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Abstract

Hemiparetic walking after stroke is typically slow, asymmetric, and inefficient, significantly impacting activities of
daily living. Extensive research shows that functional, intensive, and task-specific gait training is instrumental for
effective gait rehabilitation, characteristics that our group aims to encourage with soft robotic exosuits. However,
standard clinical assessments may lack the precision and frequency to detect subtle changes in intervention efficacy
during both conventional and exosuit-assisted gait training, potentially impeding targeted therapy regimes. In this
paper, we use exosuit-integrated inertial sensors to reconstruct three clinically meaningful gait metrics related to
circumduction, foot clearance, and stride length. Our method corrects sensor drift using instantaneous information
from both sides of the body. This approach makes our method robust to irregular walking conditions poststroke as
well as usable in real-time applications, such as real-time movement monitoring, exosuit assistance control, and
biofeedback. We validate our algorithm in eight people poststroke in comparison to lab-based optical motion capture.
Mean errors were below 0.2 cm (9.9%) for circumduction, —0.6 cm (—3.5%) for foot clearance, and 3.8 cm (3.6%) for
stride length. A single-participant case study shows our technique’s promise in daily-living environments by
detecting exosuit-induced changes in gait while walking in a busy outdoor plaza.

Introduction

Stroke is a prominent cause of long-term disability affecting over seven million people in the United States
alone (Benjamin et al., 2019), many of whom suffer from hemiparesis. Though the impact of hemiparesis is
wide-ranging, its effects are particularly apparent in gait; hemiparetic gait is typically slow, asymmetric, and
inefficient (Olney and Richards, 1996), posing an increased risk of fall. These impairments can limit
community ambulation in a way that significantly affects participation in activities of daily living (ADLs),
often leading to isolation, depression, and even secondary strokes (Do Lee et al., 2003; Linden et al., 2007).

Rehabilitation after stroke plays a crucial role in restoring gait. Comprising an iterative process
alternating between gait assessment and intervention such as motor recovery training, extensive literature
demonstrates that effective gait training after stroke is functional, task-specific, intensive, and repetitive
(Eng and Tang, 2007; Langhorne et al., 2009; Winstein et al., 2016). Furthermore, deterioration in regained
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mobility after inpatient care is a major challenge for effective rehabilitation, emphasizing the importance of
continued, postdischarge training throughout the chronic stages of stroke recovery (Paolucci, 2008).

Gait Monitoring and Wearable Devices in Poststroke Rehabilitation
To encourage such training paradigms in and beyond the clinic, our group develops wearable robots called
soft exosuits (see Figure 1) that deliver mechanical power to the paretic (P) ankle via functional apparel
and cable-based actuation systems, in step with a patient’s natural gait cycle (Awad et al., 2017; Bae et al.,
2018). During activities typical to rehabilitation, soft exosuits have been found to reduce common gait
compensations such as hip hiking, circumduction, and propulsion asymmetry (Awad et al., 2017)—
locomotor improvements that may amplify benefits from conventional training (Awad et al., 2020).
Moreover, a unique characteristic of soft exosuits is their ability to switch quickly from applying
assistance to no assistance (while minimally restricting gait), potentially enabling new approaches for
gait rehabilitation. Beyond soft exosuits, other lightweight wearable robots have improved ankle power
production (McCain et al., 2019) and walking speed (Jayaraman et al., 2019) in people poststroke.
While these outcomes are promising, monitoring gait improvements after stroke can be challenging,
particularly in outpatient or community-based rehabilitation environments. Clinical tools, like mobility
scales and outcome measures that support therapists in assessing ADL-related improvements, are reliable
in classifying functional abilities. Still, they may lack the precision and frequency required to reflect subtle
changes in mobility (Toro et al., 2007), such as those induced by an exosuit. Similarly, even highly trained
clinicians may have difficulty visually detecting stride-by-stride or between-session improvements
(Paolucci et al., 2001; Walker et al.,2013). Moreover, in community or at-home rehabilitation, insurance
status, restricted patient mobility, or remote living conditions may constrain access to regular physical
therapy assessment altogether (Hickey et al., 2012).
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Figure 1. (a) Hardware setup for ambulatory gait monitoring in exosuit-assisted walking. The integrated
foot inertial measurement units analyze the gait cycle to inform the exosuit controller when to correctly
provide plantarflexion (PF) and dorsiflexion (DF) assistance (i). The exosuit can quickly switch from
active to transparent mode (ii) allowing a person to walk without assistance and hence their natural
walking pattern if desired. Typical impairments in poststroke gait include reduced ground clearance (b),
often causing individuals to compensate with increased lateral displacement during swing (c). Awad et al.
(2017) showed that exosuit assistance can help reduce such compensatory mechanisms.
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Instrumented ambulatory monitoring may help overcome some of these barriers by allowing clinicians
to assess gait remotely, objectively, and continually. In particular, integration with new rehabilitation
approaches such as telemedicine could help extend clinical gait training to the community on a broader
scale. Furthermore, in combination with new wearable robot technologies such as soft exosuits, quan-
titatively monitoring the immediate impact of provided assistance may allow clinicians to adjust training
routines and tune assistance parameters effectively within an in-person or remote training session.
Similarly, recent studies suggest that wearable robots can tune assistance based on physiological data
(Zhangetal., 2011). Likewise, future iterations of soft exosuits could automatically tune assistance based
on an individual’s gait metric response by integrating ambulatory gait metrics directly into the exosuit’s
control loop.

