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Abstract— The problem of X -secure T -private information
retrieval from MDS coded storage is studied in this paper, where
the user wishes to privately retrieve one out of K independent
messages that are distributed over N servers according to an
MDS code. It is guaranteed that any group of up to X colluding
servers learn nothing about the messages and that any group
of up to T colluding servers learn nothing about the identity of
desired message. A lower bound of achievable rates is proved by
presenting a novel scheme based on cross-subspace alignment and
a successive decoding with interference cancellation strategy. For
large number of messages (K → ∞) the achieved rate, which
we conjecture to be optimal, improves upon the best known rates
previously reported in the literature by Raviv and Karpuk, and
generalizes an achievable rate for MDS-TPIR previously found by
Freij-Hollanti et al. that is also conjectured to be asymptotically
optimal. The setting is then expanded to allow unresponsive and
Byzantine servers. Finally, the scheme is applied to find a new
lower convex hull of (download, upload) pairs of secure and
private distributed matrix multiplication that generalizes, and in
certain asymptotic settings strictly improves upon the best known
previous results.

Index Terms— Security, privacy, MDS codes, distributed stor-
age.

I. INTRODUCTION

ORIGINATING in computer science and cryptography,
the problem of private information retrieval (PIR) [1]

seeks efficient ways to retrieve desired messages from distrib-
uted servers without disclosing to the servers which messages
are desired. The rate of PIR is the maximum number of
bits of desired message that can be retrieved per bit of total
download from all servers [2]. PIR has recently attracted
much attention in the information theory community, where
the focus has been on finding the capacity (maximum rate)
[2] or equivalently, minimizing the download cost [3] under
various constraints. The study of PIR is important from an
information theoretic perspective not only because privacy is

Manuscript received September 14, 2019; revised March 18, 2020; accepted
July 7, 2020. Date of publication July 30, 2020; date of current version
November 20, 2020. This work was supported in part by the NSF under Grant
CCF-1617504, Grant CCF-1907053, and Grant CNS-1731384; in part by the
Office of Naval Research (ONR) under Grant N00014-18-1-2057; and in part
by the Army Research Office (ARO) under Grant W911NF-17-S-0002-03.
(Corresponding author: Zhuqing Jia.)

The authors are with the Center for Pervasive Communications and Comput-
ing, Department of Electrical Engineering and Computer Science, University
of California at Irvine, Irvine, CA 92697 USA (e-mail: zhuqingj@uci.edu;
syed@uci.edu).

Communicated by L. Dolecek, Associate Editor for Coding Techniques.
Color versions of one or more of the figures in this article are available

online at https://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2020.3013152

important, but also because optimal PIR schemes often reveal
novel coding structures, thereby advancing our understanding
of structured codes, a cornerstone of network information
theory. The fundamental significance of these coding struc-
tures is emphasized by the connections between PIR and a
number of other important problems such as locally decodable
codes [4], [5], locally repairable codes [6], batch codes [7],
oblivious transfer [8], [9], instance hiding [1], [10], secret
sharing [11], blind interference alignment [12], [13], and
secure computation [14], including recent works on secure
distributed matrix multiplication [15]–[20]. As the literature on
information theoretic PIR continues to grow, it is also valuable
to find unified perspectives that combine our understanding
of various aspects of PIR and allow generalizations beyond
PIR. Against this background, the contribution of this work is
summarized in Figure 1.

The capacity of PIR with K messages, N servers, and
replicated storage was characterized in [2] as CPIR =(
1 + 1

N + · · · + 1
NK−1

)−1
. Since the number of messages, K

is typically large, of particular interest is the asymptotic value
of capacity as K → ∞. Evidently, the asymptotic capacity of
PIR is C∞

PIR = 1 − 1
N . The asymptotically optimal achievable

scheme builds upon a prior construction from [29] and may
be seen as a form of blind interference alignment [12]. The
capacity of TPIR, i.e., PIR with a T -privacy constraint and
replicated storage was characterized in [21] and its asymptotic
value is C∞

TPIR = 1− T
N . The optimal achievable scheme uses an

MDS coded query structure. The T -Privacy constraint requires
that no information about the desired message index is leaked
to any set of up to T colluding servers. The capacity of
MDS-PIR, i.e., PIR with (N, Kc) MDS-coded storage was
characterized in [24] and its asymptotic value turns out to be
C∞

MDS-PIR = 1 − Kc
N . MDS-TPIR, i.e., PIR with both T -privacy

and (N, Kc) MDS coded storage was studied in [26] and while
its capacity remains open [27], the asymptotic achievable rate
of R∞

MDS-TPIR = 1 − T+Kc−1
N is expected to be optimal. The

novel achievable scheme of [26] is based on star products
of GRS (Generalized Reed-Solomon) codes. The asymptotic
capacity of XSTPIR, i.e., PIR with X-secure storage, T -
private queries, and replicated storage was found in [25] as
1 − (X + T )/N . The achievable scheme of [25] is based on
the novel idea of cross-subspace alignment, which has subse-
quently found use in the context of secure distributed matrix
multiplication [17], [19].

An important concern in systems that rely on distributed
servers is that some of these servers may turn out to be unre-
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Fig. 1. The U-B-MDS-XSTPIR setting studied in this work generalizes previously studied settings of PIR [2], TPIR [21], MDS-PIR [24], MDS-TPIR
[26], [27], XSTPIR [25], U-TPIR [21], B-TPIR [22], and U-B-MDS-TPIR [23] as shown, and finds application beyond PIR in the context of Private Secure
Distributed Matrix Multiplication (PSDMM).

sponsive or Byzantine (return erroneous responses) [30]–[33].
In this work we study the problem of U-B-MDS-XSTPIR,
i.e., PIR with X-secure data, T -private queries, (N, Kc)
MDS coded storage, where U servers are unresponsive
and up to B servers are Byzantine. In particular we
show that a rate of R∞

U-B-MDS-XSTPIR = 1 −
(

Kc+X+T+2B−1
N−U

)

is achievable for any number of messages K . This rate
strictly improves upon the previous best known rate R =(
1 −

(
Kc+X+T+2B−1

N−U

))(
Kc

Kc+X

)
for U-B-MDS-XSTPIR,

found1 in [34]. In fact, for MDS-XSTPIR, i.e., with U = B =
0, we conjecture that our rate of R∞

MDS-XSTPIR = 1−
(

Kc+X+T−1
N

)

is asymptotically optimal as K → ∞, thus generalizing
a previous conjecture for MDS-TPIR in [26] that can be
obtained by further setting X = 0. Remarkably, U-B-MDS-
XSTPIR is a generalization of PIR, TPIR, MDS-PIR, XSTPIR,
U-TPIR, B-TPIR, and U-B-MDS-TPIR and the asymptotically
optimal (or the best known) structured coding schemes for all
of these problems can be obtained as a special case of the
unified scheme for U-B-MDS-XSTPIR that we present in this
work. The basis for this unified view, and the central technical
contribution of this work, is a scheme that combines the cross-
subspace alignment idea of [25] with a layered structure that
allows successive decoding and interference cancellation to
retrieve multiple layers of symbols from the desired message.
The scheme is also shown to be applicable to the problem of
secure and private distributed matrix multiplication (PSDMM)
that was recently introduced in [20], [28]. Remarkably, the
new scheme is able to generalize, and in certain asymptotic
settings strictly improve upon the previously best known rates
for PSDMM.

