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Atomic nuclei are important laboratories for exploring and testing new insights into the universe,
such as experiments to directly detect dark matter or explore properties of neutrinos. The targets
of interest are often heavy, complex nuclei that challenge our ability to reliably model them (as
well as quantify the uncertainty of those models) with classical computers. Hence there is great
interest in applying quantum computation to nuclear structure for these applications. As an early
step in this direction, especially with regards to the uncertainties in the relevant quantum calcula-
tions, we develop circuits to implement variational quantum eigensolver (VQE) algorithms for the
Lipkin-Meshkov-Glick model, which is often used in the nuclear physics community as a testbed
for many-body methods. We present quantum circuits for VQE for 2 and 3 particles and discuss
the contruction of circuits for more particles. Implementing the VQE for a 2-particle system on the
IBM Quantum Experience, we identify initialization and two-qubit gates as the largest sources of
error. We find that error mitigation procedures reduce the errors in the results significantly, but
additional quantum hardware improvements are needed for quantum calculations to be sufficiently

accurate to be competitive with the best current classical methods.

I. INTRODUCTION

Physics today finds itself in a conundrum. On
one hand, the standard model of particle physics
has been very successful. Yet from cosmologi-
cal observations we are aware of how little we
know. The makeup of the universe appears to
be dominated by nonbaryonic dark matter [1—4]
and so-called dark energy [5], and even the ori-
gin of the matter-antimatter imbalance in the
Universe is not fully understood [6]. While we
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understand the basic mechanisms of nucleosyn-
thesis, the astrophysical site of a large fraction
of heavy elements is still under debate [7].

Many of the experiments investigating these
ongoing mysteries rely upon understanding de-
tailed properties of atomic nuclei, from neutri-
noless double -decay experiments searching for
lepton number violation [8], to detection of su-
pernova neutrinos [9], to the direct detection of
dark matter [10]. Because many of these exper-
iments place upper limits, it is equally impor-
tant to quantify the uncertainty in our models
of those nuclei [11-16].

With the advent of powerful computers and
more rigorous techniques, as well as enhanced
efforts in uncertainty quantification (UQ), our
models of atomic nuclei have improved dra-
matically in the past two decades. Yet, like
physics itself, we paradoxically see all too well
the limits of our current computing platforms.
Most of the targets for probing new physics



are heavy, complex nuclei such as argon, ger-
manium, or xenon; and uncertainty quantifica-
tion can require many runs with small varia-
tions of parameters [13-17]. For these heavy
nuclei, the exponential growth of the Hilbert
space dimension makes calculations, especially
multiple runs, challenging. In this context, the
potential of quantum computers is appealing.
Significant effort is already underway in apply-
ing quantum computers to problems with simi-
lar features such as quantum chemistry [18-20],
the structure of atomic nuclei [21, 22], and the
structure of hadrons [23-25].

Useful progress towards implementing on
quantum computers standard approximations
such as configuration-interaction (CI) [21, 26]
and coupled clusters [27, 28] has been made.
However, current quantum computers have
much larger errors than classical computers,
which must be taken into account when com-
paring the accuracy of predictions from approx-
imate classical theories and the results of quan-
tum calculations. Thus, our work here is a nec-
essary first step in understanding the potential
applications of quantum computing to nuclear
structure needed to interpret experiments.

To start addressing quantum computation of
models relevant to nuclear targets, we look at
a simplified model of the many-body targets,
the Lipkin-Meshkov-Glick (LMG or, colloqui-
ally, Lipkin) model [29] where, because of sym-
metries, exact solutions are known and can
be compared to quantum results. We present
quantum circuits that can be used to implement
Variational Quantum Eigensolver (VQE) [30]
algorithms for LMG models with different num-
bers of particles. We implement a VQE algo-
rithm for a 2-particle LMG model on the Inter-
national Business Machines Corporation (IBM)
Quantum Experience, a publicly available quan-
tum computer, and identify the main sources of
computational errors. We find that errors in
measurement and in two-qubit gate operations
are critical limitations. Implementation of er-
ror mitigation techniques [21, 31, 32] provide
significant improvement, though the remaining
errors are not negligible. The analysis that we
perform on the LMG model illustrates the cur-

rent limitations of quantum computers and also
identifies the improvements needed so that they
can be able to provide results superior to those
from classical machines.

The paper is organized as follows. In Sec. II
we use the direct detection of dark matter as a
case study, and discuss why quantum comput-
ers are potentially extremely useful. We then
discuss how UQ is central to the comparison
between quantum and classical computational
approaches in a way relevant to experimental
progress. In Sec. III we define the LMG model
and show how its symmetry properties can be
exploited to obtain analytic solutions for the
ground state that can provide a benchmark for
the results of quantum algorithms. In Sec. IV
we present quantum circuits for determining the
ground state of the LMG model using a VQE
approach. In Sec. V we implement the algo-
rithm for the smallest nontrivial case on the
IBM Quantum Experience. We discuss the ef-
fects of different sources of infidelity in the cal-
culation and their relative contributions to error
in these VQE algorithms. We also explore the
effectiveness of error mitigation techniques pro-
posed in Ref. [21, 31, 32] and show that the im-
provement in the accuracy of the calculations is
substantial. In Sec. VI we give an example cal-
culation of an observable as a forerunner of the
kind of calculation one would need for actual
applications. In Sec. VII we summarize our re-
sults and sketch further avenues for exploration.

