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Abstract— The goal of coded distributed computation is to
efficiently distribute a computation task, such as matrix multipli-
cation, N -linear computation, or multivariate polynomial evalu-
ation, across S servers through a coding scheme, such that the
response from any R servers (R is called the recovery threshold)
is sufficient for the user to recover the desired computed value.
Current state-of-art approaches are based on either exclusively
matrix-partitioning (Entangled Polynomial (EP) Codes for matrix
multiplication), or exclusively batch processing (Lagrange Coded
Computing (LCC) for N -linear computations or multivariate
polynomial evaluations). We present three related classes of
codes, based on the idea of Cross-Subspace Alignment (CSA)
which was introduced originally in the context of secure and
private information retrieval. CSA codes are characterized by
a Cauchy-Vandermonde matrix structure that facilitates inter-
ference alignment along Vandermonde terms, while the desired
computations remain resolvable along the Cauchy terms. These
codes are shown to unify, generalize and improve upon the
state-of-art codes for distributed computing. First we introduce
CSA codes for matrix multiplication, which yield LCC codes
as a special case, and are shown to outperform LCC codes in
general in download-limited settings. While matrix-partitioning
approaches (EP codes) for distributed matrix multiplication
have the advantage of flexible server computation latency, batch
processing approaches (CSA, LCC) have significant advantages in
communication costs as well as encoding and decoding complexity
per matrix multiplication. In order to combine the benefits
of these approaches, we introduce Generalized CSA (GCSA)
codes for matrix multiplication that bridge the extremes of
matrix-partitioning and batch processing approaches and demon-
strate synergistic gains due to cross subspace alignment. Finally,
we introduce N -CSA codes for N -linear distributed batch com-
putations and multivariate batch polynomial evaluations. N -CSA
codes include LCC codes as a special case, and are in general
capable of outperforming LCC codes in download-constrained
settings by upto a factor of N . Generalizations of N -CSA
codes to include X -secure data and B-byzantine servers are
also provided.
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I. INTRODUCTION

IN THE era of big data and cloud computing along with
massive parallelization, there is particular interest in algo-

rithms for coded distributed computation that are resilient
to stragglers [1]–[24]. The goal in coded distributed com-
putation is to distribute the computation task according to
a coding scheme across S servers (also known as workers
or processors), such that the response from any R servers
is sufficient for the user to recover (decode) the result of
the computation. The parameter R is called the recovery
threshold. Coded distributed computing offers the advantage
of reduced latency from massive parallelization, because the
tasks assigned to each server are smaller, and the redundancy
added by coding helps avoid bottlenecks due to stragglers.
The main metrics of interest for coded distributed computation
include: the encoding and decoding complexity, latency1 and
complexity of server computation, the recovery threshold,
and the upload and download costs (communication costs).
With high end communication speeds approaching Gbps and
computing speeds (processor clock speeds) commonly of the
order of GHz, communication and computation costs may
be comparable for many applications, allowing meaningful
tradeoffs between the two. On the other hand, since commu-
nication bottlenecks are quite common, communication costs
remain a key concern in distributed computing. Note that even
with higher communication costs distributed computing may
be necessary if, e.g., the computation task is too large to be
efficiently carried out locally, or if the sources that generate
the inputs for computation are not the same as the destination
where the output of computation is desired, i.e., communica-
tion is unavoidable. Figure 1 shows such a setting for coded
distributed batch matrix multiplication (CDBMM). Another
notable aspect of such settings is that the cost dynamics for
uploads and downloads may be different, e.g., if the input data
is relatively static and multiple users request computations on
different parts of the same dataset, then the download cost
may be much more of a concern than upload cost. This will
be significant when we compare different coding schemes in
this work.

1Latency is the time it takes a server to complete a specific computation
job. Unlike server computation complexity, it is not normalized by the size of
the job, so it depends on the size of the job assigned to the server. Latency
constraints are explored in the discussion following Theorem 2 in Section V.

0018-9448 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 20:06:37 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-8329-9911
https://orcid.org/0000-0003-2038-2977


2822 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 5, MAY 2021

Fig. 1. The CDBMM problem. Source (master) nodes generate matrices
A = (A1,A2, · · · ,AL) and B = (B1,B2, · · · ,BL), and upload them
to S distributed servers in coded form A[s], B[s], respectively. For all
l ∈ [L], Al and Bl are λ × κ and κ × µ matrices, respectively, over
a field F. The sth server computes the answer Ys, which is a function
of all information available to it, i.e., As and Bs. For effective straggler
(e.g., Server i in the figure) mitigation, upon downloading answers from any
R servers, where R < S, the user must be able to recover the product
AB = (A1B1,A2B2, . . . ,ALBL).

Distributed coded computing can be applied to a myriad
of computational tasks. Of particular interest to this work
are matrix multiplications, N -linear computations (e.g., com-
puting the determinants of N × N matrices, or the product
of N matrices), and evaluations of multivariate polynomials.
These are some of the most fundamental building blocks of
computation. Moreover, these problems are closely related.
Indeed matrix multiplications are bilinear operations, so they
are special cases of multilinear computations, and mul-
tilinear computations may be seen as special cases of
multivariate polynomial evaluations. Several elegant cod-
ing schemes, or codes, have been proposed for solving
these problems. Codes for distributed matrix multiplication
evolved through MDS codes [8], Polynomial codes [1],
MatDot and PolyDot codes [2] to the current state of art
reflected in Generalized PolyDot codes [3] and Entangled
Polynomial (EP) codes [4]. For multilinear computations and
evaluations of multivariate polynomials, the state of art is
represented by Lagrange Coded Computing (LCC), introduced
in [5].

It is interesting to note that the solutions to these problems
fall into two distinct categories — those based on partitioning
of a single computation task [1]–[4], and those based on batch
processing of multiple computation tasks [5]. For example,
consider the CDBMM problem shown in Figure 1 where
the goal is to efficiently multiply L instances of λ × κ
matrices, A = (A1,A2, · · · ,AL), with L instances of κ× µ
matrices B = (B1,B2, · · · ,BL), to compute the batch
of L matrix products, AB = (A1B1,A2B2, · · · ,ALBL).
Matrix-partitioning approaches compute each of the L prod-
ucts AlBl one at a time by partitioning individual matrices Al

and Bl and coding across these partitions. Batch processing
approaches do not partition individual matrices, instead they
code across the batch of A matrices and across the batch of
B matrices. The state-of-art for matrix-partitioning approaches
is represented by Entangled Polynomial Codes (EP codes) [4],
while Lagrange Coded Computing (LCC) [5] represents the
state of art for batch processing. Since the problems are
related, it is natural to ask, how do the matrix-partitioning
solutions compare with the batch-processing solutions? Fur-
thermore, can these solutions be improved, unified, gen-
eralized? These are the questions that we address in this
work.

The essential ingredient in this work that allows us to
compare, improve, unify and generalize the solutions to matrix
multiplication, multilinear computation and multivariate poly-
nomial evaluation, turns out to be the idea of cross-subspace
alignment. Cross-subspace alignment (CSA) was originally
introduced in the context of X-Secure T -Private Information
Retrieval (XSTPIR) [25]. Coding schemes that exploit CSA
have been used to improve upon and generalize the best known
schemes for PIR with X-secure data, T -private queries and
various forms of storage, e.g., fully replicated [26], graph
based replicated storage with limited replication factor [27],
or MDS coded storage [28]. CSA schemes have also recently
been shown to be useful to minimize download communication
cost for secure and/or private matrix multiplication [28]–[31].
Building upon these efforts, in this work we introduce a
new and generalized class of coded distributed computation
codes, called CSA codes, that are inspired by the idea of
cross-subspace alignment. The contributions of this work are
summarized as follows.

1) CSA Codes. In Theorem 1 of this paper that appears in
Section IV, we introduce CSA codes for coded distrib-
uted batch matrix multiplication. These codes are used
to multiply a batch of matrices A1,A2, · · · ,AL with
B1,B2, · · · ,BL to recover the L desired matrix prod-
ucts A1B1,A2B2, · · · ,ALBL. There is no partitioning
of individual matrices. Instead, coding is done across the
matrices within a batch. CSA codes partition a batch
of L matrices into # sub-batches of Kc matrices each
(L = #Kc). Due to cross-subspace alignment, the inter-
ference is limited to Kc−1 dimensions regardless of the
number of sub-batches #, so that the recovery threshold
R = L + Kc − 1. The download per server does not
depend on #, although the upload and server compu-
tation complexity do scale with #. Surprisingly, setting
# = 1 recovers the Lagrange Coded Computing (LCC)
solution to coded distributed batch matrix multiplication
as a special case of CSA codes. Besides the additional
flexibility, the main advantage of choosing # > 1 in
CSA codes is to reduce the download cost relative to
LCC codes (see Fig. 4 in Section V-A). This advantage
is especially significant in settings where the download
cost is the primary bottleneck.