Notations: For a positive integer N , [N ] stands for
the set {1, 2, . . . , N}. The notation X[N ] denotes the set
{X1, X2, . . . , XN}. For an index set I = {i1, i2, . . . , in}, XI
denotes the set {Xi1 , Xi2 , . . . , Xin}. For variables αn, n ∈
[N ] and an arbitrary function f(·), we denote the N×1 vector
whose nth term is f(αn), as

−−→
f(α).

1Reference [34] considers the problem of private polynomial computation
with Lagrange encoding, which reduces to U-B-MDS-XSTPIR in the special
case where the functions to be computed are all distinct coordinate projections.

II. PROBLEM STATEMENT: U-B-MDS-XSTPIR

Consider K independent messages, W1, W2, . . . , WK . Each
message is represented by " uniformly random symbols from
the finite field Fq.

H(W1) = H(W2) = · · · = H(WK) = ", (1)

H(W[K]) = K", (2)

in q-ary units. Note that as is typical in information theory,
the message sizes are unbounded, and the coding scheme may
freely choose the block size ". The information stored at the
nth server is denoted by Sn, n ∈ [N ]. Messages are stored
among N servers according to an MDS(N, X + Kc) code
which codes each message separately. From any X + Kc

servers, it must be possible to recover all messages.

H(W[K]|SM) = 0, ∀M ⊂ [N ], |M| = X + Kc. (3)

The storage requirement at each server is K"/Kc, i.e.,

H(Sn) =
K"

Kc
, ∀n ∈ [N ]. (4)

Thus, compared to replicated storage, the storage requirement
is reduced by a factor of 1/Kc. X-secure storage, 0 ≤ X ≤
N , guarantees that any X (or fewer) colluding servers learn
nothing about the messages.

I(SX ; W[K]) = 0, ∀X ⊂ [N ], |X | = X. (5)

The user privately and uniformly generates the index of his
desired message θ ∈ [K]. To retrieve the desired message
privately, the user generates N queries, Qθ

[N ]. The nth query
Qθ

n is sent to the nth server. The user has no prior knowledge
of the information stored at the servers, i.e.,

I(S[N ]; θ, Qθ
[N ]) = 0. (6)

T -privacy, 0 ≤ T ≤ N , guarantees that any T (or fewer)
colluding servers learn nothing about the desired message
index θ.

I(Qθ
T , ST ; θ) = 0, ∀T ⊂ [N ], |T | = T. (7)

Upon receiving the user’s query Qθ
n, the nth server responds

with the answer Aθ
n.
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There exists a set of servers B, B ⊂ [N ], |B| ≤ B, known
as Byzantine servers, and another (disjoint) set of servers U ,
U ⊂ [N ], |U| = U , known as unresponsive servers. The user
knows U, B but the realizations of the sets U ,B, are not known
to the user apriori. The Byzantine servers respond to the
user arbitrarily, possibly introducing errors. The unresponsive
servers do not respond at all. However, the remaining servers,
i.e., servers in [N ] \ (B ∪ U), respond to the user truthfully
with a function of the query and their stored information.

H(Aθ
n|Qθ

n, Sn) = 0, ∀n ∈ [N ] \ (B ∪ U). (8)

The user must be able to recover the desired message Wθ from
the responses that he receives.

H(Wθ | Aθ
[N ]\U , Qθ

[N ], θ) = 0,

∀U ,B ⊂ [N ],U = U,B = B,U ∩ B = ∅. (9)

The rate of a U-B-MDS-XSTPIR scheme is defined by the
number of bits of desired message that are retrieved per total
bit of download from all servers on average,

RU-B-MDS-XSTPIR =
H(Wθ)∑

n∈[N ]\U Aθ
n

=
"

D
. (10)

D =
∑

n∈[N ]\U Aθ
n is the expected number of downloaded

bits from all servers. When B = 0, U = 0, i.e., there are no
Byzantine servers and no unresponsive servers, then we refer
to the problem simply as MDS-XSTPIR.

III. RESULT: AN ACHIEVABLE RATE FOR

U-B-MDS-XSTPIR

The following lemma is essentially inherited from [25]
with minor notational adjustments. Since this lemma is used
extensively in this work, a brief proof is also included for the
sake of completeness.

Lemma 1: If f1, f2, · · · , fL, α1, α2, · · · , αN are N + L
distinct elements of Fq, with 1 ≤ L ≤ N − 1, then the
following N × N matrix is invertible over Fq.

ML,N !





1
f1−α1

1
f2−α1

··· 1
fL−α1

1 α1 ··· αN−L−1
1

1
f1−α2

1
f2−α2

··· 1
fL−α2

1 α2 ··· αN−L−1
2

··· ··· ··· ··· ··· ··· ··· ···
1

f1−αN

1
f2−αN

··· 1
fL−αN

1 αN ··· αN−L−1
N



 (11)

Proof: To set up a proof by contradiction, suppose M is not
invertible. Then there exist constants cn ∈ Fq, n ∈ [N ], at least
one of which is non-zero, such that

∑
n∈[N ] cnM:,n = 0,

where M:,n is the nth column of M. Define

∆ ! (f1 − α)(f2 − α) · · · (fL − α). (12)

Then the polynomial

g(α) = ∆




∑

l∈[L]

cl

fl − α
+

N∑

n=L+1

cnαn−L−1



 (13)

has at least N distinct roots: α1, α2, · · · , αN . But g(α) has
degree no more than N −1, so it must be the zero polynomial.
This implies that cn = 0 for all n ∈ [N ]. The contradiction
completes the proof. "

Theorem 1: The following rate is achievable for U-B-MDS-
XSTPIR,

RU-B-MDS-XSTPIR(N, Kc, X, T, U, B, K)

= 1 −
(

Kc + X + T + 2B − 1
N − U

)
. (14)

The achievability of this rate, proved in Section IV,
is the central contribution of this work. It is based on
a coding scheme that uses cross-subspace alignment along
with a layered structure that allows successive decod-
ing with interference cancellation. Note that previously
the best known achievable result for U-B-MDS-XSTPIR
for large number of messages (K → ∞) was R =(
1 −

(
Kc+X+T+2B−1

N−U

)) (
Kc

Kc+X

)
, found in [34]. Evidently

our scheme achieves a strictly higher rate. While we conjecture
that the rate in Theorem 1 for MDS-XSTPIR (U = 0, B = 0)
is also the asymptotic capacity of MDS-XSTPIR, a converse
proof to this effect remains beyond reach. This is to be
expected, because the converse proof has also been unavailable
for MDS-TPIR, which is a special case of MDS-XSTPIR. Our
final result appears in Section V where the result of Theorem 1
is applied to the problem of Private Secure Distributed Matrix
Multiplication.