II. DARK MATTER, NUCLEAR
STRUCTURE, AND QUANTUM
COMPUTING

Although there are many important applica-
tions of nuclear structure physics, here we use
the direct experimental detection of dark matter
as a case study. Recent observations in astro-
physics and cosmology provide strong evidence
that a large fraction of our Universe’s mass
is composed of nonbaryonic dark matter [1-4].
The direct detection of particle dark matter by
measuring the recoil of nuclei that collide with
dark matter particles would not only confirm



this picture, it would demonstrate physics be-
yond the Standard Model [33, 34].

For many years dark matter interactions with
baryonic matter were simply divided into cou-
pling to the bulk (spin-independent) and cou-
pling to the spin of quarks [35, 36], but recent
theoretical developments [37-41] using effective
field theory (EFT) techniques, have shown that
the interpretation of direct detection experi-
ments should be expanded to six (or more if one
allows symmetry violation) nucleon-dark mat-
ter couplings.

These theoretical developments have impor-
tant consequences for experimental design [42].
The target response to scattering of dark mat-
ter is computed by folding the single-nucleon
reduced density matrix with the one-body ma-
trix elements of operators derived in EFT. The
relative sensitivity of experiments using differ-
ent nuclear targets can vary by several orders
of magnitude under changes in the underlying
dark matter-nucleon coupling.

In addition, UQ has begun to be implemented
into the theory of atomic nuclei [13-16], based
in part upon the realization that correct assess-
ment of any experiment that rests upon models
needs UQ [11, 12, 17].

We have very good and predictive theories
of nuclear structure, such as but not limited to
the no-core shell model (NCSM), which is an
ab initio CI method for the wavefunctions of
atomic nuclei. The NCSM and other ab initio
theories start from nucleon-nucleon scattering
data and then, without further adjustment of
parameters, calculate the structure and spectra
of light nuclei [43, 44]. While in many aspects
such calculations are very successful, the appli-
cation of the NCSM has been limited largely to
light nuclides, with mass number A < 16. Other
ab initio methods such as coupled clusters can
tackle heavier nuclei [45], but are mostly limited
to near closed shells.

Alternatively, one can turn to phenomenolog-
ical or empirical CI calculations [46-48]. Here
one works in a restricted valence space. The in-
teraction matrix elements, while starting from
‘realistic’ forces similar to those used in the
NCSM, are adjusted to fit many-body spec-

tra. Thus, phenomenological CI calculations
have less rigorous foundations, when compared
to the NCSM, and yet a greater range of ap-
plicability. (There are efforts to connect ab
1nitio methods to phenomenological-like spaces
with greater rigor and predictive power [49], but
those are still in development.) This compari-
son is particularly true with regard to medium-
and heavy-mass nuclides of interest to the cur-
rent generation of dark matter detectors.

Our challenge is that CI calculations [48]
needed for dark matter calculations [11, 12, 50—
57] suffer from the exponential growth in the
cost of storing the wavefunction classically. The
largest CI calculations to date work in a ba-
sis space of dimension of the order 10'°. How-
ever, 4°Ar, a key target in many experiments,
if one works in a nuclear valence space of 1s-
0d-1p-0f orbits, has a M-scheme (fixed-J,) ba-
sis dimension of nearly 10'®! Typically, one re-
stricts excitations from the 1s-0d orbits into the
1p-0f orbits [58], but the results depend upon
the specific truncation. For Xe isotopes, phe-
nomenological calculations are generally in the
restricted 0gr/2-2s-1d-0hy1 /o space. The most
common isotope, 32Xe (with a natural abun-
dance of 29.9%), requires a M-scheme dimen-
sion of only 37 million, which can be calculated
on a powerful laptop. The next most common
isotope, 29Xe, has a basis dimension of 3 bil-
lton, which can only be calculated on a super-
computer. 28Xe (1.9%) has a basis dimension
of 9.3 billion, and 1?*Xe, rare yet also of interest
to neutrinoless double-electron capture decay,
has a M-scheme basis dimension of 186 billion,
beyond the reach of current supercomputers.

For phenomenological calculations, UQ is
both empirical and time-consuming. One varies
the interaction parameters, of which there can
be dozens or even hundreds, and recomputes
the energies and other observables, in order to
build up a model of the multi-dimensional error
surface [16, 17]. While this can be done in small
model spaces where one can compute hundreds
of observables in a few minutes, in larger spaces,
where calculations of a single nuclide can take
hundreds of CPU-hours, such UQ analyses are
daunting. Here is one example where even near-



term quantum computers could be helpful in
dramatically speeding up the many large calcu-
lations needed for UQ.

