306 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

GCSA Codes With Noise Alignment for Secure
Coded Multi-Party Batch Matrix Multiplication

Zhen Chen
Zhiying Wang

Abstract—A secure multi-party batch matrix multiplication
problem (SMBMM) is considered, where the goal is to allow
a master to efficiently compute the pairwise products of two
batches of massive matrices, by distributing the computation
across S servers. Any X colluding servers gain no information
about the input, and the master gains no additional information
about the input beyond the product. A solution called Generalized
Cross Subspace Alignment codes with Noise Alignment (GCSA-
NA) is proposed in this work, based on cross-subspace align-
ment codes. The state of art solution to SMBMM is a coding
scheme called polynomial sharing (PS) that was proposed by
Nodehi and Maddah-Ali. GCSA-NA outperforms PS codes in
several key aspects—more efficient and secure inter-server com-
munication, lower latency, flexible inter-server network topology,
efficient batch processing, and tolerance to stragglers. The idea
of noise alignment can also be combined with N-source Cross
Subspace Alignment (N-CSA) codes and fast matrix multipli-
cation algorithms like Strassen’s construction. Moreover, noise
alignment can be applied to symmetric secure private information
retrieval to achieve the asymptotic capacity.

Index Terms—Distributed computing, coded computing,
matrix multiplication, secure multi-party computation, noise
alignment.

I. INTRODUCTION

ECENT interest in coding for secure, private, and dis-
Rtributed computing combines a variety of elements such
as coded distributed massive matrix multiplication, strag-
gler tolerance, batch computing and private information
retrieval [1]-[40]. These related ideas intersected recently
in Generalized Cross Subspace Alignment (GCSA) codes
presented in [40]. GCSA codes originated in the setting of
secure private information retrieval [37] and have recently been
developed further in [40] for applications to coded distributed
batch computation problems. GCSA codes generalize and
improve upon the state of art distributed computing schemes
such as Polynomials codes [2], MatDot codes and PolyDot
codes [3], Generalized PolyDot codes [4] and Entangled

Manuscript received August 14, 2020; revised November 17, 2020; accepted
January 14, 2021. Date of publication January 22, 2021; date of current version
March 16, 2021. This work was supported in part by NSF Grant CNS-1731384
and Grant CCF-1907053; in part by the Office of Naval Research (ONR) under
Grant N00014-18-1-2057; and in part by the Army Research Office (ARO)
under Grant W911NF-19-1-0344. (Corresponding author: Zhen Chen.)

The authors are with the Center for Pervasive Communications and
Computing, Department of Electrical Engineering and Computer Science,
University of California at Irvine, Irvine, CA 92697 USA (e-mail:
zhenc4 @uci.edu; zhugingj@uci.edu; zhiying@uci.edu; syed@uci.edu).

Digital Object Identifier 10.1109/JSAIT.2021.3052934

, Graduate Student Member, IEEE, Zhuqing Jia
, Member, IEEE, and Syed Ali Jafar ™, Fellow, IEEE

, Graduate Student Member, IEEE,

Polynomial (EP) Codes [5] that partition matrices into sub-
matrices, as well as Lagrange Coded Computing [6], [7] that
allows batch processing of multiple computations.

As the next step in the expanding scope of coding for dis-
tributed computing, recently in [41] Nodehi and Maddah-Ali
explored its application to secure multiparty computation [42].
Specifically, Nodehi et al. consider a system including N
sources, S servers and one master. Each source sends a coded
function of its data (called a share) to each server. The servers
process their inputs and while doing so, may communicate
with each other. After that each server sends a message to the
master, such that the master can recover the required function
of the source inputs. The input data must be kept perfectly
secure from the servers even if up to X of the servers collude
among themselves. The master must not gain any information
about the input data beyond the result. Nodehi ef al. propose
a scheme called polynomial sharing (PS), which admits basic
matrix operations such as addition and multiplication. By con-
catenating basic operations, arbitrary polynomial function can
be calculated. The PS scheme has a few key limitations. It
needs multiple rounds of communication among servers where
every server needs to send messages to every other server. This
is a concern because communication increases the risk for col-
lusion. Furthermore, PS carries a high communication cost and
requires the network topology among servers to be a complete
graph (otherwise data security may be compromised), does not
tolerate stragglers, and does not lend itself to batch process-
ing. These aspects (batch processing, improved inter-server
communication efficiency, various network topologies) are
highlighted as open problems by Nodehi and Maddah-Ali [41].

Since GCSA codes are particularly efficient at batch pro-
cessing and already encompass prior approaches to coded
distributed computing, in this work we explore whether GCSA
codes can also be applied to the problem identified by
Nodehi et al. In particular, we focus on the problem of secure
multiplication of two matrices. Such a problem may arise, e.g.,
in correlation analysis between privately held genomic datasets
to determine genetic connections without revealing anything
else. As it turns out, in this context the answer is in the affir-
mative. Securing the data against any X colluding servers is
already possible with GCSA codes as shown in [40]. The only
remaining challenge is how to prevent the master from learning
anything about the inputs besides the result of the computa-
tion. Let us refer to the additional terms that are contained
in the answers sent by the servers to the master, which may
collectively reveal information about the inputs beyond the

2641-8770 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 20:04:12 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6200-2368
https://orcid.org/0000-0002-8329-9911
https://orcid.org/0000-0003-3339-3085
https://orcid.org/0000-0003-2038-2977

CHEN et al.: GCSA-NA FOR SMBMM

result of the computation, as interference terms. To secure
these interference terms, we use the idea of Noise Alignment
(NA) — the workers communicate among themselves to share
noise terms (unknown to the master) that are structured in
the same manner as the interfering terms. Because of their
matching structures, when added to the answer, the noise terms
align perfectly with the interference terms and as a result no
information is leaked to the master about the input data besides
the result of the computation. Notably, the idea of noise align-
ment is not novel. While there are superficial distinctions,
noise alignment is used essentially in the same manner in [43].

The combination of GCSA codes with noise alignment,
GCSA-NA in short, leads to significant advantages over PS
schemes. Foremost, because it uses GCSA codes, it allows
the benefits of batch processing as well as straggler robust-
ness, neither of which are available in the PS scheme of [41].
The only reason any inter-server communication is needed
in a GCSA-NA scheme is to share the aligned noise terms
among the servers. Since these terms do not depend on the
data inputs, the inter-server communication in a GCSA-NA
scheme is secure in a stronger sense than possible with PS, i.e.,
even if all inter-server communication is leaked, it can reveal
nothing about the data inputs. The inter-server communication
can take place before the input data is determined, say dur-
ing off-peak hours. This directly leads to another advantage.
The GCSA-NA scheme allows the inter-server communication
network graph to be any connected graph unlike PS schemes
which require a complete graph. In fact, the GCSA-NA scheme
works even if inter-server communication is entirely disal-
lowed, because the aligned noise can be equivalently generated
by either of the source nodes and sent to the servers. By disal-
lowing communication among servers, GCSA-NA may reduce
the probability of collusion among servers relative to PS where
all servers must communicate with each other.

The rest of this article is organized as follows. Section II
presents the problem statement. In Section III we state the
main result and compare it with previous approaches. A toy
example is presented in Section IV. The construction and proof
of GCSA-NA are shown in Section V. Section VI concludes
this article.