IV. PROOF OF THEOREM 1

First we provide the proof of achievability for U = 0, B =
0, i.e., with no unresponsive or Byzantine servers. Throughout
the scheme, let us define

L = N − (Kc + X + T − 1). (15)

and let us set
" = LKc. (16)

Let us start with an illustrative example.

A. X = 1, T = 1, Kc = 2, N = 4
Here we have L = 1 and " = 2. So let each message

consist of " = 2 symbols from a finite field Fq, where q ≥
L + N = 5. Let W11 and W12 be two 1 × K row vectors
containing the first and second symbol from every message,
respectively. Let Z11 be a uniformly distributed random noise
vector from F1×K

q , that will be used to provide X = 1 security
for the stored data. Let Z

′1
11, Z

′2
11 be independent, uniformly

distributed random noise vectors from FK×1
q that will be used

to provide T = 1 privacy for the queries. Let Qθ be the θ-th
column of the K ×K identity matrix, where θ is the index of
desired message. The independence between messages, noise
vectors, and desired message index θ is formalized as follows.

H(W11,W12,Z11,Z
′1
11,Z

′2
11, θ)

= H(W11) + H(W12)

+ H(Z11) + H(Z
′1
11) + H(Z

′2
11) + H(θ). (17)

Note that by the definition of W11, W12 and Qθ, the inner
products W11Qθ and W12Qθ are precisely the two symbols
of the desired message, that the user wishes to retrieve. Let
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f1, α1, α2, · · · , αN , represent N + 1 distinct elements of Fq.
The storage at the n-th server is constructed as follows.

Sn =
(

1
(f1 − αn)2

W11 +
1

f1 − αn
W12 + Z11

)
, (18)

Thus, the data is coded along with the noise according to an
MDS(N, Kc+X), i.e., MDS(4, 3) code. The presence of noise
guarantees that the data is (X = 1) secure. The query sent
by the user to the n-th server to privately retrieve the θ-th
message, consists of Kc = 2 rounds, which are denoted as
Qθ,1

n and Qθ,2
n respectively.

Qθ,1
n =(f1 − αn)Qθ + (f1 − αn)2Z

′1
11, (19)

Qθ,2
n =Qθ + (f1 − αn)2Z

′2
11. (20)

Upon receiving the query from user, the answer returned by
the n-th server is

Aθ
n = (SnQθ,1

n , SnQθ,2
n ). (21)

Now let us see why correctness is guaranteed. We rewrite
SnQθ,1

n as

SnQθ,1
n =

(
1

(f1 − αn)2
W11 +

1
f1 − αn

W12 + Z11

)

(
(f1 − αn)Qθ + (f1 − αn)2Z

′1
11

)
(22)

=
1

f1 − αn
W11Qθ +

(
W11Z

′1
11 + W12Qθ

)

︸ ︷︷ ︸
I1

+ (f1 − αn)
(
W12Z

′1
11 + Z11Qθ

)

︸ ︷︷ ︸
I2

+ (f1 − αn)2 Z11Z
′1
11︸ ︷︷ ︸

I3

. (23)

Now, note that the terms 1, (f1 − αn), (f1 − αn)2, can each
be expanded into weighted sums of the terms 1, αn, α2

n. Re-
grouping terms according to this expansion, and collecting
SnQθ,1

n terms from the answers received from all N = 4
servers, we obtain





S1Q
θ,1
1

S2Q
θ,1
2

S3Q
θ,1
3

S4Q
θ,1
4




=





1
f1−α1

1 α1 α2
1

1
f1−α2

1 α2 α2
2

1
f1−α3

1 α3 α2
3

1
f1−α4

1 α4 α2
4









W11Qθ

I1 + f1I2 + f2
1 I3

−I2 − f1I3 − f1I3

I3





(24)

Since the 4 × 4 matrix is M1,4 which is invertible according
to Lemma 1, the user is able to retrieve his first desired
symbol, W11Qθ. Now, in order to retrieve his second desired
symbol, W11Qθ, the user will use successive decoding along
with cancellation of interference from the previously retrieved
desired symbol. Consider the second part of the answer
received from each server, SnQθ,2

n , which can be written as

follows.

SnQθ,2
n =

(
1

(f1 − αn)2
W11 +

1
f1 − αn

W12 + Z11

)

(
Qθ + (f1 − αn)2Z

′2
11

)
(25)

=
1

(f1 − αn)2
W11Qθ︸ ︷︷ ︸

I′
0

+
1

f1 − αn
W12Qθ

+ (W11Z
′2
11 + Z11Qθ)︸ ︷︷ ︸

I′
1

+(f1 − αn)W12Z
′2
11︸ ︷︷ ︸

I′
2

+ (f1 − αn)2 Z11Z
′2
11︸ ︷︷ ︸

I′
3

(26)

Aside from the desired symbol W12Qθ, there are four inter-
ference terms I ′0, I

′
1, I

′
2, I

′
3. Now, since the user has already

retrieved W11Qθ, he can subtract I ′0 from SnQθ,2
n . Further-

more, like before, the remaining interference terms can be
expanded along αt

n, t ∈ {0, 1, 2}. Thus the user is able to
obtain





S1Q
θ,2
1 − I′

0
(f1−α1)2

S2Q
θ,2
2 − I′

0
(f1−α2)2

S3Q
θ,2
3 − I′

0
(f1−α3)2

S4Q
θ,2
4 − I′

0
(f1−α4)2





=





1
f1−α1

1 α1 α2
1

1
f1−α2

1 α2 α2
2

1
f1−α3

1 α3 α2
3

1
f1−α4

1 α4 α2
4









W12Qθ

I ′1 + f1I ′2 + f2
1 I ′3

−I ′2 − f1I ′3 − f1I ′3
I ′3



 (27)

from which, by inverting the matrix M1,4, the user is able to
retrieve his second desired symbol, W12Qθ. This completes
the proof of correctness.

For ease of reference, a compact summary of the storage
at each server, the queries, and a partitioning of signal and
interference dimensions contained in the answers from each
server, is provided in Table I. Queries and answers of each
round are partitioned with dashed lines. Recovered desired
symbols from previous rounds that can be canceled appear
along vectors that are wrapped with rounded-corner boxes.

T = 1-privacy and X = 1-security follows from the
fact that queries and storage are protected by the i.i.d. uni-
formly distributed noise vectors Z11 and Z

′1
11, Z

′2
11 respectively.

Finally, let us calculate the rate achieved by the scheme. From
8 downloaded q-ary symbols, the user retrieves 2 desired q-ary
symbols, so the rate achieved is R = 2/8 = 1/4 = 1 − 3/4.
This completes the proof of achievability for the setting U =
B = 0, X = 1, T = 1, Kc = 2, N = 4.

