

where,

Q[µ,κ]
m,n,(!) =

vm,n

# + βn

(
F[µ,κ]

m + (# + βn)Z′
m,1,(!)

)
(47)

=
vm,n

# + βn
F[µ,κ]

m + vm,nZ′
m,1,(!), (48)

the constant values vm,n are defined as

vm,n !




∏

n′∈Rm\{n}

(βn − βn′)




−1

, (49)

F[µ,κ]
m are demand vectors defined as

F[µ,κ]
m =

{
eκ, if m = µ,
0, otherwise.

(50)

1 1 1 1 1
β1 β2 β3 β4 β5

1
(β1−β3)(β1−β4) 0 1

(β1−β2)(β1−β4) · · · 1
(β1−β3)(β1−β5)

0 1
(β2−β3)(β2−β5)

1
(β2−β1)(β2−β4) · · · 0

1
(β3−β1)(β3−β4)

1
(β3−β2)(β3−β5) 0 · · · 1

(β3−β1)(β3−β5)
1

(β4−β1)(β4−β3) 0 1
(β4−β1)(β4−β2) · · · 0

0 1
(β5−β2)(β5−β3) 0 · · · 1

(β5−β1)(β5−β3)

=
0
0

(36)
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where eκ is the κth column of the Km ×Km identity matrix.
The values of F[µ,κ]

m are kept private from any server, by the
Km × 1 column vectors Z′

m,1,(!) comprised of i.i.d uniform
noise symbols, for all m ∈ [4], # ∈ [2]. Thus, the scheme is
T = 1-private. To further clarify the construction of queries,
consider the first server, we have

Q[µ,κ]
1 = {Q[µ,κ]

1,1,(1),Q
[µ,κ]
1,1,(2),Q

[µ,κ]
3,1,(1),Q

[µ,κ]
3,1,(2),

Q[µ,κ]
4,1,(1),Q

[µ,κ]
4,1,(2)}. (51)

The answer returned by Server n is

A[µ,κ]
n =

∑

!∈[2]

∑

m∈Mn

Wm,(!)Q
[µ,κ]
m,n,(!) (52)

=
∑

!∈[2]

∑

m∈Mn

vm,n

# + βn
Wm,(!)F[µ,κ]

m

︸ ︷︷ ︸
A

′[µ,κ]
n

+
∑

!∈[2]

∑

m∈Mn

vm,nWm,(!)Z′
m,1,(!) (53)

Upon receiving all N = 5 answers, the user evaluates the
L = 2 values Y1, Y2, as follows.

[
Y1

Y2

]
=
[

1 1 · · · 1
β1 β2 · · · β5

]





A[µ,κ]
1

A[µ,κ]
2
...

A[µ,κ]
5




. (54)

Note that by the construction of A[µ,κ]
1 , A[µ,κ]

2 , · · · , A[µ,κ]
5 ,

the column vector on the RHS of (54) can be written in the
following matrix form.




A[µ,κ]
1

A[µ,κ]
2
...

A[µ,κ]
5




=





A
′[µ,κ]
1

A
′[µ,κ]
2
...

A
′[µ,κ]
5




+





v1,1 0 v3,1 v4,1

0 v2,2 v3,2 0
v1,3 v2,3 0 v4,3

v1,4 0 v3,4 0
0 v2,5 0 v4,5









W1,(1)Z′
1,1,(1) + W1,(2)Z′

1,1,(2)

W2,(1)Z′
2,1,(1) + W2,(2)Z′

2,1,(2)

W3,(1)Z′
3,1,(1) + W3,(2)Z′

3,1,(2)

W4,(1)Z′
4,1,(1) + W4,(2)Z′

4,1,(2)




.

(55)

As previously shown in (36), guaranteed by Lemma 2,
the choice of constant values vm,n satisfy the property that

[
1 1 · · · 1
β1 β2 · · · β5

]





v1,1 0 v3,1 v4,1

0 v2,2 v3,2 0
v1,3 v2,3 0 v4,3

v1,4 0 v3,4 0
0 v2,5 0 v4,5




=
[
0
0

]
.

(56)

Besides, we note that by the definition of demand vectors
F[µ,κ]

m , we have

Wm,(!)F[µ,κ]
m =

{
Wµ,κ(#), if m = µ,
0, otherwise.

(57)

Therefore, we have
[
Y1

Y2

]
=
[

1 1 1
βRµ(1) βRµ(2) βRµ(3)

]





vµ,Rµ(1)

1+βRµ(1)

vµ,Rµ(1)

2+βRµ(1)
vµ,Rµ(2)

1+βRµ(2)

vµ,Rµ(2)

2+βRµ(2)
vµ,Rµ(3)

1+βRµ(3)

vµ,Rµ(3)

2+βRµ(3)





[
Wµ,κ(1)
Wµ,κ(2)

]
.

(58)

Guaranteed by Lemma 3, the product of the first two matrices
on the RHS is an invertible 2×2 matrix. Thus the user is able
to obtain the desired message Wµ,κ = (Wµ,κ(1), Wµ,κ(2)) by
inverting the matrix. Note that the 2 symbols of the desired
message are obtained from a total of 5 downloaded symbols,
the rate achieved by the scheme is R = 2/5, which achieves
the desired rate.

B. A General Scheme

Now let us we present the achievable scheme for GXSTPIR
for arbitrary N, T, X, M, Km, ρm values that allows private
retrieval of any desired message at a rate R = ρmin−X−T

N .
Without loss of generality we will assume that ρm = ρmin for
all m ∈ [M ]. For any message that is replicated more than
ρmin times, the scheme can be applied by arbitrarily choosing
any ρmin replications of that message and ignoring the rest.
In order to achieve the rate R = ρmin−X−T

N , the scheme will
retrieve ρmin − X − T desired symbols by downloading one
symbol from each server.

The scheme operates over a block where each message is
comprised of L symbols and we have

L = ρmin − X − T. (59)

All symbols are in Fq with characteristic greater than L − 1
and without loss of generality we will assume that q > N +L.
Let β[N ] be distinct non-zero values in Fq such that7

βn + # /= 0, ∀n ∈ [N ], # ∈ [L]. (60)

Such βn must exist because q > L + N . Server n stores,

Sn = {W(n)
m,(1),W

(n)
m,(2), · · · ,W(n)

m,(L), ∀m ∈ Mn}
(61)

W(n)
m,(!) = Wm,(!) +

∑

x∈[X]

(# + βn)xZm,x,(!) (62)

Wm,(!) = [Wm,1(#), Wm,2(#), · · · , Wm,Km(#)], ∀# ∈ [L].
(63)

Thus, for all m ∈ [M ], the 1 × Km row vector Wm,(!)

contains the #th symbol from every message in Wm. For
all m ∈ [M ], x ∈ [X ], # ∈ [L], the 1 × Km row vec-
tors Zm,x,(!) are comprised of i.i.d. uniform noise sym-
bols. Any message symbol Wm,k(#) that is secret-shared
among servers Rm, is protected by the X noise symbols

7As in subsequent constructions of CSA codes in [38], the construction can
be further generalized by replacing the values " with arbitrary −" ∈ Fq such
that instead of (60) we only require that β1, β2, · · · , βN , 1, 2, · · · , L are
L + N arbitrary distinct values from Fq , and q ≥ N + L.
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Zm,1,(!)(k),Zm,2,(!)(k), · · · ,Zm,X,(!)(k) that are i.i.d. uni-
form and coded according to an MDS(X, ρmin) code, so that
the shares accessible to any set of up to X colluding servers
are independent of Wm,k(#). Thus the scheme is X-secure.