Notation: For positive integers M, N (M < N), [N] stands
for the set {1, 2, ..., N} and [M : N] stands for the set {M, M+
1,...,N}. For a set T = {iy,ip,...,in}, X7 denotes the
set {X;,, X;,, ..., Xiy}. The notation ® denotes the Kronecker
product of two matrices. Iy denotes the N x N identity matrix.

T(X1, X>, ..., Xn) denotes the N x N lower triangular Toeplitz
matrix, i.e.,
X1
X2 X
TX1, X2, ..., Xn) = | . ‘ '
Xy - X Xi

For a matrix M, |[M| denotes the number of elements in M. For
a polynomial P, deg, (P) denotes the degree with respect to a
variable «. Define the degree of the zero polynomial as —1.
The notation @ (alog® b) suppresses polylog terms for compu-
tation complexity. It may be replaced with O(alog? b) if the

307
A= (AW, AW) z4 B=(BY,... BW), 2~
L
/ B
AAAAA ADB®E
I(A,B; Y, Yy, -, Ys | AB) =0
Fig. 1. The SMBMM problem. Sources generate matri-
A = (A(l),A(z),...,A(L)) with separate noise 24 and

ces =

B = (B(l), B(Z), o B(L)) with separate noisNe Z%, and upload information
to § distributed servers in coded form AlS1, BIS], respectively. Servers may
communicate with each other via dash-dotted links. For security, any X col-
luding servers (e.g., Servers iy to iy in the figure) learn nothing about A, B.
The s™ server computes the answer Y, which is a function of all information
available to it. For effective straggler (e.g., Server S in the figure) mitigation,
upon downloading answers from any R servers, where R < S, the master must
be able to recover the product AB = (A(I)B(l),A(Z)B(z), . ..,A(L)B(L)).
For privacy, the master must not gain any additional information about A, B
beyond the desired product AB.

field ' supports the Fast Fourier Transform (FFT), and with
O(alog? bloglog(h)) if it does not.

II. PROBLEM STATEMENT

Consider a system including 2 sources (A and B), S servers
(workers) and one master, as illustrated in Fig. 1. Each source
is connected to every single server. Servers are connected to
each other,! and all of the servers are connected to the master.
All of these links are secure and error free.

Source A and B independently generate sequences> of
L matrices, denoted as A = (AD A® .. AD) and
B = BY,B?, ... BD), respectively, such that VI €
L], AY e TF*>*< and B® e TF**A. The master is
interested in the sequence of product matrices, AB =
(A(I)B(l),A(Z)B(Z),...,A(L)B(L)). The system operates in
three phases: 1) sharing, 2) computation and communication,
and 3) reconstruction.

1) Sharing: Each source encodes (encrypts) its matrices
for the s server as A® and B°, so A* = f;(A, Z4),B* =
gs(B, ZB), where Z4 and Z58 represent private randqvmngss
(noise) generated by the source. The encoded matrices, A®, B®,
are sent to the s server.

2) Computation and Communication: Servers may send
messages to other servers, and process what they received
from both the sources and other servers. Denote the com-
munication from Server s to Server s’ as M,_y. Define

IWhile we allow these links (dash-dotted lines in Figure 1) for the sake of
consistency with the original formulation in [41], these links are not necessary
for our solution. See the remark following the definition of security & strong
security.

2The batch size L can be chosen to be arbitrarily large by the coding
algorithm.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 20:04:12 UTC from IEEE Xplore. Restrictions apply.

308 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

Mg & (My_ s’ € [S]\ {s}} as the messages that Server s
receives from other servers, and M £ {M|s € [S]} as the
total messages that all servers receive. After the communica-
tion among servers, each server s computes a response Y and
sends it to the master. Y is a function of A%, B® and Mj,
ie., Yy = hy(AS, B, My), where hy, s € [S] are the functions
used to produce the answer, and we denote them collectively
as h = (hy, hy, ..., hg).

3) Reconstruction: The master downloads information from
servers. Some servers may fail to respond (or respond after
the master executes the reconstruction), such servers are called
stragglers. The master decodes the sequence of product matri-
ces AB based on the information from the responsive servers,
using a class of decoding functions d = {dg|R C [S]} where
dr is the decoding function used when the set of responsive
servers is R.

This scheme must satisfy three constraints.

Correctness: The master must be able to recover the desired
products AB, i.e.,

H(AB|YR) =0, (D

or equivalently AB = dr (YR), for some R.

Security & Strong Security: We first define security which
is called privacy for workers in [41]. The servers must remain
oblivious to the content of the data A, B, even if X of them
collude. Formally, VX C [S], |X| < X,

I(A, B: AY BY, MX) —0. @)

In this article, strong security is also considered. It requires
that the information transmitted among servers is independent
of data A, B and all the shares A[S], B[S], 1.€.,

I(A, B, AlS BISI, M) —o. 3)

This property makes it possible that inter-server commu-
nications happen before receiving data from sources, and
makes the server communication network topology more flex-
ible. Note that PS does not satisfy strong security because
H(AB|M) = 0 in the PS scheme.

Remark: M can be shared among servers in various ways
that satisfy strong security. For example, the servers can share
M a-priori during an initial setup phase, so that there is no
communication among servers during the actual computation
phase. Alternatively, M can come from a service provider
whose sole purpose is to generate structured noise and send
it to each server. Finally, M can also be separately gener-
ated by either of the source nodes (independent of the input
matrices and their coded shares) and sent to each server. This
only makes uses of existing communication links between
the source and server nodes, and requires no communication
between servers.

Privacy: The master must not gain any additional
information about A, B, beyond the required product.

Precisely,
I(A,B;Y,Y2,...,Ys|]AB) = 0. (@)

This is the privacy for the master in [41].

Remark: There is another setting for secure distributed
matrix multiplication that appears in the literature, where the
input matrices originate at the master node itself [26]-[30],
[44]. In that case, while the solution presented in this work
will still apply, the privacy aspect would be irrelevant because
the master already knows both A and B. Correspondingly, our
solution degenerates to a special case called X-secure GCSA
codes (see [40, Remark 2, Appendix A]). Since privacy is an
important aspect of this work, we assume that the source nodes
are distinct from the master node as shown in Figure 1.

We say that (f,g,h,d) form an SMBMM (Secure coded
Multi-party Batch Matrix Multiplication) code if it satisfies
these three constraints. An SMBMM code is said to be r-
recoverable if the master is able to recover the desired products
from the answers obtained from any r servers. In particular, an
SMBMM code (f, g, k, d) is r-recoverable if for any R C [S],
IR| = r, and for any realization of A, B, we have AB =
dr (YRr). Define the recovery threshold R of an SMBMM code
(f, g, h, d) to be the minimum integer r such that the SMBMM
code is r-recoverable.

The communication cost of an SMBMM code is comprised
of these parts: upload cost of the sources, communication cost
among the servers, and download cost of the master. The
(normalized)3 upload costs Uy and Up are defined as follows.

Zse[S] |A%] Zse[S] |B*|

Up=8 g = 5
A B L (5)

LAk

Similarly, the (normalized) server communication cost CC and
download cost D are defined as follows.

