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Double Blind 7-Private Information Retrieval

Yuxiang Lu

Abstract—Double blind T-private information retrieval (DB-
TPIR) enables two users, each of whom specifies an index (6y, 6,,
resp.), to efficiently retrieve a message W(0y, 6,) labeled by the
two indices, from a set of N servers that store all messages
Wk, kp), k1 €{1,2,...,K1}, k3 € {1,2,..., K>}, such that the
two users’ indices are kept private from any set of up to 71, T,
colluding servers, respectively, as well as from each other. A DB-
TPIR scheme based on cross-subspace alignment is proposed in
this paper, and shown to be capacity-achieving in the asymp-
totic setting of large number of messages and bounded latency.
The scheme is then extended to M-way blind X-secure 7T-private
information retrieval (MB-XS-TPIR) with multiple (M) indices,
each belonging to a different user, arbitrary privacy levels for
each index (T, T, ..., Ty), and arbitrary level of security (X)
of data storage, so that the message W(0y, 6,, ..., 60)) can be
efficiently retrieved while the stored data is held secure against
collusion among up to X colluding servers, the m™ user’s index is
private against collusion among up to 7y, servers, and each user’s
index 6, is private from all other users. The general scheme relies
on a tensor-product based extension of cross-subspace alignment
and retrieves 1 — (X + 71 4 - - -+ Ty7)/N bits of desired message
per bit of download.

Index Terms—Secure storage, privacy, capacity.

I. INTRODUCTION

ATA privacy and security are among the biggest chal-
lenges of the modern information age. Driven by these
challenges there is much interest in the building blocks (prim-
itives) of privacy/security preserving schemes, such as secret
sharing [1], oblivious transfer [2], private information retrieval
(PIR) [3], [4], secure multiparty computation (MPC) [5]-[7],
and private simultaneous messages (PSM) [8]. Understanding
the fundamental limits of each of these building blocks is
the key to understanding the scope of their potential applica-
tions. The focus of this work is on private information retrieval
(PIR).
Introduced by Chor et al. in [3], [4], the goal of PIR in
its simplest form is to allow a user to efficiently retrieve a
desired message from a set of K messages that are replicated
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across N distributed servers, while revealing no information
to any individual server about which message is desired.
Until recently, PIR was investigated primarily by computer
scientists and cryptographers [3], [4] under the assumption
of short messages (e.g., each message is just one bit), with
the goal of minimizing the total communication (upload
and download) cost. However, following the capacity char-
acterization of PIR in [9], [10] under the assumption of
long messages (where downloads dominate the communi-
cation cost), the fundamental limits (capacity) of various
forms of download-efficient PIR have become an active topic
in information theory. Recent advances include the capacity
characterizations of PIR with T-privacy [11], symmetric-
privacy [12], weak privacy [13], [14], eavesdroppers and/or
Byzantine servers [15]-[19], coded storage [20]-[27], secure
storage [28]-[30], limited storage [31]-[35], cached data
or side information [36]-[39], multiple rounds [40], [41],
multiple desired messages [42]-[45], upload constraints [46],
arbitrary collusion patterns [21], [47], single server PIR with
user side information [48]-[54], latent-variable single server
PIR [55], as well as applications of PIR to private computa-
tion [56]-[59], private search [60], private set intersection [45],
coded computing [61], locally decodable codes [62], etc.
Our goal in this work is to further expand the understanding
of download-efficient PIR in a new direction—M-way blind
X-secure T-PIR or MB-XS-TPIR, where the data, labeled by
M indices, is stored in an X-secure! fashion by N servers,
and M users jointly retrieve a desired message by specify-
ing one index each (user m specifies 6,, Ym € {1,2, ..., M}),
while keeping their index private from each other and also
T-private from the servers where the data is stored. It is con-
ceivable that such a functionality may be directly useful. For
example, consider private data, e.g., health records, that are
stored anonymously and X-securely among a cloud of dis-
tributed servers. For enhanced security it is not uncommon
to require multi-factor authentication, e.g., 2-factor authenti-
cation from a pair of devices (say, smartphone and computer)
that belong to the owner of the data (patient) in order to allow
access to the data. This can be implemented as the double
blind setting of MB-XS-TPIR by creating 2 passwords (indices
01, 62), so that the two devices must each provide 0y, 6, respec-
tively, in order for the patient to retrieve W(61, 62) on either
device. It is important that each device learns nothing about the
other device’s password (treating devices as users, this is called
inter-user privacy), so that the loss or hacking of either device

1X-security (T-privacy) means that security (privacy) is guaranteed against
any set of up to X (7)) colluding servers.
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does not reveal more than its own password. Furthermore, the
passwords/indices are also kept T-private from the servers, so
that even the servers learn nothing about which record is being
retrieved. M-way authentication similarly motivates MB-XS-
TPIR. In general, MB-XS-TPIR may be a good solution for
secret sharing among multiple parties when the size of the
secret is too large so that it needs to be securely stored among
distributed servers (cloud) while access to the secret is allowed
by distributing smaller keys or passwords (indices in MB-XS-
TPIR) to the parties. The multiway blind functionality is also
useful for secure multiparty computation’ where the inputs
01, ...,0p of a function f(x1, ..., xy) are held by M parties
and W, whose (@, ..., 0" entry is the evaluation of the
function at (61, ..., 0y), is stored by distributed servers [63].
Fundamentally, however, our motivation is simply to expand
the scope of a basic primitive.

The main contribution of this work is a cross-subspace
alignment (CSA) based scheme for MB-XS-TPIR. To place
this in perspective, we note that the evolution of CSA codes
has followed a remarkable trajectory with crossovers between
PIR and coded distributed computing (CDC). In a nutshell,
CSA codes originated in PIR, then crossed over to CDC where
the constructions were generalized, and now in this work,
return back to PIR in their generalized form which allows
MB-XS-TPIR. To see this in a bit more detail, recall that the
idea of cross-subspace alignment originated in the context of
XS-TPIR [29], [30] as a way to align interference from unde-
sired product terms that result when a secret-shared (private)
query vector is multiplied with a secret-shared (secure) data
vector. It was then observed in [29], [44], [61], [64], [65]
that the idea of aligning undesired product terms is similarly
useful in distributed computing applications, which led to a
crossover of CSA codes to coded distributed computing [66].
Generalized CSA codes were constructed in [61] to unify
and improve upon several state-of-art CDC approaches like
Lagrange Coded Computing [67] and Entangled Polynomial
codes [68]. The generalized forms of CSA codes allow not
only pairwise matrix multiplications, but also multilinear com-
putations. This work represents the next step forward, as the
generalizations of CSA codes that emerged in the context of
coded distributed computing are used to enable new forms
of PIR. Indeed, the main idea behind this work is the fram-
ing of a particular solution® to MB-XS-TPIR as a problem of
distributed secure tensor product computation. With this map-
ping we find that the key to the solution is to compute the
tensor products of suitably structured secret-shared query vec-
tors that originate at the users, and correspondingly structured
secret-shared data matrices that are stored at the servers. Note
that CSA codes allow a range of structures corresponding to

2 A notable limitation is that M-way blind PIR allows communication only
between users and servers, but Secure MPC protocols may in general also
allow direct communication between users.