Quantum simulators have the potential to
transform our ability to understand the per-
formance of experiments, based on the ability
of quantum simulators to calculate the prop-
erties of ground states of fermionic Hamiltoni-
ans much more efficiently than currently known
classical algorithms. Performing these calcula-
tions using quantum computers is potentially
advantageous because simulation of fermions is
efficient [59] and does not suffer [60] from the
“sign problem” that places severe limits on sys-
tem sizes and/or temperatures achievable in
fermionic calculations done using classical com-
puters [61].

A key question is how much reliable informa-
tion can be obtained from current noisy quan-
tum computers. To address this question, here
we investigate a simplified model of targets that
has symmetry properties enabling classical com-
puters to determine the ground states of large
systems; indeed, substantial analytic results are
also available.

III. LIPKIN-MESHKOV-GLICK MODEL

To assess the validity of various quan-
tum computational techniques, we calculate
the ground state wavefunction of the LMG
model [29]. The LMG model is widely used
as a testbed for approximations in many-body
physics, for example, time-dependent Hartree-
Fock [62], time-dependent coupled-clusters [63,
64], the random phase approximation [65], gen-
erator coordinate methods [66], and density
functional theory [67, 68], a list which barely
scratches the surface. It therefore strikes us as
sensible to also use the LMG model as an early
implementation of quantum computation.

In the LMG model [29], N fermions are dis-
tributed among two levels with N-fold degen-
eracy and an energy separation of e. Defining
cl,p and ¢, as the creation and annihilation op-
erators of the fermion in the state p of level
o (= +£1), we write the Hamiltonian of the sys-

tem as
~ 1
H :562003170@
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A term that scatters one fermion to the upper
level and a second fermion to the lower level can
also be added to this Hamiltonian, but such a
term yields a constant in the SU(2) subspaces
described below. Introducing the quasi-spin op-
erators

Ty =3 el e, =) (2)
p
1 i
Jo = 5 Z 0CspCops (3)
op

which span a SU(2) algebra, the LMG Hamil-

tonian can be rewritten as
~ 1~
H=elp+ 5V (JE+72). (4)

One can calculate the expectation value of the
Hamiltonian in Eq. (4) in the total quasi-spin
basis. For a given N, a matrix representing this
operator has dimension 2%V, but it consists of
blocks of (2j+1) x (25 +1) matrices with SU(2)
labels corresponding to different j values ob-
tained by adding N SU(2) doublets. In the rest
of this paper, we work with the dimensionless
Hamiltonian H = H /e with V =V /e. Also we
will only consider the multiplet with j = N/2
containing the unperturbed ground state.

It is especially convenient to write the Hamil-
tonian in the qubit basis. For N particles, the
total quasi-spin is given by

N
J=>"J0 (5)
p=1

where each J() is in the j = 1/2 representation.
Hence, the Hamiltonian of Eq. (4) becomes

N N
H=Y g+ vy (S50 + 1050,

p=1 p=1
a#p

(6)



That is, the Hamiltonian matrix elements are:
the sum of the J, values of the qubits (£1/2)
along the diagonal entries, the quantity V' when
two qubits can be flipped, or zero otherwise.

IV. VARIATIONAL QUANTUM
EIGENSOLVER

In this section, we outline specific VQE al-
gorithms for computation of the ground state
of LMG models for generic values of V and
with fixed values of N. We introduce the al-
gorithm with the example of N = 2, for which
we carry out calculations on quantum hardware
and in noise simulations in later sections, and
then present two directions for generalization of
this method.

A. N=2

We set up our algorithm by defining a dictio-
nary basis to correspond to the quasi-spin basis;
for example with N = 2: {]00),|01),]10),|11)}
= {1,114, D, )} In this basis the

Hamiltonian is represented by
1
H:§(03®1—|—1®03)

1%
+§(U1®01—02®02)
+1

00V
0 00 O
“10 00 0 (7)
V 00 -1
It is then straightforward to diagonalize this
Hamiltonian to obtain the eigenvalues 0 (with
multiplicity 2) and ++v/1 + V2. The normalized
ground state with energy Egng = —V1+ V? is

given by

_ V) - (1+V1I+V2)[L])
Vovz 42421+ V2

Here we consider a trial state that is a real su-
perposition of the two states with total quasi-

¥)

spin j =1 and |m| = 1:
[9(0)) = sin(0) [11) —cos(0) [14) .~ (9)

defining a single variational parameter 6 that
can be optimized to minimize the value of
H(9) = ((0)|H[p(0)). The state at which
tan(f) = V/(1 + 1+ V2) is the exact ground
state, and so we restrict consideration of 6 to
the domain [0,7/2). In our VQE we optimize
the value of # by minimizing the expectation
value of the energy H () evaluated on a quan-
tum computer.