_ Tmem M|
Lip

2ser|Ys]
Lipw

cc (6)

, = max
R, RCISL,IRI=R
Next let us consider the complexity of encoding, decoding

and server computation. Define the (normalized) computa-
tional complexity at each server, Cs, to be the order of the
number of arithmetic operations required to compute the func-
tion hg at each server, normalized by L. Similarly, define ~the
(normalized) encoding computational complexity C,4 for Al
and C,p for BI%! as the order of the number of arithmetic oper-
ations required to compute the functions f and g, respectively,
each normalized by L. Finally, define the (normalized) decod-
ing computational complexity Cy to be the order of the number
of arithmetic operations required to compute dr (YR), maxi-
mized over R, R C [S], |R| = R, and normalized by L. Note
that normalization by batch-size L is needed to have fair com-
parisons between batch processing approaches and individual
matrix-partitioning solutions per matrix multiplication.

III. MAIN RESULT

Our main result appears in the following theorem.

Theorem 1: For SMBMM over a field [F with S servers,
X-security, and positive integers (¢, K., p, m, n) such that m|A,
ple, nlp and L = (K, < |F| — S, the GCSA-NA scheme

3We normalize source upload cost with the number of elements contained
in the constituent matrices A, B. The server communication cost and master
download cost are normalized by the number of elements contained in the
desired product AB.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 20:04:12 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GCSA-NA FOR SMBMM

309

TABLE I
PERFORMANCE COMPARISON OF PS AND GCSA-NA

Polynomial Sharing (PS [41])

GCSA-NA

Strong Security No

Yes

Recovery Threshold (R)

2pmn +2X — 1

pmn(l+1)K. +2X —1

Straggler Tolerance

No (S = R)

Yes. Tolerates S — R stragglers

Server Network Topology

Complete Graph

Any Connected Graph

Source Encoding ~ (AxSlog? S\ A (kpSlog? s 5 (AxSlog? S\ A (kpSlog? s
Complexity (CEA7CEB) (O < pm) 0 (pn)) (O (Ke.pm) 0 (Kc:pn))
Source Upload Cost (Ua,Up) (pim, p%) (Kj)m, Kfpn)
Server Communication Cost (CC) S<7i;1> 7 }g ;}m
Server Computation Ak ~ [Slog? SAp Akl A ~ (Aplog? S
Complexity (cé) & (pmn) + o (/\'u’) + o (mn) o (chmn> + o (Kcmn) + o (LK.mn)
+0 (BT M) v o (2ot if = > 5 ~O ()it 5> S

Master Download Cost (D) mntX EL
mn K.mn

Master Decoding Complexity (Cq4)

O (Aplog?(mn + X))

O (Applog®(R))

presented in Section V is a solution, and its recovery threshold,
cost, and complexity are listed as follows.

Recovery Threshold: R = pmn(£ + 1)K, + 2X — 1,

~r o~ S S

Source Upload Cost ofA[S], BISI. (Up,Up) = —, ,
Kepm: Kepn
. S—1
Server Communication Cost: CC = ,
LK .mn
Master Download Cost: D = ,
LK .mn

Source Encoding Complexity for AlST BISI

rkSlog? s kuSlog® S

K.pm K.pn

(CeA’CeB) = <6<),6(

Server Computation Complexity: C; = (9(

)
)

Master Decoding Complexity: Cy = 5<Aup log2 R).

Ak L

K.pmn

The following observations place the result of Theorem 1
in perspective.

1. GCSA-NA codes are based on the construction of GCSA
codes from [40], combined with the idea of noise-alignment
(e.g., [43]). In turn, GCSA codes are based on a combina-
tion of CSA codes for batch processing [40] and EP codes for
matrix partitioning [5]. CSA codes are themselves based on
the idea of Cross-Subspace Alignment (CSA) that was intro-
duced in the context of secure Private Information Retrieval
(PIR) [37]. It is a remarkable coincidence that while the idea
of CSA originated in the context of PIR [37], and Lagrange
Coded Computing (LCC) was introduced in parallel indepen-
dently in [6] for the context of coded computing, the two
approaches are essentially identical, with CSA codes being
slightly more powerful in the context of coded distributed
matrix multiplication (CSA codes offer additional improve-
ments over LCC codes in terms of download cost [40]).
Indeed, LCC codes for batch matrix multiplication are recov-
ered as a special case of CSA codes.

2. The idea of noise alignment can be applied to the N-CSA
codes [40], for N-source secure coded multi-party batch matrix
computation. In [7], Strassen’s construction [45], combined

with LCC, are introduced for batch distributed matrix multi-
plication for better computation complexity. Noise alignment
is also applicable to Strassen’s constructions (see Section VI).
By setting K. = 1, £ = L and § = R, the construction of
GCSA-NA codes, with a straightforward generalization, can
be further modified to settle the asymptotic (the number of
messages go to infinity) capacity of symmetric X-secure 7-
private computation (and also symmetric X-secure 7-private
information retrieval XSTPIR) [37]. However, the amount of
randomness required by the construction is not necessarily
optimal. For example, it is shown in [37] that by the achievable
scheme for XSTPIR, symmetric security (privacy) is automati-
cally satisfied when T = 1, i.e., no randomness among servers
is required.

3. A side-by-side comparison of the GCSA-NA solution
with polynomial sharing (PS) appears in Table 1. Because
all inter-server communication is independent of input data,
GCSA-NA schemes are strongly secure, i.e., even if all inter-
server communication is leaked it does not compromise the
security of input data. In GCSA-NA the inter-server network
graph can be any connected graph. This is not possible with
PS. For example, if the inter-server network graph is a star
graph, then the hub server can decode AB by monitoring
all the inter-server communication in a PS scheme, violating
the security constraint. Unlike the PS scheme, in GCSA-NA,
all inter-server communication can take place during off-peak
hours, even before the input data is generated, giving GCSA-
NA a significant latency advantage. Unlike PS where every
server must communicate with every server, i.e., S(S — 1)
such inter-server communications must take place, GCSA-NA
only requires S — 1 inter-server communications to propagate
structured noise terms across all servers. This improvement is
shown numerically in Fig. 2(a). The server computation com-
plexity is also lower for the GCSA-NA scheme than the PS
scheme. This is because in PS, each server needs to multiply
the two shares received from the sources, calculate the shares
for every other server and sum up all the shares from every
other server. However, in GCSA-NA, each server only needs
to multiply the two shares received from the sources and
add noise (which can be precomputed during off-peak hours).
This advantage is particularly significant for large number

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 20:04:12 UTC from IEEE Xplore. Restrictions apply.

310

—— GCSANA, S= R
GCSA-NA, § = 15R
10* | === rps, s = R

10%

= GCSA-NA, S = R
GCSA-NA, S = 1.5R
—PS,S=R

10°

10?
10t

server commmunication cost, CC

server commmunication cost, CC'

2 4 6 8 10 2 4 6 8 10
partition size, p batch size, L

() (b

Fig. 2. A =« =, p=m = n. (a) Server communication cost vs. partition
size, given L = 1, X = 5. (b) Server communication cost vs. batch size, given
p=2,X=5.

of servers. The GCSA-NA scheme naturally allows robust-
ness to stragglers, which is particularly important for massive
matrix multiplications. Stragglers can be an especially sig-
nificant concern for PS because of the strongly sequential
nature of multi-round computation that is central to PS. This
is because server failures between computation rounds disrupt
the computation sequence. Remarkably, Fig. 2(a) shows that
the inter-server communication cost of GCSA-NA is signif-
icantly better than PS even when GCSA-NA accommodates
stragglers (while PS does not).