1) X = 1, T = 1, Kc = 2, N = 5: Here we have
L = N−(X +T +Kc−1) = 2 and " = LKc = 4. So let each
message consist of " = 4 symbols from a finite field Fq, where
q ≥ L + N = 7. Let W11,W21,W12,W22 be four 1 × K
row vectors containing the four symbols from every message,
respectively. Let Z11,Z21 be two independent, uniformly
distributed random noise vectors from F1×K

q that will be used
to guarantee X = 1 security. Similarly, let Z

′1
11,Z

′1
21, Z

′2
11,Z

′2
21

be independent, uniformly distributed random noise vectors
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TABLE I

A SUMMARY OF THE MDS-XSTPIR SCHEME FOR X = 1, T = 1, Kc =
2, N = 4, U = 0, B = 0, SHOWING STORAGE AT EACH SERVER,

THE QUERIES, AND A PARTITIONING OF SIGNAL AND INTERFER-
ENCE DIMENSIONS CONTAINED IN THE ANSWERS FROM

EACH SERVER

from FK×1
q that will be used to guarantee T = 1 privacy.

As before, let Qθ be the θ-th column of the K × K identity
matrix, where θ is the index of desired message. The desired
message Wθ can be represented as

Wθ = (WlkQθ)l∈[2],k∈[2] (28)

= (W11Qθ,W12Qθ,W21Qθ,W22Qθ). (29)

The independence between messages, noise vectors, and
desired message index θ is specified as follows.

H(W11,W21,W12,W22,Z11,Z21,Z
′1
11,Z

′1
21,Z

′2
11,Z

′2
21, θ)

=
∑

l∈[2],k∈[2]

H(Wlk) + H(Z11) + H(Z21)

+ H(Z
′1
11) + H(Z

′1
21) + H(Z

′2
11) + H(Z

′2
21) + H(θ).

(30)

Let f1, f2, α1, α2, · · · , α5 be L + N = 2 + 5 = 7 distinct
elements of Fq, q ≥ 7. The storage at the n-th server is
constructed as follows.

Sn = (Sn1, Sn2), (31)

where

Sn1 =
1

(f1 − αn)2
W11 +

1
f1 − αn

W12 + Z11, (32)

Sn2 =
1

(f2 − αn)2
W21 +

1
f2 − αn

W22 + Z21 (33)

so that each of (32) and (33) codes noise with message
symbols across N servers according to an MDS(N, Kc + X)
code, guaranteeing X = 1 security on top of MDS coded
storage. The query sent to the n-th server to retrieve the
θth message consists of Kc = 2 rounds, Qθ,1

n and Qθ,2
n .

Furthermore, we will set

Qθ,1
n = (Qθ,1

n1 , Qθ,1
n2 ) (34)

Qθ,2
n = (Qθ,2

n1 , Qθ,2
n2 ) (35)

where

Qθ,1
n1 =(f1 − αn)Qθ + (f1 − αn)2Z

′1
11, (36)

Qθ,1
n2 =(f2 − αn)Qθ + (f2 − αn)2Z

′1
21, (37)

Qθ,2
n1 =Qθ + (f1 − αn)2Z

′2
11, (38)

Qθ,2
n2 =Qθ + (f2 − αn)2Z

′2
21. (39)

Upon receiving the query from user, the answer returned by
the n-th server is comprised of two symbols,

Aθ
n = (Aθ

n1, A
θ
n2) (40)

= (Sn1Q
θ,1
n1 + Sn2Q

θ,1
n2 , Sn1Q

θ,2
n1 + Sn2Q

θ,2
n2 ). (41)

Now let us see why correctness is guaranteed. Consider the
first symbol, Aθ

n1.

Aθ
n1 = Sn1Q

θ,1
n1 + Sn2Q

θ,1
n2

=
1

f1 − αn
W11Qθ +

1
f2 − αn

W21Qθ

+ (W11Z
′1
11 + W21Z

′1
21 + W12Qθ + W22Qθ)

+ (f1 − αn)(W12Z
′1
11 + Z11Qθ)

+ (f2 − αn)(W22Z
′1
21 + Z21Qθ)

+ (f1 − αn)2Z11Z
′1
11 + (f1 − αn)2Z21Z

′1
21. (42)

The first two terms in (42) are desired message symbols. Each
of the remaining 5 terms can be expanded into weighted sums
of terms of the form αt

n, t ∈ {0, 1, 2}, allowing the user
to represent the symbols Aθ

n1 downloaded from all n ∈ [N ]
servers, as





Aθ
11

Aθ
21

Aθ
31

Aθ
41

Aθ
51




=





1
f1−α1

1
f2−α1

1 α1 α2
1

1
f1−α2

1
f2−α2

1 α2 α2
2

1
f1−α3

1
f2−α3

1 α3 α2
3

1
f1−α4

1
f2−α4

1 α4 α2
4

1
f1−α5

1
f2−α5

1 α5 α2
5









W11Qθ

W21Qθ

∗
∗
∗




(43)

where we have used ∗ to represent various combinations of
interference symbols that can be found explicitly by expanding
(42), since those forms are not important. What matters is
that the 5 × 5 square matrix in (43) is M2,5 which is
invertible according to Lemma 1, so the user can retrieve
the two desired symbols, W11Qθ, W21Qθ by inverting the
matrix. Next, the user needs to retrieve the remaining two
desired symbols W12Qθ, W22Qθ , for which we will use
successive decoding with interference cancellation. Consider
the downloaded symbol Aθ

n2.

Aθ
n2 = Sn1Q

θ,2
n1 + Sn2Q

θ,2
n2

=
1

(f1 − αn)2
W11Qθ +

1
(f2 − αn)2

W21Qθ

+
1

f1 − αn
W12Qθ +

1
f2 − αn

W22Qθ

+ (W11Z
′2
11 + W21Z

′2
21 + Z11Qθ + Z21Qθ)

+ (f1 − αn)W12Z
′2
11 + (f2 − αn)W22Z

′2
21

+ (f1 − αn)2Z11Z
′2
11 + (f2 − αn)2Z21Z

′2
21. (44)

The first two symbols in (44) are desired symbols that have
already been decoded. So these terms can be subtracted out,
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TABLE II

A SUMMARY OF THE MDS-XSTPIR SCHEME FOR X = 1, T = 1, Kc =
2, N = 5, U = 0, B = 0, SHOWING STORAGE AT EACH SERVER,

THE QUERIES, AND A PARTITIONING OF SIGNAL AND INTERFER-
ENCE DIMENSIONS CONTAINED IN THE ANSWERS FROM EACH

SERVER

leaving the user with the following downloaded information
from all N = 5 servers.