2) EP vs CSA Codes. We compare matrix partitioning
approaches (say EP codes that generalize MatDot and
Polynomial codes) with batch processing approaches
(CSA codes that generalize Lagrange Coded Computing)
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for distributed matrix multiplication2 (see Fig. 2 in
Section IV-B). Remarkably, we find that batch process-
ing presents a significant advantage in communication
cost per matrix multiplication (i.e., normalized by the
batch size L). As a function of the recovery thresh-
old R, and for any fixed recovery ratio R/S, CSA
codes have the same server computation complexity
per matrix multiplication as EP codes, but CSA codes
simultaneously achieve normalized (upload cost, down-
load cost)=(O(1),O(1)), overcoming a key barrier of
existing matrix-partitioning codes where upload cost of
O(1) can only be achieved with download cost of O(R)
and download cost of O(1) can only be achieved with
upload cost of O(

√
R). A corresponding improvement in

the tradeoff between encoding and decoding complexity
is also observed.

3) GCSA Codes. Since there is no partitioning of indi-
vidual matrices in the aforementioned CSA codes, this
means that each server must carry out a computational
load equivalent to at least one full matrix multipli-
cation before it can respond with an answer. This
presents a latency barrier for batch processing schemes
that cannot be overcome regardless of the number of
servers and the batch size. For applications with stricter
latency requirements such a solution may be infeasible,
making it necessary to reduce the computational load
per server by further parallelization, i.e., partitioning
of individual matrices. To this end, in Theorem 2
that appears in Section V-A of this paper, we present
Generalized CSA codes (GCSA codes in short) that
combine the matrix partitioning approach of, say EP
codes, with the batch processing of CSA codes. GCSA
codes bridge the two extremes by efficiently combining
both matrix-partitioning and batch processing, and offer
flexibility in how much of each approach is used.
Both EP codes and LCC codes can be recovered as
special cases of GCSA codes, but GCSA codes are
capable of outperforming both EP and LCC codes
in general (see Fig. 3 and Fig. 4 in Section V-A).
When no matrix partitioning is used, GCSA codes
reduce to CSA codes, and if no batch processing is
used then GCSA codes reduce to EP codes. With
GCSA codes, the degree of matrix partitioning controls
the server latency by limiting the computational load
per server, while the batch partitioning on top yields
the advantage of batch processing in communication
costs. The combination is far from trivial. For example,

2Similar to Observation 2 in Section IV-B, let us reiterate that in this work
we do not explore improvements that are possible by using more efficient
matrix multiplication algorithms. This is in part because, as noted previously
for λ = µ = κ, optimally efficient matrix multiplication algorithms [32]
represent a research avenue that is largely open, and the strongest advances
in this direction are considered far from practical [33] due to large hidden
constants in the O notation. For the sake of fairness, in this work we consider
only coded distributed matrix multiplication schemes that are also built
upon straightforward algorithms of matrix multiplication, e.g., the elementary
version of EP codes. More elaborate matrix multiplication algorithms, e.g.,
Strassen’s algorithm [34], can indeed be used for further improvements. See
the discussion in Section V-B.

consider a matrix partitioning approach that splits the
task among 10 servers such that any R1 = 7 need to
respond, and a similar batch processing approach that
also splits the task among 10 servers such that any
R2 = 7 need to respond. Then if we simply take the
10 matrix-partitioned tasks and use batch processing on
top to distribute each task among 10 servers, for a total
of 100 servers, then the recovery threshold of the naive
combination is 6×10+4×6+1 = 85. However, GCSA
codes achieve a significantly lower recovery threshold
(R ≤ R1R2 = 49).

4) N -CSA Codes. As noted, CSA codes are a gener-
alization of LCC codes for distributed batch matrix
multiplication. However, the applications of LCC codes
extend beyond matrix multiplication, to N -linear batch
computation and multivariate polynomial batch evalua-
tions, raising the question whether corresponding gen-
eralizations of LCC codes to CSA type codes exist for
these applications as well. We answer this question in
the affirmative, by introducing N -CSA codes for the
problem of coded distributed N -linear batch compu-
tation as well as multivariate polynomial evaluations,
that are strictly generalizations of LCC codes for both
of these applications. This generalization for batch size
L = #Kc is done as follows. For all n ∈ [N ], the batch
of L realizations of the nth variable is split into #
sub-batches, each containing Kc realizations. The Kc

realizations within each sub-batch are coded into an
MDS (S, Kc) code according to a Cauchy structure, and
distributed to the S servers. Each server evaluates the
N -linear map function with the coded variables of each
sub-batch, and returns a weighted sum of evaluations
of these # sub-batches. By cross-subspace alignment,
undesired evaluations only occupy (N − 1)(Kc − 1)
dimensions, so that the recovery threshold is R =
L+(N−1)(Kc−1). Finally, because N -linear maps are
fundamental construction blocks of multivariate poly-
nomials of total degree N , it is straightforward to
apply N -CSA codes for multivariate polynomial batch
evaluation. Specifically, we can regard any multivariate
polynomial of total degree N as a linear combination
of various restricted evaluations of N -linear maps. Each
server prepares answers for various N -linear maps that
constitute the given multivariate polynomial, then returns
the user with the linear combination of these answers
according to the given polynomial. Once again, the N -
CSA code based scheme for multivariate polynomial
batch evaluation thus obtained, generalizes LCC codes,
which can be recovered by setting # = 1. The main
advantage of choosing # > 1 with CSA codes remains
the download cost. N -CSA codes achieve normalized
download cost D = R

L = 1 +
(

N−1
!

) (
Kc−1

Kc

)
. The

special case of # = 1 which gives us LCC codes
corresponds to download cost of O(N), but by using
the full scope of values of # the download cost can be
reduced by up to a factor of N , albeit with increasing
recovery threshold. Reducing download cost generally
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also reduces decoding complexity, which can be impor-
tant when downlink and/or computational resource at the
user side is limited.

Next we provide an overview of the state of art approaches
for coded distributed computing, summarize the key ideas
behind cross-subspace alignment, and tabulate the compar-
isons between the codes proposed in this work and the prior
state of art.

II. EP CODES, LCC CODES, CSA CODES

A. Matrix Partitioning: EP Codes

EP codes [4] for coded distributed matrix multiplication
problem are based on matrix partitioning. The constituent
matrices A and B are partitioned into m×p blocks and p×n
blocks, respectively, as shown below, so that the desired matrix
product involves a total of mn linear combinations of products
of block matrices.

A =





A1,1 A1,2 · · · A1,p

A2,1 A2,2 · · · A2,p

...
...

...
...

Am,1 Am,2 · · · Am,p




(1)

B =





B1,1 B1,2 · · · B1,n

B2,1 B2,2 · · · B2,n

...
...

...
...

Bp,1 Bp,2 · · · Bp,n




(2)

AB =





p
j=1 A1,jBj,1 p

j=1 A1,jBj,2 ··· p
j=1 A1,jBj,n

p
j=1 A2,jBj,1 p

j=1 A2,jBj,2 ··· p
j=1 A2,jBj,n

...
...

...
...

p
j=1 Am,jBj,1 p

j=1 Am,jBj,2 ··· p
j=1 Am,jBj,n





(3)

Coded matrices are constructed as follows,

Ã(α) =
∑

m′∈[m]

∑

p′∈[p]

Am′,p′
αp′−1+p(m′−1), (4)

B̃(α) =
∑

p′∈[p]

∑

n′∈[n]

Bp′,n′
αp−p′+pm(n′−1), (5)

and the sth server is sent the values Ã(αs) and B̃(αs). Here
α1, α2, · · · , αS are distinct elements from the operating field
F. Each server produces the answer Ã(αs)B̃(αs), which can
be expressed as

Ã(α)B̃(α) =
R∑

i=1

C(i)αi−1, (6)

where R = pmn + p − 1 is the recovery threshold, and
C(1),C(2), · · · ,C(R) are various linear combinations of prod-
ucts of matrix blocks. Note that for all i ∈ [R], C(i) are
distributed over 1, α, · · · , αR−1, thus from the answers of any
R servers, C(1),C(2), · · · ,C(R) are recoverable by inverting
a Vandermonde matrix. Furthermore, it is proved in [4] that by
the construction of Ã(α) and B̃(α), the C(1),C(2), · · · ,C(R)

terms include the mn desired terms, while the remaining
undesired terms (interference) align into the remaining R−mn
dimensions.