When restricted to batch size 1, ie., with £ = K, = 1,
GCSA-NA has the same recovery threshold as PS. Now con-
sider batch processing, i.e., batch size L > 1, e.g.,, with
L = K., £ = 1. PS can be applied to batch processing by
repeating the scheme L times. Fig. 2(b) shows that the nor-
malized server communication cost of GCSA-NA decreases
as L increases and is significantly less than that in PS. For the
same number of servers S, the upload cost of GCSA-NA is
smaller by a factor of 1/K, compared to PS. GCSA-NA does
have higher download cost and decoding complexity than PS
by approximately a factor of p, which depends on how the
matrices are partitioned. If p is a small value, e.g., p = 1,
then the costs are quite similar. The improvement in down-
load cost and decoding complexity of PS by a factor of 1/p
comes at the penalty of increased inter-server communication
cost by a factor of S. But since S > R > 2pmn+2X —1 > p,
and typically S > p, the improvement is dominated by the
penalty, so that overall the communication cost of PS is still
significantly higher.

IV. Toy EXAMPLE

Let us consider a toy example with parameters A = x =
um=n=1,p=21=1K =2,X=1and § =R
Suppose matrices A,B € F***, and we wish to multiply
matrix A = [A; A;] with matrix B = [BY BJ]” to com-
pute the product AB = A;B; + A;B;, where A1, A; €
]F)‘X%, B;,B; € F2** For this toy example we summarize
both the Polynomial Sharing approach [41], [46], [47], and
our GCSA-NA approach.

A. Polynomial Sharing Solution

Polynomial sharing is based on EP code [5]. The given par-
titioning corresponds to EP code construction for m =n =1,

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

p =2, and we have

P=A +aA;, Q=oB;+B,.
— PQ = ABy +a(AB; + A2By) + o?AsB.

(7
®)

To satisfy X = 1 security, PS includes noise with each share,
ie,A=P+a27A, B = Q+a275, where a, KN, B are generic
variables that should be replaced with oy, A*, B® for Server s,
and o, ...,as are distinct elements. Each server computes
the product of the shares that it receives, i.e.,

AB = PQ + o2PZP + o?72Q + «* 777" 9)
=AB +a(AB; + AB))
+ o (AsBy + AIZ + 2°B,)
+d3 (AQZB + ZABl) +a*778. (10)

To secure inputs from the master, PS requires that every
server sends to the master only the desired term A|B; +
A;B; by using secret sharing scheme among servers. Since
dego(AB) = 4, A|B; + A;B; can be calculated from 5
distinct AB according to the Lagrange interpolation rules.
In particular, there exist 5~ constants ri, ..., rs, such that
A1B; + A%p{ = er[ﬂ rsASB®. Consider Server s, it sends
M;_.; = rsA’B° +0o;Z; to Server j, where Zy, ..., Zs are i.i.d.
uniform noise matrices. After Server s collects all the shares
M;_., it sums them up

Y, = Z M = AiBi 4+ AsB) + ay Z Z
jels] jels]

(1)

and sends Yy to the master. Note that after receiving Mj_, ¢
for all j € [5], Server s still gains no information about the
input data, which guarantees the security. However, it does not
satisfy strong security, because AB can be decoded based on
M-, j,s € [S].

The master can decode AB after collecting 2 responses from
servers.* Note that PS needs at least § = R =5 servers, since
5 distinct AB are required to obtain Yj.

B. GCSA-NA Solution

GCSA codes [40] can handle batch processing, therefore let
us consider batch size 2 (£ = 1, K. = 2). Denote the second
instance by A’, B'. Using CSA code,

Q=(Ff-0)B;+B. (12)
Q = (f’ — oc)B/1 +B’2. (13)
And the shares are constructed as follows,
~ P P/ ~ /
A=A + B = Q + Q ,
f—a)? (f—a)? f—a)? (f'—a)?
where A = (f — a)?(f' — «)?, and (x,%, §~ are generic
variables that should be replaced with o4, A®, B® for Server
s. Furthermore, f,f’,ay,as,...,as are distinct elements.

Each server computes the product of the shares that it
receives, 1.€.,

P=A+ (¢ —a)Ay,
P =A| + (f — a)A),

4In [47], for arbitrary polynomials, M_,; = rsASBY + ajzls because Yy
is forced to be casted in the form of entangled polynomial sharing.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 20:04:12 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GCSA-NA FOR SMBMM

in (f/_a)z (f_a)z ! / ’
AB=Y " po+ LT p PQ+P 14
PO P PO re (14)
((f,_f)+(f_a))2 ((f_f/)+(f/_a))2 /
= P P
(f —)? o (' —)? <
+PQ+PQ (15)
G [t L N
B (f — @)?
LU= 2= -+ -a)
> PQ
(f —a)
+PQ+PQ (16)
-1’ (f f) (F - f)
= PQ + PQ +
o) Q — Q T P'Q
(f f)PQ +PQ+PQ +PQ+PQ (17)
co c o L,
= P P P
f—a)? R Q+(f’—a)2 N
+ f/cflaP’Q’ 1o +ol) + 0’ (18)
_ coA 1B, coA 1B + coA2By + c1A1By Cé)A’IB/2
(-’ f-a ¢ -’
OB AL AL
f—«a
(19)
where 1Ip,I;,I, are various linear combinations of

A1,A2,B1,B2,A/1,A/2,B/1,B/2 and C(),Cl,C(/),C/l are
constants. Their exact forms can be found by performing
partial fraction decomposition. This is the original GCSA
code [40], and we need R = pmn((l+ DK, — 1)+p—1=7
responses to recover the desired product.

Next, let us modify the scheme to make it X = 1 secure by
including noise with each share, i.e.,

K:A(P >+ P 2+ZA>,

(f—a) (f' =)

g9 + Q + 75,
f—a? (f—a)?

~~ cPQ ¢PQ c{)P/Q’ A P'Q

AB = + +
F-w? T g —aP e ZXO:“

As a result of the added noise terms, the recovery threshold
is now increased to 9. Note that the term I contains only
contributions from AZAZB, i.e., this term leaks no information
about A, B matrices. e

If the servers directly return their computed values of AB
to the master, then besides the result of the computation some
additional information about the input matrices A, B may

be leaked by the interference terms ()2 + 7= SL)A 1By +

((f’ e + f, -)A|B), + Z 0 i, Wthh can be secured by

the addltlon of aligned noise terms Z = ‘1)7+
- 04)2

((f’ e + f’ 7' + Zl 0 iZ; at each server so that the

answer returned by each server to the master is AB + Z.
Here Z,72',7Z¢,Z,,7Z,,Z5 are ii.d. uniform noise matrices,

that can all be privately generated by one server, who can
then share their aligned form Z with all other servers. This
sharing of Z is the only inter-server communication needed
in GCSA-NA. Since it is independent of the inputs, it can be
done during off-peak hours, thereby reducing the latency of
server computation. The strong security is also automatically
satisfied.