The state given by Eq. (9) can be prepared
from an initial state |00) by applying a one-
qubit rotation about the y-axis of the Bloch
sphere of a first qubit, written as

R20) = en{ - Jeov ) (0

with ¢ = 0 — /2, followed by a CNOT gate
using the first qubit as the control and a second
qubit as the target:

ONOT,_y4_p = (11)

[=NeNeN S
oo = O
— o OO
O = OO

Here, X, Y, and Z are the Pauli gates, X =

01 0 — 10
(o) v =(05) 2= (5 5) me

quantum circuit for state preparation is sum-
marized in Fig. 1.

The measurements on this quantum circuit
needed to compute H are: simultaneous mea-
surements in the X basis for both qubits and
in the Y basis for both qubits as well as mea-
surements of each qubit in the Z basis. These
measurements yield estimates of the expecta-
tion values (XX), (YY), (ZI), and (IZ), and
thus determine H from Eq. (6).

This procedure of writing the ground state
wavefunction for N particles as a real superpo-
sition controlled by a single trial parameter on
a N-qubit device may be generalized for higher
values of IV, as we demonstrate in the following
subsection IV B. However, first, let us briefly
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cos(¢) |00y + sin(¢) |01)

FIG. 1. A quantum circuit to prepare the 2-qubit VQE trial state |¢(0)) given by Eq. (9) with ¢ =60 —7/2
on a noiseless quantum device. At the dashed line, the intermediate state is cos(¢) |00) 4 sin(¢) |01).

comment on the dimensionality of the ground-
state Hilbert space within the LMG model. In
general, the ground state will be a superposi-
tion of the state with all quasi-spins down and
all states with any number pairs of quasi-spins
flipped up. This parity is a symmetry that we
can to exploit to reduce the cost of preparing
a variational state and requiring only a single
variational parameter. For this reason, we ex-
cluded both of the states with m = 0 above,
and so this dimension was simply 2 for the case
N = 2. For general N, this dimension will then
be 2N—1,

B. Variational States for N =3, 4

In Sec. IV A, we presented a quantum circuit
to obtain a trial state with a single parameter
to estimate the ground state of a LMG model
for N = 2. Here, we generalize this approach to
obtain variational wavefunctions for N = 3 and
N =4.

1. Trial State for N =3
For N = 3, using the usual basis

{|000),1001) , 010}, |011), - - ,|111)}

the Hamiltonian is represented by

1
H (0301014100301 +10100;)

Vv
+5(1@)01@01+J1®J1®1+O’1®1®01
—1®0’2®0’2—0’2®0’2®1—O’2®1®O’2)

500V 0V V 0
020000 0 V
004 000 0 V
(voo-i0 o0 0 o
“[ooo o it o0 0 V (12)
VoooOGOo0O-3 0 0
VoooOoGOoOO0O -%+0
ovvoVvo o0 -3
Similar to Eq. (9) for N = 2, an appropriate

variational ansatz for the ground state of N = 3
is

9(0)) = cos(0) 1))

1 .
-7 sin(6) (J114) + [141) + [1171)),

(13)
where 6 is the variational parameter. This
wavefunction is the ground state when

V3cot(d) = V/(1 + V1+3V?2), with en-
ergy —1/2 — v/143V2 and so we restrict
consideration of # to the domain [0, 7/2).

The three-qubit preparation circuit is shown

in Fig. 2, written with two auxiliary angles «
and [ defined by

o = 2 arccos ( - \/zsin9>, (14)
o tan 6
ﬁ:—4—arctan( 7 ) (15)
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FIG. 2. A quantum circuit to prepare the 3-qubit VQE trial state |¢) given by Eq. (13), using variables

defined in Egs. (14)-(15).

2. Trial State for N = 4

We can prescribe similarly a four-qubit trial
state for the LMG model with N = 4. Here,
the ground state belongs to the 7 = 2 represen-
tation and has the energy —2+/1+ 3V2. The
unnormalized ground state wavefunction with
this energy is

) = (L) + A1)
—B([PH) + L) + [1441)

+ [+ ) + (1) (16)
where
V14+3VZ -1
A=1- 22— (17)
B = 7”14_3‘/2_1. (18)

3V

After normalization one finds that the coeffi-
cients of |0000) and |1111) in Eq. (16) sum to 1.
Therefore, we propose for N = 4 a normalized
trial state

[4(6)) = cos® 6 [JLLL) + sin® 6 [1111)

—% sin 20( [1144) + [4411) + 4141)

UM+ IR + [1AD))
(19)

with one variational parameter . The true
ground state of the system is of this form with
0 satisfying tan(20) = v12B/(1 — A), and so
we restrict consideration of 6 to the domain
[0,7/2).