3The problem of MB-XS-TPIR, or PIR in general, is not equivalent to
distributed matrix (tensor) multiplication. For example, there is no constraint
in PIR that forces the answers returned by the servers to be linear in either
the query vectors or the stored information, or more specifically, products
of query vectors and the stored information. However, many solutions to PIR
indeed take this form, thus creating a connection between PIR and CDC. That
such solutions tend to be optimal in many cases strengthens this connection.
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Fig. 1. The double blind T-private information retrieval (DB-TPIR) problem.

various choices of feasible code parameters, which may be
further optimized for download cost depending on the appli-
cation. See Section V-B for additional details. The desired
tensor-products turn out to be multilinear operations, so that
the multilinear computation capability of CSA codes can be
applied to MB-XS-TPIR.

In order to introduce our solution in a more transparent set-
ting, our initial focus is on DB-TPIR, i.e., the double-blind
setting (M = 2) with T-private user indices (77, T2, resp.)
and replicated data storage, initially with no data-security, i.e.,
X = 0. This basic setting allows us to convey the main ideas
behind the construction of the scheme and also to explore
its optimality. Specifically, for the DB-TPIR problem we pro-
pose a scheme based on cross-subspace alignment [61] which
allows the retrieval of 1 — (771 +T72)/N bits of desired message
per bit of download, regardless of the number of messages.
By noting connections between this problem and X-secure
T-private information retrieval (XS-TPIR) [29] we show that
1 — (T1 + T>)/N is also the asymptotic capacity of DB-TPIR
as the number of messages approaches infinity, provided that
the number of bits of each message that are jointly encoded
is bounded (say, due to latency constraints).

With the insights obtained from DB-TPIR, we are then able
to fully generalize our achievable scheme to MB-XS-TPIR,
i.e., M-way blind X-secure T-private information retrieval with
multiple (M) indices, each specified privately by a different
user, arbitrary privacy levels for each index (71, T2, ..., Ty),
and arbitrary level of security (X) of data storage, so that
the message W(0,60,,...,6)) can be efficiently retrieved
by the users while the stored data is held secure against
collusion among up to X colluding servers, the m” user’s
index is private against collusion among up to 7, servers,
and each user’s index 6,, is private from all other users.
The general setting is based on an M-way tensor-product
extension of cross-subspace alignment codes, and retrieves
1—X+T1+---+Ty)/N bits of desired message per bit of
download. This generalizes the known asymptotically (large
number of messages) optimal schemes for various special
cases of MB-XS-TPIR including DB-TPIR (M = 2,X = 0)
and XS-TPIR (M = 1) [29] (which automatically recovers
asymptotically optimal schemes for TPIR (X =0, M = 1) [11]
and PIR (X = 0,M = 1,T; = 1) [10] as well). In fact, the
achievable scheme for MB-XS-TPIR also satisfies symmetric-
privacy, i.e., the users learn nothing about the database or each
others’ indices, beyond the desired message. Therefore, it also
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yields symmetrically private schemes as special cases. For
example, the general MB-XS-TPIR scheme yields a capac-
ity achieving scheme for Symmetric XS-TPIR (M = 1) [65],
STPIR (M = 1,X = 0, Symmetric Privacy) [22] and SPIR
M=1,X=0,T; = 1) as well. Based on all these observa-
tions, we conjecture that the general MB-XS-TPIR scheme is
also asymptotically optimal.

In order to compare the new scheme with state of art,
a natural baseline is obtained from [63] where a secure
multiparty computation (MPC) scheme is constructed based
on symmetric-PIR (SPIR) as a building block. This con-
struction can be naturally generalized to a DBPIR scheme.
Intuitively, this construction is based on a partitioning of N
servers into \/N groups of \/]TJ servers each, such that within
each sub-group the SPIR scheme is executed for one user,
while across sub-groups the SPIR scheme is executed for
the other user. However, even with the most efficient SPIR
scheme as the building block, the rate of this construction for
DBPIR is (1 —1/+/N)?, which is strictly smaller than the rate
1 —2/N achieved by our asymptotically optimal scheme. This
is because cross-subspace alignment allows us to avoid the
2-way partitioning of servers and is able to gain significant
efficiency by jointly exploiting all servers. For example, with
N = 4 servers, the partitioning based approach achieves a rate
of (1 —1/4/N)*> = 1/4, while the new scheme achieves a
100% higher rate of 1 — 2/N = 1/2 due to cross-subspace
alignment.

This paper is organized as follows. Section II formalizes
the general MB-XS-TPIR problem. Section III states the main
results of this paper in the form of two theorems. Their
proofs are presented in Section IV and Section V. Section VI
concludes the paper.

Notation: For any two integers a, b such that a < b, let
[a:b] denote the set {a,a + 1,...,b}. Let X4 denote the
set {Xy, Xg+1, ..., Xp}. For any index set Z = {iy, iz, ..., in},
X7 denotes the set {X;,, Xj,, ..., X;,}. For two vectors A and
B, A 1l B denotes that they are linearly independent. The
notation A’ denotes the transpose of A, and A(i) denotes the
i entry of A. For an n-dimensional tensor C, the notation
C(iy, iz, . .., Ip) represents the entry at the corresponding posi-
tion of C. If C is a two-dimensional tensor, then it is a matrix
and C(iy, ip) denotes the (i, ig)’h entry of matrix C. The nota-
tion (x)T denotes max(x, 0). If A is a set of random variables,
then by H(A) we denote the joint entropy of those random vari-
ables. Mutual information between sets of random variables
are similarly defined with the notation /(A; B). The notation
ex (0) denotes the 6™ column of the K x K identity matrix.

II. PROBLEM STATEMENT: MB-XS-TPIR

Consider a database W comprised of K = K1K>--- Ky
messages, indexed as

W =Wk, ka, ..

Each message consists of a stream of i.i.d. uniform bits.
The stream of symbols implies that the message lengths are
unbounded (a standard assumption in information theory).
However, we are interested primarily in bounded-latency MB-
XS-TPIR schemes, i.e., schemes that code over a bounded

< kM)l - Ky kel 1Ky (D

number of bits. For example, consider an encoder that accepts
as input L symbols from F, for each message, i.e., Llog,(g)
bits of each message, and jointly encodes them. In order to
jointly encode its inputs, the encoder must first wait to collect
Llog,(q) bits of data for each message, thus introducing a cod-
ing delay, or latency. By bounded latency, we mean that L, g
are O(1) in the parameters K1, K7, ..., Kjs. In other words,
the number of bits that are jointly encoded by the MB-XS-
TPIR scheme is bounded even as the number of messages
approaches infinity. This assumption is important in practice,
especially for streaming or dynamic data. To our knowledge,
for all PIR settings where the asymptotic (large number of
messages) capacity is known, it is achieved by bounded-
latency schemes [26]. So we do not expect the bounded latency
assumption to affect the asymptotic capacity of MB-XS-TPIR.
But it will be a useful assumption for converse arguments for
the special case of DB-TPIR (Double Blind 7-PIR). Another
issue worth clarifying is that even though L is bounded while
the number of messages is allowed to be much larger, the
downloads still dominate the communication cost because
the same queries can be re-used repeatedly to download the
unbounded desired message stream, L symbols at a time.