Aθ
12 − 1

(f1−α1)2 W11Qθ − 1
(f2−α1)2

W21Qθ

Aθ
22 − 1

(f1−α2)2 W11Qθ − 1
(f2−α2)2

W21Qθ

Aθ
32 − 1

(f1−α3)2 W11Qθ − 1
(f2−α3)2

W21Qθ

Aθ
42 − 1

(f1−α4)2 W11Qθ − 1
(f2−α4)2

W21Qθ

Aθ
52 − 1

(f1−α5)2 W11Qθ − 1
(f2−α5)2

W21Qθ





=





1
f1−α1

1
f2−α1

1 α1 α2
1

1
f1−α2

1
f2−α2

1 α2 α2
2

1
f1−α3

1
f2−α3

1 α3 α2
3

1
f1−α4

1
f2−α4

1 α4 α2
4

1
f1−α5

1
f2−α5

1 α5 α2
5









W12Qθ

W22Qθ

∗
∗
∗




(45)

Once again, the 5× 5 square matrix in (45) is M2,5 which is
invertible according to Lemma 1, so the user can retrieve his
remaining two desired symbols, W12Qθ, W22Qθ by inverting
the matrix. This completes the proof of correctness. Let us
summarize the storage at each server, the queries, and the
partitioning of signal and interference dimensions contained
in the answers from each server in Table II. T = 1-privacy
and X = 1-security follows from the fact that queries and
storage are protected by the i.i.d. uniformly distributed noise
vectors. Now consider the rate achieved by the scheme. Since
the user downloads 2 symbols from each of 5 servers, we note
that from a total of 10 downloaded q-ary symbols, the user is
able to recover 4 desired q-ary symbols, so the rate achieved is
R = 4/10 = 2/5 = 1 − 3/5. This completes the construction
of the scheme for the setting U = B = 0, X = 1, T = 1, Kc =
2, N = 5. We now specify the scheme for U = B = 0 and
arbitrary X, T, Kc, N parameters.

2) U = B = 0, Arbitrary X, T, Kc, N : Let each message
consist of " = LKc symbols from a finite field Fq where
L = N − (X + T + Kc − 1) and q ≥ L + N . Let Wlk, l ∈
[L], k ∈ [Kc] be 1 × K row vectors. For each value of ∈
[L], k ∈ [Kc], the 1×K row vector Wlk contains the (L(k−
1) + l)th symbol from every message. Let (Zlx)l∈[L],x∈[X]

be independent, uniformly distributed random noise vectors
from F1×K

q that will be used to guarantee X-security. Let
(Z

′κ
lt )l∈[L],t∈[T ],κ∈[Kc] be independent, uniformly distributed

random noise vectors from FK×1
q that will be used to guarantee

that the queries are T -private. As before, let Qθ be the θ-th
column of the K ×K identity matrix, where θ is the index of
desired message. The desired message Wθ can be represented
as,

Wθ = (WlkQθ)l∈[L],k∈[Kc] (46)

=





W11Qθ, W12Qθ, · · · , W1KcQθ

W21Qθ, W22Qθ, · · · , W2KcQθ

· · · · · · · · · · · ·
WL1Qθ, WL2Qθ, · · · , WLKcQθ



 . (47)

The independence between messages, noise vectors and θ is
formalized as follows.

H((Wlk)l∈[L],k∈[Kc],(Zlx)l∈[L],x∈[X],(Z
′κ
lt )l∈[L],t∈[T ],κ∈[Kc],θ)

=
∑

l∈[L],k∈[Kc]

H(Wlk) +
∑

l∈[L],x∈[X]

H(Zlx)

+
∑

l∈[L],t∈[T ],κ∈[Kc]

H(Z
′κ
lt ) + H(θ). (48)

Let f1, f2, · · · , fL, α1, α2, · · · , αN be L+N distinct elements
of Fq . Since q ≥ N+L, these constants must exist. The storage
at the nth server is comprised of L symbols (Snl)l∈[L], i.e.,

Sn = (Sn1, Sn,2, . . . , SnL). (49)

For all l ∈ [L], Snl is constructed as

Snl =
1

(fl − αn)Kc
Wl1 +

1
(fl − αn)Kc−1

Wl2 + . . .

+
1

fl − αn
WlKc +

∑

x∈[X]

(fl − αn)x−1Zlx (50)

=
∑

k∈[Kc]

1
(fl−αn)Kc−k+1

Wlk +
∑

x∈[X]

(fl − αn)x−1Zlx.

(51)

Thus, for each l ∈ [L], the values Snl stored across all N
servers comprise an MDS(N, Kc + X) code which includes
X noise symbols for X-security. The query sent by the user
to the n-th server, in order to retrieve the θth desired message,
is comprised of Kc rounds, (Qθ,κ

n )κ∈[Kc]. For each κ ∈ [Kc],
the query is constructed as follows.

Qθ,κ
n = (Qθ,κ

n1 , Qθ,κ
n2 , . . . , Qθ,κ

nL), (52)

where ∀l ∈ [L], let us set

Qθ,κ
nl = (fl − αn)Kc−κQθ +

∑

t∈[T ]

(fl − αn)Kc+t−1Z
′κ
lt . (53)

Upon receiving the query from the user, the n-th server
responds with the following Kc symbols.

Aθ
n = (Aθ

n1, A
θ
n2, · · · , Aθ

nKc
) (54)

where for all κ ∈ [Kc],

Aθ
nκ = (Sn1Q

θ,κ
n1 + Sn2Q

θ,κ
n2 + · · · + SnLQθ,κ

nL). (55)
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To show that the scheme is correct, for any κ ∈ [Kc], let us
rewrite the symbol Aθ

nκ as,

Aθ
nκ =

∑

l∈[L]

SnlQ
θ,κ
nl (56)

=
∑

l∈[L]




∑

k∈[Kc]

1
(fl − αn)Kc−k+1

Wlk

+
∑

x∈[X]

(fl − αn)x−1Zlx







(fl − αn)Kc−κQθ +
∑

t∈[T ]

(fl − αn)Kc+t−1Z
′κ
lt





(57)

=
∑

l∈[L]

∑

k∈[κ]

1
(fl − αn)κ−k+1

WlkQθ

+
∑

l∈[L]

Kc∑

k=κ+1

(fl − αn)k−κ−1WlkQθ

+
∑

l∈[L]

∑

x∈[X]

(fl − αn)Kc−κ+x−1ZlxQθ

+
∑

l∈[L]

∑

k∈[Kc]

∑

t∈[T ]

(fl − αn)k+t−2WlkZ
′κ
lt

+
∑

l∈[L]

∑

x∈[X]

∑

t∈[T ]

(fl − αn)Kc+t+x−2ZlxZ
′κ
lt . (58)

Now we will see why it is possible to recover all desired
symbols (WlkQθ)l∈[L],k∈[Kc]. Consider κ = 1.

Aθ
n1 =

∑

l∈[L]

SnlQ
θ,1
nl (59)

=
∑

l∈[L]

1
fl − αn

Wl1Qθ +
∑

l∈[L]

Kc∑

k=2

(fl − αn)k−2WlkQθ

+
∑

l∈[L]

∑

x∈[X]

(fl − αn)Kc+x−2ZlxQθ

+
∑

l∈[L]

∑

k∈[Kc]

∑

t∈[T ]

(fl − αn)t+k−2WlkZ
′1
lt

+
∑

l∈[L]

∑

x∈[X]

∑

t∈[T ]

(fl − αn)Kc+t+x−2ZlxZ
′1
lt (60)

The first term contains the L desired symbols
(W11Qθ, . . . ,WL1Qθ) that are to be retrieved in the
first round, i.e., for κ = 1. Each of the remaining four terms
constitute interference which can be expanded into weighted
sums of terms of the form αt

n, t ∈ {0, 1, . . . , Kc+X +T −2}.
Therefore, collecting the Aθ

n1 symbols from all N servers,
the user obtains





Aθ
11

Aθ
21
...