For example, suppose p = m = n = 2, so that the coded
matrices are constructed as follows.

Ã(α) = A1,1 + αA1,2 + α2A2,1 + α3A2,2, (7)

B̃(α) = αB1,1 + α5B1,2 + B2,1 + α4B2,2. (8)

And the answer can be expressed as follows.

Ã(α)B̃(α)
= A1,1B2,1

︸ ︷︷ ︸
C(1)

+α (A1,1B1,1 + A1,2B2,1)︸ ︷︷ ︸
C(2)

+ α2 (A2,1B2,1 + A1,2B1,1)︸ ︷︷ ︸
C(3)

+α3 (A2,1B1,1 + A2,2B2,1)︸ ︷︷ ︸
C(4)

+ α4 (A1,1B2,2 + A2,2B1,1)︸ ︷︷ ︸
C(5)

+α5 (A1,1B1,2 + A1,2B2,2)︸ ︷︷ ︸
C(6)

+ α6 (A1,2B1,2 + A2,1B2,2)︸ ︷︷ ︸
C(7)

+α7 (A2,1B1,2 + A2,2B2,2)︸ ︷︷ ︸
C(8)

+ α8 (A2,2B1,2)︸ ︷︷ ︸
C(9)

. (9)

Note that the desired product AB corresponds to the
mn = 4 terms C(2),C(4),C(6),C(8), which appear along
α, α3, α5, α7. The remaining R−mn = (pmn+p−1)−mn =
5 terms, i.e., C(1),C(3),C(5),C(7),C(9) are undesired terms
(interference).

In particular, note that the term C(9), which is inter-
ference, has a higher order (α8) than all desired terms.
In general, EP codes produce p − 1 such terms, namely
C(pmn+1), · · · ,C(R), that have a higher order than all desired
terms. It turns out this is useful in the construction of GCSA
codes to achieve better Interference Alignment (because these
higher order terms produced by EP codes naturally align with
the interference terms that result from batch processing).

EP codes may be seen as bridging the extremes of
Polynomial codes and MatDot codes. Polynomial codes [1]
can be recovered from EP codes by setting p = 1, and MatDot
codes [2] can be obtained from EP codes by setting m =
n = 1. EP codes also represent an improvement of PolyDot
codes [2] within a factor of 2 in terms of recovery threshold,
due to better interference alignment. Finally, EP codes have
similar performance as Generalized PolyDot codes [3]. Thus,
EP codes represent the state of art of prior work in terms
of matrix partitioning approaches to coded distributed matrix
multiplication.

B. Batch Processing: LCC Codes

Lagrange Coded Computing (LCC) codes [5] represent
the state of art of prior work in terms of batch processing
approaches for coded distributed batch multivariate polynomial
evaluation, which includes as special cases distributed batch
matrix multiplication as well as distributed batch N -linear
computation. LCC codes are so named because they exploit
the Lagrange interpolation polynomial to encode input data.
For example, consider the multivariate polynomial Φ(·) of total
degree N , and suppose we are interested in batch evaluations
of the polynomial, Φ(x1), Φ(x2), · · · , Φ(xL) over the given
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batch of data points x1,x2, · · · ,xL. Note that for matrix
multiplication, xl = (Al,Bl) and Φ(xl) = AlBl, which is
a bilinear operation (N = 2). LCC codes encode the dataset
according to the Lagrange interpolation polynomial,

X̃(α) =
∑

l∈[L]

xl

∏

l′∈[L]\{l}

α − βl′

βl − βl′
, (10)

and the sth server is sent the evaluation X̃(αs). Here
α1, α2, · · · , αS , β1, β2, · · · , βL are (S + L) distinct elements
from the operation field F. The sth server returns the user with
the answer Φ(X̃(αs)). Note that the degree of the polynomial
Φ(X̃(α)) is less than or equal to N(L − 1) = NL − N .
Therefore, from the answers of any R = NL − N + 1
servers, the user is able to reconstruct the polynomial Φ(X̃(α))
by polynomial interpolation. Upon obtaining the polynomial
Φ(X̃(α)), the user evaluates it at βl for every l ∈ [L] to obtain
Φ(X̃(βl)) = Φ(xl).

C. Cross Subspace Alignment: CSA Codes

The distinguishing feature of CSA codes is a
Cauchy-Vandermonde structure that facilitates a form of
interference alignment (labeled cross-subspace-alignment in
[25]), such that the desired symbols occupy dimensions
corresponding to the Cauchy part, and everything
else (interference) aligns within the higher order terms
that constitute the Vandermonde part. As a simple example of
the CSA codes introduced in this work, consider the problem
of coded distributed batch matrix multiplication, and suppose
we wish to compute the batch of L = 4 matrix products
A1B1, A2B2, A3B3, A4B4. For this, the A and B matrices
are encoded into the form

Ã(α) =

∆(α)
(

1
1 − α

A1 +
1

2 − α
A2 +

1
3 − α

A3 +
1

4 − α
A4

)
,

(11)

B̃(α) =
1

1 − α
B1 +

1
2 − α

B2 +
1

3 − α
B3 +

1
4 − α

B4,

(12)

and the sth server is sent the evaluations Ã(αs), B̃(αs). Here
the values α1, α2, · · · , αS , 1, 2, · · · , 4 represent any S + 4
distinct elements of the operational field F, and ∆(α) =
(1−α)(2−α)(3−α)(4−α). Each server multiplies its Ã(αs)
with B̃(αs) producing an answer which (after some algebraic
manipulation) can be expressed as

Ã(α)B̃(α) = c1

(
1

1 − α

)
A1B1 + c2

(
1

2 − α

)
A2B2

+ c3

(
1

3 − α

)
A3B3 + c4

(
1

4 − α

)
A4B4

+ I1 + αI2 + α2I3, (13)

where c1, c2, c3, c4 are non-zero constants. The desired matrix
products AiBi appear along

(
1

i−α

)
(the Cauchy terms),

and everything else (interference) can be distributed over the
higher order terms 1, α, α2 (the Vandermonde terms) and

consolidated into I1, I2, I3. The full-rank property of the
Cauchy-Vandermonde matrix ensures that the desired symbols
are separable from interference provided we have at least
R = 7 responding servers to resolve the 7 total dimensions
(4 desired and 3 interference dimensions). Surprisingly, upon
close inspection this special case of CSA codes turns out to
be equivalent to the Lagrange Coded computing scheme for
distributed matrix multiplication. However, CSA codes further
generalize and improve upon the Lagrange Coded Computing
approach as explained next.

Suppose we double the batch size from L = 4 to L = 8,
i.e., we wish to compute the matrix products A1B1, A2B2,
· · · , A8B8. A straightforward extension is to simply use the
previous scheme twice, which would double all costs. This
could be accomplished equivalently with CSA codes or with
Lagrange Coded Computing. However, because CSA codes
generalize Lagrange Coded Computing, they offer much more
flexibility. For example, we can partition the batch of L = 8
A,B matrices into # = 2 sub-batches of Kc = 4 matrices
each, and then proceed as before, so that we have,

Ã1(α) =

∆1(α)
(

1
1 − α

A1 +
1

2 − α
A2 +

1
3 − α

A3 +
1

4 − α
A4

)
,

(14)

Ã2(α) =

∆2(α)
(

1
5 − α

A5 +
1

6 − α
A6 +

1
7 − α

A7 +
1

8 − α
A8

)
,

(15)

B̃1(α) =
1

1 − α
B1 +

1
2 − α

B2 +
1

3 − α
B3 +

1
4 − α

B4,

(16)

B̃2(α) =
1

5 − α
B5 +

1
6 − α

B6 +
1

7 − α
B7 +

1
8 − α

B8,

(17)

where ∆1(α) = (1 − α)(2 − α)(3 − α)(4 − α) and ∆2(α) =
(5 − α)(6 − α)(7 − α)(8 − α). Evidently the upload cost
is doubled. However, we will see that the download cost
remains unchanged. This is because each server computes and
(if responsive) returns (for its corresponding realization of α)

Ã1(α)B̃1(α) + Ã2(α)B̃2(α)

= c1

(
1

1 − α

)
A1B1 + c2

(
1

2 − α

)
A2B2 + · · ·

+ c8

(
1

8 − α

)
A8B8 + I′1 + αI′2 + α2I′3. (18)

Since we have 8 desired dimensions and 3 interference dimen-
sions, responses from any R = 11 servers suffice to separate
desired matrix products from interference. Remarkably, while
the number of desired matrix products has doubled, the num-
ber of interference dimensions have not increased at all. This
is why 4 additional responding servers allow us to recover 4
additional desired matrix products. This is an advantage unique
to cross-subspace alignment, that cannot be achieved with
other coding approaches, such as Lagrange Coded computing.
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TABLE I

PERFORMANCE SUMMARY OF EP [4], LCC [5], CSA AND GCSA CODES FOR CDBMM. NOTE THAT CHOOSING # = Kc = 1 REDUCES GCSA CODES
TO EP CODES, WHILE SETTING m = n = p = 1 REDUCES GCSA CODES TO CSA CODES (FURTHER RESTRICTING # = 1 RECOVERS LCC

CODES). SHADED ROWS REPRESENT BALANCED SETTINGS WITH m = n, λ = µ = κ, FIXED POSITIVE INTEGERS #, #′′ , AND FIXED
RATIO R/S . THE BATCH SIZE IS L = #Kc FOR CSA CODES, L′ = K ′

c FOR LCC CODES, AND L′′ = #K ′′
c FOR GCSA CODES.