Under the bounded latency assumption, without loss of
generality we will assume that each message has length L
symbols. In g-ary units,

HW(k, ko, ... ky)) =L,
Vki e[l : Kyl,...,kpq €1 : Ky, 2)
H(W) = > HW (k. ko, ... knr)
k]E[1:K|] ,,,,, kMG[l B KM]
=K1Ky ---KyL. 3

The database W is stored at N distributed servers according
to an X-secure storage scheme. Let the storage at the n’” server
be denoted by S,,n € [1 : N]. An X-secure storage scheme
ensures that any set of up to X colluding servers cannot learn
anything about the database W.

[X-Security] I(W;Sx)=0 YX C[l:NL|X|<X. @&

The setting X = 0 corresponds to replicated storage, where
we set S, =W Vnel[l:N]

There are M users. The user m, m € [1 : M] specifies the
index 6, which is uniform over [1 : K,,,]. The M users jointly
want to retrieve the message W(61, 62, ..., 6)). The m™ user
must keep its* index private against collusion among any set
of up to T;, servers. Each user must also keep its index private
against other users.

To this end, we assume for each m € [1 : M], user m has its
own private randomness Z,. Note that Z,, is used to guarantee
user m’s Tj,-privacy against any 7}, colluding servers. The N
servers share’ common randomness Z that is not available to

4The use of ‘it’ instead of ‘he/she’ for users reflects the motivating example
of M-factor authentication, where different users may in fact be different
inanimate devices owned by the same person.

SWe need common randomness at the servers only to ensure perfect inter-
user privacy, as in (9). Remarkably, almost-perfect inter-user privacy can be
guaranteed (for large messages) even without common randomness at servers
(see Corollary 1).
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the users. The independence among these entities is formalized
as follows.

H(Sng 2. Om)mepimgs Emdmerian)

= H(Suw) +H(Z)+ Y HO+ Y, H(EZp).
me[1:M] me[1:M]

®)

In order to retrieve the desired message, user m generates N
: (m,0m) (m,0m) (m,0m) : :

queries Q) » Oy s oo On based on its index 6,,

and its private randomness Z,,. Specifically,

The corresponding queries from all M users, (Qf,m’g’"))me[];M]
are sent to the n™ server, for all n € [1 : N]. Upon receiving
the queries, the n" server generates its answer AY1%) a5 3
function of the queries, the stored information and the server-
side common randomness.

H(AC-008 ( (m,em>> Z)=o0. 7
( " 1Sn- \ Lo me[1:M] @

The privacy constraints consist of two parts.
1) (T,,)-Privacy. This means that any T}, or fewer servers
have no knowledge about 6,,,

. (i,6) Z\ _
1(9m, (7). ST Z> =0,
Vme[l : M|, TC[l:NL|T|<Tn (8

2) Inter-user Privacy. This means that any user must learn
nothing about other users’ indices.

Vm e [l : M]. 9)

With the answers from the N servers, each user must be able
to recover the desired message.

[Correctness] H(W(Gl, e QM)IAE?:II’V']”’GM), O, Zm) =0
Vm e [1 : M]. (10)

Recall that the rate of a PIR scheme is the number of bits of
desired message that can be retrieved per bit of total down-
load. Therefore, if D is the maximum (over all realizations
of messages) number of g-ary symbols downloaded from all
servers by a user, under an MB-XS-TPIR scheme that allows
the user to retrieve L g-ary symbols of the desired message,
then the rate of such a scheme is denoted as,

L

R= . (11)

The main contribution of this work is an achievable scheme for
MB-XS-TPIR that is based on cross-subspace alignment, and
achieves the rate 1 —(X+71+- - -+Tjy)/N, for arbitrary number
of messages K1, K3, ..., Ky. Note that the scheme itself is not
limited to asymptotic settings. Asymptotic settings will be of
interest primarily for the purpose of testing the optimality of
the scheme for significant special cases.

In order to introduce the scheme in a transparent setting, and
to gain deeper insights into its optimality, we focus in partic-
ular on Double Blind 7-PIR (DB-TPIR), which is obtained
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as a special case of MB-XS-TPIR by setting M = 2, X = 0.
Given ¢, L, N, K1, K3, T1, T> let us denote the supremum of
rates achievable by any DB-TPIR scheme with these parame-
ters as R*DB—T IR(q’ L,N,K;, K>, T, T,). Let us then define
the capacity of DB-TPIR with parameters N, K1, K2, T1, T> as

C pB-TPIRWN. K1, K>, T1, T2)
= supR*pp_1pR (4> L, N, K1, K2, T1, T2). (12)
q,L
Specifically, from the optimality perspective, we are interested
in the asymptotic capacity of DB-TPIR as K, K — oo.
Under the bounded latency (b.l.) constraint, this asymptotic
capacity is defined as

CBB-TPRY: T T2)

s R
= Sun K],}ézniooR DB—TPIR(q’ L,N, Ky, K>, T, TZ)-

13)

In plain words, Coo’b'l_'TPIR (N, Ty, T») is the highest rate pos-

sible for any DB-TPIR scheme when the number of messages
is much larger than the number of bits of each message that
are jointly encoded by the scheme.

Remark 1: For a double sequence s(Ki, K>), the notation
limg, x, 00 S(K1, K2) = a means that Ve > 0,3k = «(€)
such that |s(Ky, K») —a| < € YK, Ky > k. (see [69, Definition
2.1]). It follows from [69, Th. 4.2] that the double limit
limg, K, —o00 R pp_prr €Xists. This is because R*np 1pir
is a decreasing sequence in each of K; and K, parameters
individually (because any scheme that works with more mes-
sages also works with fewer messages), and is bounded below
by zero. It also follows from in [69, Th. 4.2] that
lim lim R*Hp TpIR- (14)

Ki{—00 Ky—o0

. § B
lim R'pp_rpR =

K],Kz—)OO

Remark 2: Note that the bounded-latency constraint affects
the order in which the supremum is taken over message size
parameters (g, L) versus the limit on the number of messages
(K1, K7). Without the bounded latency constraint, the asymp-
totic capacity as the number of messages approaches infinity,
would be defined as

CbB-TPIRW: T1. T2)

= i R* ,L,N,K|,K>, T, T
k1 A, UP KD TPIR (@ 1 K2, T, 1)

= lim C pp.TPIRW, K1, K2, T1, T2). 15)
Ki,Kr— o0

Comparing (15) with (13), we note the key difference is that
in (15), the supremum over message size (g, L) allows message
sizes to approach infinity for a fixed number of messages, and
only then the number of messages approaches infinity, whereas
in (13) it is the number of messages (K1, K) that approaches
infinity first for a given message size (g, L are bounded, i.e.,
O(1) in K1, K>), and only then the size of the message is
allowed to grow. In a nutshell, (15) corresponds to asymp-
totic settings with qL > K1, K», while (13) corresponds to
asymptotic settings with ¢g© < K, K>, thus prioritizing coding
latency.
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III. RESULTS

We begin with the asymptotic capacity characterization of
DB-TPIR under the bounded-latency constraint.