V. CONSTRUCTION OF GCSA-NA

Now let us present the general construction. L = (K,
instances of A and B matrices are split into £ groups. VI €
[£], Vk € [K.], denote

ALK — AK(=D+o) BK(=D+h)

Bk = (20)

Further, each matrix A"¥ is partitioned into m x p blocks and
each matrix B'¥ is partitioned into p x n blocks, i.e.,

NI
Al,k _ Ail . A Bl,k _ Bi,l . BZ”,1
l:k l.,k l,k Lk
A A B B i
x X
n

where (A Nicpm.jeip) € Fi*5 and (B,J)zelmljelpl eFr*

Let fi1.f1.2, .-, ek, 21,02, ...,as be (S 4 L) distinct
elements from the field F. For convenience, define
R = pmn, Dg=max(pm,pmn—pm+p)—1, (21)
E={p+pm —1)+pm@" —1)|m’ € [m],n" € [n]},
(22)
A= TT ik —a® . vie [0, Vs € IS]. (23)
kelKe]
Define ¢4 i,i € {0,1,..., R (K, — 1)} to be the coefficients
satisfying
R/
V() = H (o + (fiw —fix))
e[K:\{k}
R (K.—1)
=) are Vel VkelK] @4)
i=0

i.e., they are the coefficients of the polynomial W i(a) =
Note that all the coefficients (Cl,k,i)le[L],ke[Kc],ie{O,1,.4.,R’(K(.—l)}v
ars), (fi.k)ie(L)ke[k] are globally known.

A. Sharing

Firstly, each source encodes each constituent matrix blocks
A% and BY* with Entangled Polynomial code [5]. For all [€
[4], k € [K.], define

A= D0 3 A (e T @)
m'e[m] p'e[p]

Qi’k: Z Z B,i)’]’(iz”(ﬁ>k_as)p_p/,+pm(nl,_l)- (26)
p'e[p] n”€lnl

Note that the original Entangled Polynomial code can be
regarded as polynomials of o, and here for each (I, k),

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 20:04:12 UTC from IEEE Xplore. Restrictions apply.

312 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

Entangled Polynomial code is constructed as polynomials of
(fl,k — Q).
Each source generates ¢X independent random matrices,
= (2{,..... Zix} and 20 = {Z{,,Z{y}. The
1ndependence is established as follows.

H(z'. 28 AB) =HA +H®) + Y H(z],)

le[{],xe[X]
p>

le[4],x€[X]

27

For all s € [S], the shares of matrices A and B at the
stf server are_constructed as A’ = (A],A),...,A)), B’ =
(B{, B3, ..., B)), where for all / € [£],

Z — =% T Z ax_lz ’
ke[K.] (flk—“) xe[X]

ns Qlk x—1 B
B) = Z — gt L
(flk) xe[X]

Then each pair of shares A%, B is sent to the corresponding
server.

s _ ALK,
Al - As ‘

and sends IVI to server s, s € [S]\ {1} where ¢ ; is defined
in (24). The answer returned by the s server to the master is
constructed as Y5 =) ;e AJB] + M.

C. Reconstruction

After the master collects any R answers, it decodes the
desired products AB.

D. Proof of Theorem 1

To begin, let us recall the standard result for Confluent
Cauchy-Vandermonde matrices [48], replicated here for the
sake of completeness.

Lemma I: If fi1,f1,2,....fe.k., o1, 00,..., g are R+ L
distinct elements of I, with |F| > R+ L, L = ¢K, and R =
R'(¢ + DK, + 2X — 1, then the R x R Confluent Cauchy-
Vandermonde matrix (30) (shown at the bottom of the page)
is invertible over F.

Firstly, let us prove that the GCSA-NA codes are R =
pmn(€ + 1)K, + 2X — 1 recoverable. Rewrite Y; as follows.

Y, = AB} + ASBS + - - +K;§; + M 31)
B. Computation and Communication
One of the servers generates a set of % X % matrices Z5¢"Ver 1K =1
’ = A Z
which contains R'(K. — 1) + X + Dg + £K.(p — 1)mn indepen- Z $ Z _ w7t Z %s
. . . le[e] ke[K.] (fl k as) xe[X]
dent random matrices and K .mn zero matrices. In particular,
ZSE"VEV — {ZISEWEV’ ZSEVV@I’} ZSE"V@V — {Z;|i c [R/(KC _ 1) + Qlk _
X + Dgl}, and Z57 = {Z}’kl|l € [tk € [Kl,i € [R1). < | Y. ———+ Y «'Z} |+ M, (32
Here, ke[K.] (fl k — O) xe[X]
0 ifief&
roo=17 . 1,k 1k
Zi ki {Z;”k ;» otherwise, Vi€ [£]. Vk € [Kc]. _ Z ALK Z P Qy
s R/
Here Z; and Z;/ «.i are the independent random matrices. The lelf] kelK.] (fl k= ke[Kc] (fl k= O‘S)
1ndependence is established as follows. n
R (K.—1)+X+Dg + Z AIK P x—IZB
H(Z*",A,B) = HA) +HB)+ Y. H(Z) ieTe) ke[K (=)™)\ 8 Xl
i=1
+ Y HEZL: (28)
le[0),ke[Ke], L.k
1r) + YAl (pl | DOLCR Y
Without loss of generality, assume the first server generates le[4] kelK.] (flk - Ols xe X]
Zserver encodes them into
R (K.~1)+X+Dg
M, = o'z, 1K, 1 ~17B ¥
PP ey o e)(X ez
' lel¢] xe[x€[X]
R 1 oclki—i’Z;/k /41
I — @ T4
le[¢] ke[K.] i=0 (fik —) (33)
[S S v Ly o RKer2X T
(fl,l—al)R/ fii—o (f(Z,KC—Oll)R/ Jeke—ai 1
1 1 . L gREex=2
Ve RXRZ (fra—a)" iz (fe.ke—a2)" Jeke—e2 2 (30)
T L REex
| (fra—er)® fii—or (Foxe—ar)® Joke—0r R]

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 20:04:12 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GCSA-NA FOR SMBMM

Hk/E[Kc]\{k} (fl,k’ _ aS)R
(fl’k - O‘s)R

[

K'e[K\{k,K'}

Lkylok
PS QS

=2 2

le[£] ke[K,]

LD

le[L] kK €[K,]
oy

(fl’k// — O[S)R/ Pi’kQé’k/

Iy

+ T+ T3+ Ty + M. (34)

Consider the first term in (34). For each [€ [£], k € [K,],
we have

/

l_[k’e[KC]\{k} (fl,k’ - O‘S)
(fir —)"
_ Meetronin (Ui — @) + Gie —fir)*

Lkylk
PS QS

/ PLEQLE (35)
(fl,k _ OlS)R K S
g
:_lk(flk)Plelk (36)
(fr =)"
€1.k.0 Clk1 CLkR -1
= kil n + 2 — + s Ky
((fl,k - as)R (fl,k - CYS)R : Sk — Ols)
R (K—1) o
< PRQU + | > cnilfin — as) R | PLEQYK,

i=R

I's
(37)

where (36) results from the definition of W x(-) as in (24) and
in (37) the polynomial W, i (f;x — o) is rewritten in terms of
its coefficients.