Aθ
N1




=





1
f1−α1

··· 1
fL−α1

1 α1 ··· αKc+X+T−2
1

1
f1−α2

··· 1
fL−α2

1 α2 ··· αKc+X+T−2
2

...
...

...
...

...
...

...
1

f1−αN
··· 1

fL−αN
1 αN ··· αKc+X+T−2

N









W11Qθ
W21Qθ

...
WL1Qθ

∗
...
∗





(61)

where ∗ represents various combinations of interference terms,
whose precise forms are inconsequential. What matters is
that the N × N matrix in (61) is ML,N which is invertible
according to Lemma 1, so that the user is able to retrieve
the desired symbols (W11Qθ, . . . ,WL1Qθ) by inverting the
matrix.

The scheme proceeds similarly to retrieve desired sym-
bols (W1κQθ, . . . ,WLκQθ) with the κth round of queries.
To prove this by induction, let us consider any κ, such
that 2 ≤ κ ≤ Kc, and assume that the desired symbols
(WlkQθ)l∈[L],k∈[κ−1] have already been retrieved. Now we
wish to show that the desired symbols (WlκQθ)l∈[L] can be
retrieved.

Aθ
nκ =

∑

l∈[L]

SnlQ
θ,κ
nl (62)

=
∑

l∈[L]

∑

k∈[κ−1]

1
(fl − αn)κ−k+1

WlkQθ

+
∑

l∈[L]

1
fl − αn

WlκQθ

+
∑

l∈[L]

Kc∑

k=κ+1

(fl − αn)k−κ−1WlkQθ

+
∑

l∈[L]

∑

x∈[X]

(fl − αn)Kc−κ+x−1ZlxQθ (63)

+
∑

l∈[L]

∑

k∈[Kc]

∑

t∈[T ]

(fl − αn)t+k−2WlkZ
′κ
lt

+
∑

l∈[L]

∑

x∈[X]

∑

t∈[T ]

(fl − αn)Kc+t+x−2ZlxZ
′κ
lt . (64)

The first term contains symbols that have already been
retrieved, so the user can subtract this term from Aθ

nκ.

Aθ′

nκ = Aθ
nκ −

∑

l∈[L]

∑

k∈[κ−1]

1
(fl − αn)κ−k+1

WlkQθ. (65)

The next term is comprised of the L symbols (WlκQθ)l∈[L]

that the user wishes to retrieve. The remaining 4 terms
constitute interference which can be expanded as before into
weighted sums of terms of the form αt

n, t ∈ {0, 1, . . . , Kc +
X + T − 2}. Therefore, collecting the Aθ′

nκ symbols from all
N servers, the user obtains,




Aθ′

11

Aθ′

21
...

Aθ′

N1




=





1
f1−α1

··· 1
fL−α1

1 α1 ··· αKc+X+T−2
1

1
f1−α2

··· 1
fL−α2

1 α2 ··· αKc+X+T−2
2

...
...

...
...

...
...

...
1

f1−αN
··· 1

fL−αN
1 αN ··· αKc+X+T−2

N









W1κQθ
W2κQθ

...
WLκQθ

∗
...
∗





(66)

The desired symbols (WlκQθ)l∈[L] can be retrieved by
inverting the N×N square matrix in (66), which is guaranteed
to be invertible according to Lemma 1. Thus, the induction
argument shows that all " = LKc desired symbols are
retrieved successfully. A summary of the storage at each
server, the queries, and a partitioning of signal and interference
dimensions contained in the answers from each server is
provided in Table III.
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TABLE III

A SUMMARY OF THE GENERAL MDS-XSTPIR SCHEME SHOWING STORAGE AT EACH SERVER, THE QUERIES, AND A PARTITIONING OF SIGNAL AND
INTERFERENCE DIMENSIONS CONTAINED IN THE ANSWERS FROM EACH SERVER

T -privacy is guaranteed because Qθ is protected by the
noise vectors (Z

′κ
lt )l∈[L],t∈[T ],κ∈[Kc] that are i.i.d. uniform

and coded according to an MDS(N, T ) code. Similarly, X-
security is guaranteed because for each l ∈ [L], the messages
(Wlk)k∈[Kc] are protected by the noise vectors (Zlx)x∈[X]

that are i.i.d. uniform and coded according to an MDS(N, X)
code. Now let us consider the rate achieved by the scheme.
From a total of NKc downloaded q-ary symbols, the user is
able to retrieve his " = LKc desired symbols, so the rate
achieved is

R =
LKc

NKc
=

L

N
= 1 −

(
Kc + X + T − 1

N

)
, (67)

which matches the result in Theorem 1.

B. Arbitrary U , B

Now let us generalize the scheme to non-trivial U and B,
i.e., for U unresponsive servers and up to B byzantine servers.
For this generalization, let us set

L = (N − U) − (Kc + X + T + 2B − 1) (68)

" = LKc. (69)

Even though now the values of U, B are non-trivial, the con-
struction of storage, queries and answers remains identical
to the description provided previously for U = B = 0.
So let us consider any (N −U) responsive servers, say servers
n1, n2, · · · , nN−U . Instead of the N×N square matrix ML,N

in (66), we now have the (N −U)× (N −U − 2B) decoding
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matrix,

M(N−U)×(N−U−2B)

=





1
f1−αn1

··· 1
fL−αn1

1 αn1 ··· αKc+X+T−2
n1

1
f1−αn2

··· 1
fL−αn2

1 αn2 ··· αKc+X+T−2
n2

...
...

...
...

...
...

...
1

f1−αnN−U
··· 1

fL−αnN−U
1 αnN−U ··· αKc+X+T−2

nN−U




. (70)

Note that if we consider any N − U − 2B rows of
M(N−U)×(N−U−2B) then we obtain an invertible square
matrix because of Lemma 1. Therefore, M(N−U)×(N−U−2B)

is the generator matrix of an MDS(N −U, N −U −2B) code,
and it is can correct up to ((N −U)− (N −U −2B))/2 = B
errors. Thus by this construction, we establish a scheme that
works with U unresponsive servers and up to B Byzantine
servers, while achieving the rate of

R = 1 −
(

Kc + X + T + 2B − 1
N − U

)
. (71)

This completes the proof of Theorem 1.

V. PRIVATE AND SECURE DISTRIBUTED MATRIX

MULTIPLICATION

Recently in [20], [28], the problem of private and secure
matrix multiplication (PSDMM) is proposed, where a user
wishes to compute the product of a confidential matrix A
with a matrix Bθ, θ ∈ [M ] with the aid of N distributed
servers. In [20], it is assumed that the set of matrices B[M ] are
public and available to the N servers, however, the confidential
matrix A is shared secretly among all N servers, such that no
information about A is leaked to any server. Besides, the user
wants to keep the index θ private from each server. The goal
of the problem is to minimize (i) the upload cost from the
source of the confidential matrix A to the N servers and (ii)
the download cost from the N servers to the user. In [20],
the authors exploit the MDS-PIR scheme proposed in [24]
to construct the PSDMM scheme, and characterize the lower
convex hull of (upload, download) pairs.