Indeed, being small, lightweight, and unobtrusive, inertial measurement units (IMUs) in particular
have proven attractive for estimating spatiotemporal gait metrics in various clinical and nonclinical
applications. Soft exosuits, for instance, use IMUs as a high-level control input for temporal gait
segmentation. Necessarily, this has enabled exosuits to export a variety of clinically important temporal
gait metrics such as stance-swing ratios and P and nonparetic (NP) step time (Awad et al., 2017). Outside
the field of wearable robotics, a number of studies investigating IMUs for gait metric reconstruction over
the last decade have shown promising outcomes both in healthy (Sabatini et al., 2005; Schepers et al.,
2010; Mariani et al., 2010; Kose et al., 2012; Rebula et al., 2013; Benoussaad et al., 2016) and impaired
(Trojaniello et al., 2014; Rampp et al., 2015; Ferrari etal., 2016; Visi etal., 2017; Porciuncula et al., 2018)
populations. Though work relying solely on IMUs in people poststroke has been more limited, some
studies have also explored approaches complementing IMUs with additional sensors such as foot
switches and ultrasound sensors (Meulen et al., 2016) that can directly provide inter-limb measures such
as step length. Yet other studies incorporate kinematic models combined with IMUs spread across the
lower limbs to compute gait metrics (Moore et al., 2017; Wang et al., 2018). Please see the
section “Correcting Sensor Drift” for a more detailed explanation of the methods used in the literature.
Broadly, though encouraging, existing methods often rely on manual tuning that may not be adaptable
across highly heterogeneous populations such as people poststroke. A requirement of manual tuning may
limit these methods’ usability for control in wearable robots such as exosuits. Motivated by these factors,
our goal was to update exosuit gait detection algorithms developed for poststroke populations without
adding additional hardware requirements. Moreover, it is to date unclear if IMU-based gait monitoring is
accurate even in the presence of potential motion artifacts from exosuit assistance.

In this paper, we present an accurate and robust method of computing gait metrics in poststroke
walking with IMUs attached bilaterally to the paretic and nonparetic foot. As a secondary objective, we
show a proof of concept for using gait monitoring integrated with an exosuit in the community. Though we
anticipate this method is effective with or without an assistive device, to avoid imposing additional
burdens on clinicians wishing to monitor gait in their patients wearing exosuits, we use IMUs already
integrated into an exosuit system.

Algorithm for Robust Zero-Velocity Update Detection

Estimating spatial gait metrics relies on reconstructing foot trajectories. As IMUs measure linear acceler-
ations (and angular velocities), measuring changes in position typically requires numerical integration of
sensor signals. However, due to sensor inaccuracies, estimation error (i.e., drift) accumulates during
numerical integration, rendering the estimated metrics unusable within seconds if not accounted for.
Canonically, these inaccuracies manifest themselves in the form of bias (£; poor estimates in the signal
mean) and noise (¢; zero-mean inaccuracies) (Woodman, 2007).