By the construction of Entangled Polynomial code (25) (26),
the product P¥QLK can be written as weighted sums of the
terms 1, (fix — o), ..., (fix —)X 772, ie.,

R+p-2
Lky,k _ Lk i
Ps Qs - Z Ci+l(flvk —Ols) ’ (38)
i=0
Lk Lk 1k . . .
where C1 , C2 e, CR, 4p—1 are various linear combinations

of products of blocks of Ab¥ and blocks of B4, Consider the
first term in (37).

C, C /.
(1,k,0 = 4ot Lk,R'—1)Pi,in,k
(fik — o)

fl,k_as
38) ¢ c R +p-2
(’Lk,0 1,k,R' 1,
:(Foht _a) > € (fk — o) (39)
(fz,k—as) 1k s =0

_R/Z_l =0 CLk,i— l/Cl+1
i=0 (fl,k - Ols)

p—2 R+
i Lk
+ D (k=)' | D crrr-riCily
i=0

i'=i+1

I's

313
R'+p-3 R+p-2
i Lk
+ Z (fl,k—ots) Z cer-i+iCiyy |- (40)
i=p—1 i=i+1

Iy

Note that if K. = 1, Vi # 0,¢c;; = 0, then I's and I'; are
zero polynomials. Now let us consider the degree with respect
tooagof I'y, ..., I'7.

R(K. —
w&xn)—{ e
degy,(T2) = R'(Kc — 1) + pm + X -2,
dega,(T3) = R'(Kc — 1) + pmn —pm+p+X -2,

D+p—2, ifK.>1

otherwise,

dega,(T4) = R'K: +2X =2, dego,(Te) =p —2,
R(K.—1D+p—2, if Ko > 1
degq,(I's) = { 1, otherwise,
B R’+P_3’ if K. > 1
degy, (I'7) = { 1, otherwise.

Recall X, p, m, n, K. are positive integers. If K, > 1, it is
easy to see that R'K. + 2X — 2 is the largest. If K, = 1,
R = pmn > p > p—2, RK., +2X — 2 is also the
largest. Therefore the sum of I'y, ..., I'7 can be expanded into
weighted sums of the terms 1, «y, . . ., aR/KCHX*Z. Note that
the weights of terms ozR (K”71)+X+DE+1, .. .,ozf/K"“X_z are
functions of 24, Z5. Y, can be rewritten as

R -1

V=YY Y

le[0] ke[K.] i=0
RK-A42X—1

vy vy e

le[£] ke[K.] i=0
R'K.A42X-1

D>

x=1

IDIDD

le[€] ke[K,] i=0

’ =0 ClLk,i— I’Cl+1

(f]’k _ as)R’—i

affllx + M,

(41)

Lk
0 ClLk,i— ’Ct+1

(f[r — O[S)R’—i

R (K.—1)+X+Dg

2.

x=1

x—1 x—1rg/
o L+ a 7,

—Oclkl z’Z

(fik — as

/ i
R D o Clki- ,(C 1+Zlk1+1>

= Z Z Z (fl,k_as)RLi

le[{] ke[K,.] i=0
L +2Z)

Lk,i’'+1
)R’—i

(42)

R (K.—)+X+Dg

+ 2
x=1
RK.4+2X—1

LY

x=R'(K.—1)+X+Dg+1

R —1 i Lk
Yy Yy 2otk D

R —i
le[£) ke[K.] i=0 (fl,k - Ots)
A DR
xe[RK42x-1]
Lk _ Clk

o (43)

(44)

where Dy lkz’l € [0,k € [K.,i € [R],
Jo=L+Z.xe[RK —1)+X+Dgand Jy = L, x €

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 20:04:12 UTC from IEEE Xplore. Restrictions apply.

314

[R'(K.—1)+X+Dg+1: RK.+2X —1]. In the matrix form,
answers from any R = R'K.+2X —1+R'L = pmn(£+ 1)K+
2X — 1 servers, whose indices are denoted as si, 52, ..., SR,
can be written as (45), shown at the bottom of the page.
Since fi.1,f1.2,.--,fe.k. are distinct, for all [€ [£],k €
[Kc], ciko = Hk’e[Kc]\{k}(fl,k’ _fl,k)R/ are non-zero. Hence,
the lower triangular toeplitz matrices T(c1,1,0,...,¢1.1,r=1),
yooor T(cek.,0,---5Co k. R—1) are non-singular, and the
block diagonal matrix \Aﬂe k. r.x.g 1S invertible. Guaranteed
by Lemma 1 and the fact that the Kronecker prod-
uct of non-singular matrices is non-singular, the matrix
(‘A’LKC,R/,X,R\A’/@,KC,R/,x,R) ® I/ is invertible. Therefore, the
master is able to recover (Dﬁ’k) le[e].ke[K,].ic[R’] DY inverting the
matrix. Note that ngk’i =0,le[l],k e[K.],ie &, therefore

(Ci Vet ketkorice = D))ieierkelk, . ice- The desired prod-
ucts (A(I)B(l))le[L] are recoverable from (C?k)le[(é],ke[l(c],ie&
guaranteed by the correctness of Entangled Polynomial
code [5]. This completes the proof of recovery threshold
R =pmn(¢ 4+ DK, +2X — 1.

Consider the strong security property. According to the
construction, M| = 0, My = M,s € [S]\ {1}, and

~

M= {N/Is|s € [S]\ {1}}. Since My is a function of Z%¢V¢",
I(A, B, AlS] BIS]. M) < I(A, B, AlS1 BIST, ZSW’) —0.

Strong security is satisfied. Security is guaranteed because
vYX C [S], |X] =X,

I(A, B. A% BY, MX>

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

where (47) is due to (27), (28) and the facts that each share is
encoded with (X, S) Reed-Solomon code with uniformly and
independently distributed noise.

Consider the privacy property,

I(Y1,Y2,...,Ys; A, BJAB)

=1((Dt : : A, B|AB
((;)le[z]’ke[Kc]’iE[R,], Un)xe[RK 42x-1]3 A, B)
(43)

b Jlele) kelK D i€[R']

. Lk
- I<(JX)XE[R,K“+2X_1]’ A, BIAB, (D")le[(i],ke[Kc],ie[R’]>

(49)

_) Lk
= I((Jx)xe[R’Kc+2X—l]’ A, B|AB, (Di)le[z]’kE[Ky]’ie[R,]>

(50)
<1 k.+2x-1]: A B, AB, (DY)
< ((Jx)xe[RKc—i-ZX 1]) et ket ic[R]
(5D
gl(ZfWr, 24, 25, A, B, (Dﬁ'k) >= ,
le[€],kelKe] i€[R']
(52)
where (48) holds because the mapping from

(D Vet kerkoietr)s Torerrks2x—1) o (Yi,...,Ys)
is bijective. Equation (50) holds due to (28) and the fact
(Cf’k)le[g]’ke[l(c],ieg are functions of AB.