The query sent to Server n is

Q[µ,κ]
n = {Q[µ,κ]

m,n,(!), ∀m ∈ Mn, # ∈ [L]} (64)

where,

Q[µ,κ]
m,n,(!) =

vm,n

# + βn



F[µ,κ]
m +

∑

t∈[T ]

(# + βn)tZ′
m,t,(!)



 (65)

F[µ,κ]
m are demand vectors defined as

F[µ,κ]
m =

{
eκ, if m = µ,
0, otherwise.

(66)

where eκ is the κth column of the Km ×Km identity matrix.
The values of F[µ,κ]

m are kept private from any set of up to
T colluding servers, by the Km × 1 column vectors Z′

m,t,(!)
comprised of i.i.d uniform noise symbols, for all m ∈ [M ], t ∈
[T ], # ∈ [L]. Note that the noise vectors that protect F[µ,κ]

m are
coded according to an MDS(T, ρmin) code spread across the
queries sent to servers in Rm, i.e., all queries that contain
F[µ,κ]

m , so that the queries accessible to any set of up to T
servers reveal no information about the demand vectors. Thus,
the scheme is T -private.

The constant values vm,n in (65) are defined as

vm,n !




∏

n′∈Rm\{n}

(βn − βn′)




−1

(67)

As shown in Lemma 2 in Appendix A using the properties
of dual GRS codes, this choice of vm,n satisfies the crucial
property that

∑

n∈Rm

vm,nβj
n = 0 (68)

for all m ∈ [M ] and for all j ∈ {0, 1, · · · , ρmin − 2}.
The answer returned by Server n is

A[µ,κ]
n =

∑

!∈[L]

∑

m∈Mn

W(n)
m,(!)Q

[µ,κ]
m,n,(!) (69)

Upon receiving all N answers, the user evaluates the L values
Y1, Y2, · · · , YL, as follows.





Y1

Y2
...

YL




=





1 1 · · · 1
β1 β2 · · · βN
...

... · · ·
...

βL−1
1 βL−1

2 · · · βL−1
N









A[µ,κ]
1

A[µ,κ]
2
...

A[µ,κ]
N




(70)

so that for all i ∈ [L],

Yi =
∑

n∈[N ]

βi−1
n A[µ,κ]

n (71)

=
∑

n∈[N ]

βi−1
n

∑

l∈[L]

∑

m∈Mn

W(n)
m,(!)Q

[µ,κ]
m,n,(!) (72)

=
∑

!∈[L]

∑

m∈[M ]

∑

n∈Rm

βi−1
n W(n)

m,(!)Q
[µ,κ]
m,n,(!) (73)

=
∑

!∈[L]

∑

m∈[M ]

∑

n∈Rm

vm,nβi−1
n

# + βn


Wm,(!) +
∑

x∈[X]

(# + βn)xZm,x,(!)







F[µ,κ]
m +

∑

t∈[T ]

(# + βn)tZ′
m,t,(!)



 (74)

=
∑

!∈[L]

∑

m∈[M ]

∑

n∈Rm

(
vm,nβi−1

n

# + βn
Wm,(!)F[µ,κ]

m

+
∑

t∈[T ]

vm,nβi−1
n (# + βn)t−1Wm,(!)Z′

m,t,(!)

+
∑

x∈[X]

vm,nβi−1
n (# + βn)x−1Zm,x,(!)F[µ,κ]

m

+
∑

x∈[X]

∑

t∈[T ]

vm,nβi−1
n (# + βn)x+t−1Zm,x,(!)Z′

m,t,(!)





(75)

=
∑

!∈[L]

∑

m∈[M ]

∑

n∈Rm

(
vm,nβi−1

n

# + βn
Wm,(!)F[µ,κ]

m

)

+
∑

!∈[L]

∑

m∈[M ]




∑

t∈[T ]

Wm,(!)Z′
m,t,(!)

(
∑

n∈Rm

vm,nβi−1
n (# + βn)t−1

))

+
∑

!∈[L]

∑

m∈[M ]




∑

x∈[X]

Zm,x,(!)F[µ,κ]
m

(
∑

n∈Rm

vm,nβi−1
n (# + βn)x−1

))

+
∑

!∈[L]

∑

m∈[M ]




∑

x∈[X]

∑

t∈[T ]

Zm,x,(!)Z′
m,t,(!)

(
∑

n∈Rm

vm,nβi−1
n (# + βn)x+t−1

))

(76)

The terms
(∑

n∈Rm
vm,nβi−1

n (# + βn)t−1
)
,(∑

n∈Rm
vm,nβi−1

n (# + βn)x−1
)

and(∑
n∈Rm

vm,nβi−1
n (# + βn)x+t−1

)
are equal to zero

because of (68). This is because all of these can be expanded
into weighted sums of terms of the form

∑
n∈Rm

vm,nβj
n

for j taking values in {0, 1, · · · , ρmin − 2}. Let us show this
explicitly for

∑
n∈Rm

vm,nβi−1
n (# + βn)t−1 as follows,

∑

n∈Rm

vm,nβi−1
n (# + βn)t−1

=
∑

n∈Rm

vm,nβi−1
n




∑

τ∈{0,1,··· ,t−1}

(
t − 1

τ

)
βτ

n#t−1−τ





(77)
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=
∑

τ∈{0,1,··· ,t−1}

(
t − 1

τ

)
#t−1−τ

(
∑

n∈Rm

vm,nβi+τ−1
n

)

(78)

= 0 (79)

because 0 ≤ i + τ − 1 ≤ L + (T − 1) − 1 =
ρmin − X − 2 ≤ ρmin − 2. It can be similarly
shown that

(∑
n∈Rm

vm,nβi−1
n (# + βn)x−1

)
= 0 and(∑

n∈Rm
vm,nβi−1

n (# + βn)x+t−1
)

= 0. Thus, we have,

Yi =
∑

!∈[L]

∑

m∈[M ]

∑

n∈Rm

(
vm,nβi−1

n

# + βn
Wm,(!)F[µ,κ]

m

)
(80)

=
∑

!∈[L]

∑

m∈[M ]

Wm,(!)F[µ,κ]
m

(
∑

n∈Rm

vm,nβi−1
n

# + βn

)
(81)

=
∑

!∈[L]

Wµ,(!)eκ




∑

n∈Rµ

vµ,nβi−1
n

# + βn



 (82)

=
∑

!∈[L]

∑

n∈Rµ

Wµ,κ(#)
vµ,nβi−1

n

# + βn
(83)

Note that we used (66) to obtain (82). In matrix notation,
we have,




Y1

Y2
...