Correcting Sensor Drift

State-of-the art ambulatory gait monitoring systems correct this drift by discarding estimation error using
zero-velocity updates (ZUPTs); recurring instances or periods in the gait cycle during which foot motion is
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known to be zero (Foxlin, 2005). Conventionally, approaches look at either linear accelerations, angular
velocities, or combinations of both signals to detect ZUPTs (Skog et al., 2010). That is, researchers use
empirically tuned thresholds to determine when the designated ZUPT detection signals fall reasonably
close to zero. Additional constraints such as mandatory ZUPT window lengths are also common to
improve detection accuracy and increase robustness (Jim, 2009; Rampp et al., 2015; Rebula et al., 2013).
Typically, when the ipsilateral detection signals approach zero—suggesting the (ipsilateral) foot is
stationary—algorithms restart the integration. This constrains the time period in which error can
accumulate and, by modeling the error propagation over time, discards already accumulated drift from
the faulty position estimate. Such approaches have successfully estimated gait parameters in unimpaired
individuals (Sabatini et al., 2005) as well as in various populations with gait pathologies (Mariani et al.,
2013; Trojaniello et al., 2014; Ferrari et al., 2016).

While promising, variability in stroke induced hemiparetic gait, especially on the paretic side
(Kempski et al., 2018), can make it difficult to generalize thresholds for inter- and even intra-patient
use; unexpected or irregular foot motion may lead to missed or unwarranted ZUPT detections if thresholds
are not optimally tuned, a complication that may result in highly inaccurate gait metric estimates (Rebula
et al., 2013). Other studies (Schepers et al., 2007; Schepers et al. 2010) rely on additional sensors such as
foot switches to segment gait and define ZUPTs. Furthermore, there is no work to our knowledge
demonstrating that IMU-based gait monitoring can resolve small improvements in walking on an intra-
person basis in community environments.

Zero-Velocity Update Detection Using Contralateral Foot Information

We implemented our ZUPT detection method using a strap-down double integration algorithm with linear
drift compensation similar to Sabatini et al. (2005). The gait segmentation uses information from both feet to
identify paretic toe-off and nonparetic toe-off. As the toe-off event on the contralateral side indicates early
single limb support on the ipsilateral side, biomechanically this event is likely to coincide with a foot-flat
instance of the ipsilateral foot, assuming the person is not running. Commonly, paretic-foot instability can
introduce local minima around the sharp negative peaks in Figure 2 that correspond with toe-off. For real-
time applications, waiting until angular velocity switches from negative to positive helps avoid these local
minima. As this zero crossing follows the actual (peak) toe-off event in the gait cycle by approximately 4—
6%, it should be noted that the ZUPT instance will show the same degree of latency compared to the actual
(biomechanical) toe-off event, resulting in a slight shift from early stance toward mid-stance (see Figure 2).
Confirming contralateral toe-off with the zero crossing of contralateral angular velocity, we leverage this
biomechanical constraint to reliably define ZUPT instances on the opposite, ipsilateral foot.

Double Integration Framework

Figure 3 illustrates the general algorithm framework. All input signals utilized by the algorithm—
comprising three-axis accelerations in the local (or sensor) frame, three-axis orientation expressed as
unit quaternions computed directly by the onboard IMU Kalman Filter as well as angular velocity in the
sagittal plane—are obtained from the exosuit-integrated foot IMUs.

For each time sample, the local acceleration signal is transformed into world frame coordinates based
on the current IMU-provided orientation estimate. After removing gravity, the resulting acceleration
signal is integrated twice using trapezoidal integration to obtain position estimates. Once the algorithm
receives a ZUPT confirmation flag, the integration is re-initialized, and after subtracting the accumulated
sensor drift from the uncorrected position estimate we obtain drift compensated position trajectories in
each world frame direction. That is, assuming (quasi) constant bias ff and zero-mean noise €, we can model
the measured acceleration as a(t) = a(t) + f +¢(t), where a(t) refers to the actual acceleration. Conse-
quently, integrating the bias term twice results in position error growing quadratically over time. Knowing
the true velocity at each ZUPT event to be zero, the position error e, accumulated over the stride interval T
can be modelled as:
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Figure 2. Zero-velocity update detection approach: (a) Nonparetic and paretic gait cycle. (b) Our
approach uses contralateral angular velocity zero crossings to detect ZUPT instances on the ipsilateral
foot (grey dots). (c—d) Threshold based ZUPT detection shown for an angular rate energy detector as in
Skog et al. (2010). This method defines a ZUPT as any time the decision metric T ,(normalized as shown
here) falls below a predetermined threshold. For this particular detector, the decision metric T, broadly
measures foot rotational energy normalized to vary between 0 and 1. For the demonstrated threshold, the

paretic side shows two falsely identified ZUPT phases caused by unanticipated low angular velocity
during swing. The same threshold works correctly for the nonparetic side. Both thresholds are normalized
to the respective maximum detector signal value.