— I(A, B; My) + [(A.B: AYX §X| M X) (46) Consider the communication cost. The source upload cost
Uy = ﬁ and Up = KSP . The server communication
. AX X “ _ ¢ .
=1(A,B; My) +1<A,B,A ,B) =0, 47) cost CC = ﬁ Note that the master is able to recover
1 o L 1) 1 S oK Ket2X-2
YY] (fl,l —0s)R, fl-l —Usy | | (fl,KL- —0sy) fLKC s | 51
Y. 1 PR SR P 1 . L. o RKet2x=2
52 _ (fl.l*asz)R/ fl,l_asz | | (f{’,.KC *a.vz)R/ fUQ_“Sz | 52
. = Lo . I
. . . . I I . . (I .
YSR 1 e 1 ‘ .‘ 1 .. 1 ‘ .. aR,KC+2X_2
(i1 —osp)F fii=ease U ke~)R Jexe—as! SR
V({‘KC‘R’,X,R
_ 1,1 —_
D,
Dl
Terpo,cvenr—1, o . :
e I T TR T
oS P S S __|eLm| Di (45)
N R X C AL o 2 DL
| | \I .
_R 0.K,
C “R—R'L ~ Dpt
V;,KC,R/.X,R Jl
L IRk 4+2x-1

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 20:04:12 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GCSA-NA FOR SMBMM

Lmn desired symbols from R downloaded symbols, the mas-
ter download cost is D = LL = [M. Thus the
. . mn Kc.mn
desired costs are achievable.

Now let us consider the computation complexity. Note
that the source encoding procedure can be regarded as prod-
ucts of confluent Cauchy matrices by vectors. So by fast

algorithms [49], the encoding complexity of (Cea, Cep)

(5(“21;'%[25“) O(K“ Slog 5)) is achievable. For the server com-
putatiori complexrty, each server multiplies the ¢ pairs of
shares AY, Nf ,1e 4], and returns the sum of these £ products
and structured noise M. With straightforward matrix mul-
tiplication algorithms, each of the ¢ matrix products has a
computation complexity of O(AK“) for a total of (9(0"‘“).
The complexity of summation over the products and norse is
(’)(“—“) To construct the noise, one server needs to encode
S log S

the noise, whose complexity is (9(

rithms [49].
7~ Aulog? S
00—

) by fast algo-
Normalized by the number of servers, it is
). Considering these 3 procedures, upon normal-
¢K,, it yields a complexity of O(ALy

Kc.pmn
O(Kiﬁvﬁ -)+ (5(%) per server. The master decoding com-
plexitxv is inherited from that of GCSA codes [40], which is at
most O(Auplog? R). This completes the proof of Theorem 1.

Remark: When L = = K. = 1, S = R, by setting fj.1 = 0,
our construction of shares of AS and B* essentially recovers
the construction of shares in [41].

ization by L =

VI. DISCUSSION AND CONCLUSION

In this article, the class of GCSA codes is expanded by
including noise-alignment, so that the resulting GCSA-NA
code is a solution for secure coded multi-party computa-
tion of massive matrix multiplication. For two sources and
matrix multiplication, GCSA-NA strictly generalizes PS [41]
and outperforms it in several key aspects. This construction
also settles the asymptotic capacity of symmetric X-secure
T-private information retrieval. The idea of noise-alignment
can be applied to construct a scheme for N sources based
on N-CSA codes, and be combined with Strassen’s construc-
tion. As open problems, exploring the optimal amount of
randomness and finding the communication efficient schemes
for arbitrary polynomial are interesting directions.

Since Strassen’s algorithm [45] is an important fast matrix
multiplication approach, it is interesting to show noise align-
ment can be combined with it for secure multi-party matrix
multiplication. Consider an example with two 2 x 2 block
matrices A,B and X = 1. It can be shown that the
general recursive Strassen’s algorithm also works similarly.

The desired product is denoted by C = ’ 1. The

Strassen’s constuction constructs 14 matrices Pl, Q;, 1 € [7]
(P; only depends on A and Q; only depends on B) and

Cii 0o -1 0 111 o7
Cio 1 1 0 000 0] 53)
Ci |70 0o 1 100 0 :
Cao 10 -1 010 -1]{pgq,

315

This is the basic Strassen algorithm. Now let us see how
we apply CSA and noise alignment to it. Each share is
constructed based on CSA code principles with noise, i.e.,
A = A(Z,eﬂf_a + 7B = Y 2% + 28, AB =
> el (7] 7 aPQt+Z —o L.

If the servers directly return AB to the master, additional
information about the input may be leaked due to interference
terms P1Qq, ..., P7Q7 and Z?:o o'l;. We secure the scheme

by the addition of noise. The idea is that we want the master
to decode Ty, ..., Ty instead of P;Qy, ..., P7Q7, such that

H(C|T,...,T7) =I(A,B;Ty,...,T7|C) = 0. (54)

Ty, ..., T, are constructed as follows.
Ti=PQi—-Z1—Zr+7Z;, T)=PQo—-Z1+7Z,—73,

T3 =P3Q3 —Z;, T4=PsQs+7Zy, Ts=Ps5Qs5+7Z,
Te =PsQs — Z3, T7; =P7;Q7 + Zs3,

where Z1,Z;,Z3 are i.i.d. uniform noise matrices. To align
the noise, we construct Z,

N

(c c c3 c4

fi—a pH-a fi-a +f4—0l>Z1
- (_flc—la thoe +fsc—5a>zz
C C C C
- <f1 —106 _fz—zot _f6—606 +f7—706>Z3
+26:aili+4,
i=0

where Zy4,...,7Z o are ii.d. uniform noise matnces The
answer returned by each server to the master is AB+Z. The
correctness and privacy are easily proved.

REFERENCES

[1] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514-1529, Mar. 2018.

[2] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes:
An optimal design for high-dimensional coded matrix multiplication,”
2017. [Online]. Available: arXiv:1705.10464.

[3] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix mul-
tiplication,” IEEE Trans. Inf. Theory, vol. 66, no. 1, pp. 278-301,
Jan. 2020.

[4] S. Dutta, Z. Bai, H. Jeong, T. Low, and P. Grover, “A unified coded
deep neural network training strategy based on generalized poly-
dot codes for matrix multiplication,” Nov. 2018. [Online]. Available:
ArXiv:1811.10751.

[5]1 Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mit-
igation in distributed matrix multiplication: Fundamental limits and
optimal coding,” IEEE Trans. Inf. Theory, vol. 66, no. 3, pp. 1920-1933,
Mar. 2020.

[6] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and
A. S. Avestimehr, “Lagrange coded computing: Optimal Design
for resiliency, security and privacy,” 2018. [Online]. Available:
ArXiv:1806.00939.

[71 Q. Yu and A. S. Avestimehr, “Entangled polynomial codes for secure,
private, and batch distributed matrix multiplication: Breaking the ‘cubic
barrier,” 2020. [Online]. Available: ArXiv:2001.05101.

[8] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” IEEE Trans. Inf. Theory,
vol. 65, no. 7, pp. 4227-4242, Jul. 2019.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 20:04:12 UTC from IEEE Xplore. Restrictions apply.

316

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2017,
pp. 2418-2422.

S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 2100-2108.

S. Dutta, V. Cadambe, and P. Grover, “Coded convolution for parallel
and distributed computing within a deadline,” 2017. [Online]. Available:
arXiv:1705.03875.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded fourier
transform,” 2017. [Online]. Available: arXiv:1710.06471.

T. Jahani-Nezhad and M. A. Maddah-Ali, “CodedSketch: A cod-
ing scheme for distributed computation of approximated matrix
multiplications,” 2018. [Online]. Available: arXiv:1812.10460.