NOTE THAT FOR ARBITRARY R, WE CAN CHOOSE THE BATCH SIZE TO GUARANTEE
THE FEASIBILITY OF LCC/CSA/GCSA SOLUTIONS

CSA codes for distributed matrix multiplication based on
batch processing are introduced in this work in Theorem 1,
a generalization to include matrix partitioning is presented
in Theorem 2, and another generalization for N -linear batch
computations and multivariate batch polynomial evaluations is
presented in Theorem 3.

For ease of reference, Table I and Table II compare EP
codes, LCC codes, CSA codes, GCSA codes and N -CSA
codes with respect to their recovery thresholds, communication
costs for uploads and downloads, encoding and decoding
complexity, and server computation complexity.

This paper is organized as follows. Section III presents the
problem statements and definitions for coded distributed batch
matrix multiplication (CDBMM), coded distributed N -linear
batch computation and coded distributed multivariate batch
polynomial evaluations. CSA codes for CDBMM are intro-
duced in Section IV. Section V presents GCSA codes. N -CSA
codes are presented in Section VI. Appendix presents fur-
ther generalizations to allow X-secure data and B-byzantine
servers. Section VII concludes the paper.

Notation: For a positive integer N , [N ] stands for
the set {1, 2, . . . , N}. The notation X[N ] denotes the set
{X1, X2, . . . , XN}. For I = {i1, i2, . . . , iN}, XI denotes
the set {Xi1 , Xi2 , . . . , XiN }. The notation ⊗ is used to
denote the Kronecker product of two matrices, i.e., for two
matrices A and B, where (A)r,s = ars and (B)v,w = bvw,

(A⊗B)p(r−1)+v,q(s−1)+w = arsbvw. IN denotes the N ×N
identity matrix. T(X1, X2, · · · , XN ) denotes the N×N lower
triangular Toeplitz matrix, i.e.,

T(X1, X2, · · · , XN ) =





X1

X2 X1

X3 X2
. . .

...
. . .

. . .
. . .

...
. . . X2 X1

XN · · · · · · X3 X2 X1





.

(19)

The notation Õ(a log2 b) suppresses polylog terms. It may
be replaced with O(a log2 b) if the field supports the Fast
Fourier Transform (FFT), and with O(a log2 b log log(b)) if it
does not.

III. PROBLEM STATEMENT

A. Coded Distributed Batch Matrix Multiplication (CDBMM)

As shown in Figure 1, consider two source (master) nodes,
each of which generates a sequence of L matrices, denoted
as A = (A1,A2, . . . ,AL) and B = (B1,B2, . . . ,BL),
such that for all l ∈ [L], we have Al ∈ Fλ×κ and
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TABLE II

PERFORMANCE SUMMARY OF LCC CODES [5] AND N -CSA CODES FOR N -LINEAR DISTRIBUTED BATCH COMPUTATION.
SETTING # = 1 REDUCES N -CSA CODES TO LCC CODES AS A SPECIAL CASE. SHADED ROWS REPRESENT SETTINGS
WITH FIXED RATIO R/S . ω IS THE NUMBER OF ARITHMETIC OPERATIONS REQUIRED TO COMPUTE THE N -LINEAR

MAP Ω(·). dim(Vn) IS THE DIMENSION OF THE nth VARIABLE OF Ω(·), dimW IS THE DIMENSION OF THE
OUTPUT OF Ω(·). THE BATCH SIZE IS L = #Kc FOR N -CSA CODES, AND L′ = K ′

c FOR LCC CODES

Bl ∈ Fκ×µ, i.e., Al and Bl are λ × κ and κ ×
µ matrices, respectively, over a finite3 field F. The sink
node (user) is interested in the sequence of product matri-
ces, AB = (A1B1,A2B2, . . . ,ALBL). To help with this
computation, there are S servers (worker nodes). Each of
the sources encodes its matrices according to the functions
f = (f1, f2, . . . , fS) and g = (g1, g2, . . . , gS), where fs and
gs correspond to the sth server. Specifically, let us denote the
encoded matrices for the sth server as Ãs and B̃s, so we have

Ãs = fs(A), (20)

B̃s = gs(B). (21)

The encoded matrices, Ãs, B̃s, are uploaded to the sth

server. Let us denote the number of elements from F in Ãs

and B̃s as |Ãs| and |B̃s|, respectively.
Upon receiving the encoded matrices, each Server s,

s ∈ [S], prepares (computes) a response Ys, that is a function
of Ãs and B̃s, i.e.,

Ys = hs(Ãs, B̃s), (22)

where hs, s ∈ [S] are the functions used to produce the answer,
and we denote them collectively as h = (h1, h2, . . . , hS).
Some servers may fail to respond, such servers are called
stragglers. The user downloads the responses from the remain-
ing servers, from which, using a class of decoding functions
(denoted d), he attempts to recover the desired product AB.
Define

d = {dR : R ⊂ [S]}, (23)

where dR is the decoding function used when the set of
responsive servers is R. We say that (f, g, h, d) form a
CDBMM code. A CDBMM code is said to be r-recoverable
if the user is able to recover the desired products from the

3With the exception of the generalizations to X-security presented in
Appendix , our coding schemes are applicable over infinite fields (R, C) as
well. However, our problem statement assumes that F is a finite field, because
of the difficulty of defining communication costs or computation complexity
over infinite fields.

answers obtained from any r servers. In particular, a CDBMM
code (f, g, h, d) is r-recoverable if for any R ⊂ [S], |R| = r,
and for any realization of A, B, we have

AB = dR(YR). (24)

Define the recovery threshold R of a CDBMM code (f, g, h, d)
to be the minimum integer r such that the CDBMM code is
r-recoverable.

The communication cost of CDBMM is comprised of
upload and download costs. The (normalized)4 upload costs
UA and UB are defined as follows.

UA =

∑
s∈[S] |Ãs|
Lλκ

, (25)

UB =

∑
s∈[S] |B̃s|
Lκµ

. (26)

Similarly, the (normalized) download cost is defined as fol-
lows.

D = max
R,R⊂[S],|R|=R

∑
s∈R |Ys|
Lλµ

, (27)

where |Ys| is the number of elements from F in Ys.
Next let us consider the complexity of encoding, decoding

and server computation. Define the (normalized) computa-
tional complexity at each server, Cs, to be the order of
the number of arithmetic operations required to compute
the function hs at each server, normalized by L. Similarly,
define the (normalized) encoding computational complexity
CeA for Ã[S] and CeB for B̃[S] as the order of the number
of arithmetic operations required to compute the functions
f and g, respectively, each normalized by L. Finally, define
the (normalized) decoding computational complexity Cd to be
the order of the number of arithmetic operations required to
compute dR(YR), maximized over R,R ⊂ [S], |R| = R,

4We normalize the upload cost and download cost with the number of
elements contained in the constituent matrices A, B, and the desired product
AB, respectively.
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and normalized by L. Note that normalizations5 by L are
needed to have fair comparisons between batch processing
approaches and individual matrix-partitioning solutions per
matrix multiplication.