T
1
e = // pdrde= 2 vzupt T's,
0

where vzypr refers to the velocity error (i.e., the estimated velocity) at each ZUPT event.

Gait Metric Computation

Based on the drift-corrected position trajectories, we computed gait metrics between subsequent ZUPTs.
Stride Length (SL) was defined as the transverse-plane distance between two successive ZUPT events of
the same foot (i.e., the magnitude of a vector pointing in the direction of progression):
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Figure 3. General algorithm pipeline. The exosuit-integrated foot inertial measurement units provide
three-dimensional linear, sensor frame acceleration as well as angular velocity. After transforming the
acceleration signal to a fixed world frame and removing gravity, the resulting acceleration signal a,,(t) is
integrated twice to obtain position estimates. The angular velocity is used by the gait detection algorithm
to segment the gait cycle—providing temporal gait features—and detect ZUPT instances that allow us to
compensate drift from the computed position trajectories. Based on the resulting three-dimensional foot

trajectories, spatial gait metrics for both feet can be computed.

SL(i) = \/d.(i)* +d, (i),

where d,(i) and d, (i) refer to the overall displacements within the current (ith) stride in x and y directions,
respectively. Maximum lateral displacement (MLD) was computed as:

MLD(i)= ml?xny,,'(k),

where D, ;(k) marks the perpendicular distance at every sample point k between the direction of
progression and the transverse-plane foot trajectory. Similarly, maximum vertical displacement (MVD)
was defined as the maximum value of the vertical (z-direction) trajectory. Ground truth motion capture
measurements were computed in the same way, using markers rigidly attached to each IMU.

Experimental Validation with a Soft Exosuit

To determine algorithm performance in terms of accuracy and robustness, we conducted an overground,
in-lab study with eight participants in the chronic phase of poststroke recovery. Figure 4 shows the
experimental setup. The soft exosuit’s design is detailed in Bae et al. (2018), but briefly it consists of a
proximally mounted actuation unit connected to a distally mounted textile component at the shank with a
pair of Bowden cables, one each for plantarflexion (PF) and dorsiflexion (DF). The Bowden cables’ outer
sheaths anchor on the shank while their inner cables extend to the foot, generating either PF or DF
moments when the respective cable retracts. An IMU (MTi-3; XSens; Netherlands; 100 Hz) mounted on
either shoe detects the events described in section “Double Integration Framework.”

Experimental Overview

Participants (N =8; age: 48.9 £+ 10.0 years; 4 male; Table 1) wearing the exosuit as described previously,
were asked to perform two 4 min bouts on an overground track instrumented with nine force plates
(FP4060-15; Bertec; Columbus, OH; 2,000 Hz) and a total length of 36.9 m, one bout with the suit active
and one bout with the suit inactive at a comfortable walking speed. The order of the two conditions was
randomized and exosuit assistance was set as in Bae et al. (2018), with a peak PF cable force of 25% body
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Figure 4. (a) Experimental setup for in-lab validation. Participants wearing an exosuit walked contin-
uously with and without exosuit assistance for 4 min each on an overground track in the motion capture
laboratory at Harvard University with a total length of 36.9m. The inertial measurement units (IMUs)
were rigidly attached to marker clusters mounted laterally to both feet to minimize relative movement
between the IMU and optical markers (see close-up image). The IMU coordinate frame origin was
approximated as the center of the four optical markers. Optical motion capture data were collected during
the straight path section that fully lies within the capture volume of the cameras (b).

Table 1. Demographic and clinical information of the participants for the present study, including the paretic side, gender, age, time
since stroke (TSS), type of stroke, 10-m walk test speed at a self-selected comfortable pace (10MWS CWS), and the number of usable
strides from each participant on the P and NP sides

Participant ~ Paretic sidle ~ Gender  Age (years)  TSS (years)

Strides

Type of stroke ~ 1OMWS CWS (mv/s) P NP

S1 R M 35 5.6
S2 R M 56 4.2
S3 R F 34 11.1
S4 L F 58 19.0
S5 R F 50 8.3
S6 L M 61 8.5
S7 L F 50 52
S8 L M 47 14.2

Hemorrhagic 1.45 38 39
Hemorrhagic 0.68 48 46
Hemorrhagic 1.15 24 22
Ischemic 0.79 10 9
Hemorrhagic 1.72 12 13
Hemorrhagic 0.78 42 45
Ischemic 0.96 27 22
Ischemic 0.74 26 24