Using the MDS-XSTPIR scheme present in Section IV,
we now present a novel PSDMM scheme for a generalized
model. In our model, the index θ is T -private, while the
confidential matrix A is XA-secure. Furthermore, we also
allow matrices B[M ] to be XB-secure. Note that the model
in [20] is obtained as a special case of our generalized model
by setting XA = T = 1, XB = 0.

A. PSDMM: Problem Statement

Let A = (A1,A2, . . . ,A$) represent " random matrices,
each of dimension λ×χ, that are independently and uniformly
distributed over Fλ×χ

q . Let B[M ] be M random matrices
independently and uniformly distributed over Fχ×µ

q . The inde-
pendence between matrices A[$] and B[M ] is formalized as
follows.

H(A,B[M ]) =
∑

l∈[$]

H(Al) +
∑

m∈[M ]

H(Bm). (72)

The matrices A and B[M ] are made available at N distributed
servers through secret sharing schemes with security levels

Fig. 2. Model for private secure distributed matrix multiplication (PSDMM).
A matrices are XA secure, while B matrices are XB secure. The uploads
to be optimized are the A terms and the downloads to be optimized are the
Y θ terms.

XA and XB , respectively. That is, any group of up to XA

colluding servers can learn nothing about A, and any group
of up to XB servers can learn nothing about B[M ]. To this end,
matrices A and B[M ] are separately coded according to secret
sharing schemes that generate shares Ãn, B̃n, n ∈ [N ], and
these shares are made available to the n-th server. Furthermore,
we assume that the upload cost of Ã[N ] is to be optimized,
while that of B̃[N ] and Qθ

[N ] is ignored, presumably because
A matrices are frequently updated while B[M ] are static, and
the size of queries does not scale with ".

The independence between the securely coded matrices is
specified as follows.

I(A, Ã[N ];B[M ], B̃[N ]) = 0. (73)

Matrices must be recoverable from their secret shares.

H(A | Ã[N ]) = 0, (74)

H(B[M ] | B̃[N ]) = 0. (75)

The matrices must be perfectly secure from any set of secret
shares that can be accessed by a set of up to XA, XB colluding
servers, respectively.

I(A; ÃX ) = 0 X ⊂ [N ], |X | = XA, (76)

I(B[M ]; B̃X ) = 0 X ⊂ [N ], |X | = XB. (77)

The user generates an index θ ∈ [M ] privately and uniformly,
and wishes to compute the product

ABθ = (A1Bθ,A2Bθ, . . . ,A$Bθ). (78)

To this end, the user generates N queries Qθ
[N ]. The n-th query

Qθ
n is sent to the n-th server. The user has no prior knowledge

of matrices A and B[M ] and their secret shares, i.e.,

I(θ, Qθ
[N ]; Ã[N ], B̃[N ]) = 0. (79)

T -privacy, 0 ≤ T ≤ N , guarantees that any group of up to T
colluding servers learn nothing about θ.

I(Qθ
T , ÃT , B̃T ; θ) = 0. (80)
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Upon receiving the user’s query Qθ
n, the n-th server responds

with an answer Y θ
n , which is a function of all information

available to it.
H(Y θ

n |Qθ
n, Ãn, B̃n) = 0. (81)

The user must be able to recover the product ABθ from all
N answers, i.e.,

H(ABθ|Y θ
[N ], Q

θ
[N ]) = 0. (82)

The upload cost and download cost are defined as follows.

U =

∑
n∈[N ] H(Ãn)

H(A)
, (83)

D =

∑
n∈[N ] H(Y θ

n )
H(ABθ)

. (84)

B. A New Scheme for PSDMM

In this section, we will present a PSDMM scheme to show
that the lower convex hull of (upload, download) pairs

(U, D) =
(

N

Kc
,

N

N − (2Kc + XA + XB + T − 2)

)
(85)

for

Kc = 1, 2, . . . , .(N + 1 − XA − XB − T )/2/ (86)

is achievable when q → ∞ and χ ≥ min(λ, µ). Furthermore,
when XB = 0, i.e., there are no security constraints on
matrices B[M ], and χ ≥ min(λ, µ), then the lower convex
hull of (upload, download) pairs

(U, D) =
(

N

Kc
,

N

N − (Kc + XA + T − 1)

)
(87)

for

Kc = 1, 2, . . . , (N + 1 − XA − T ) (88)

is achievable as q → ∞.
First, let us consider the case XB 0= 0. For this setting, let

us set

L = N − (XA + XB + T + 2Kc − 2), (89)

" = KcL. (90)

For all l ∈ [L], k ∈ [Kc], let us define

Alk = AL(k−1)+l. (91)

We will also set

B =
[
B1 B2 . . . BM

]
(92)

to be an χ × Mµ matrix that contains all B[M ]. Let us also
define Qθ be a Mµ × µ matrix as follows.

Qθ = [ 0µ . . . 0µ︸ ︷︷ ︸
A total of (θ − 1)0µ’s

Iµ 0µ . . . 0µ︸ ︷︷ ︸
A total of (M − θ)0µ’s

]T (93)

where 0µ is the µ × µ square zero matrix, and Iµ is the
µ×µ identity matrix. We note that by construction, ABQθ =
(A1BQθ, . . . ,A$BQθ) = (AlkBQθ)l∈[L],k∈[Kc] is the
desired product. Let (Zlx)l∈[L],x∈[XA] and (Z′

lx′)l∈[L],x′∈[XB ]

be independent, uniformly distributed random noise matri-
ces from Fλ×χ

q and Fχ×Mµ
q that will be used to guarantee

XA and XB security levels for A,B[M ], respectively. Let
(Z

′′κ
lt )l∈[L],t∈[T ],κ∈[Kc] be independent, uniformly distributed

random noise matrices from FMµ×µ
q , that will be used to

guarantee T -privacy of queries. The independence between
A,B[M ], noise matrices and θ is formalized as follows.

H(A,B[M ], (Zlx)l∈[L],x∈[XA], (Z′
lx′)l∈[L],x′∈[XB ],

(Z
′′κ
lt )l∈[L],t∈[T ],κ∈[Kc], θ)

=
∑

l∈[L],k∈[Kc]

H(Alk) +
∑

m∈[M ]

H(Bm)

+
∑

l∈[L],x∈[XA]

H(Zlx) +
∑

l∈[L],x′∈[XB ]

H(Z′
lx′)

+
∑

l∈[L],t∈[T ],κ∈[Kc]

H(Z
′′κ
lt ) + H(θ). (94)

Let f1, f2, · · · , fL, α1, α2, · · · , αN be distinct elements of
Fq. We require q ≥ L+N so these elements must exist. Now
we are ready to construct the scheme. The secret share of B[M ]

at the n-th server, B̃n is constructed as follows.