Theorem 1: The asymptotic capacity of DB-TPIR subject
to bounded-latency constraint is

Ti+T\\"
CBBoTPIR V- Tl,T2>=(1—< 5 )) .6

The proof of Theorem 1 is presented in Section IV. Notably,
the achievability of the rate expression that appears on the RHS
of (16) needs neither the bounded-latency assumption, nor the
asymptotic setting. Both of those are needed primarily for the
converse argument.

Next we examine the need for common randomness across
servers. Common randomness is needed across servers primar-
ily to preserve inter-user privacy, i.e., to keep each user’s index
private from other users. While in the absence of common ran-
domness, our achievable scheme does not preserve inter-user
privacy perfectly, it is remarkable that the scheme manages to
preserve inter-user privacy almost-perfectly for large alphabet.
In other words, the amount of information leaked to a user
about the other user’s index, is vanishingly small as g — oo.
Corollary 1 highlights this observation by studying explicitly
thecase T1 =T, =1,K; = K, =K.

Corollary 1: For the DB-TPIR scheme proposed in
Section IV-B, let BE?:']’V%Z) denote the answers generated by
the N servers after eliminating common randomness between
servers (setting all symbols associated with Z to zero in our
achievable scheme for DB-TPIR). For 71 = T, = 1,K; =
K> = K where K is a fixed positive integer, and for any € > 0,
there exists gg > 0 s.t. when g > qo (g is the size of the finite
field IFy),

1(02: B 161, 21, W61, 60) < e, (a7

1643 BT 162 22, Wo1,60)) < €. (18)

The proof of Corollary 1 appears in Appendix A.

Our final result generalizes the achievable scheme from DB-
TPIR to MB-XS-TPIR based on a tensor-product extension of
cross-subspace alignment. The achievable rate of the general
scheme is presented in the following theorem.

Theorem 2: For the MB-XS-TPIR problem defined in
Section II, the following rate is achievable regardless of the
number of messages K1, Ka, ..., Ky.

X+T\+Tr+--+Ty
R MB-XS-TPIR =1 — N :

19)

Intuitively, this rate expression indicates that with this
scheme one symbol is downloaded from each server, and
from those N symbols each user is able to recover L =
N—-—X+T1+T2+---+Ty) symbols of the desired message
W0y, 0,,...,6)), while the interference is aligned within
X+ Ty + T> + --- + Ty dimensions. Theorem 2 is proved
in Section V.

Corollary 2: Let us denote the supremum of achievable
rates of MB-XS-TPIR (over all valid MB-XS-TPIR schemes)
for fixed parameters ¢,L,N,X,Ki,..., Ky, Ty,..., Ty as

R*MB-XS-TPIR' Further, let us define the capacity of MB-

XS-TPIR as C MB-XS-TPIR = supq‘L R*MB-XS-TPIR' Then
we have the following bounds,

X+ 4+ +Ty

! N
< C MB-XS-TPIR
1 — L+X 1 — Iu+X
< min Ny Y—1 o
) )
N—-X N—-X

The proof of Corollary 2 appears in Appendix B. The lower
bound in (20) follows directly from the proof of achievabil-
ity of Theorem 2. The upper bound in (20) is obtained by
noting that MB-XS-TPIR schemes automatically yield XS-
TPIR schemes. By setting M = 2 and X = 0, the capacity
of DB-TPIR is bounded as

T +T
I=—— =CDB-TPIR
1-T1/N 1-T,/N

i . 21
Smm(l—(Tl/N)’“’1—<T2/N)’<2) @b

IV. AsymMpTOTIC CAPACITY OF DB-TPIR

This section is devoted to the proof of Theorem 1.

A. Theorem I: Converse

Let us find an upper bound on the capacity of DB-TPIR
by noting a relationship between DB-TPIR and X-secure T-
private information retrieval (XS-TPIR) [29]. Recall that XS-
TPIR is a special case of MB-XS-TPIR obtained by setting
M = 1. The capacity of XS-TPIR with N distributed servers,
K messages, X-secure data storage, and T-private queries is
denoted as C xs.TpIR V. K, X, T). Recall that the asymptotic
capacity of XS-TPIR (as K — o0) is shown in [29] to be
CxsrpiR - X. T) = (1 = S50 ™.

We will need the following lemma.

Lemma 1: Let R*DB-TPI (q,L,N, Ky, K>, Ty, T,) denote
the supremum of rates achievable by any DB-TPIR scheme for
the parameters g, L, N, K1, K>, T1, T» as defined in Section II.
Then for K, = qLKl, we have,

R'pp.TpIR (4 L. N. K1. K2 = ¢V, T1. T2)

< CxS.TPIRWV.K =K1, X =T2,T=T1). (22)

Proof: Consider a K x K> matrix W whose elements are
from IF’(;. The K> column vectors are all distinct and, say,
arranged in lexicographic order. Since K» = ¢™X1, the column
vectors of the matrix include all g“%! possible realizations of
K1 x 1 vectors over FS, and W is uniquely specified. We claim
that any construction of a DB-TPIR scheme for the parame-
ter values specified on the LHS of (22), when applied with
the particular realization of the database W = W, yields an
XS-TPIR scheme with the parameters specified on the RHS
of (22).

Let us describe this XS-TPIR scheme. In this XS-TPIR
scheme the user corresponds to User 1 of the DB-TPIR
scheme. Each Server n stores only Q,(12’02). Note that W is
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a constant matrix known to everyone, whose Qéh column spec-
ifies the realizations of the K i.i.d. messages (one of which
is desired by the user), each comprised of L uniformly ran-
dom i.i.d. symbols from ;. Since 6, is T>-private according
to the DB-TPIR construction, this constitutes X = 75-secure
storage of the K| messages. Furthermore, based on the Ti-
private queries, le’el), provided by the user, each server is
able to respond as in the DB-TPIR scheme (because Q(2 -02)
is already known to Server n), and the DB-TPIR construc-
tion guarantees that the desired message W6y, 6p) is correctly
retrieved. Finally, since the rate of an XS-TPIR scheme cannot
be higher than the capacity of XS-TPIR, the proof of Lemma 1
is complete. ]

Remark 3: The XS-TPIR scheme that we obtain from
the DB-TPIR scheme described above, allows common ran-
domness between servers. While the original formulation of
XS-TPIR in [29] does not explicitly allow common random-
ness, it is readily verified that server-side common randomness
can be included in the storage of each server in the model
of [29], and the asymptotic capacity result still holds.

Proof of Converse of Theorem 1: Note that although the
proof of Lemma 1 requires the condition that K| = ¢*%2,
Theorem 1 must hold as long as both K; and K, grow
unbounded, regardless of their growth rates. For this we will
utilize (14) as follows.

00,b.1.

Cpp-tPRW- 1. T2)

li R L ,N,K,K>,T1, T 2
Sq'-III‘T’Kl Igloo DB-TPIR (4> 1, K2, T, 1) (23)
squ{)thinoo<K2hmooR DB- TPIR(q L N,Ky,K,, Ty, T2)>

(24)
<
i,“{’mhi“oo(@hinmR DB-TPIR (¢ L. V. loggt (K1). K2. T Tz))
(25)
< sup lim RDB TPIR(q L,N, loqu(Kl) Ky, Ty, Tz) (26)
q.L Ky—o0
< supKhm CXS TPIR(N K = loqu(K1),X =1,T= T1)
q.L 217
27
= sup hm CXS TPIR(N K.X=T,,T=T)) (28)
q, LK
=Kllm CxS-TPIRWNV. K. X =T»,T =Ty) 29)
1-(2), N>T +T
_ ( ) >T1 + 12 (30)
0, N<T +T,.