Abbreviations: NP, nonparetic; P, paretic.

weight and peak DF cable position held constant after tuning by an experienced clinician. Accuracy was
determined with respect to a 14-camera optical motion capture system (Oqus; Qualisys; Sweden; 200 Hz).
For synchronization purposes, data were streamed via Bluetooth connection to a nearby computer and
analyzed through postprocessing. Medical clearance and signed informed consent forms approved by the
Harvard University Human Subjects Review Board were obtained for all participants.
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Figure 5. Regression Plots for three gait metrics, stride length (SL), maximum lateral displacement
(MLD), and maximum vertical displacement (MVD), shown for the paretic (P) and nonparetic
(NP) sides. Each point is the average data from one participant during either the Active (red) or
Transparent (grey) condition. Regression plots show Pearson s correlation (r) between reference and
algorithm estimates, with *** indicating p < .001. Plots show linear fit (blue) as well as identity line
(grey dashed) representing perfect estimation.

Qutcome Metrics

Gait metrics were computed as defined above. Accuracy and precision were evaluated in terms of mean
(absolute) errors between motion capture and estimated metrics and their respective standard deviations.
We further computed inter-rater reliability based on intraclass correlation analysis (/CC) according to the
convention by McGraw and Wong (1996), evaluating agreement /CC(A, 1) and consistency ICC(C,1)
between both measurement systems. We also computed Pearson’s correlation coefficient between motion
capture and estimated metrics, along with the 95% limits of agreement (LoA) between the two metrics.
Lastly, we defined robustness in terms of detected versus actual ZUPT events. A ZUPT event was
considered correctly detected if it fell within a ground truth window defined based on optical motion
capture trajectories. That is, a ground truth ZUPT instance was defined as long as the direction of
progression trajectory remained (quasi) stationary, which was considered to be the case if the difference
between subsequent sample values remained below a threshold value of 1 mm.

Results

Figure 5 and Table 2 illustrate the results for the three computed gait metrics, separated by paretic
and nonparetic sides. Furthermore, Table 3 summarizes the statistical outcome metrics based on a total of
227 (P) and 220 (NP) usable strides for which our approach correctly detected ZUPTs in all cases for
both sides. Following the interpretation guidelines from Cicchetti (1994), we observed excellent
inter-rater reliability both in terms of agreement (0.84 <ICC(A,1)<1.00) and consistency
(0.86 < ICC(C,1) < 1.00) across all metrics (Table 3). Following, we list the main outcomes for each
gait metric in more detail.
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Table 2. Summary of average % std motion capture (mocap) and inertial measurement unit (IMU) values for each metric in both the active (A) and transparent (T) modes, along with the mean and
percent error for between ground truth motion capture and IMU-estimated values

Mocap value (cm) IMU value (cm) Mean error (cm) Percent error (%)
P NP P NP P NP P NP

SL A 120.2 £ 29.0 120.2 £ 28.9 122.6 £29.8 123.5 £ 28.7 24+13 33+1.6 1.9+0.7 29+1.5

T 117.7 £ 31.5 118.1 £31.4 120.3 £32.5 121.9 £ 31.0 26+ 1.1 38+23 2.1+£0.6 35+1.9
MLD A 6.0+22 28+ 1.0 6.1 19 3.0£09 0.1+0.4 02+03 33+64 109 £ 14.4

T 59+25 25+0.8 59+23 27+£09 —0.0£0.3 02+04 1.1 +44 9.9+ 19.1
MVD A 12.6 £ 4.0 178 £ 1.5 122+ 3.6 172+ 1.3 —-04+05 —0.6 £0.6 —2.7+3.1 —35+34

T 11.9+4.0 178 £ 1.7 11.6 £3.5 174 £ 1.6 —03£0.38 —-03 £0.7 —1.6 £45 —1.8£3.7

Abbreviations: MLD, maximum lateral displacement; MVD, maximum vertical displacement; NP, nonparetic; P, paretic; SL, stride length.
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Table 3. Summary of statistical differences between motion capture ground truth and inertial measurement unit (IMU)-based
estimates for the Active (4) and Transparent (T) conditions, including Pearson'’s correlation coefficient (r; **p <.01,
*kp < .001), limits of agreement (LoA;95%LoA), and inter-class correlation coefficients for both agreement (ICC(A, 1))
and consistency (ICC(A, 1))