B. Distributed N -Linear Batch Computation

Consider an N -linear map, which is a function of N
variables that is linear separately in each variable. Formally,
a map Ω : V1 × V2 × · · ·× VN → W is called N -linear if for
all n ∈ [N ],

Ω(x(1), · · · , x(n−1), c1x
(n) + c2x

′(n), x(n+1), · · · , x(N))

= c1Ω(x(1), · · · , x(n−1), x(n), x(n+1), · · · , x(N))
+ c2Ω(x(1), · · · , x(n−1), x′(n), x(n+1), · · · , x(N)), (28)

where V[N ] and W are vector spaces over the base field F,
for all i ∈ [N ], x(i) ∈ Vi, x′(n) ∈ Vn and c1, c2 ∈ F.
Consider N sources (master nodes), n ∈ [N ], such that
the nth source generates a sequence of L variables x(n) =
(x(n)

1 , x(n)
2 , · · · , x(n)

L ), x(n)
l ∈ Vn, ∀l ∈ [L]. Let us define

xl = (x(1)
l , x(2)

l , · · · , x(N)
l ), (29)

for all l ∈ [L]. The sink node (user) is interested
in the evaluations of the N -linear map Ω over x[L],
i.e., Ω(x(1)

l , x(2)
l , · · · , x(N)

l ) = Ω(xl), l ∈ [L]. To help with
this computation, there are S servers (worker nodes). For all
n ∈ [N ], the nth source encodes its variables according to the
functions f (n) = (f (n)

1 , f (n)
2 , · · · , f (n)

S ), where f (n)
s corre-

sponds to the sth server. Let us denote (f (1), f (2), · · · , f (N))
collectively as f. Like the problem of CDBMM, for all n ∈
[N ], s ∈ [S], the coded share of the nth source for the sth

server is denoted as X̃(n)
s
, and we have

X̃(n)
s

= f (n)
s (x(n)). (30)

(
X̃(n)

s)

n∈[N ]
are uploaded to the sth server. Let us denote

the number of elements in X̃(n)
s

as
∣∣∣X̃(n)

s∣∣∣, s ∈ [S], n ∈ [N ].
Upon receiving the coded shares, each server s, s ∈ [S]

prepares (computes) a response Ys, that is a function of
X̃(n)

s
, n ∈ [N ].

Ys = hs(X̃(1)
s
, X̃(2)

s
, · · · , X̃(N)

s
), (31)

where hs, s ∈ [S] are the functions used to produce the answer,
and we denote them collectively as h = (h1, h2, · · · , hS).
The user downloads the responses from the servers in the set
R, and exploits a class of decoding functions (denoted d) to
recover the desired evaluations Ω(xl), l ∈ [L]. Define

d = {dR : R ⊂ [S]}, (32)

where dR is the decoding function used when the set of
responsive servers is R. We say that (f, h, d) form a distributed
N -linear batch computation code. A distributed N -linear batch

5Absolute latency constraints without such normalizations are also quite
important in practice. See the discussion following Theorem 2 in Section V
leading to Fig. 3.

computation code is said to be r-recoverable if the user is able
to recover the desired evaluations from the answers obtained
from any r servers. In particular, a distributed N -linear batch
computation code (f, h, d) is r-recoverable if for every R ⊂
[S], |R| = r, and for every realization of x[L], we have

(Ω(xl))l∈[L] = dR(YR). (33)

Define the recovery threshold R of a distributed N -linear
batch computation code (f, h, d) to be the minimum integer
r such that the distributed N -linear batch computation code is
r-recoverable.

The communication cost of distributed N -linear batch com-
putation is comprised of upload and download costs. For all

n ∈ [N ], the (normalized) upload cost for X̃(n)
[S]

, denoted as
UX(n) , is defined as follows

UX(n) =

∑
s∈[S]

∣∣∣X̃(n)
s∣∣∣

L dim(Vn)
. (34)

Similarly, the (normalized) download cost is defined as
follows.

D = max
R,R⊂[S],|R=R|

∑
s∈R |Ys|

L dim(W )
, (35)

where |Ys| is the number of elements from F in Ys.
Define the (normalized) computational complexity at each

server, Cs, to be the order of the number of arithmetic
operations required to compute the function hs at each server,
normalized by L. For all n ∈ [N ], we also define the (normal-

ized) encoding computational complexity CeX(n) for X̃(n)
[S]

as the order of the number of arithmetic operations required to
compute the functions f (n), normalized by L. Similarly, define
the (normalized) decoding computational complexity Cd to be
the order of the number of arithmetic operations required to
compute dR(YR), maximized over R,R ⊂ [S], |R| = R, and
normalized by L.

C. Distributed Multivariate Polynomial Batch Evaluation

Consider a multivariate polynomial Φ : V1×V2×· · ·×VM →
W with M variables of total degree N , where V[M ] and W
are vector spaces over the base field F. Consider M sources
(master nodes). For all m ∈ [M ], the mth source generates a
sequence of L variables x(m) = (x(m)

1 , x(m)
2 , · · · , x(m)

L ), such
that for all l ∈ [L], x(m)

l ∈ Vm. Similarly, we define

xl = (x(1)
l , x(2)

l , · · · , x(M)
l ), (36)

for all l ∈ [L]. The sink node (user) wishes to compute
the evaluations of the multivariate polynomial Φ over x[L],
i.e., Φ(x(1)

l , x(2)
l , · · · , x(M)

l ) = Φ(xl), l ∈ [L], with the help
of S servers (worker nodes). To this end, for all m ∈ [M ],
the mth source encodes its variables according to the functions
f (m) = (f (m)

1 , f (m)
2 , · · · , f (m)

S ), where f (m)
s corresponds to

the sth server. And (f (1), f (2), · · · , f (M)) are collectively
denoted as f. For all n ∈ [N ], s ∈ [S], the coded share of

the mth source for the sth server is denoted as X̃(m)
s
, and

we have

X̃(m)
s

= f (m)
s (x(m)). (37)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 02,2021 at 20:06:37 UTC from IEEE Xplore.  Restrictions apply. 



JIA AND JAFAR: CSA CODES FOR CODED DISTRIBUTED BATCH COMPUTATION 2829

(
X̃(m)

s)

m∈[M ]
are uploaded to the sth server. Let us denote

the number of elements in X̃(m)
s

as
∣∣∣X̃(m)

s∣∣∣, s ∈ [S],
m ∈ [M ].

Upon receiving coded variables, each server s, s ∈ [S]
prepares (computes) a response Ys, that is a function of
X̃(m)

s
, m ∈ [N ].

Ys = hs(X̃(1)
s
, X̃(2)

s
, · · · , X̃(M)

s

), (38)

where hs, s ∈ [S] are the functions used to produce the answer,
and we denote them collectively as h = (h1, h2, · · · , hS). The
user downloads the responses from the servers in the set R,
and uses a class of decoding functions (denoted d) to recover
the desired evaluations Φ(xl), l ∈ [L]. Define

d = {dR : R ⊂ [S]}, (39)

where dR is the decoding function used when the set of
responsive servers is R. We say that (f, h, d) form a distributed
multivariate polynomial batch evaluation code. A distributed
multivariate polynomial batch evaluation code is said to be
r-recoverable if the user is able to recover the desired evalu-
ations from the answers obtained from any r servers, i.e., for
any R ⊂ [S], |R| = r, and for any realization of x[L], we have

(Φ(xl))l∈[L] = dR(YR). (40)

Define the recovery threshold R of a distributed multivariate
polynomial batch evaluation code (f, h, d) to be the minimum
integer r such that the distributed multivariate polynomial
batch evaluation code is r-recoverable.

For all m ∈ [M ], the (normalized) upload cost for X̃(m)
[S]

,
denoted as UX(m) , is defined as follows

UX(m) =

∑
s∈[S]

∣∣∣X̃(m)
s∣∣∣

L dim(Vm)
. (41)

Similarly, the (normalized) download cost is defined as fol-
lows.

D = max
R,R⊂[S],|R=R|

∑
s∈R |Ys|

L dim(W )
, (42)

where |Ys| is the number of elements from F in Ys.
Define the (normalized) computational complexity at each

server, Cs, to be the order of the number of arithmetic
operations required to compute the function hs at each server,
normalized by L. For all m ∈ [M ], we also define the (normal-

ized) encoding computational complexity CeX(m) for X̃(m)
[S]

as the order of the number of arithmetic operations required to
compute the functions f(m), normalized by L. Similarly, define
the (normalized) decoding computational complexity Cd to be
the order of the number of arithmetic operations required to
compute dR(YR), maximized over R,R ⊂ [S], |R| = R, and
normalized by L.

IV. CSA CODES FOR CDBMM

A. CSA Codes: Main Result

The main result of this section introduces CSA Codes, and
is stated in the following theorem.