The first step, (24), follows directly from (14). In (25) we
used the fact that reducing the number of messages cannot hurt
the rate (because the original scheme can still be used with
fewer messages). The next step, (26) follows because when
K> — 00, K] is viewed as a constant which is less than K> and
reducing the number of messages cannot hurt the rate. For (27)
we used Lemma 1. The next step, (28) follows because for
fixed ¢, L, and K = loqu (K1), the condition that K| — oo is
equivalent to the condition that K — oco. Next, (29) follows
because the capacity expression is not a function of g or L.
Finally, the asymptotic capacity characterization for XS-TPIR
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from [29] is used for (30). Thus, the proof of the converse
part of Theorem 1 is complete. |

B. Theorem 1: Achievability

In this section, we prove the achievability of Theorem 1 by
constructing a scheme based on Cross Subspace Alignment
(CSA) Codes [61], that can achieve the rate (1—(T1+T2)/N)*
for arbitrary N, K1, K2, T1, T». We will focus only on the non-
trivial case, N > T1 + T>. Throughout this scheme we set,

L=N-— (T +T»). a3n

Each message W(i,j),i € [1:Kj],j € [l:Kz] consists
of L symbols from finite field F,, denoted as W(i, )
(W3, D, WG, HP, ..., Wi, )D). For the scheme we will
need the following L + N distinct constants from I,

fi.f, ...

that are known to all N servers and the 2 users. Note that this
implies that ¢ > L + N.

Jeor, e, oy (32)

Let wus split the messages W into L matrices
(WD WD WD)y so that WO, [ e [I:L] contains
the I symbol of each message. Specifically,

w(,1)® w(1,2)® W(l,Ky)®
we,1)® w(2,2)® W(2,Ky)®
wo=| " . s (33)
WKL DO WK, 2O WK KO
Note that we write equivalently wO 01, 02) = W(6, 02)(1).

Recall that ex(6) is the 67 column of the K x K identity
matrix. The [ symbol of W(6;, 6) can be expressed as

Wb, 020 = ek, (61) Wex, (62). (34)

Note here e, (91) "W is the G’h row of matrix W®. The inner
product of 9 row with eg, (92) is the entry at the G’h column
of this row, i.e., W(6;, 62)". The proposed scheme W111 enable
the 2 users to retrieve W (61, 92)(1) VI € [1:L], thus, retrieving
Wb, 6>).

The private randomness
specified as,

available to each wuser is

Z = {Z(l) lte[l:Ti),lell :L]}, (35)

Z = {Z(l) ltell: Tl lell :L]}.

K1 x1 Z(l)

(36)

]FK2X1

The random vectors Z(l)t € Iy q have their

elements drawn i.i.d. uniform from IF

The query sent by user m,m € {1,2} to the
n server, QU s constmcted as  Qumom) =
(RN ""9 ce QU0 where W1 € [1 1 L]

m l
Q,i’f;’“=ez<m(em)+ Y (fi—en'Zy. G

te[1:Ty]

Specifically, Q%’e’") € FX"! can be viewed as the query from
user m to request the /" symbol of the wanted message. The
T,,-privacy constraint is satisfied since Q,(;';’g'") is the Shamir’s
secret sharing [1] of ek, (6,»). Up to T}, colluding servers can

learn nothing about ek, (6,,), thus, learning nothing about 6,,.
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Upon receiving queries from both users, the n* server

computes an intermediate result

i
B©1.62) Q(l ,01) (I)Q(2 ,602)
n Z fl —a,

le[1:L]

(38)

1
= @)W e, (62) +- -
n

W(9;,6,)

1 (L)
+ ek, (01) W ek, (62)
fL — Uy

W6,

+lo+any + -+ e (39)

From (38) to (39), distributive law is used. Note that (39)
can be viewed as a polynomial of «,. The coefficients of the
first L terms are the L symbols of the desired message. [;, i €
[0 : T1 + T, — 1] stands for the remaining (interference) terms
that are generated by the product of the matrices in (38). The
highest power of «,, is T1 + 7> — 1 and can be found from

Ti+T—1(0) 'ywl)g
Y (a2 WL,
le[1:L]

Note that the interference terms of (39), except the one of
the highest order, may contain some information of the index
specified by a user. For example, Iy contains

1
ek WO an)Z5, = ex, (0)WOZY,
which means that User 2 may get some information about the
index 6 specified by User 1 from the interference terms. To
protect against this leakage of information, server n will add
noise drawn from the common randomness that is shared by
all servers. The common randomness shared among N servers
is specified as,

Z={Zliel0: T\ +T> - 11}, (40)

where (Z-)ie[o . T1+T,—1] are T1 + T, random variables that are
i.i.d. uniform over [F,. Server n will add the polynomial
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+ (Io +Zo) 4o o1t
——
Jo

x (It +1—1 + 2T1+T2—1)~ 43)

Iri415-1

Rewriting (43) in matrix multiplication form, we have (44)
shown at the bottom of the page. The matrix C is a Cauchy-
Vandermonde matrix of size N x N since N =L+ T + T».
Since f;,1 € [1:L], ay, n € [1:N] are L + N distinct elements
of Iy, according to [70], C is invertible in F,. Thus, the
answers from all the N servers form an invertible function of
W1, 62),Jo, ..., Jr,+1,—1. In other words, the correctness
constraint is satisfied.

Let us consider the inter-user privacy. Without loss of
generality, let us consider User 1. We have

1(62: AfTNP 161, 21, W 60) (45)
= 1(62: W(O1.62), Jjo.1, +1,- 1161, Z1. W(61, 62))  (46)
= 1(62; Jio:1,+75-11101, Z1, W(61, 62)) = 0. 47

Equation (47) comes from the fact that Jjo.7,+7,-1] are pro-
tected by T7 4+ 7> random symbols shared among servers,
which are uniformly i.i.d. over F; and are independent of all
other terms in (47).

Finally, note that since L = N — (T1 + T2) symbols of the
desired message are retrieved from a total of N downloaded
symbols from all N servers, the rate of this scheme is L/N =
1 —(T1 + Tr)/N.

C. Examples for Illustration

1) L=1,T; =T, =1 With N = 3 Servers: Since L =
1, T = 1, we neglect the /, r on superscripts or subscripts of
all symbols. The queries from the 2 users are listed as follows.