r LoA (cm) ICC (A1) ICC (C,1)
P NP P NP P NP P NP
SL A 0.999%**  0.908**%  (—0.12,4.92)  (0.06,6.47) 0.996  0.993  0.999  0.998
T 1.000%%% 0997+  (0.37,4.77) (-0.67,834) 0997  0.991 0.999  0.997
MLD A 0.990%**  0961***  (—0.63,0.86)  (—035,0.78) 0984 0942 0983 00956
T 0.996%**  (.880** (-0.61,0.60)  (=0.61,1.09) 0993 0852 0992  0.868
MVD A 0.997%*%  0.9]17** (~1.42,0.56)  (—1.81,0.54) 0987  0.847  0.991 0.912
T 0.990%**  0.917%* (-1.81,1.15)  (~1.64,096) 0979 0908 0980  0.916

Abbreviations: MLD, maximum lateral displacement; MVD, maximum vertical displacement; NP, nonparetic; P, paretic; SL, stride length.

Stride length

Among the metrics reported in this study, stride length was most accurately reconstructed, with mean
estimation errors less than 2.6 £ 1.1 cm (P) and 3.8 + 2.3 cm (NP) corresponding to 2.1 +0.6% (P) and
3.5+ 1.9% (NP).

Maximum lateral displacement
Mean estimation errors for MLD were smaller than 0.11 £0.38cm (P) and 0.24 £0.43cm (NP),
corresponding to 3.31 +6.38% (P) and 10.9 £ 14.5% (NP).

Maximum vertical displacement
Mean estimation errors for MVD were smaller than —0.43 £0.51 cm (P) and —0.64 £+ 0.60 cm (NP),
corresponding to —2.68 3.07% (P) and — 3.46 + 3.36% (NP).

Real-Time Gait Metric Response to Exosuit Assistance

While the previous validation experiment demonstrated our method’s robustness and accuracy, the
feasibility of monitoring gait outside the lab would enable our long-term goal of deploying
community-based rehabilitation technologies. As exosuits can instantaneously switch between providing
assistance and being transparent to the wearer, monitoring gait reliably and continuously could make
exosuits more versatile. Allowing them to provide assistance only when needed by the wearer could
enable training with higher intensity while maintaining gait of a certain quality. To demonstrate how
monitoring the efficacy of exosuit assistance might shape such training scenarios in the future, we
conducted a case study (N = 1) mimicking more real-world conditions. To this end, we asked participant
S3 to return for an additional visit during which we monitored gait metric response to exosuit assistance in
a community environment.

Experimental Overview

The participant walked five laps around a predetermined 150 m circuit in a well-trafficked plaza near
Harvard University (Figure 6). For the first two laps, the participant walked wearing an exosuit without
obtaining assistance (transparent). Previous studies have shown that walking with an exosuit in the
transparent condition is a close representation of a person’s natural, baseline walking capability (Awad
et al., 2020). At the beginning of the third lap, a researcher activated assistance. The participant then
underwent one lap allowing adaptation to the assistance, and two more laps walking with the exosuit
active. Performing this experiment as a loop rather than as a timed walk over straight pathways ensured
that the active and inactive conditions took place over identical terrain. The participant was instructed to
walk at a comfortable speed she could maintain over the entire trial. Medical clearance and a signed
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Figure 6. Experimental setup for collecting gait metric data during community-based walking. The
participant was guided by a physical therapist for a total of five laps around a well-trafficked plaza at
Harvard University. Sensor data were streamed via Bluetooth to a nearby computer, carried by a
researcher following the participant.

informed consent form approved by the Harvard University Human Subjects Review Board were
obtained for this participant.

Qutcome Metrics

An indicator of walking impairment poststroke (Von Schroeder et al., 1995), we chose stride length as an
outcome metric to compare the effect of walking with exosuit assistance (active) to no exosuit assistance
(transparent). To test for statistical significance in stride length between the two suit conditions, we
performed nonparametric analysis of variance (Wilcoxon Rank Sum test) as the obtained results were
partially non-normally distributed.

Results

We collected a total of 498 strides. Significant differences comparing exosuit assistance (active) to no
assistance (transparent) were captured by the algorithm during our in-lab validation experiment, showing
an increase of 13.9 cm (P) and 13.7 cm (NP) for stride length (both p < .001). Similarly, during outdoor
testing, after adaptation to exosuit assistance, we saw a significant increase of 7.9 cm (P) and 7.3 cm
(NP) for stride length compared to no suit assistance (both p < .001). Figure 7 shows the effect of exosuit
assistance on poststroke gait, illustrated for stride length.
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Figure 7. Gait metric response in poststroke overground walking with and without exosuit assistance
shown for P and NP stride lengths. The inertial measurement unit-based monitoring algorithm presented
here detected significant differences between active and transparent modes (***p <.001).