Theorem 1: For CDBMM over a field F with S servers,
and positive integers #, Kc such that L = #Kc ≤ |F| − S,
the CSA codes introduced in this work achieve

Recovery Threshold: R = (# + 1)Kc − 1, (43)

Upload Cost for Ã[S], B̃[S]: (UA, UB) =
(

S

Kc
,

S

Kc

)
, (44)

Download Cost: D =
(# + 1)Kc − 1

#Kc
, (45)

Server Computation Complexity:Cs = O(λκµ/Kc), (46)

Encoding Complexity for Ã[S], B̃[S]:

(CeA, CeB) =
(
Õ

(
λκS log2 S

Kc

)
, Õ

(
κµS log2 S

Kc

))
,

(47)

Decoding Complexity: Cd = Õ
(
λµ log2 R

)
. (48)

The proof of Theorem 1 appears in Section IV-C. A high
level summary of the main ideas is provided here. CSA codes
split the L = #Kc instances of Al matrices into # groups,
each containing Kc matrices. The Kc matrices within each
group are coded into an MDS (S, Kc) code by a Cauchy
encoding matrix to create S linear combinations of these
Kc matrices. Multiplication with a Cauchy encoding matrix
corresponds to the well studied Trummer’s problem [35] for
which fast algorithms have been found in [36]–[38] that limit
the encoding complexity to CeA = Õ(λκS log2 S

Kc
). The sth

coded linear combination from each of the # groups is sent to
the sth server. The Bl matrices are similarly encoded and
uploaded to the S servers. Note that because Kc matrices
are linearly combined into one linear combination for each
server, and there are S servers, the upload cost of CSA
codes is S/Kc. Each server multiplies the corresponding
instances of coded A,B matrices and returns the sum of
these # products. With straightforward matrix multiplication
algorithms, each of the # matrix products has a computation
complexity of O (λκµ) for a total of O (#λκµ), which upon
normalization by L = #Kc, yields a complexity of Cs =
O (λκµ/Kc) per server. The responses from any R = (# +
1)Kc − 1 servers provide R observations to the user, each
comprised of linear combinations of various product matri-
ces, including both desired products and undesired products
(interference). Interpreting the R observations as occupying
an R-dimensional vector space, the L desired matrix products
(AlBl)l∈[L] occupy L = #Kc of these R dimensions, leaving
only R−L = Kc−1 dimensions for interference. Remarkably,
while there are a total of #Kc(Kc − 1) undesired matrix
products, AlBl′ , l *= l′ that appear in the responses from
the servers, they collectively occupy only a total of Kc − 1
dimensions. This is because of cross-subspace alignment [25],
facilitated by the specialized Cauchy structure of the encoding.
Since L = #Kc desired matrix products are recovered from
a total of R that are downloaded, the normalized download
cost is R

L = (!+1)Kc−1
!Kc

. Note that the decoding operation
involves inverting a Cauchy-Vandermonde matrix, where the
Cauchy part spans the dimensions carrying desired signals
while the Vandermonde part spans the dimensions carrying
interference. Fast algorithms for inverting such matrices are
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also known [39], which limits the decoding complexity to
Õ(λµ log2 R).

B. Observations

In this section we present some observations to place CSA
Codes into perspective. In particular we would like to compare
CSA codes which generalize and improve upon the state of
art of batch processing approaches (LCC codes), against EP
codes which represent the state of art for matrix-partitioning
approaches.

1) From the conditions of Theorem 1, the field size |F|
must be at least equal to S + L. However, it is pos-
sible to reduce the field size requirement to |F| ≥ S
by constructing a systematic version of the code (see
Section IV-D).

2) To estimate the complexity of computation at each server
we use only straightforward matrix multiplication algo-
rithms that require Õ(λµκ) arithmetic operations over F
in order to compute the product of a λ×µ matrix with a
µ×κ matrix. It is well known that this complexity can be
improved upon by using more sophisticated6 algorithms
[32], [34], [40]. Such improvements do not constitute a
relative advantage because they can be applied similarly
to other codes, such as Entangled Polynomial codes as
well.

3) We are primarily interested in balanced settings, e.g.,
λ = µ = κ, that are typically studied for complexity
analysis. While the achievability claims of Theorem 1
are also applicable to unbalanced settings, it is not
difficult to improve upon Theorem 1 in certain aspects
in highly unbalanced settings. For example, as shown
recently in [31], when κ , min(λ, µ), it may be
significantly beneficial for the user in terms of download
cost to retrieve the A,B matrices separately from the
distributed servers and do the computation locally.

4) First let us compare CSA codes with LCC codes, both
of which are based on batch processing. Remarkably,
setting # = 1 in CSA codes recovers the LCC code
for CDBMM, i.e., LCC codes are a special case of
CSA codes. The parameter # in CSA codes is mainly7

useful to reduce download cost (by choosing large #).
On the one hand, note that the download cost in (45)
is always bounded between 1 and 2, so even the worst
case choice of # will at most double the download cost.
So if the download cost is only important in the O sense
(as a function of R), then it is desirable to set # = 1
and Kc = L which reduces the number of parameters
for the coding scheme. On the other hand, for settings
where the download cost is the dominating concern,
the generalization to # > 1 is important. For example,
suppose for some application due to latency concerns
there is a hard threshold that the download from each

6Notably, for λ = µ = κ the best known algorithms [32] thus far have
computation complexity that is still super-quadratic (more than O(λ2.3)),
and are not considered practical [33] due to large hidden constants in the O
notation.

7# may be also useful for parallel processing within each server because the
computation at each server is naturally split into # independent computations.

server cannot exceed the equivalent of one matrix multi-
plication, i.e., no more than λ2 elements of F. Then for
large batch sizes L, the lower download cost of CSA
codes translates into a smaller recovery threshold by up
to a factor of 2 relative to LCC codes (albeit at the cost
of increased upload and server computation).

5) Next, let us compare the performance of CSA codes
with Entangled Polynomial8 codes [4]. For this com-
parison we will only focus on # = 1, so this also
applies equivalently to LCC codes which are obtained
as special cases of CSA codes when # = 1. In order to
compute a batch of matrix products (AlBl)l∈[L], we will
show that joint/batch processing of all L products with
CSA codes achieves significantly better communication
(upload-download) costs than separate application of
Entangled Polynomial codes for each l ∈ [L], under
the same recovery-threshold-computational-complexity-
trade-off. It is proved in [4] that for any positive integers
(p, m, n), Entangled Polynomial codes achieve

Recovery threshold: R = pmn + p − 1, (49)

Upload cost: (UA, UB) = (S/pm, S/pn), (50)

Download cost: D =
pmn + p − 1

mn
. (51)

To simplify the order analysis, let us assume that
λ = κ = µ, and to balance the upload costs (UA, UB) let
us choose m = n. Let us regard the recovery threshold
R as a variable, and consider the upload cost UA, UB

and the download cost D as functions of R. So for the
Entangled Polynomial codes [4], we have

UA = UB = U =
mS

pm2
≥ m

(
S

R

)
, D =

R

m2
. (52)

A tradeoff is evident. For example, if we want download
cost of O(1), then we need m = Θ(

√
R) which yields

upload cost of O(S/
√

R). On the other hand, if we want
upload cost of O(S/R), then we should set m = Θ(1)
which yields download cost of O(R). If S/R is held
constant, then to best balance the upload and download
cost, we need m = Θ(R1/3), which yields both upload
cost and download cost of O(R1/3). Evidently, it is not
possible to achieve both upload and download cost of
O(1) with Entagled Polynomial codes. However, with
CSA codes, setting # = 1, we have upload cost of O(1)
and download cost of O(S/R). In particular, if S/R
is a constant, then both upload and download costs
are O(1). Note that CSA codes have the same server
computational complexity of O(λ3/R) normalized by
batch size as EP codes.

6) Continuing with the comparison between CSA codes
and EP codes, Figure 2a, 2b and 2c show lower convex
hulls of achievable (balanced upload cost, download
cost) pairs of Entangled Polynomial codes and CSA
codes given the number of servers and the recovery

8Entangled Polynomial codes generalize MatDot codes and Polynomial
codes, improve upon PolyDot codes, and have similar performance as Gen-
eralized PolyDot codes, so it suffices to compare CSA codes with Entangled
Polynomial codes.
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Fig. 2. Lower convex hulls of achievable (balanced upload cost, download cost) pairs (U, D) of Entangled Polynomial codes (EP codes) and cross subspace
alignment codes (CSA codes) given (a) (S = 30, R ≤ 25), (b) (S = 300, R ≤ 250) and (c) (S = 3000, R ≤ 2500).

threshold (S = 30, R ≤ 25), (S = 300, R ≤ 250)
and (S = 3000, R ≤ 2500) respectively. Each value of
(S, R) produces an achievable region in the (U, D) plane
(including all possible choices of m, n, p parameters for
Entagled Polynomial codes, and all choices of #, Kc

parameters for CSA codes). What is shown in the
figure is the union of these regions for each case, e.g.,
in the first figure the union is over all (S, R) with
(S = 30, R ≤ 25). Evidently, the advantage of CSA
codes over Entangled Polynomial codes in terms of
communication cost is significant and grows stronger
for larger (S, R) values.