We can continue this process for N > 4,
establishing a trial wavefunction depending on
one variational parameter for each N. A com-
mon feature of these wavefunctions is that they
all have definite parity. While a N-qubit state
of definite parity can be constructed from an
associated (N — 1)-qubit state using an ad-
ditional N — 1 CNOT gates, the associated
(N —1)-qubit state will not in general have sym-
metries to exploit, and so a generic quantum
state preparation routine is necessary to pro-
duce it. Using the quantum state preparation
method of Ref. [69] to prepare the associated
(N — 1)-qubit state, the CNOT cost of prepar-
ing an arbitrary N-qubit state of definite parity
is (115/192)2N — (7/4)2N/2 4 N +2/3 for even
N and (23/48)2N — 2(N+1)/2 1 N 4 2/3 for odd
N.

The next subsection presents a method for
constructing quantum circuits that generate a
N > 4 particle variational state in a bosonic
representation. Moreover, the method can be
used to construct quantum circuits for gener-
ating the appropriate variational state for any
N.

C. VQE Circuits for N > 4

The LMG Hamiltonian can be rewritten
in terms of bosonic operators acting on two
bosonic modes [70]:
ny — Ng %

+ o (b'blaa + alalbb) , (20)

== N

where af and a (b' and b) are the creation and
annihilation operators for a boson in the mode
a (b), and ng,n, are their number operators.



For the bosonic representation, the number of
particles N = 2j is equal to the particle number
of the fermionic representation [71].

Since the LMG model is exactly solvable any
eigenstate of the LMG Hamiltonian [¢, ;) can
be written as the operator [72]

M
(af)? (b1)?
e_l_[l<Ee—1+Ez+1> &

acting on bosonic fiducial state |v,, ). The
integer M is related to N and v,,v, by N =
2M +v,+ vy, where v,, vy, are initially restricted
to be 0 or 1. For nonzero V' the spectral param-
eters Ey are real numbers obtained by solving
the Bethe ansatz equations [70, 71]

v

1 -
TNEoD

|:(Va — ) (1 + Ef)

+2Eg(1+l/a+l/b):|
M

Vv
+ 24 >

n#l=1

1+ ElEn
—— =0. (22

The two bosonic modes can be encoded in
qubits up to a cutoff in occupation number by
standard techniques [73]. The product nature of
the exact solution Eq. (21) lends itself naturally
to the definition of a quantum circuit for prepa-
ration of the exact eigenstates for any number of
particles. The general LMG eigenstate generat-
ing circuit, explored in more detail in Ref. [74],
has a depth of O(log, N) and uses O(N) gates
which act on O(N/2) qubits.

V. RESULTS OF QUANTUM
CALCULATIONS USING THE IBM
QUANTUM EXPERIENCE

In this section we implement the VQE calcu-
lation for a LMG model with NV = 2 on a quan-
tum computer and characterize the importance
of different decoherence errors. Quantifying
these errors yields some insight into how much
the performance of quantum computers needs

to be improved for quantum calculations to
yield results that are more accurate than those
obtained using approximate classical methods.
For the calculations reported here, we fix V =1,
where both one-qubit and two-qubit operators
contribute at comparable scales to H.

We use the open source Quantum Infor-
mation Science Kit (QISKit, or Qiskit) [75]
and run the quantum algorithms on the
ibmq_16_melbourne, the device with the largest
number of qubits that is made publicly avail-
able by IBM through their Quantum Experience
program. We refer to this device as the “Mel-
bourne processor.” We also perform calculations
on IBM Quantum (Q) Experience’s Open quan-
tum assembly language (QASM) [76] Simula-
tor (or “qasm_simulator”) [77] and investigate
the effects of different decoherence mechanisms,
which helps to identify the physical improve-
ments that would yield the largest increases in
the calculational accuracy.

A. Error Characterization

Qiskit, which is the software interface for the
IBM Quantum Experience, provides a mecha-
nism for including errors that are obtained by
fitting the results of a calibration run of the
quantum device to a combination of errors of
specific types [78]: (1) single-qubit thermal re-
laxation errors, (2) single-qubit depolarizing er-
rors, (3) two-qubit gate depolarizing errors, (4)
single-qubit thermal relaxation errors of both
qubits in a two-qubit gate, and (5) single-qubit
readout errors.

The relaxation errors are parameterized us-
ing the relaxation time T7; the fidelity of single-
qubit gates is determined by the product of T;
and the qubit frequency, while the relaxation-
induced infidelity of the two-qubit gates is de-
termined by the ratio of 77 and the duration
of the gate. Depolarization errors of the sin-
gle qubit gates are parameterized by dephasing
times T5, where again the relevant parameter is
the ratio of T3 to the gate duration. The two-
qubit depolarization errors quantify errors that
occur in addition to the relaxation errors of the



TABLE 1. Values of error parameters for qubits 1
and 2 in the Melbourne processor.