B̃n = (B̃n1, B̃n2, . . . , B̃nL), (95)

where ∀l ∈ [L],

B̃nl = B +
∑

x′∈[XB ]

(fl − αn)Kc+x′−1Z′
lx′ . (96)

The secret share of A at the nth server is constructed as
follows.

Ãn = (Ãn1, Ãn2, . . . , ÃnL), (97)

where ∀l ∈ [L],

Ãnl =
∑

k∈[Kc]

1
(fl−αn)Kc−k+1

Alk +
∑

x∈[XA]

(fl−αn)x−1Zlx.

(98)

The query sent by the user to the nth server, is comprised of
Kc rounds, Qθ

n = (Qθ,κ
n )κ∈[Kc]. For all κ ∈ [Kc], we construct

the queries as follows.

Qθ,κ
n = (Qθ,κ

n1 , Qθ,κ
n2 , . . . , Qθ,κ

nL), (99)

where ∀l ∈ [L], we set

Qθ,κ
nl = (fl−αn)Kc−κQθ +

∑

t∈[T ]

(fl−αn)Kc+t−1Z
′′κ
lt . (100)

Upon receiving the query from the user, the nth server
responds with the following Kc symbols.

Y θ
n =

(Ãn1B̃n1Q
θ,κ
n1 + Ãn2B̃n2Q

θ,κ
n2 + · · · + ÃnLB̃nLQθ,κ

nL)κ∈[Kc].

(101)
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To show the correctness of the scheme, let us consider
ÃnlB̃nl, ∀l ∈ [L].

ÃnlB̃nl =




∑

k∈[Kc]

1
(fl − αn)Kc−k+1

Alk

+
∑

x∈[XA]

(fl − αn)x−1Zlx







B +
∑

x′∈[XB ]

(fl − αn)Kc+x′−1Z′
lx′





(102)

=
∑

k∈[Kc]

1
(fl − αn)Kc−k+1

AlkB

+
∑

x∈[XA]

(fl − αn)x−1ZlxB

+
∑

k∈[Kc]

∑

x′∈[XB ]

(fl − αn)x′+k−2AlkZ′
$x′

+
∑

x∈[XA]

∑

x′∈[XB ]

(fl − αn)Kc+x+x′−2ZlxZ′
lx′

(103)

=
∑

k∈[Kc]

1
(fl − αn)Kc−k+1

AlkB

+
∑

ξ∈[Kc+XA+XB−1]

(fl − αn)ξ−1Z̄lξ (104)

In (104) we rearranged the last three terms of (103) grouping
them into weighted sums of terms of the form (fl − αn)i,
i ∈ {0, 1, . . . , Kc + XA + XB − 2}. The grouped terms Z̄lξ

can be calculated explicitly but as it turns out the precise
form of these terms is inconsequential. Now note that if we
regard (AlkB)l∈[L],k∈[Kc] terms as messages, and other terms
as noise, then (104) has the same form as (51), the stor-
age construction in the MDS-XSTPIR scheme presented in
Section IV.2 Also note that the construction of queries is also
the same as the MDS-XSTPIR scheme, thus the correctness
follows directly from the proof presented in Section IV, which
means the user is able to recover the product ABQθ =
(AlkBQθ)l∈[L],k∈[Kc]. Privacy and security follows from the
fact that Qθ, A, B[M ] are protected by the i.i.d. uniformly
distributed noise matrices coded according to MDS(N, T ),
MDS(XA, T ), MDS(XB, T ) codes, respectively. This com-
pletes the construction of the scheme for XB 0= 0. Note that
when q → ∞ and χ ≥ min(λ, µ), then H(ABθ) = "λµ in
q-ary units according to ( [19], Lemma 2), and the download
cost is

D =
NKcλµ

"λµ
=

N

L
=

N

N − (2Kc + XA + XB + T − 2)
.

(105)

2Note that X in (51) corresponds to Kc + XA +XB − 1 in (104), so that
L = N − (X + T + Kc − 1) in Section IV corresponds to L = N −
(2Kc + XA + XB + T − 2) in this section. The condition on Kc becomes
Kc = N−(XA+XB+T+L−2)

2 . However, since we must have L ≥ 1 and
Kc ≥ 1 can only take integer values, it follows that the feasible values of
Kc are 1 ≤ Kc ≤ $N−(XA+XB+T−1)

2 %.

Now let us consider the case XB = 0. For this setting, let
us set

L = N − (XA + XB + T + Kc − 1), (106)

" = KcL. (107)

We will continue using other definitions as before, but since
there is no security constraint on B matrices, let us replace
B̃n as

B̃n = B. (108)

Now we have

ÃnlB̃nl =
∑

k∈[Kc]

1
(fl − αn)Kc−k+1

AlkB

+
∑

x∈[XA]

(fl − αn)x−1ZlxB, (109)

which is coded according to an MDS(N, Kc+XA) code. Thus
the correctness, privacy and security follows from that proof
in Section IV. The download cost is

D =
NKcλµ

Lλµ
=

N

L
=

N

N − (Kc + XA + XB + T − 1)
.

(110)

Now let us consider the upload cost of the scheme. Note
that by the construction of Ãn, it is coded according to an
MDS(N, Kc) code. Therefore, the upload cost is N

Kc
.

It is shown in [20] that when XA = T = 1, XB = 0,
the lower convex hull of (upload, download) pairs

(U, D) =
(

N

Kc
,
Kc + 1

Kc

(
1 +

(
Kc + 1

N

)
+ . . .

+
(

Kc + 1
N

)M−1
))

(111)

is achievable for Kc = 1, 2, . . . , N − 1. For the asymp-
totic setting, i.e., M → ∞, we have from [20] that
D = Kc+1

Kc

N
N−(Kc+1) , which is strictly worse than the

(upload, download) pairs characterized in this work. This is
because the scheme in [20] allows the user to decode noise
matrices protecting A, whereas in our scheme, because of
cross-subspace alignment, the user is only able to decode
desired matrices, thus the penalty term Kc+1

Kc
disappears.

VI. CONCLUSION

The problem of U-B-MDS-XSTPIR, i.e., X-secure
T -private information retrieval from MDS coded storage, with
N servers out of which U are unresponsive and up to B
may be Byzantine, is studied in this work. A lower bound
on achievable rates of U-B-MDS-XSTPIR is characterized
by presenting a cross-subspace alignment and successive
decoding based scheme. We also adapt the scheme to the
problem of private and secure distributed matrix multiplication
that is recently proposed in [20], [28]. The presented MDS-
XSTPIR scheme is shown to be applicable to PSDMM prob-
lem, even if we allow security concerns for all constituent
matrices. The immediate challenge for future work is to
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settle the asymptotic capacity conjectures for MDS-TPIR, and
also of MDS-XSTPIR, either in the affirmative by finding
tight converse bounds or in the negative by finding better
asymptotic achievable schemes. Beyond this, settling down the
conjecture of asymptotic capacity of U-B-MDS-XSTPIR with
unresponsive and Byzantine servers also merits investigation.
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