Server ‘n’

O e, (61) + (fi — an)Z

0% e, (62) + (fi — an)Za

The intermediate result is computed as

Zew =2t onZit e ™ T @D e _ L puayy e
n
-«
to the intermediate result Bﬁ,el ) 0 generate its answer Af,el 02) fl "
This is the answer sent to both users. f (eK1 O + (fi — a,,)Z/l) -W
ACL0) = pOL0) | T4 42) X (eK2 (02) + (fi —an)Zs)
1
= WO, )" + -+ W61, 67)" = ek, (61) Wex, (62)
fl_an fL_an fl_an
(W1, 627
1 1 1 Ti+T—1 | W(By,62)?
P I e e o o .
%91,92) 1 1 1 a - gt—1 :
Az. 3 fi—az *'th fz*'az fL*‘D‘Q ' 2 W, 92)(L) (44)
: : : J
(01,62) 0
A 1 1 1 T1+T>—1
N fi—ay oy fi—an 1 ay Oy
C L J14+15-1
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+ (Z)Weg, (62) + ek, (61)'WZy,)
+ (fi — (x,,)Z/IWZZ
1
= W01, 6,)
fl — Oy v
+ (Z)Wek, (02) + e, (61)WZy + fZ,WZ,)

Ip

+ oy (—Z’l WZ2) .
———
I

The answer from the server is

AGLO) — BOLO 4 T | g T

1
= W61, 62) + Jo + anJi.

fi—ay

Writing in matrix form, the answers from N = 3 servers
are

A§91’02) 7 _la] a1 | Tw, 6,)
A6 s @ Jo
AL f1 =l o Ji

C

The desired message is retrieved by inverting the matrix C.
Since L =N — (T1 + T») = 1 symbol of the desired message
is retrieved from a total of N = 3 downloaded symbols from
all 3 servers, the rate of the scheme is L/N = 1/3.

2) L=2,T1 =1,T, =2 With N =5 Servers: The queries
from the 2 users are listed as follows.

Server ‘n’
1,0 1
o ex, (01) + (fi — o) Z)
1,0 2
Q;(@ v ek, (0) + (o — an)Z( )

kam@+m—%ﬂg+m—m%$
0% ek, (02) + (o — a)ZS) + (fr — an)*ZY)

The intermediate result is

1.6 _ Q(l 91>’W<1>Q(2 62)
" fl - O5n
1,61)" 2,0
Q( 1) W(Z) Q,(l 5 2)
f2 ’
1
= WW%W+ 62)?
fl — Qy
+Io+ - +olh.
The answer is
AP = W1, 00" + 62)?
fl — Qy
+ (lo+Z0)+-+a2(h+2).
~—— [—

Jo J
Writing in matrix form, the answers from N = 5 servers are

(61,62) 1 1 2
A(a' 92) e fa oo ai | ryw, . 0y)®
A(GI 92) il e fzflaz 1 o o W, 92)(2)
A(el 92) - figes S b a% 70

1,62

A4 fi—oas  fr—ay I oy @y Ny
A01.62) 1 1 1 as o? Jr

5 Si—as  fr—as 5 5

C
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Evidently, the rate achieved is L/N = 2/5 in this case.

V. M-WAY BLIND X-SECURE T-PRIVATE INFORMATION
RETRIEVAL

In this section, we propose a scheme that solves the gener-
alized problem: M-way blind X-secure T-private information
retrieval (MB-XS-TPIR). The rate achieved by this scheme is
R=1—X+T,+---+Ty)/N.

MB-XS-TPIR has been formalized in Section II. In brief,
MB-XS-TPIR enables M users who independently specify M
indices 61, ...,60y (6, is specified by user m) to retrieve
a message W(0y,...,6y) from a database W which is X-
securely stored at N distributed servers, with (7,)-Privacy and
User-User Privacy constraints satisfied.

The MB-XS-TPIR scheme proposed in this section is still
based on Cross Subspace Alignment (CSA) and is a natural
extension of the DB-TPIR scheme. The main difference is
that in this case, the database W is an M-dimensional tensor
instead of a 2-dimensional matrix in DB-TPIR.

A. Brief Review of Tensors

Let us briefly review the key properties of tensors that we
will need. Specifically, an M-dimensional tensor is an M-
dimensional array. For instance a 2-dimensional tensor is a
matrix, and a 3-dimensional tensor is a cuboid made up of
several matrices. Each dimension of a tensor is called a mode.
The m™ dimension is called mode-m. The tensor operation
we mainly need is the operation called mode-m tensor vector
multiplication. Readers can refer to [71, Ch. 3, Sec. 3.1.2] for
more details.

Definition 1 (Mode-m Tensor Vector Multiplication): The
mode-m multiplication of a tensor A € Fa K2 KM it o
column vector b € ]FK’”Xl results in the tensor,

C=Ax,b, (48)

K1 X XKy 1 X1 X Kppp1 X X Ky

where C € Fy , and each element of
Cis specnﬁed as
C(kI, R AR l,km—i-l’ ~--,kM)
> Alk ... ki) - blk). (49)
k€l 1:Kn

Note that this operation is a multilinear operation, so distribu-
tive law applies to this operation.

B. General MB-XS-TPIR Scheme

Before formally presenting our MB-XS-TPIR solution, let
us briefly explain at a high level how our solution translates
into the problem of secure distributed tensor product computa-
tion. For our solution, we first arrange the data into L tensors
WD, WD, where WO e Ry R Ky e 11 s
comprlsed of the I symbol of each of the K 1K2 - Ky mes-
sages. The tensorized data is secret shared among the N servers
as (S(l) ...,si,L))ne[l:N] to guarantee X-security. Next, the
M vectors e, (61), ..., ek, (0y), corresponding to the indices
specified by the M users, are secret-shared among the N
servers in the form of the queries (Q(1 0‘), Q(M QM))ne[l;N]
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to retrieve the desired message. (Q,({"’g”’) Jne[1:N] 1s the secret-
sharing of the query from the m' user that ensures 7T,
privacy. Most importantly, with this construction of queries and
tensorized data, retrieving the desired message corresponds
to retrieving tensor products of the privatized queries and
secured data. From this point on, the achievability scheme
for MB-XS-TPIR can indeed be viewed as a secure coded
tensor product computation, which is an multilinear opera-
tion with M + 1 inputs, for which CSA codes [61] can be
used. To optimize the download cost for MB-XS-TPIR, the
parameters of the CSA codes are chosen as: K. = 1,¢ =

— X+ er1:m Tm)- Note that the proposed scheme auto-
matically recovers asymptotically optimal schemes for various
special cases of MB-XS-TPIR, such as PIR, TPIR, XS-TPIR,
etc. This further underscores the connection between various
forms of PIR and coded distributed computing.

Now let us proceed to formally present our MB-XS-TPIR
scheme. Throughout this scheme we set L =N — (T1 + T» +

--+Ty) — X. Let F, be a finite field with ¢ > L+ N and let

fi,... fL,ai, ..., ay be L+ N distinct elements in [F,;. These
L + N elements are known to the N servers and M users.

The private randomness available at user m to keep its index
O Ty-private is

Zp = [Zf,lzt |[tell:Tyl,lell: L]} Vm e [l : M], (50)
where the column vectors Zf,l,),, € ]Ff,(’”Xl have entries drawn
iid. uniform from F,.