Qubit

Parameter 1 2

T1 (us) 48.0 50.9
Ty (us) 60.2 48.1
Qubit Frequency (GHz) 5.1 5.2
U2 Gate Length (ns) 53 53
CNOT Gate Length (ns) 740 690
U2 Gate Error 0.0005 0.0013
CNOT Gate Error 0.0255 0.0255
Readout Error P(0|1) 0.005 0.019
Readout Error P(1|0) 0.046 0.101

individual qubits during the gate duration. For
the readout errors, measurement errors for the
states |0) and |1) are typically different, and the
Qiskit error class provides two readout errors,
P(0[1) and P(1|0), as described in Ref. [79].

The parameters that quantify these error
sources as obtained from the calibration data of
IBM Q backends [80] are presented in Table I.
The U2 gate listed in the table is a single-qubit
rotation about the x+z axis of the Bloch sphere.
The error parameters for Ul gates (rotations
about the z axis of the Bloch sphere) and U3
gates (generic single-qubit rotations with three
Euler angles) are not listed in the table, as
Ul gates are implemented classically via post-
processing [81] and U3 gates are implemented
by composing Ul and U2 gates [82]. We note
that the error parameters are different for dif-
ferent qubits.

Additionally, we note that the Qiskit-
provided “noise models” are fits of randomized
benchmarking data [83] to simplified approxi-
mate descriptions of IBM Q device errors, as
opposed to a comprehensive description of all
modes of error in a noisy quantum device [84],
and that the calibration data are obtained from
a daily measurement protocol of the device
backend and may vary over the course of the
day.

We report the errors obtained in a classi-

cal simulation of the processor when each of
these types of error is either included or ex-
cluded and compare these errors to the results
obtained using the Melbourne quantum proces-
sor. This comparison enables us to identify the
error sources that are currently limiting the per-
formance, for which mitigation would improve
the accuracy the most.

B. Results

To probe the degree of contributions from the
different sources of infidelity to the errors in the
results for the LMG model, we calculate the dif-
ference between the energy obtained as a re-
sult of our VQE algorithm, ming H(6), and the
ground state energy, Egna = —V2for V=1
for a set of runs on an IBM-supplied classical
simulator of the quantum computer that incor-
porates different subsets of the errors in Table I.
We compute the values of ming H(6) for each of
2° configurations of the error terms (all combi-
nations in which each error type is either “off”
or “on,” with magnitude equal to that obtained
by fitting the results of the calibration runs) and
compare the results to the exact ground state
energy.

Fig. 3 shows the energy as a function of the
variational parameter 6 with no errors, with all
the sources of error in Table I included, and with
each error type included individually. Based on
the deviation of the measured energy of the vari-
ational state with the exact result, it appears
that readout errors dominate the overall error,
with two-qubit gate errors the second-largest
source of overall error.

We note that the error of the classical simu-
lation is slightly smaller than that of the quan-
tum processor. It is entirely possible that this
discrepancy arises because of the use of an ap-
proximate error model and/or because of drift
leading to slightly degraded performance over
the course of a day, as mentioned above. It is
also possible that the quantum processor has
significant initialization errors that are not in-
cluded in the IBM-provided “noise model.”

Fig. 4 shows a different method for assess-
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FIG. 3. Energy of variational state as a function of the VQE trial parameter 6. The results obtained using
the Melbourne processor are compared to the exact result as well as to the results of classical simulations
of the quantum processor that incorporate one of the five error mechanisms listed in Table I. The lines in
the figure are parabolic fits for the Melbourne and simulation results, while the solid black line shows the
exact value of H obtained analytically using Eq. (8). Error bars on each data point show the statistical
errors 1/4/n, where n = 8192 is the number of runs over which the result for each model is averaged.

ing the relative importance of the different er-
rors listed in Table I. We track the correla-
tion of each type’s setting (whether it is off or
on) with the ranking of its corresponding re-
sult ming H(0) — Egna amongst all other noise
models. The figure summarizes these results
and also reports the correlation coefficients for
each source of computational error. This anal-
ysis confirms that readout errors are the most
significant with two-qubit gate relaxation errors
being the second most important and two-qubit
gate depolarization errors the third most impor-

tant. The effects of one-qubit errors on the vari-
ational energies are much smaller than those of
the readout errors and of the two-qubit gates.

C. Implementing Error Mitigation

In this subsection we investigate the perfor-
mance of error mitigation procedures for the er-
rors arising from readout and from CNOT gates
for the calculations of the energy of the Lip-
kin model with N = 2. The readout errors are
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FIC. 4. We consider 2° = 32 different combinations of the following sources of computational error (referred
to as “noise models” in the IBM Qiskit documentation): readout errors, relaxation during two-qubit gates,
depolarization errors during two-qubit gates, relaxation errors during one-qubit gates, and depolarization
errors during two-qubit gates. Each error is either off or on, with magnitude given by the calibration run
of the quantum processor. The rectangles in the plots represent the results of calculations of 32 different
combinations of error terms, ordered by increasing variational energy from left to right. Each rectangle
is solid (unfilled) if the error type of its row is excluded from (included in) the classical simulation of the
quantum algorithm. From this plot one can see that the readout error is dominant, since all of the 16 lowest
energies are calculations in which there are no readout errors. The two-qubit gate relaxation error is the
second most important, since for a given setting of the readout error (either off or on), all 8 of the lowest
energy results are obtained when the gate relaxation error is off. The importance of an error type can be
quantified using the correlation coefficient r? between the value of the binary function of whether the error
is on or off and the value of the variational energy.

mitigated by using features from the Qiskit li-
brary [85] in which the measured readout er-
ror is used to generate and invert a matrix to
obtain the relevant correction. The two-qubit
gate depolarization errors are mitigated using

zero-noise extrapolation (ZNE) as described in
Ref. [32].