7) CSA codes show a similar advantage over Entangled
Polynomial codes in terms of the tradeoff between
encoding complexity and decoding complexity normal-
ized by batch size. For example, consider the balanced
setting of m = n, λ = µ = κ, and constant S/R. The
encoding complexity of Entangled Polynomial codes
is Õ(λ2 U log2 S), and the decoding complexity is
Õ(λ2D log2 R), where U = UA = UB is the balanced
upload cost, and D is the download cost. For CSA
codes, the encoding complexity is Õ(λ2 log2 S), and
the decoding complexity is Õ(λ2 log2 R), which cor-
responds to U = D = O(1). Thus, the communication
cost advantage of CSA codes over Entangled Polynomial
codes is further manifested in the improved tradeoff
between encoding and decoding complexity.

8) Finally, let us place CSA codes in perspective with
previous applications of cross-subspace alignment. The
idea of cross-subspace alignment was introduced in
the context of X-secure T -private information retrieval
(XSTPIR) [25]. The goal of XSTPIR is to allow a user
to retrieve, as efficiently as possible, a desired message
Wθ out of K messages, W1, W2, · · · , WK that are
‘secret-shared’ across S servers in an X-secure fashion,
without revealing any information about the index θ to
any group of up to T colluding servers. According to
the scheme proposed in [25] the #th symbol of each
message is stored in the 1 × K vector W!. The query
vector Qθ is the θth column of a K × K identity
matrix, so that retrieving the product W!Qθ retrieves
the #th symbol of the desired message Wθ . In order
to guarantee security of data and privacy of queries,

the W! and Qθ vectors are mixed with independent
noise terms. Intuitively, by replacing W! and Qθ with
matrices A and B, and eliminating the corresponding
noise terms if the privacy and/or security constraints
are relaxed, cross-subspace alignment schemes can be
used to retrieve arbitrary matrix products AB. This
intuition helps with some of the achievable schemes9

in [29], [31]. However, in [25], the W! vectors are not
jointly encoded. Each W! vector is separately mixed
with noise. Similarly, in [29], [31] the matrices are
separately mixed with noise for security, and not jointly
encoded. Joint encoding of messages arises in PIR when
instead of replicated storage [41], [42], coded storage is
assumed [43]–[48]. PIR with MDS-coded storage, X-
secure data and T -private queries is studied in [28] and
indeed a generalized cross-subspace alignment scheme is
the key contribution of [28]. However, since there is only
one query vector Qθ, applications of this cross-subspace
alignment scheme are useful primarily for matrix mul-
tiplications of the form A1B,A2B, · · · ,ALB, where
we have only one B matrix to be multiplied with
each A matrix. This is indeed how the scheme is
applied in the context of private secure distributed matrix
multiplication (PSDMM) in [28]. Batch multiplications
of the form A1B1,A2B2, · · · ,ALBL, that are studied
in this work, present a significantly greater challenge
in that joint coding is now to be applied both among
A1,A2, · · · ,AL and among B1,B2, · · · ,BL matrices,
which introduces new interference terms AlBl′ , l *= l′.
A central technical challenge behind this work is to
determine if and how these terms can be aligned. The
CSA codes introduced in this work present a solution to
this challenge.

C. Proof of Theorem 1

In this section, we present the construction of CSA codes.
Let L = #Kc. Recall Lemma 1 in [28], which is also a standard
result for Cauchy-Vandermonde matrices [49], replicated here
for the sake of completeness.

9Notably, batch processing is used in [31] while matrix partitioning is used
in [29]. The achievable schemes in [29], [31] can be regarded as special cases
of X-secure CSA codes presented in this work with Kc = 1. See Appendix
for details.
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Lemma 1: If f1,1, f1,2, · · · , f!,Kc , α1, α2, · · · , αR are R+L
distinct elements of F, with 1 ≤ #Kc = L ≤ R − 1 and
|F| ≥ R+L, then the R×R Cauchy-Vandermonde matrix (53),
shown at the bottom of the page, is invertible over F.

Before presenting the general code construction let us start
with some illustrative examples.

1) # = 2, Kc = 2, L = 4: Let
f1,1, f1,2, f2,1, f2,2, α1, . . . , αS represent (S+#Kc) = (S+4)
distinct elements from F. For all s ∈ [S], let us define

∆1,2
s = (f1,1 − αs)(f1,2 − αs), (54)

∆2,2
s = (f2,1 − αs)(f2,2 − αs). (55)

Let us set Al,k = AKc(l−1)+k and Bl,k = BKc(l−1)+k for all
l ∈ [2], k ∈ [2]. Coded shares of matrices A are constructed
as follows.

Ãs = (Ãs
1, Ã

s
2), (56)

where

Ãs
1 = ∆1,2

s

(
1

f1,1 − αs
A1,1 +

1
f1,2 − αs

A1,2

)
(57)

= (f1,2 − αs)A1,1 + (f1,1 − αs)A1,2, (58)

Ãs
2 = ∆2,2

s

(
1

f2,1 − αs
A2,1 +

1
f2,2 − αs

A2,2

)
(59)

= (f2,2 − αs)A2,1 + (f2,1 − αs)A2,2. (60)

Coded shares of matrices B are constructed as follows.

B̃s = (B̃s
1 , B̃

s
2), (61)

where

B̃s
1 =

1
f1,1 − αs

B1,1 +
1

f1,2 − αs
B1,2, (62)

B̃s
2 =

1
f2,1 − αs

B2,1 +
1

f2,2 − αs
B2,2. (63)

The answer provided by the sth server to the user is con-
structed as follows.

Ys = Ãs
1B̃

s
1 + Ãs

2B̃
s
2 . (64)

To see why the R = (# + 1)Kc − 1 = 5 recovery threshold
holds, we rewrite Ys as follows.

Ys = Ãs
1B̃

s
1 + Ãs

2B̃
s
2 (65)

=
f1,2 − αs

f1,1 − αs
A1,1B1,1 +

f1,1 − αs

f1,2 − αs
A1,2B1,2

+
f2,2 − αs

f2,1 − αs
A2,1B2,1 +

f2,1 − αs

f2,2 − αs
A2,2B2,2

+ (A1,1B1,2 + A1,2B1,1 + A2,1B2,2 + A2,2B2,1)
(66)

=
f1,1 − αs + (f1,2 − f1,1)

f1,1 − αs
A1,1B1,1

+
f1,2 − αs + (f1,1 − f1,2)

f1,2 − αs
A1,2B1,2

+
f2,1 − αs + (f2,2 − f2,1)

f2,1 − αs
A2,1B2,1

+
f2,2 − αs + (f2,1 − f2,2)

f2,2 − αs
A2,2B2,2

+ (A1,1B1,2 + A1,2B1,1 + A2,1B2,2 + A2,2B2,1)
(67)

=
f1,2 − f1,1

f1,1 − αs
A1,1B1,1 +

f1,1 − f1,2

f1,2 − αs
A1,2B1,2

+
f2,2 − f2,1

f2,1 − αs
A2,1B2,1 +

f2,1 − f2,2

f2,2 − αs
A2,2B2,2

+ (A1,1B1,1 + A1,2B1,2 + A2,1B2,1 + A2,2B2,2

+ A1,1B1,2 + A1,2B1,1 + A2,1B2,2 + A2,2B2,1).︸ ︷︷ ︸
I1

(68)

Therefore, for any R = 5 servers, whose indices are denoted as
s1, s2, . . . , s5, we can represent their answers in the following
matrix form.