T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-proofing
massive-scale distributed matrix multiplication with d-dimensional prod-
uct codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2018,
pp- 1993-1997.

G. Suh, K. Lee, and C. Suh, “Matrix sparsification for coded matrix
multiplication,” in Proc. 55th Annu. Allerton Conf. Commun. Control
Comput. (Allerton), 2017, pp. 1271-1278.

S. Wang, J. Liu, N. Shroff, and P. Yang, “Fundamental limits of coded
linear transform,” 2018. [Online]. Available: arXiv:1804.09791.

A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi,
“Rateless codes for near-perfect load balancing in distributed matrix-
vector multiplication,” Proc. ACM Meas. Anal. Comput. Syst., vol. 3,
no. 3, p. 58, 2019.

S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,”
2018. [Online]. Available: arXiv:1802.03430.

A. Severinson, A. G. I. Amat, and E. Rosnes, “Block-diagonal and LT
codes for distributed computing with straggling servers,” IEEE Trans.
Commun., vol. 67, no. 3, pp. 1739-1753, Mar. 2019.

F. Haddadpour and V. R. Cadambe, “Codes for distributed finite alpha-
bet matrix-vector multiplication,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), 2018, pp. 1625-1629.

U. Sheth et al., “An application of storage-optimal matdot codes for
coded matrix multiplication: Fast K-nearest neighbors estimation,” in
Proc. IEEE Int. Conf. Big Data (Big Data), 2018, pp. 1113-1120.

H. Jeong, F. Ye, and P. Grover, “Locally recoverable coded matrix multi-
plication,” in Proc. 56th Annu. Allerton Conf. Commun. Control Comput.
(Allerton), 2018, pp. 715-722.

M. Kim, J.-y. Sohn, and J. Moon, “Coded matrix multiplication on a
group-based model,” 2019. [Online]. Available: arXiv:1901.05162.

H. Park, K. Lee, J.-y. Sohn, C. Suh, and J. Moon, “Hierarchical coding
for distributed computing,” 2018. [Online]. Available: arXiv:1801.04686.
S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coding for dis-
tributed fog computing,” IEEE Commun. Mag., vol. 55, no. 4, pp. 34-40,
Apr. 2017.

W. Chang and R. Tandon, “On the capacity of secure distributed matrix
multiplication,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
2018, pp. 1-6.

J. Kakar, S. Ebadifar, and A. Sezgin, “On the capacity and straggler-
robustness of distributed secure matrix multiplication,” IEEE Access,
vol. 7, pp. 4578345799, 2019.

R. G. L. D’Oliveira, S. El Rouayheb, and D. Karpuk, “Gasp
codes for secure distributed matrix multiplication,” IEEE
Trans. Inf. Theory, vol. 66, no. 7, pp. 4038-4050, Jul. 2020,
doi: 10.1109/TIT.2020.2975021.

M. Kim and J. Lee, “Private secure coded computation,” IEEE Commun.
Lett., vol. 23, no. 11, pp. 1918-1921, Nov. 2019.

(30]

(31]

(32]

(33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

M. Aliasgari, O. Simeone, and J. Kliewer, “Distributed and private coded
matrix computation with flexible communication load,” 2019. [Online].
Available: arXiv:1901.07705.

H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4075-4088, Jul. 2017.

H. Sun and S. A. Jafar, “The capacity of robust private information
retrieval with colluding databases,” IEEE Trans. Inf. Theory, vol. 64,
no. 4, pp. 2361-2370, Apr. 2018.

K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” IEEE Trans. Inf. Theory, vol. 64, no. 3,
pp. 1945-1956, Mar. 2018.

K. Banawan and S. Ulukus, “The capacity of private information
retrieval from byzantine and colluding databases,” IEEE Trans. Inf.
Theory, vol. 65, no. 2, pp. 1206-1219, Feb. 2019.

S. Kadhe, B. Garcia, A. Heidarzadeh, S. E. Rouayheb, and A. Sprintson,
“Private information retrieval with side information,” IEEE Trans. Inf.
Theory, vol. 66, no. 4, pp. 2032-2043, Apr. 2020.

Q. Wang and M. Skoglund, “Secure symmetric private information
retrieval from colluding databases with adversaries,” in Proc. 55th
Annu. Allerton Conf. Commun. Control Comput. (Allerton), 2017,
pp- 1083-1090.

Z. Jia, H. Sun, and S. A. Jafar, “Cross subspace alignment and the
asymptotic capacity of X-secure T-private information retrieval,” IEEE
Trans. Inf. Theory, vol. 65, no. 9, pp. 5783-5798, Sep. 2019.

Z. Jia and S. A. Jafar, “On the asymptotic capacity of X-secure
T-private information retrieval with graph based replicated storage,”
2019. [Online]. Available: ArXiv:1904.05906.

Z. Jia and S. A. Jafar, “X-secure T-private information retrieval from
MDS coded storage with byzantine and unresponsive servers,” 2019.
[Online]. Available: ArXiv:1908.10854.

Z. Jia and S. Jafar, “Cross-subspace
coded distributed batch computation,” 2019.
ArXiv:1909.13873.

H. A. Nodehi and M. A. Maddah-Ali, “Secure coded multi-party com-
putation for massive matrix operations,” 2019. [Online]. Available:
ArXiv:1908.04255.

A. C. Yao, “Protocols for secure computations (extended abstract),” in
Proc. 23rd Annu. Symp. Found. Comput. Sci., 1982, pp. 160—164.

W. Zhao, X. Ming, S. Mikael, and P. H. Vincent, “Secure degrees of
freedom of wireless X networks using artificial noise alignment,” /[EEE
Trans. Commun., vol. 63, no. 7, pp. 2632-2646, Jul. 2015.

R. G. L. D’Oliveira, S. E. Rouayheb, D. Heinlein, and D. Karpuk,
“Notes on communication and computation in secure distributed matrix
multiplication,” 2020. [Online]. Available: arXiv:2001.05568.

V. Strassen, “Gaussian elimination is not optimal,” Numerische
Mathematik, vol. 13, no. 4, pp. 354-356, 1969.

H. A. Nodehi and M. A. Maddah-Ali, “Limited-sharing multi-party com-
putation for massive matrix operations,” in Proc. IEEE Int. Symp. Inf.
Theory, 2018, pp. 1231-1235.

H. A. Nodehi, S. R. H. Najarkolaei, and M. A. Maddah-Ali, “Entangled
polynomial coding in limited-sharing multi-party computation,” in Proc.
IEEE Inf. Theory Workshop, 2018, pp. 1-5.

M. Gasca, J. Martinez, and G. Miihlbach, “Computation of rational inter-
polants with prescribed poles,” J. Comput. Appl. Math., vol. 26, no. 3,
pp- 297-309, 1989.

V. Olshevsky and A. Shokrollahi, “A superfast algorithm for confluent
rational tangential interpolation problem via matrix-vector multiplica-
tion for confluent cauchy-like matrices,” in Structured Matrices in
Mathematics, Computer Science, and Engineering I (Contemporary
Mathematics), vol. 280, Amer. Math. Soc., 2001, pp. 32—46.

codes for
Available:

alignment
[Online].

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 20:04:12 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TIT.2020.2975021