Discussion

In this work, we used exosuit-integrated inertial sensors for gait metric estimation in chronic poststroke
overground walking. To this end, we implemented a double integration algorithm with linear drift
compensation. The main contribution of this work lies within a new form of ZUPT detection approach
that informs the algorithm when to perform integration resets and correct sensor drift. That is, instead of
relying on ipsilateral detection thresholds, our method defines ZUPT instances contralaterally, utilizing
information from both feet. Confirming our hypothesis, we demonstrated this approach to be highly
robust to irregular walking conditions poststroke.

Our in-lab validation showed excellent agreement between estimation and ground truth optical motion
capture. In comparison, being among the most accurate methods found in the literature, Trojaniello et al.
(2014) reported stride length in hemiparetic walking with comparable mean absolute errors of 3%. Visi
et al. (2017) showed similar outcomes for stride length in hemiparetic gait, reporting comparable to
higher mean errors of 2.3 £ 1.7% (NP) and 5.7 £ 2.0% (P), respectively, however considering only a
small sample size of N = 1. Though data on stroke populations are limited, outcomes reported for other
impaired populations may allow more extended comparisons. Hannink et al. (2016) reviewed multiple
studies estimating stride length in elderly and impaired populations, reporting (relative) precisions
between 6.1 cm and 8.4 cm (5—11%), with mean errors close to zero.

Regarding MLD, the relatively high percentage errors we observed—particularly on the NP side—can
be explained by the very small absolute lateral displacements of 5 cm (P) and 2 cm (NP), which mean even
small errors appear quite substantial. Moreover, errors of a few mm are approaching the smallest distance
resolvable with the 9 mm reflective markers used for this study. Still, comparing these outcomes to swing
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width errors in Parkinsonian gait (0.15 £2.13 cm) (Mariani et al., 2013), we observe comparable mean
estimation errors with noticeably improved precision for both sides.

Lastly, estimation errors for MVD are lower than Hannink et al. (2017), who tested various recon-
struction methods on a clinical benchmark dataset with accuracies of —0.84 +3.98 cm. Moreover, our
errors are comparable to Kitagawa and Ogihara (2016) (0.2 0.7 cm) and substantially lower than
Mariani et al. (2012) (4.2 + 2.2 cm), both reported for healthy populations.

In summary, we found improvements on previously reported precisions, suggested by smaller error
variance across metrics. Mean estimation errors were comparable or lower than reported for MLD and
MVD, while showing slightly biased error distributions for stride length. A comparison to the method
published in Skog et al. (2010) on the data set presented here (Supplementary Table S1) indicates the
same. While difficult to confirm without an extended analysis, the small error variance may potentially
come from a difference in reliability in detecting ZUPTs between our method and others. False positives
(i.e., ZUPTs during swing) would likely result in underestimated positions by cutting the integration
period artificially short. Conversely, false negatives (i.e., missed ZUPTs) could lead to overestimated
positions by letting the integration accumulate for too long. Combined, these inaccuracies may result in
mean error distributions centered around zero, but with increased variability compared to a method that
misses no ZUPTs. A future analysis retuning both the window size and detection threshold from Skog
et al. (2010) to poststroke walking may provide further insight regarding this hypothesized relationship
between missed or false ZUPTs and estimation errors. Considering that we enforce ZUPTs at single
instances as opposed to over periods of time could explain the slightly biased errors distributions observed
in some cases, as this allows drift to accumulate for longer periods of time. While in theory accounted for
by the drift compensation, this can become more problematic if bias instabilities—potentially caused by
inaccurate orientation estimates or genuine IMU bias fluctuations—invalidate the assumption of linear
velocity drift (Woodman, 2007). Incorporating higher-order drift functions that potentially better capture
these effects may increase accuracy in future work. In addition, we expect a certain degree of residual error
due to factors such as misalignment between the IMU coordinate frame origin and the coordinate frame
origin approximated by the optical markers (see Figure 4), soft tissue artifacts or maximum achievable
resolutions given optical marker sizes of up to 9 mm.