We first discuss the procedure to mitigate
the measurement errors as implemented in the
Qiskit library [85]. First, the measurement



errors are calibrated. For our situation with
two qubits, one measures the expectation values
(Z41), (Z2), and (Z1Z5) of the states {]|00), |01),
|10}, |11)}. In the absence of readout error, each
of these measurements would yield the relevant
dictionary basis element with unit probability.
In the presence of readout error, the results can
be described using a 4 x 4 matrix

Mij = P(i|j)7 (23)

where P(i|j) is the probability that the result
i is obtained when one measures the basis ele-
ment |j). Finally, the probability distribution
of measured results from the quantum circuit,
P(i), is corrected by writing the distribution as
a 2 = 4-dimensional vector P and applying
the inverse of the matrix M to a obtain a prob-
ability vector with mitigated readout error

P =M"'P. (24)

To mitigate two-qubit gate errors, we perform
zero noise extrapolation (ZNE) using a linear
fit, as discussed in Ref. [32]. In the absence
of two-qubit gate errors, inserting two succes-
sive identical CNOT gates anywhere in a circuit
does not change the circuit’s output. However,
in the presence of small CNOT gate error, in-
serting additional CNOTs increases the circuit
error by a factor of approximately r = 1 + 2n,
where n is the number of identity insertions.
Fig. 5 shows the circuit that prepares a N = 2
variational state for the Lipkin model with a sin-
gle identity insertion. We measure the average
value of an observable O(r) for this prepared
state as a function of r, the number of CNOTs,
and extrapolate linearly to estimate the value
of O(0), the average value of the observable in
the absence of CNOT gate error.

We characterize the improvements to the ac-
curacy in measured average values of the ob-
servables obtained by using error mitigation
when the variational parameter 6 is fixed at
its known optimum value, § = /8. First, we
test how adding each mitigation technique sepa-
rately to the process of estimating (H) improves
the accuracy. We also mitigate both measure-
ment errors and two-qubit gate errors by apply-
ing the inverted calibration matrix M ! to the
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probability distributions obtained from each of
the circuits in Fig. 5; subsequently, results from
calculating H with each of these circuits can be
used to linearly extrapolate a value of H with
r = 0, to mitigate two-qubit gate depolarization
errors in addition to readout errors. Results
comparing these techniques separately and to-
gether for H are presented in Fig. 6, where it
can be seen that mitigating both the readout
and CNOT errors improves the accuracy of the
results substantially.

VI. COMPUTING OBSERVABLES

To be of interest to experiments, such as
direct detection of dark matter, we need to
not only be able to compute the energy of an
optimal VQE trial for a many-body ground
state with lower complexity and greater accu-
racy than classical computations, but also to
use the approximate ground state wavefunction
[)(Omin)) to compute physical observables. As
a stand-in for this goal, we here compute expec-
tation values of observables in the LMG model,
such as H", J7*, and J§j for n € N, as given by
Egs. (6), (2), and (3), where J; = (J4+ +J_)/2.
In this section, we explore the precision of re-
sults obtained from current hardware; specif-
ically, given the availability of readout error
mitigation techniques [85], we consider results
of simulations with a noise model including all
sources of infidelity described in Sec. V except
for readout error, to compare with exact ana-
lytic calculations of the LMG model.

As in the preceding calculations, we consider
the N = 2 system with V' = 1. In this case,
note that for O € {H, Jo, J1}, O3 = O, so we
may summarize the behavior of all moments

0™ (0) = (¥(6)|0™[4(9)) (25)

for all powers n € N using only the values
n = 1,2 with a given state ¥ (6). Furthermore,
by the symmetries (01[¢(6)) = (10[x(9)) = 0,

as per Eq. (9), we can observe that H?2(0)
J2(0) = J1(0) = 0 exactly for all values of
(

6.
Thus, we need to consider only H(6), Jo(6),
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FIG. 5. Illustration of noise extrapolation method used to mitigate two-qubit errors. Linear extrapolation
to zero error from two-qubit gate depolarization for the measured ground state expectation value of the
Hamiltonian H with N = 2, as given in Eq. (7), using measured data when one or three identical CNOT
gates are used to prepare the variational state in Eq. (9), using the optimum value of the variational
parameter § = /8. In the quantum circuit on the right, each CNOT in the quantum circuit on the left
is replaced by three successive CNOTs. Because CNOT? = 1, the functionality of the two circuits in
the absence of noise is the same, but in the presence of noise the circuit with the additional CNOTs will
have larger error. The error-mitigated estimate for the value of the relevant observable H is obtained by
extrapolating the result linearly to zero as a function of the number of CNOTs.

and J?(6). The fractional deviation of these
averages obtained with the VQE optimal value
0 = 0,,;, from results obtained with the exact
solution § = 7/8 are displayed in Fig. 7.