YL




=





1 · · · 1
βRµ(1) · · · βRµ(ρm)

...
...

...
βL−1
Rµ(1) · · · βL−1

Rµ(ρm)





︸ ︷︷ ︸
A





vµ,Rµ(1)

1+βRµ(1)
. . .

vµ,Rµ(1)

L+βRµ(1)

...
...

...
vµ,Rµ(ρm)

1+βRµ(ρm)
. . .

vµ,Rµ(ρm)

L+βRµ(ρm)





︸ ︷︷ ︸
B





Wµ,κ(1)
Wµ,κ(2)

...
Wµ,κ(L)




.

(84)

Guaranteed by Lemma 3 and the the definitions of vm,n and
βn, ∀m ∈ [M ], n ∈ [N ], the L × L matrix AB is invertible,
and the desired message is retrievable by inverting the matrix.
Thus the scheme is correct. This completes the proof of
Theorem 1. "

C. A Private Computation Scheme for X = 0,
ρmin = T + 1

From the description of the scheme, it is evident that the
demand vectors are protected by the uniform noise, regardless
of how they are chosen. Modifying the choice of demand
vectors would allow the user to privately retrieve various forms
of desired information, generalizing the scheme to broader
applications. Here we present a simple example that will also
be useful for the proof of Theorem 3.

Suppose there are no security constraints (X = 0) and every
message is replicated T + 1 times (ρmin = T + 1), so that
our scheme operates over blocks comprised of L = ρmin −
X − T = 1 symbol per message. Recall that our scheme

allows the user to retrieve an arbitrary message Wµ,κ at the
rate R = (ρmin − X − T )/N = 1/N in this setting. Now,
suppose instead of an arbitrary message, the user wants to
retrieve an arbitrary linear combination of all messages,

λ(W) !
∑

m∈[M ]

∑

k∈Km

λm,kWm,k(1)

=
∑

m∈[M ]

Wm,(1)λm, ∀# ∈ [L] (85)

where

λm = [λm,1, λm,2, · · · , λm,Km ]T ∈ FKm×1
q , ∀m ∈ [M ],

(86)

are the combining coefficients to be kept private from any set
of up to T colluding servers. This is a form of the private
linear computation problem studied in [21] applied here to
graph based replicated storage. To apply our scheme to this
setting, replace the demand vectors F[µ,κ]

m with F[λ]
m defined

as follows.

F[λ]
m =

(
∑

n∈Rm

vm,n

1 + βn

)−1

λm (87)

so that continuing from (81) we have

Yi =
∑

!∈[L]

∑

m∈[M ]

Wm,(!)F[λ]
m

(
∑

n∈Rm

vm,nβi−1
n

# + βn

)
,

i ∈ [L] = {1} (88)

⇒ Y1 =
∑

m∈[M ]

Wm,(1)λm

(
∑

n∈Rm

vm,n

1 + βn

)−1

(
∑

n∈Rm

vm,n

1 + βn

)
(89)

=
∑

m∈[M ]

Wm,(1)λm = λ(W) (90)

Thus, a private computation scheme is readily obtained for the
case where all messages are replicated at least T + 1 times.
The rate of this scheme is (ρmin − T )/N = 1/N . Just as in
[21], there is no rate loss relative to the case where the user
wants to retrieve only one message Wµ,κ.

V. PROOF OF THEOREM 2

Let T be a subset of Rm, such that |T | = max(|Rm|, T ).
Let X be a subset of Rm \ T , such that |X | = max(|Rm|−
|T |, X). Note that it follows from the definition that T ∩X =
∅. From the decodability of message Wm,k we have,

L = I
(
Wm,k ; A[m,k]

[N ] | Q[m,k]
[N ]

)
(91)

≤ I
(
Wm,k ; A[m,k]

Rm\X , S[N ]\Rm
, SX | Q[m,k]

[N ]

)
(92)

= I
(
Wm,k ; S[N ]\Rm

, SX | Q[m,k]
[N ]

)

+ I
(
Wm,k ; A[m,k]

Rm\X | S[N ]\Rm
, SX , Q[m,k]

[N ]

)
(93)
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= I
(
Wm,k ; A[m,k]

Rm\X | SX , S[N ]\Rm
, Q[m,k]

[N ]

)
(94)

= I
(
Wm,k ; A[m,k]

T , A[m,k]
(Rm\X )\T | SX , S[N ]\Rm

, Q[m,k]
[N ]

)

(95)

= I
(
Wm,k; A[m,k]

T | SX , S[N ]\Rm
, Q[m,k]

[N ]

)

+ I
(
Wm,k; A[m,k]

(Rm\X )\T | A[m,k]
T , SX , S[N ]\Rm

, Q[m,k]
[N ]

)

(96)

≤ I(Wm,k; A[m,k]
T | SX , S[N ]\Rm

, Q[m,k]
[N ] )

+
∑

n∈(Rm\X )\T

H(A[m,k]
n ) (97)

≤ I(Wm,k; A[m,k]
T | SX , S[N ]\Rm

, Q[m,k]
T )

+
∑

n∈(Rm\X )\T

H(A[m,k]
n ) (98)

≤ I(Wm,k; A[m,k′]
T | SX , S[N ]\Rm

, Q[m,k′]
T )

+
∑

n∈(Rm\X )\T

H(A[m,k′]
n ) (99)

In (92) we used the fact that A[m,k]
[N ]\(Rm\X ) is a function

of
(
S[N ]\Rm

, SX , Q[m,k]
[N ]

)
, and I(A; f(B, C) | C) ≤

I(A; f(B, C), B | C) = I(A; B | C) + I(A; f(B, C) |
B, C) = I(A; B | C) where f(B, C) is some function of
B, C. The chain rule of mutual information is used for (93).
For (94) we used the fact that (S[N ]\Rm

, SX ) is independent

of
(
Wm,k, Q[m,k]

[N ]

)
according to Lemma 4. The next step, (95)

simply re-writes the same expression in different notation,
while (96) follows from chain rule of mutual information.
For (97) we used the fact that I(A; B | C) = H(B |
C) − H(B | A, C) ≤ H(B) because entropy is non-negative
and conditioning reduces entropy. (98) follows from Lemma 5.
(99) follows because I(Q[m,κ]

T , A[m,κ]
T , S[N ]; κ) = 0 according

to Lemma 6. Equivalently,
(
Q[m,k]

T , A[m,k]
T , S[N ]

)
∼
(
Q[m,k′]

T , A[m,k′]
T , S[N ]

)
(100)

for all m ∈ [M ] and k, k′ ∈ [Km], which in turn implies (99).
Summing (99) over all k ∈ [Km] we have

KmL

≤




∑

k∈[Km]

I(Wm,k; A[m,k′]
T | SX , S[N ]\Rm

, Q[m,k′]
T )





+ Km

∑

n∈(Rm\X )\T

H(A[m,k′]
n ) (101)

≤ I(Wm,1, · · · , Wm,Km ; A[m,k′]
T | SX , S[N ]\Rm

, Q[m,k′]
T )

+ Km

∑

n∈(Rm\X )\T

H(A[m,k′]
n ) (102)

≤ H(A[m,k′]
T ) + Km

∑

n∈(Rm\X )\T

H(A[m,k′]
n ) (103)

(102) follows from the chain rule of mutual information and
repeated use of the property that I(A; C | D)+I(B; C | D) ≤
I(A; C | D) + I(B; C | A, D) = I(A, B; C | D) when A, B
are independent conditioned on D, i.e., I(A; B | D) = 0.
This conditional independence property for (102) is proved in
Lemma 7. (103) follows from the facts that entropy is non-
negative and conditioning reduces entropy, i.e., I(A; B | C) =
H(A | C) − H(A | B, C) ≤ H(A | C) ≤ H(A).