For compact notation, we write Z T,, instead of
Zme[l:M] T,,. The common randomness Z shared among N
servers for protecting inter-user privacy is specified as

Z= {Z~|ie [o: ZTm+X—1]},
where Z;,i € [0 : > Tm+X—1] are Y _ T, + X random noise

variables that are i.i.d. and uniform over I,,.
To form X-secure storage of the data, let us introduce

Z={Zi,Ixell : XLlcl: L},

(51

(52)

which are independent uniform random noise tensors from
]FK 1 XX Ku

q : . S
The database W can be split into L parts, each of which is

an M-dimensional tensor. This partitioning is specified as
W= (WO W, W),

W(I) c FKI XKy x--xKpy
q

Vie[l:L], (53)

so that W contains the " symbol of every message.
The independence between the messages, indices,
noises is specified as

H(W (em)me 1:M]> (Zm)me [1:M]> g Z\>

= > H(WO)+ > HEw

le[1:L] me[1:M]

+ Y HEZw+HEZ)+H(Z)

me[1:M]
=LK Kuy+ Y HOn)+ Y. LKuTy
me[1:M) me[1:M]

+ Z T+ X + LK; - - KyX.
me[1:M]

and

(54)

To keep the database W X-secure, W is secret-shared among

N servers. The n™ server holds the share S, = (Sfl]), R Sf,L))
where
SO=W+ S (i - Z. (55)

xell @ X]

Note that ex(#) is the 6™ column of the K x K identity
matrix. With the tensor vector multiplication defined above,
the desired message can be written as

GM)) ell:L)]

= (WU) X1 ek, (01) X2 ek, (62) x3---

WO, ....00) = (W<’> ©. .

Xurexsy On)) (56)

le[i:L]’

To guarantee T),-privacy, the index specified by the m™ user
is protected by T, random noise vectors. The queries sent from
the m™ user to the n” server are constructed as Q(m m) -
(Q(m 20m) Q(m em), .. Q;(/:n ,0m) ) where

9’11 l
U = e, @)+ D (fi— o)L
te[1:Ty]
Ll,me[l: M].

Vie[l: (57)

With the queries from the M users and stored S,, the n’”
server first computes an intermediate result

B1.62.....0m)
1,6 26
=Zf_ S(I)XQ( I)XQ( 2) o
rert-n)’! n
M6,
- X Q;(1,l 2
Z f_ WO i ek, (01) x2 -+ xur ey (On)
e[ 1 — Op
mtX—1
+ Iy +Otn11+ oz X Iy 7, 4x—-1
Z —— W@ ... 6)
[ Vl
m -1
+IO+O[,1]1+...+C¥,1ZT X IZTWH‘X—I‘ (58)

As before, o, ..., Iy 7, 1x—1 are > T + X interference
terms which are useless. Note that the distributive law applies
here because mode-m multiplication is a multilinear operation.
The highest order of «, is >_ T, + X — 1, which results from

2

lefl : L]f’ —Yn

xg X (i — o) ML (59)

7 l
(fl - an)XZl,X X1 (fl - aiz)TlZ(1’)7~1

Similar to DB-TPIR, the interference terms may contain
some information of the indices specified by all users. To
guarantee privacy between users, servers will add common
randomness shared among them to the intermediate results to
generate their answers for each user. Specifically, the answer
from server n is

AGn) — B0 LT 4 0, %
TutX—17
+ o 23 T+X—1
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= > W<l>(91,...,9M)+(10+ZO)+-.-
le[1: L]fl —
Jo
TntX—1 >
+ o Iy 14x-1 + Zy 1p4x-1) - (60)

Iy Tip+x—1

The matrix form of (60) is similar to (44), we omit it here.
Since L = N —)_ T,, — X dimensions are occupied by desired
message symbols and > T,, + X dimensions are occupied by
the noisy versions of interference terms (J), the rate achieved
here is

L T, X
R:—:l—ZL.

N N 61)

C. Example

Let us provide a simple example for illustration.

N = 8 Servers, M = 3 users with T\ = T, = 1,T3 = 2,
X=2L=2.

The storage at Server n and the queries from the 3 users
are listed as follows.

Server ‘n’
SO WO + (ff —a)Zi1 + (fi —an)*Zi o
SP WO+ (h —aZoy + (fr — an)*Zon

o ek, (0D + (i — )2}
o'y ex, (01) + (fo — an)Z{))
o ex,(02) + (fi — an)Z3)|
0% ex, (62) + (f2 — an)ZS)

I
— anZ3) + (fi — o) *Z5)
2 2
—a)Z) + (fr — an)*ZS)

0™ e, 63) + (i
Q( 95) ek, (03) + (2

The intermediate result is

1
—— WD, 6,,63)

01,02,0
B61.62,63)
]—Oln

W‘”<91, 62, 603) + I + -

fz — +012[5.

The highest order of o is Ssince T1 +Tr + T3 +X —1=15
in this case. The answer from the server is

1
A0 — WD gy, 0,,605)+ W@ (0, 6,,63)
1— Uy f2_an
+ (o+Zo) + - - - +a)) (Is+Z5) .
——— ———

Jo Js

Evidently, the desired symbols occupy 2 dimensions, the
aligned interference occupies 6 dimensions, and the rate
achieved is 2/8 = 1/4.

To further explain the example intuitively, (S,(j))lem] can
be viewed as the secret shares of W), W® for the N servers,
and Q(1 01 Q(1 %) can be viewed as two independent shares of

ek, (61) at the n* server, n € [1:N]. Similarly, Q;ziQZ), Qi(lz’zg”

and Q(3 :03) Q(3’93) are independent shares of eg,(f2) and

ek, (03), respectively. B(el 9299 is constructed following the

idea of CSA codes [61] such that the interference symbols
align within the 6 dimensions of the subspace spanned by the
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Vandermonde terms, while the two desired symbols, re re-
sented as W (61, 62, 63) = W 1 017 %, 0% %300,
and W01, 02, 03) = WO x; o) 3 0™,
remain resolvable along the Cauchy terms.

29
Q( 2)

VI. CONCLUSION

We explored the problem of M-way blind X-secure 7-
private information retrieval (MB-XS-TPIR). We found the
asymptotic capacity of double blind T-private information
retrieval (DB-TPIR), which is a special case of MB-XS-TPIR,
under a bounded-latency constraint. The achievable scheme
was constructed based on Cross-Subspace Alignment. We
then generalized the scheme using tensor-products into an
MB-XS-TPIR scheme where the number of users (M), stor-
age security-level (X) and privacy level of each user’s index
(T1, T, ..., Ty) can be arbitrarily chosen.

This work leads to a number of open problems. Foremost is
the question of optimality of the proposed solutions. For exam-
ple, the asymptotic capacity for MB-XS-TPIR remains open.
For non-asymptotic settings, the capacity remains open even
for DB-TPIR. As discussed in the introduction, we expect that
our solution to MB-XS-TPIR may be asymptotically optimal.
In fact, we expect that our solution may be optimal even in
non-asymptotic settings. This is because of the constraint that
the user must learn nothing about the other users’ indices,
which is reminiscent of ‘symmetric’ privacy constraints in
PIR. Prior works, e.g., [12], [18], [72], [73], suggest that the
capacity of PIR under symmetric privacy constraints tends to
be the same as the asymptotic capacity without symmetric pri-
vacy constraints. Another open problem is to characterize the
minimal amount of common randomness needed to be shared
among servers for MB-XS-TPIR. Finally, yet another promis-
ing direction for future work is the setting of secure multiparty
computation where the messages W(6y, 65, ..., Oy) are deter-
ministic functions of (01, 6,,...,6)). What makes these
settings challenging is that their upload costs may not be negli-
gible relative to download costs, so instead of a capacity figure
the optimal solution may be a tradeoff between the upload and
download costs.