Results obtained here from VQE calculations
may be compared to those obtained classically
such as in Ref. [17]. For example, their classical
calculation of the spin-orbit coupling operator
averaged over the ground state carries a frac-

tional deviation of = 1.8%. While the devia-
tion of H(Omn) is significantly smaller in com-
parison, both Jy(Omin) and JZ(fmin) can carry
much larger fractional deviations ~ 1%. Even
with precise calculations of the ground state en-
ergy, useful calculations of the averaged values
of spin operators such as Jy and J? will require
reduction in other noise errors such as thermal
relaxation of qubits over two-qubit gate opera-
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FIG. 6. Performance of error mitigation techniques
for estimation of energy for the N = 2 Lipkin model
ground state in Eq. (9), with fixed coupling V =1
and the exact optimum value of the variational pa-
rameter § = 7/8. All data were calculated on
the IBM Q simulator, including all errors listed in
Sec. V A. The average values of the Hamiltonian op-
erator H as given in Eq. (7) for the prepared state
are compared using different error mitigation tech-
niques. Deviations from the exact value obtained
analytically, Egna = —+/2, are compared when im-
plementing neither, one, or both of the mitigation
techniques for readout and two-qubit gate depolar-
ization errors, as described in Sec. V C.

tions, as discussed in Sec. V.

We now characterize the improvements to the
accuracy in measured average values of the ob-
servables Jy and J? that are obtained by us-
ing error mitigation as described in Subsec. V C.
We again measure the observables for the vari-
ational state with the known optimum value
of the variational parameter § = 7 /8 for cir-
cuits in which the CNOT is replaced by three
CNOTs and extrapolate the results back to ob-
tain the error-mitigated result. These results
are displayed in Fig. 8. We find that this miti-
gation technique yields improvements of an or-
der of magnitude in the accuracy of the mea-
sured observables Jy and J?. However, signifi-
cant additional accuracy improvements will still
be needed to exceed the ~ 1% precision of ex-
isting classical calculations of these observables
in more realistic situations, such as results pre-
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FIG. 7. Moments of physical quantities used in
dark matter detection calculations are calculated
using a noise model simulation of the Melbourne
processor with no readout error to obtain fyi, and
subsequently using Eq. (25), which are compared
to exact values obtained analytically. Exact val-
ues for these averaged quantities are Hgna = —V2,

(Jo)ena = —1/v/2, and (JP)gna = (2 — V2)/4.

sented in Ref. [17].

VII. SUMMARY

Appropriate interpretation of the results of
experiments, including upper bounds, requires
reliable models of target nuclides, including
quantified uncertainties. Quantum computing
has the potential to enable one to go beyond
the limitations of classical calculations, improv-
ing the models as well as understanding the un-
certainties in those models.

Studying the ground state of many-body sys-
tems similar to the LMG model can pose a com-
plex quantum problem. Highly accurate quan-
tum processors are needed for quantum com-
puting to yield improvements over classical al-
gorithms. To identify and assess the most sig-
nificant sources of error in an existing quantum
processor, we develop quantum circuits for VQE
calculations on the LMG model and implement
the algorithm for the simplest nontrivial case.
We compare VQE results and the exact ground
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FIG. 8. Performance of error mitigation techniques
for estimation of observables for the N = 2 Lip-
kin model ground state in Eq. (9), with fixed cou-
pling V' = 1 and the exact optimum value of the
variational parameter, § = 7/8. All data were cal-
culated using the IBM Q simulator with all errors
listed in Sec. VA. Moments of physical quantities
used in dark matter detection calculations are calcu-
lated with and without using mitigation techniques
for both two-qubit gate depolarization and read-
out errors. Exact values for these averaged quan-
tities are Hgnd = FEgna, (jo)gnd = —1/\/57 and
(J3)gna = (2 — V/2)/4. The error mitigation proce-
dure yields improvement to the results for the quan-
tities Jo and J7 that is similar to that obtained for
the energy H.
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state of the LMG model and identify the domi-
nant errors limiting the accuracy of the calcula-
tion. We find that readout error and two-qubit
gate errors are the dominant sources of infi-
delities using current quantum hardware. Fur-
ther, we find that error mitigation techniques
improve the accuracy of the calculations sub-
stantially. Our results suggest that, given recent
rapid advances in the development of quantum
computing hardware [86], near-term quantum
computers could help with the calculation of at
least gross properties of nuclear ground states.
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