From (103) we note that if |Rm| ≤ X + T then Rm \
X\T = ∅, which means that as Km → ∞, we must have
H(A[m,k′]

T ) → ∞, and since the download approaches infinity,
the asymptotic capacity is zero. This is the degenerate case in
Theorem 2.

Having dealt with the degenerate setting, henceforth, let us
assume that |Rm| > X+T for all m ∈ [M ]. Since the capacity
for this case is not zero (follows from achievability), there is
no loss of generality in assuming that the asymptotic value
of download cost is bounded, i.e., H(A[m,k′]

n )/Km = o(1) as
a function of Km for all n ∈ [N ]. Recall that f(x) = o(1)
is equivalent to the condition that limx→∞ f(x) = 0. In this
case we have

∑

n∈(Rm\X )\T

H(A[m,k′]
n )
L

+ o(1) ≥ 1 (104)

⇒
∑

n∈(Rm\X )\T

Dn + o(1) ≥ 1. (105)

where Dn = H(A[m,k′]
n )
L is defined as the value of download

from server n, normalized by L. As K → ∞ all o(1) terms
approach 0 and we obtain the set of conditions that define
D in (27). The capacity bound in Theorem 2 for the non-
degenerate setting follows from the definition of capacity as
the supremum of L/D = (D1 + · · · + DN )−1. "

VI. PROOF OF THEOREM 3

A. Proof of Converse for Theorem 3

It already follows from Theorem 2 that if ρmin ≤ T then the
capacity is zero. So let us assume that ρmin > T . Theorem 3
also limits ρm ≤ T + 2 for all m ∈ [M ], therefore we must
have ρm ∈ {T +1, T +2} for all m ∈ [M ], i.e., every message
is either (T + 1)-replicated or (T + 2)-replicated. Recall that
NT+2 is the set of servers that do not store any messages that
are (T + 1)-replicated. The remaining servers are in NT+1.

According to the general converse bound in Theorem 2,
the asymptotic capacity C∞ is bounded above by the maxi-
mum value of (D1 + · · · + DN )−1 subject to the constraints,

Du + Dv ≥ 1, ∀uv ∈ E[NT+2] (106)

Dt ≥ 1, ∀t ∈ [NT+1] (107)

We use the notation G[NT+2] to represent the induced sub-
graph of G[V, E] whose vertex set is NT+2 and whose edge
set, denoted E[NT+2] consists of all edges uv ∈ E such that
u, v ∈ NT+2. Recall that a 2-matching in G[NT+2] is a vector
x that assigns to each edge uv ∈ E[NT+2], a value from
{0, 1, 2} such that the sum of values assigned to all edges in
E[NT+2] that are incident with any vertex n ∈ NT+2 is not
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more than 2. Let x be the vector that produces the maximum
size 2-matching in G[NT+2], i.e., the size of x is

∑

uv∈E[NT+2]

x(uv) = ν2(G[NT+2]). (108)

Multiplying both sides of (106) by x(uv), summing up over
all uv ∈ E[NT+2], and adding 2 × (107), we have

∑

uv∈E[NT+2]

(Du + Dv)x(uv) + 2
∑

t∈[NT+1]

(Dt)

≥
∑

uv∈E[NT+2]

x(uv) + 2|NT+1| (109)

⇒
∑

u∈NT+2

x(δ(u) ∩ E[NT+2])(Du) + 2
∑

t∈[NT+1]

(Dt)

≥ ν2(G[NT+2]) + 2|NT+1| (110)

⇒2
∑

u∈NT+2

(Du) + 2
∑

t∈[NT+1]

(Dt)

≥ ν2(G[NT+2]) + 2|NT+1| (111)

⇒2
∑

u∈[N ]

(Du) ≥ ν2(G[NT+2]) + 2|NT+1| (112)

⇒(D1 + D2 + · · · + Dn) ≥ ν2(G[NT+2]) + 2|NT+1|
2

(113)

In (111) we used the fact that the sum of values assigned by
x to all edges in E[NT+2] that are incident with the vertex
u is not more than 2. Combining (113) with the result of
Theorem 2, we obtain the desired converse bound

C∞ ≤ 2
ν2(G[NT+2]) + 2|NT+1|

. (114)

Thus, the proof of converse for Theorem 3 is complete. "

B. Proof of Achievability for Theorem 3

Let us define W̃T+1 as the set of messages that are
replicated T +1 times. Let U ⊂ NT+2 be a stable set. We will
show that it is possible to retrieve L = 2 desired symbols with
a total normalized download,

D1 + · · · + DN =
|[1 : N ]\U |+ |N (U) ∪NT+1|

2
(115)

The achievable scheme does not use the servers in U . Let
W̃U denote the set of messages that are stored at any of the
servers in U . Note that none of these messages is in W̃T+1

because U ⊂ NT+2. Also note that no message is replicated
more than once in U because U is a stable set. After the
servers in U are eliminated, the messages W̃∗ = W̃U ∪W̃T+1

are now replicated exactly (T + 1) times in the remaining
servers. All other messages are replicated (T + 2) times.
As a thought experiment, suppose we add a genie server that
stores W̃∗. Now we have a storage system where all messages
are replicated (T + 2) times, so that the scheme presented
in the proof of Theorem 1 can be used to retrieve L = 2
desired symbols while downloading |[N ]\U | + 1 symbols,
which includes one genie symbol, say λ(W̃∗). In order to
obtain λ(W̃∗) without a genie, we will use the servers in

Fig. 2. General setting of U ⊂ NT+2 which may have neighbors N (U)
both in NT+1 and NT+2. Note that N (U) does not include U .

the set N (U) ∪ NT+1. Note that N (U) and NT+1 may
have some servers in common. More importantly, note that
W̃∗ is replicated (T + 1) times within this set. Therefore,
we can privately retrieve λ(W̃∗) by downloading one symbol
from each of these servers, with the scheme described in
Section IV-C. Thus, we have a private and correct scheme
that retrieves L = 2 desired symbols with a total download
of |[N ]\U | + |N (U) ∪ NT+1|. Next, we note the following
identity,

|[N ]\U |︸ ︷︷ ︸
t1

+ |N (U) ∪NT+1|︸ ︷︷ ︸
t2

= |NT+2\U |︸ ︷︷ ︸
t3

+ |N (U) ∩NT+2|︸ ︷︷ ︸
t4

+ 2|NT+1|︸ ︷︷ ︸
t5

(116)