APPENDIX
A. Proof of Corollary 1

Let us focus on (17), i.e., inter-user privacy from the 1%
user’s perspective. Similar reasoning will apply to (18).

When 77 = Tp, = 1, N = L + 2, we neglect the 7 on
superscripts or subscripts of all symbols. With this simplified
notation, the private randomness of each of the two users can
be expressed as

Z = {Zﬁ” |le [1:L]},Zz - {Z;” e [I:L]}.

The intermediate result computed by the n™ server can be

written as

(1,60 (1) 2. ) |
0,7 WonH
fl —Qy "
L 60 wib) o260
fL _ Qn,Ll W Qn,L2
p n

01,62) _
Bftl )=

(62)
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1
= ek, (0 WWeg, () + -

fl —Qp

L e 0y W® 63
+ ek, (61) W ek, (62) (63)

JL—an

/ /

+ 3 (2 WOek, 62) + ex, @) WOZY + £z WOZ)

le[1:L]

Io
(64)
ta [ Y z'wozd | (65)
le[1:L]

il

Note here that even though the expressions for Iy, I are fairly
involved, they are just 2 random variables in F,. Meanwhile,
BE?!I’\;O]Z) is an invertible function of W(0y, 6»), Iy, I;.

Let us define three sets that contain all the components of

Iy, I except e, (91)/W(1)Z§1) and Zgl)/W(l)Z(zl). Specifically,

T, = {zﬁl)/WU)eKz(ez) llell: L]], (66)

T, = {eK, OyYWOzZP 1 1e2 L]}, (67)

Ty = {zﬁ’VW(’)zg” llel2: L]}. (68)

So in g-ary units, we have
1(02: B 1601, 21, Won, 02)) (69)
=102, W(61,602), 1o, 11 | 61, Z1, W(61, 62)) (70)
=1(62; 1o, 11 | 61, Z1, W(b4, 62)) (71)
=H(p, 11 |01, 21, W01, 62))

— H(ly, I1 | 61, 21, W61, 02), 62) (72)
<2—H(lo,I1 | 61, 21, W(61,62), 02, I11.3)  (73)
=2 H(ex, @YWZ, ZVWOZ 1),

Z1,W(b1,62), 02, I[1:3]>- (74)

Equation (73) results from the fact that Io, /; are in [F; and
conditioning reduces entropy. Equation (74) holds because
elements in Zj;.3) can be subtracted from Iy, /;.

To proceed further we need to define the following new
random variables.

1, if WO has full-rank,

Er = {O, otherwise. (75)
o (1) (¢))
B = 1, ifZ;” # 0 and Z'1 AL ek, (61), (76)
0, otherwise.

Recall that Zgl) Al ek, (61) denotes that the two vectors are
linearly independent. We have

ez (6 —a")

Pr(E; = 1) = = : (77)
q

Pr(E=1)=1-— qK—l_l, (78)

Pr(E) = 1,E, = 1) =Pr(E; = 1) -Pr(E, = 1).  (79)

Note that the numerator of (77) is the order of the general lin-
ear group of degree K over ;. Equation (79) follows because
E| and E, are independent.

Consider the second term of (74), we have

H(eK1 OYWHZL Z2O'WhzD [,

21, W (01,6, 62, T3 (80)

= H(ex, )WV, 2" WOZ | 0y, 2,
W©1,6). 62 Tyia), Er, E2) 81)

>PrEy=1,E,=1)

H(ex, @y WOZ, 2" WOZ 6, 2,

W(61,62),62, Ip1:3, Er = 1, E2 = 1), (82)
Let Ry, Ry be two row vectors and

R, = ex, (0)WD Ry = ZV'WO. (83)

Ey = 1 implies that W has full-rank. E, = 1 means that Z!"
and ek, (01) are linearly independent. So Ry, Ry are linearly
independent. Let (7, j) € [1 : K] x[1 : K], i # j be the smallest
pair such that
Ri() Ri())
M= . . 84
[Rzm R () &9
Such (7, j) must exist due to the linear independence of R;
and Rz._
Let 2, = {Zél)(k) | k € [1: K]\{i,j}} contain all the entries
of Zgl) except Zgl) (1), Z(zl)(j), for (82), we have

}, det(M) # 0.

2> H(eKl OWHzZP ZWhzh | g, 2,

W(61,02),62, In131, E1 = 1, B2 = 1) (85)
= H(R1ZS, RoZ{" |1, 21,

W(1,62),0:, Iz, E1 =1, E = 1) (86)
> H(Rllél), Rzz(zl) | 61, Z1, W(61, 02), 02, 1113,

E1=1,E2=1,R1,R2,i,j,Z) 87)
= H(M[%ig;]wl 21, W1, 0), 6, T,

E1=1,E2=1,R1,R2,i,j,?2> (88)
= H(Z" (). 25"G) | 61, 21, W1, 62). 62, Ty,

E1=1,E2=1,R1,R2,i,j,§2)=2 (89)

in g-ary units. Equation (88) holds because we can subtract

other components of RlZél),RQZg) given the conditioned

terms. Equation (89) results from the fact that M is invertible

and Z;l)(i), Z;l)(j) are independent of all conditioned terms.
So for the second term of (74) we have

H(ex, 0 WOZ, "Wz | 0y, 2,

W(O1.62). 62, Tia)) = 2Pr(Er = LE = 1. (90)
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Combining (90) with (74), we have

1(62: BIGE 161, 21, W61, 62)) 1)
<2(1-Pr(Ey =1, E=1)) 92)
1\ eepe (6° = d71)
=2{1—-(1- : (93)
( QK_1> s
1 K _ Kk-1\K
<2 1-(1— K_1>(q a) (94)
q g
=2(1 (1 : )(1 I)K 95)
gk q

To ensure that the LHS of (91) is bounded above by € for
q > qo, we can choose gg to be any value of g that bounds
the RHS of (95) above by e. |

B. Proof of Corollary 2

The lower-bound follows already from the proof of
achievability of Theorem 2. Here we prove the upper
bound. Any MB-XS-TPIR scheme with parameters
Ki,...,Ky,T1,...,Ty yields a total of M XS-TPIR
schemes. For the m™ XS-TPIR scheme where m € [1:M], the
user corresponds to the m” user of MB-XS-TPIR. All other
users in MB-XS-TPIR generate fixed indices so that the user
is retrieving a message in a database with K, messages, i.e.,
W@, ..., im—1,60ms im+1, - - -, i) wWhere 6, € [1:K,,;,] while
i1y« s im—1, im+1,---, iy are fixed, subject to T,-privacy
constraint frpanrlxN servers. The rate of MB-XS-TPIR cannot

exceed ﬁ because this value is the upper bound of

the achievallnvfe rates of XS-TPIR with N servers, K, messages
and T,,-privacy constraint according to [29]. Since this upper
bound holds for all m € [1:M], the upper bound of (20)
follows. ]
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