Gait training is an integral component of recovery after a stroke. While effective, current clinical
standards may lack the precision and frequency to monitor small improvements in walking during and
after therapy. As wearable devices such as soft exosuits encourage community or at-home rehabilitation,
and as the field of gait therapy continues to encourage telemedicine, monitoring gait quality becomes even
more important. Devices capable of measuring both short- and long-term changes in walking will inform
not only the development and application of exoskeletons, but also help expand current therapeutic
practices out of the clinic.

With respect to clinical applicability, an important assessment criterion is a method’s sensitivity to
changes in gait characteristics over time. Assessing long-term gait changes may provide insights to
rehabilitation progression or general mobility declines, while monitoring the immediate response to
intervention approaches such as exosuit assistance may help inform treatment implementations. As
particularly within a session such differences can be small, gait monitoring systems require measurement
precision high enough to resolve subtle but clinically meaningful outcomes reliably. In this context,
Hannink et al. (2016) argued that for sufficient resolution, error standard deviations need to be less than
half the true effect magnitude. Moreover, a reasonable evaluation benchmark could be an algorithm’s
capability of resolving minimally detectable changes (MDCs), representing important reference values in
everyday clinical assessment. Kesar et al. (201 1) for example, reported paretic within-session step length
MDCs of 2.62 cm in poststroke (treadmill) walking. For stride length, though not explicitly reported, this
could suggest standard deviation requirements in ranges lower than 2.6 cm, if we assume stride length to
be about twice step length. Notably, people poststroke typically exhibit less variability on a treadmill than
overground, shrinking treadmill-derived MDCs and making them more difficult to resolve. For between-
session assessment, recent work by Geiger et al. (2019) found stride length MDCs of around 11.96 cm
in poststroke gait which—by the same reasoning—would require standard deviations in ranges lower than
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6 cm. Standard deviations of less than 1.3cm (P) and 2.3 cm (NP) achieved in this work would be
sufficiently small to meet these requirements in both cases.

As a complement to our in-lab validation, our use-case experiment further demonstrated our algo-
rithm’s robustness in conditions typical to more pedestrian situations, such as negotiating small obstacles
in the walkway and navigating around passersby. The ability to reliably monitor wearer response to
exosuit assistance in such community-like settings could help establish new exosuit-assisted gait training
paradigms. Indeed, recent work on control individualization (Siviy et al., 2020) underscores how people
poststroke can be sensitive to changes in exosuit assistance. Future work in this domain could explore gait
metrics as objective functions to automatically tune assistance parameters based on individual wearer
response. By closing the loop between assessment of gait and intervention, exosuits may thereby assist
throughout the whole spectrum of poststroke rehabilitation. Still, the feasibility study presented here
contains data from only a single participant. Analyses of how well the exosuit improves gait in people
poststroke with more statistical power have been conducted in the lab (Awad et al., 2017; 2020), but future
work may wish to repeat those analyses in the community.

Limitations of this study may guide further directions for future work. To that end, incorporating a
simple model of the foot in swing could provide more granular information about foot clearance, instead
of ankle clearance only. Minimal toe clearance is particularly interesting to clinicians, as it is an indicator
of tripping risk in stroke survivors (Begg et al., 2014). In addition, measures such as step length
asymmetry are clinically relevant, but require more information about the relative position of either foot
than is available from the present pair of foot-mounted IMUs. In prior work, this has been addressed by
using different sets of IMUs (Moore et al., 2017; Wang et al., 2018), mounting an IMU to the pelvis (Kose
et al., 2012), or by using additional sensors (Meulen et al., 2016). Moreover, while estimation error was
small on both sides, accuracy differences between the paretic and nonparetic side could be subject to
further investigation in the future. That we saw higher estimation errors on the NP side may be the result of
higher variation in P side toe-off detection due to P side walking instability. More specifically, as
nonparetic ZUPTs require information from the contralateral (paretic) side, paretic side instability may
manifest as slightly poorer ZUPT estimates on the nonparetic side. This is a primary distinction from
methods such as Visi et al. (2017), which rely on purely ipsilateral information for ZUPT detection.
Exploring error sensitivity to nonlinear drift functions, as indicated previously, may provide more
conclusive information in this regard. Lastly, the method presented here requires IMUs that can provide
orientation estimates in order to calculate accelerations in the global frame. Future work exploring how
orientation estimates from lower-cost IMUs influence performance would be valuable in assessing our
method’s applicability across different hardware setups.
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