Let us verify that the identity holds as follows. First consider
the servers in NT+1. On the LHS all these servers are included
in t1 as well as t2, i.e., they are counted twice. On the RHS
these servers are included only in t5 which is scaled by a
factor of 2, so both sides match. Now consider servers that
are in NT+2 and are neighbors of servers in U . On the LHS
these servers are included in t1 as well as t2, i.e., they are
counted twice. On the RHS, these servers are included in t3
as well as t4, so again they are counted twice and the two
sides match. Finally, consider the servers that are in NT+2

but are neither in U nor among the neighbors of the servers
in U . On the LHS all these servers are included in t1, while
on the RHS they are included in t3. Thus on both sides these
servers are included once, and the two sides match. Finally,
note that the servers in U are not included in any term on
either the LHS or the RHS. Thus, we have verified that (116)
holds.

Now, let us recall that according to (29),

ν2(G[NT+2]) = min
{
|NT+2\U | + |N (U) ∩NT+2|

∣∣∣

such that U ⊂ NT+2, U is a stable set} .

(117)

Therefore, minimizing over U ∈ NT+2, the scheme achieves
the normalized download,

D1 + · · · + DN =
ν2(G[NT+2])

2
+ |NT+1|, (118)

and therefore we have a lower bound on capacity,

C∞ ≥ 2
ν2(G[NT+2]) + 2|NT+1|

. (119)
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Because the achievable scheme works for any number of
messages, it is notable that this lower bound holds not only for
asymptotic capacity, but also for capacity with arbitrary num-
ber of messages Km. This completes the proof of achievability
for Theorem 3. "

VII. CONCLUSION

The asymptotic capacity of GXSTPIR studied in this work
reveals important insights into the structure of optimal schemes
for graph-based replicated storage. In particular the special
structure inspired by dual GRS codes emerges as a powerful
idea for GXSTPIR. Generalizations of the private computation
scheme presented in Section IV-C represent an interesting
problem for future work, especially because such private
computation schemes are needed for GXSTPIR, as evident
from the achievability proof of Theorem 3. Asymptotic capac-
ity for GPIR with arbitrary graph based storage when each
message is replicated 4 times is the next step for the direction
initiated by Theorem 3. The relationship between GXSTPIR
and index coding, through the connecting thread of min-rank
problems that arise in both contexts is another promising
research avenue. Finally, the tightness of the converse bound
in Theorem 2 remains an interesting question. Given that the
bound is tight in all cases for which the asymptotic capacity
is settled so far, it is tempting to conjecture that the converse
bound is tight in general. Settling this conjecture is perhaps
the most important immediate objective for future work on the
asymptotic capacity of GXSTPIR.

APPENDIX A
LEMMAS

Lemma 1: The optimal value of total normalized download,
minD(D1 + D2 + · · · + DN ), in Theorem 2 is equal to the
fractional matching number of G[V , E ].

Proof: Let us consider the non-degenerate scenario,
ρmin > X + T , because otherwise the asymptotic capacity
is zero. According to Theorem 2, the optimal value of total
normalized download minD(D1+D2+· · ·+DN) is expressed
as the result of the following linear program.

D∗ =min
∑

n∈[N ]

Dn (120)

such that, (121)
∑

n: n∈e

Dn ≥ 1, ∀e ∈ E (122)

Dn ≥ 0, ∀n ∈ [N ] (123)

Since the linear program is bounded and feasible, by the
strong duality of linear programming, we have as its dual the
following linear program.

D∗ = max
∑

e∈E
xe (124)

such that, (125)
∑

e: e(n

xe ≤ 1, ∀n ∈ [N ] (126)

xe ≥ 0, ∀e ∈ E (127)

Thus, the optimal converse bound D∗ is precisely the max-
imum weight of a fractional 1-matching in G. Therefore,
the converse bound in Theorem 2 coincides with the achiev-
ability bound in Theorem 1 if and only if D∗ = N

ρmin−X−T .
This completes the proof of Lemma 1. "

Lemma 2: For distinct non-zero values β1, · · · , βn and for
v1, · · · , vn defined as

vi !




∏

j∈[n]\{i}

(βi − βj)




−1

, i ∈ [n] (128)

the following identity is satisfied,
∑

i∈[n]

viβ
j
i = 0, ∀j ∈ {0, 1, · · · , n − 2}. (129)

Proof: The proof of Lemma 2 follows directly from the
properties of dual GRS codes for which we refer the reader to
[39]. For our purpose let us recall that given two n-dimensional
vectors

u = [u1, u2, · · · , un] (130)

β = [β1, β2, · · · , βn] (131)

where u1, u2, · · · , un are non-zero, while β1, β2, · · · , βn are
non-zero and distinct, the canonical generator matrix for the
Generalized Reed-Solomon code GRSk,n(u, β) is given by





u1 u2 · · · un

u1β1 u2β2 · · · unβn
...

... · · ·
...

u1β
k−1
1 u2β

k−1
2 · · · unβk−1

n




(132)

The dual code of a GRS code is also a GRS code. Specifically,
the dual for GRSk,n(u, β) is GRSn−k,n(v, β) where v =

[v1, v2, · · · , vn] and vi =
(
ui
∏

j∈[n]\{i}(βi − βj)
)−1

. For
the purpose of Lemma 2 let us set u1 = u2 = · · · = un = 1.
Since the dual of a code C is a code C⊥ that spans the null
space of C, we have




v1 v2 · · · vn

v1β1 v2β2 · · · vnβn
...

... · · ·
...

v1β
k−1
1 v2β

k−1
2 · · · vnβk−1

n









1 β1 · · · βn−k−1
1

1 β2 · · · βn−k−1
2

...
... · · ·

...
1 βn · · · βn−k−1

n





= 0 (133)

which implies that
∑

i∈[n]

viβ
j
i = 0 (134)

for j ∈ {0, 1, · · · , n − 2}. This completes the proof of
Lemma 2. "

Lemma 3: For two positive integers n, L such that n > L,
and for distinct non-zero values β1, · · · , βn such that βi + # /=
0, ∀i ∈ [n], # ∈ [L] and for v1, · · · , vn defined as

vi !




∏

j∈[n]\{i}

(βi − βj)




−1

, i ∈ [n] (135)
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the following L × L matrix




1 · · · 1
β1 · · · βn
...

...
...

βL−1
1 · · · βL−1

n





︸ ︷︷ ︸
A





v1
1+β1

. . . v1
L+β1

...
...

...
vn

1+βn
. . . vn

L+βn





︸ ︷︷ ︸
B

(136)

is invertible.
Proof: Let us define the matrix C as follows.

C =




v1 v1β1 . . . v1β

n−L−1
1

...
...

...
...

vn vnβn . . . vnβn−L−1
n



 (137)

Guaranteed by Lemma 5 in [1], which is also a standard
result for Cauchy-Vandermonde matrices [40], the n×n matrix
[B|C] is invertible. Besides, guaranteed by Lemma 2 and the
definitions of β1, · · · , βn and v1, · · · , vn, the rows of the L×n
matrix A generate the null space of the matrix C. Therefore,
we have rank(A) = rank(A × [B|C]) = rank([AB|AC]) =
rank([AB|0]) = rank(AB), where 0 is the L × (n − L)
zero matrix. Note that the rank of the transposed Vandermonde
matrix A is L, thus we have rank(AB) = L, which indicates
that the matrix AB is invertible. This completes the proof of
Lemma 3.

Lemma 4: For all m ∈ [M ], k ∈ [Km], X ⊂ Rm, |X | ≤
X ,

I
(
S[N ]\Rm

, SX ; Wm,k, Q[m,k]
[N ]

)
= 0. (138)

Proof:

I(S[N ]\Rm
, SX ; Wm,k, Q[m,k]

[N ] ) (139)

= I(Wm,k; S[N ]\Rm
, SX ) + I(Q[m,k]

[N ] ; S[N ]\Rm
, SX | Wm,k)

(140)

≤ I(Wm,k; S[N ]\Rm
, SX ) + I(Q[m,k]

[N ] ; S[N ]\Rm
, SX , Wm,k)

(141)

= I(Wm,k; S[N ]\Rm
, SX ) (142)

≤ I(Wm,k;W ′
, W

(X )
m,k) (143)

= I(Wm,k; W (X )
m,k) + I(Wm,k;W ′|W (X )

m,k) (144)

= I(Wm,k;W ′|W (X )
m,k) (145)

≤ I(Wm,k, W
(X )
m,k;W ′) (146)

≤ I(Wm,k;W ′) (147)

= 0. (148)

where W ′ = (Wm′,k′ , ∀m′ ∈ [M ], k′ ∈ [Km], (m′, k′) /=
(m, k)), and W

(X )
m,k = (W (n)

m,k, n ∈ X ). Steps of the proof
are justified as follows. (140) and (141) follow from the
chain rule and the non-negativity of mutual information. (142)
follows from (18), while (143), follows from the definition
of replicated storage in (11). (144) is the chain rule of
mutual information, while (145) follows from the security
constraint in (16). (146) follows from chain rule and the non-
negativity of mutual information. In (147) we used the fact

that (Wm,k, W
(X )
m,k) is function of Wm,k, and the last step

follows from (8). This completes the proof of Lemma 4. "
Lemma 5: For all m ∈ [M ], k ∈ [Km], X , T ⊂ Rm,

I(Wm,k; A[m,k]
T | SX , S[N ]\Rm

, Q[m,k]
[N ] )

≤ I(Wm,k; A[m,k]
T | SX , S[N ]\Rm

, Q[m,k]
T ). (149)

Proof:

I(Wm,k; A[m,k]
T | SX , S[N ]\Rm

, Q[m,k]
[N ] )

= H(A[m,k]
T | SX , S[N ]\Rm

, Q[m,k]
[N ] )

− H(A[m,k]
T | Wm,k, SX , S[N ]\Rm

, Q[m,k]
[N ] ) (150)

≤ H(A[m,k]
T | SX , S[N ]\Rm

, Q[m,k]
T )

− H(A[m,k]
T | Wm,k, SX , S[N ]\Rm

, Q[m,k]
[N ] ) (151)

= H(A[m,k]
T | SX , S[N ]\Rm

, Q[m,k]
T )

− H(A[m,k]
T | Wm,k, SX , S[N ]\Rm

, Q[m,k]
T )

+ H(A[m,k]
T | Wm,k, SX , S[N ]\Rm

, Q[m,k]
T )

− H(A[m,k]
T | Wm,k, SX , S[N ]\Rm

, Q[m,k]
[N ] ) (152)

= I(Wm,k; A[m,k]
T | SX , S[N ]\Rm

, Q[m,k]
T )

+ I(A[m,k]
T ; Q[m,k]

[N ] | Wm,k, SX , S[N ]\Rm
, Q[m,k]

T ) (153)

≤ I(Wm,k; A[m,k]
T | SX , S[N ]\Rm

, Q[m,k]
T )

+ I(A[m,k]
T , Wm,k, SX , S[N ]\Rm

; Q[m,k]
[N ] | Q[m,k]

T ) (154)

≤ I(Wm,k; A[m,k]
T | SX , S[N ]\Rm

, Q[m,k]
T )

+ I(A[m,k]
T , S[N ]; Q

[m,k]
[N ] | Q[m,k]

T ) (155)

= I(Wm,k; A[m,k]
T | SX , S[N ]\Rm

, Q[m,k]
T )

+ I(S[N ]; Q
[m,k]
[N ] | Q[m,k]

T )

+ I(A[m,k]
T ; Q[m,k]

[N ] | S[N ], Q
[m,k]
T ) (156)

= I(Wm,k; A[m,k]
T | SX , S[N ]\Rm

, Q[m,k]
T ) (157)

(150) follows from the definition of mutual information, (151)
follows because dropping conditioning cannot reduce entropy,
(152) adds and subtracts the same term so nothing changes,
(153) uses the definition of mutual information, (154) uses
the chain rule of mutual information and the fact that mutual
information is always non-negative, (155) uses the fact that(
Wm,k, SX , S[N ]\Rm

)
is a function of S[N ] according to

(9) and (11), and (156) uses chain rule of mutual informa-
tion. For (157) we use the fact that S[N ] is independent of
Q[m,k]

[N ] according to (18), and A[m,k]
T is fully determined by

S[N ], Q
[m,k]
T according to (20). This completes the proof of

Lemma 5. "
Lemma 6: For any m ∈ [M ], T ⊂ Rm, |T | ≤ T ,

I(Q[m,κ]
T , A[m,κ]

T , S[N ]; κ) = 0 (158)

Proof:

I(Q[m,κ]
T , A[m,κ]

T , S[N ]; κ)

= I(Q[m,κ]
T ; κ) + I(S[N ]; κ | Q[m,κ]

T )

+ I(A[m,κ]
T ; κ | S[N ], Q

[m,κ]
T ) (159)
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= I(Q[m,κ]
T ; κ) + I(S[N ]; κ | Q[m,κ]

T ) (160)

≤ I(Q[m,κ]
T ; κ) + I(S[N ]; κ, Q[m,κ]

T ) (161)

= 0 (162)

(159) is the chain rule of mutual information, (160) follows
because A[µ,κ]

T is fully determined by S[N ], Q
[µ,κ]
T according

to (20). The next step, (161) follows because of the chain
rule of mutual information and the non-negativity of mutual
information, and (162) follows from (18),(19). This completes
the proof of Lemma 6. "

Lemma 7: For any m ∈ [M ], k ∈ [Km] and subsets X , T ⊂
Rm such that |X | ≤ X ,

I
(
Wm,K ; Wm,K′ | SX , S[N ]\Rm

, Q[m,k]
T

)
= 0 (163)

where K ⊂ [Km], K′ = [Km] \ K, Wm,K = (Wm,k, k ∈ K)
and Wm,K′ = (Wm,k, k ∈ K′).

Proof: Let us define WM′ = (W m′,k, ∀m′ ∈ [M ], k ∈
[Km′ ], m′ /= m). Wm,K = (W m,k, k ∈ K). Wm,K′ =
(Wm,k, k ∈ K′). W(X )

m,K = (W(n)
m,k, n ∈ X , k ∈ K). W(X )

m,K′ =
(W(n)

m,k, n ∈ X , k ∈ K′).

I(Wm,K;Wm,K′ | SX , S[N ]\Rm
, Q[m,k′]

T ) (164)

≤ I(Wm,K;Wm,K′ , SX , S[N ]\Rm
, Q[m,k′]

T ) (165)

= I(Wm,K;Wm,K′ , SX , S[N ]\Rm
)

+ I(Wm,K; Q[m,k′]
T | Wm,K′ , SX , S[N ]\Rm

) (166)

≤ I(Wm,K;Wm,K′ , SX , S[N ]\Rm
)

+ I(Q[m,k′]
T ;Wm,K,Wm,K′ , SX , S[N ]\Rm

) (167)

= I(Wm,K;Wm,K′ , SX , S[N ]\Rm
) (168)

≤ I(Wm,K;Wm,K′ ,WM′ ,W(X )
m,K,W(X )

m,K′) (169)

≤ I(Wm,K;Wm,K′ ,WM′ ,W(X )
m,K) (170)

= I(Wm,K;W(X )
m,K) + I(Wm,K;Wm,K′ ,WM′ | W(X )

m,K)
(171)

= I(Wm,K;Wm,K′ ,WM′ | W(X )
m,K) (172)

≤ I(Wm,K,W(X )
m,K;Wm,K′ ,WM′) (173)

≤ I(Wm,K;Wm,K′,WM′) (174)

= 0. (175)

(165), (166), (167) follow from the chain rule and the non-
negativity of mutual information. (168) holds because of (18),
while in (169), we used the definition of the storage as in
(11). (170) follows because

(
Wm,K′ ,W(X )

m,K′

)
is function of

Wm,K′ . (171) is again the chain rule of mutual information,
and (172) follows from the X-security constraint as in (16).
(173) follows from the chain rule and the non-negativity of
mutual information, while in (174), we used the fact that(
Wm,K,W(X )

m,K

)
is function of Wm,K. The last step holds

because of (8). This completes the proof of Lemma 7. "

REFERENCES

[1] Z. Jia, H. Sun, and S. A. Jafar, “Cross subspace alignment and the
asymptotic capacity of X-secure T -private information retrieval,” IEEE
Trans. Inf. Theory, vol. 65, no. 9, pp. 5783–5798, Sep. 2019.

[2] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private informa-
tion retrieval,” in Proc. 36th Annu. Symp. Found. Comput. Sci., 1995,
pp. 41–50.

[3] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981, 1998.

[4] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4075–4088, Jul. 2017.

[5] H. Sun and S. A. Jafar, “The capacity of robust private information
retrieval with colluding databases,” IEEE Trans. Inf. Theory, vol. 64,
no. 4, pp. 2361–2370, Apr. 2018.

[6] R. Tajeddine, O. W. Gnilke, and S. El Rouayheb, “Private information
retrieval from MDS coded data in distributed storage systems,” IEEE
Trans. Inf. Theory, vol. 64, no. 11, pp. 7081–7093, Nov. 2018.

[7] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” IEEE Trans. Inf. Theory, vol. 64, no. 3,
pp. 1945–1956, Mar. 2018.

[8] C. Tian, H. Sun, and J. Chen, “Capacity-achieving private information
retrieval codes with optimal message size and upload cost,” IEEE Trans.
Inf. Theory, vol. 65, no. 11, pp. 7613–7627, Nov. 2019.

[9] H. Sun and S. A. Jafar, “Optimal download cost of private information
retrieval for arbitrary message length,” IEEE Trans. Inf. Forensics
Security, vol. 12, no. 12, pp. 2920–2932, Dec. 2017.

[10] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, C. Hollanti,
and S. E. Rouayheb, “Private information retrieval schemes for coded
data with arbitrary collusion patterns,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2017, pp. 1908–1912.

[11] Z. Jia, H. Sun, and S. Jafar, “The capacity of private information retrieval
with disjoint colluding sets,” in Proc. IEEE GLOBECOM, Dec. 2017,
pp. 1–6.

[12] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk,
“Private information retrieval from coded databases with colluding
servers,” SIAM J. Appl. Algebra Geometry, vol. 1, no. 1, pp. 647–664,
Jan. 2017.

[13] H. Sun and S. A. Jafar, “Private information retrieval from MDS coded
data with colluding servers: Settling a conjecture by Freij-Hollanti,”
IEEE Trans. Inf. Theory, vol. 64, no. 2, pp. 1000–1022, Feb. 2018.

[14] K. Banawan and S. Ulukus, “Multi-message private information
retrieval: Capacity results and near-optimal schemes,” IEEE Trans. Inf.
Theory, vol. 64, no. 10, pp. 6842–6862, Oct. 2018.

[15] K. Banawan and S. Ulukus, “Asymmetry hurts: Private information
retrieval under asymmetric traffic constraints,” IEEE Trans. Inf. Theory,
vol. 65, no. 11, pp. 7628–7645, Nov. 2019.

[16] H. Sun and S. A. Jafar, “Multiround private information retrieval:
Capacity and storage overhead,” IEEE Trans. Inf. Theory, vol. 64, no. 8,
pp. 5743–5754, Aug. 2018.

[17] R. Tandon, “The capacity of cache aided private informa-
tion retrieval,” 2017, arXiv:1706.07035. [Online]. Available:
http://arxiv.org/abs/1706.07035

[18] Y.-P. Wei, K. Banawan, and S. Ulukus, “Fundamental limits of
cache-aided private information retrieval with unknown and uncoded
prefetching,” IEEE Trans. Inf. Theory, vol. 65, no. 5, pp. 3215–3232,
May 2019.

[19] S. Kadhe, B. Garcia, A. Heidarzadeh, S. El Rouayheb, and A. Sprintson,
“Private information retrieval with side information,” IEEE Trans. Inf.
Theory, vol. 66, no. 4, pp. 2032–2043, Apr. 2020.

[20] Z. Chen, Z. Wang, and S. A. Jafar, “The capacity of T-private informa-
tion retrieval with private side information,” IEEE Trans. Inf. Theory,
vol. 66, no. 8, pp. 4761–4773, Aug. 2020.

[21] H. Sun and S. A. Jafar, “The capacity of private computation,” IEEE
Trans. Inf. Theory, vol. 65, no. 6, pp. 3880–3897, Jun. 2019.

[22] M. Mirmohseni and M. Ali Maddah-Ali, “Private func-
tion retrieval,” 2017, arXiv:1711.04677. [Online]. Available:
http://arxiv.org/abs/1711.04677

[23] S. A. Obead and J. Kliewer, “Achievable rate of private function retrieval
from MDS coded databases,” 2018, arXiv:1802.08223. [Online]. Avail-
able: http://arxiv.org/abs/1802.08223

[24] D. Karpuk, “Private computation of systematically encoded data
with colluding servers,” 2018, arXiv:1801.02194. [Online]. Available:
http://arxiv.org/abs/1801.02194

[25] K. Banawan and S. Ulukus, “Private information retrieval through
wiretap channel II: Privacy meets security,” IEEE Trans. Inf. Theory,
vol. 66, no. 7, pp. 4129–4149, Jul. 2020.

[26] Q. Wang, H. Sun, and M. Skoglund, “The capacity of private information
retrieval with eavesdroppers,” IEEE Trans. Inf. Theory, vol. 65, no. 5,
pp. 3198–3214, May 2019.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 19:41:43 UTC from IEEE Xplore.  Restrictions apply. 



6296 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 10, OCTOBER 2020

[27] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from byzantine and colluding databases,” IEEE Trans. Inf.
Theory, vol. 65, no. 2, pp. 1206–1219, Feb. 2019.

[28] Y. Zhang and G. Ge, “Private information retrieval from MDS coded
databases with colluding servers under several variant models,” 2017,
arXiv:1705.03186. [Online]. Available: http://arxiv.org/abs/1705.03186

[29] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, and
C. Hollanti, “Private information retrieval from coded storage systems
with colluding, byzantine, and unresponsive servers,” IEEE Trans. Inf.
Theory, vol. 65, no. 6, pp. 3898–3906, Jun. 2019.

[30] H. Sun and S. A. Jafar, “The capacity of symmetric private informa-
tion retrieval,” IEEE Trans. Inf. Theory, vol. 65, no. 1, pp. 322–329,
Jan. 2019.

[31] Q. Wang and M. Skoglund, “Linear symmetric private
information retrieval for MDS coded distributed storage with
colluding servers,” 2017, arXiv:1708.05673. [Online]. Available:
http://arxiv.org/abs/1708.05673

[32] Q. Wang and M. Skoglund, “Secure symmetric private informa-
tion retrieval from colluding databases with adversaries,” 2017,
arXiv:1707.02152. [Online]. Available: http://arxiv.org/abs/1707.02152

[33] H. Yang, W. Shin, and J. Lee, “Private information retrieval for secure
distributed storage systems,” IEEE Trans. Inf. Forensics Security, vol. 13,
no. 12, pp. 2953–2964, Dec. 2018.

[34] N. Raviv, I. Tamo, and E. Yaakobi, “Private information retrieval in
graph-based replication systems,” IEEE Trans. Inf. Theory, vol. 66, no. 6,
pp. 3590–3602, Jun. 2020.

[35] K. Banawan and S. Ulukus, “Private information retrieval from non-
replicated databases,” 2019, arXiv:1901.00004. [Online]. Available:
http://arxiv.org/abs/1901.00004

[36] A. Schrijver, Combinatorial Optimization: Polyhedra Efficiency, vol. 24.
Springer, 2003.

[37] Y. Birk and T. Kol, “Informed-source coding-on-demand (ISCOD) over
broadcast channels,” in Proc. IEEE INFOCOM Conf. Comput. Commun.
17th Annu. Joint Conf. IEEE Comput. Commun. Soc. Gateway 21st
Century, vol. 3, Mar. 1998, pp. 1257–1264.

[38] Z. Jia and S. A. Jafar, “X-secure T -private information retrieval from
MDS coded storage with byzantine and unresponsive servers,” 2019,
arXiv:1908.10854. [Online]. Available: http://arxiv.org/abs/1908.10854

[39] F. J. MacWilliams and N. J. A. Sloane, The Theory Error-Correcting
Codes, vol. 1. Amsterdam, The Netherlands: Elsevier, 1977.

[40] M. Gasca, J. J. Martínez, and G. Mühlbach, “Computation of rational
interpolants with prescribed poles,” J. Comput. Appl. Math., vol. 26,
no. 3, pp. 297–309, Jul. 1989.

Zhuqing Jia (Graduate Student Member, IEEE) received the B.E. degree in
electronic information engineering from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2015, and the M.S. degree in electrical
and computer engineering from the University of California at Irvine, CA,
USA, in 2019, where he is currently pursuing the Ph.D. degree. His research
interests include information theory and its applications to security, privacy,
computation, and storage.

Syed Ali Jafar (Fellow, IEEE) received the B.Tech. degree from IIT Delhi,
India, in 1997, the M.S. degree from Caltech, USA, in 1999, and the Ph.D.
degree from Stanford University, USA, in 2003, all in electrical engineering.

His industrial experience includes positions at Lucent Bell Labs and Qual-
comm. He is currently a Chancellor’s Professor of electrical engineering and
computer science at the University of California at Irvine, Irvine, CA, USA.
His research interests include multiuser information theory, wireless commu-
nications, and network coding. He was a recipient of the New York Academy
of Sciences Blavatnik National Laureate in Physical Sciences and Engineering,
the NSF CAREER Award, the ONR Young Investigator Award, the UCI
Academic Senate Distinguished Mid-Career Faculty Award for Research,
the School of Engineering Mid-Career Excellence in Research Award, and the
School of Engineering Maseeh Outstanding Research Award. His coauthored
articles have received the IEEE Information Theory Society Paper Award,
the IEEE Communication Society and Information Theory Society Joint
Paper Award, the IEEE Communications Society Best Tutorial Paper Award,
the IEEE Communications Society Heinrich Hertz Award, the IEEE Signal
Processing Society Young Author Best Paper Award, the IEEE Information
Theory Society Jack Wolf ISIT Best Student Paper Award, and the three IEEE
GLOBECOM Best Paper Awards. He also received the UC Irvine EECS
Professor of the Year Award six times in 2006, 2009, 2011, 2012, 2014,
and 2017 from the Engineering Students Council, the School of Engineering
Teaching Excellence Award in 2012, and the Senior Career Innovation in
Teaching Award in 2018. He was a University of Canterbury Erskine Fellow
in 2010, an IEEE Communications Society Distinguished Lecturer from
2013 to 2014, and an IEEE Information Theory Society Distinguished Lecturer
from 2019 to 2020. He was recognized as a Thomson Reuters/Clarivate
Analytics Highly Cited Researcher and included by Sciencewatch among The
World’s Most Influential Scientific Minds in 2014, 2015, 2016, 2017, and
2018. He served as an Associate Editor for the IEEE TRANSACTIONS ON
COMMUNICATIONS from 2004 to 2009, the IEEE COMMUNICATIONS LET-
TERS from 2008 to 2009, and the IEEE TRANSACTIONS ON INFORMATION
THEORY from 2009 to 2012.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 19:41:43 UTC from IEEE Xplore.  Restrictions apply. 