Ys1

Ys2

Ys3

Ys4

Ys5




=





1
f1,1−αs1

1
f1,2−αs1

1
f2,1−αs1

1
f2,2−αs1

1
1

f1,1−αs2

1
f1,2−αs2

1
f2,1−αs2

1
f2,2−αs2

1
1

f1,1−αs3

1
f1,2−αs3

1
f2,1−αs3

1
f2,2−αs3

1
1

f1,1−αs4

1
f1,2−αs4

1
f2,1−αs4

1
f2,2−αs4

1
1

f1,1−αs5

1
f1,2−αs5

1
f2,1−αs5

1
f2,2−αs5

1





︸ ︷︷ ︸
V2,2,5



c1,1

c1,2

c2,1

c2,2

1





︸ ︷︷ ︸
V′

2,2,5

⊗Iλ





A1,1B1,1

A1,2B1,2

A2,1B2,1

A2,2B2,2

I1




,

(69)

where c1,1 = f1,2 − f1,1, c2,1 = f2,2 − f2,1, c1,2 = −c1,1,
c2,2 = −c2,1. Since f1,1, f1,2, f2,1, f2,2 are distinct elements
from F, the constants c1,1, c1,2, c2,1, c2,2 take non-zero values.
Guaranteed by Lemma 1 and the fact that Kronecker product
of non-singular matrices is non-singular, the 5λ × 5λ matrix
(V2,2,5V′

2,2,5)⊗Iλ is invertible, and the user is able to recover
desired products (A1B1, . . . ,A4B4) = (Al,kBl,k)l∈[2],k∈[2]

from the answers received from any R = 5 servers. This
completes the proof of the R = 5 recovery threshold. Finally,
note that the upload cost is UA = UB = S/2 = S/Kc and the

V!,Kc,R !





1
f1,1−α1

1
f1,2−α1

· · · 1
f!,Kc−α1

1 α1 · · · αR−L−1
1

1
f1,1−α2

1
f1,2−α2

· · · 1
f!,Kc−α2

1 α2 · · · αR−L−1
2

...
...

...
...

...
...

...
...

1
f1,1−αR

1
f1,2−αR

· · · 1
f!,Kc−αR

1 αR · · · αR−L−1
R




(53)
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download cost is D = 4/5 because a total of R = 5 matrix
products, each of dimension λ×µ, are downloaded (one from
each server) from which the 4 desired matrix products, also
each of dimension λ × µ, are recovered.

2) # = 1, Kc = 3, L = 3: Let f1,1, f1,2, f1,3, α1,
α2, . . . , αS represent (S + #Kc) = (S + 3) distinct elements
from F. For all s ∈ [S], let us define

∆1,3
s = (f1,1 − αs)(f1,2 − αs)(f1,3 − αs). (70)

Shares of A and B at the sth server are constructed as follows.

Ãs =

∆1,3
s

(
1

f1,1 − αs
A1,1 +

1
f1,2 − αs

A1,2 +
1

f1,3 − αs
A1,3

)
,

(71)

B̃s =
1

f1,1 − αs
B1,1 +

1
f1,2 − αs

B1,2 +
1

f1,3 − αs
B1,3,

(72)

where we set A1,k = Ak and B1,k = Bk for k ∈ [3]. The
answer returned by the sth server to the user is

Ys = ÃsB̃s. (73)

Now let us prove that the user is able to recover desired prod-
ucts (AlBl)l∈[3] = (A1,kB1,k)k∈[3] with recovery threshold
R = (# + 1)Kc − 1 = 2 × 3 − 1 = 5. Let us rewrite Ys as
follows.

Ys = ÃsB̃s (74)

=
(f1,2 − αs)(f1,3 − αs)

f1,1 − αs
A1,1B1,1

+
(f1,1 − αs)(f1,3 − αs)

f1,2 − αs
A1,2B1,2

+
(f1,1 − αs)(f1,2 − αs)

f1,3 − αs
A1,3B1,3

+ (f1,1 − αs)(A1,2B1,3 + A1,3B1,2)

+ (f1,2 − αs)(A1,1B1,3 + A1,3B1,1)

+ (f1,3 − αs)(A1,1B1,2 + A1,2B1,1). (75)

Next let us manipulate the first term on the RHS. By long
division of polynomials (regard numerator and denominator
as polynomials of αs), we have

(f1,2 − αs)(f1,3 − αs)
f1,1 − αs

A1,1B1,1 (76)

= (−αs + (f1,2 + f1,3 − f1,1)

+
(f1,2 − f1,1)(f1,3 − f1,1)

f1,1 − αs

)
A1,1B1,1. (77)

Now it is obvious that the scaling factor of A1,1B1,1 can be
expanded into weighted sums of the terms (f1,1 − αs)−1, 1
and αs. For the second and third terms in (75), by the long

division of polynomials, we can similarly show that the second
term can be expanded into weighted sums of the terms (f1,2−
αs)−1, 1 and αs and that the third term can be expanded into
weighted sums of the terms (f1,3−αs)−1, 1 and αs. Note that
the last three terms in (75) can be expanded into weighted
sums of the terms 1, αs. Now, consider any R = 5 servers,
whose indices are denoted as si, i ∈ [5], and we can represent
their answers in the following matrix notation.





Ys1

Ys2

Ys3

Ys4

Ys5




=





1
f1,1−αs1

1
f1,2−αs1

1
f1,3−αs1

1 α1
1

f1,1−αs2

1
f1,2−αs2

1
f1,3−αs2

1 α2
1

f1,1−αs3

1
f1,2−αs3

1
f1,3−αs3

1 α3
1

f1,1−αs4

1
f1,2−αs4

1
f1,3−αs4

1 α4
1

f1,1−αs5

1
f1,2−αs5

1
f1,3−αs5

1 α5





︸ ︷︷ ︸
V1,3,5



c1,1

c1,2

c1,3

1
1





︸ ︷︷ ︸
V′

1,3,5

⊗Iλ





A1,1B1,1

A1,2B1,2

A1,3B1,3

∗
∗




, (78)

where we have used ∗ to represent various combinations of
interference symbols that can be found explicitly by expanding
(75), since those forms are not important. We have c1,1 =
(f1,2 − f1,1)(f1,3 − f1,1), c1,2 = (f1,1 − f1,2)(f1,3 − f1,2)
and c1,3 = (f1,1 − f1,3)(f1,2 − f1,3). Since f1,1, f1,2 and f1,3

are distinct by definition, it follows that c1,1, c1,2 and c1,3 are
non-zero values. Therefore, the matrix (V1,3,5V′

1,3,5)⊗ Iλ is
invertible according to Lemma 1 and the properties of Kro-
necker products. Thus, the user is able to recover the desired
matrix products by inverting the matrix (V1,3,5V′

1,3,5) ⊗ Iλ.
This completes the proof of R = 5 recovery threshold.
Similarly, we can compute the upload cost and download cost
of the code as follows, UA = UB = S/Kc = S/3, and
D = 5/3, which achieves desired costs.

3) Arbitrary #, Kc and L = #Kc: Now let us present
the general code construction. Let f1,1, f1,2, · · · , f!,Kc , α1,
α2, · · · , αS represent (S + L) distinct elements from F. For
all l ∈ [#], s ∈ [S], let us define

∆,Kc
s =

∏

k∈[Kc]

(fl,k − αs). (79)

Let us also define

Al,k = AKc(l−1)+k, (80)

Bl,k = BKc(l−1)+k, (81)

for all l ∈ [#], k ∈ [Kc]. Note that by this definition, desired
products can be represented as follows.





A1,1B1,1 · · · A1,KcB1,Kc

A2,1B2,1 · · · A2,KcB2,Kc

...
...

...
A!,1B!,1 · · · A!,KcB!,Kc




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=





A1B1 · · · AKcBKc

AKc+1BKc+1 · · · A2KcB2Kc

...
...

...
A(!−1)Kc+1B(!−1)Kc+1 · · · A!KcB!Kc




. (82)

Now we are ready to construct the CSA code with arbitrary
parameters (#, Kc). For all s ∈ [S], let us construct shares of
matrices A and B at the sth server as follows.

Ãs = (Ãs
1, Ã

s
2, . . . , Ã

s
!), (83)

B̃s = (B̃s
1 , B̃

s
2 , . . . , B̃

s
! ), (84)

where for l ∈ [#], let us set

Ãs
l = ∆l,Kc

s

∑

k∈[Kc]

1
fl,k − αs

Al,k, (85)

B̃s
l =

∑

k∈[Kc]

1
fl,k − αs

Bl,k. (86)

The answer returned by the sth server to the user is constructed
as follows.

Ys =
∑

l∈[!]

Ãs
l B̃

s
l (87)

= Ãs
1B̃

s
1 + Ãs

2B̃
s
2 + · · · + Ãs

!B̃
s
! . (88)

Now let us see why the R = (#+1)Kc−1 recovery threshold
holds. First, let us rewrite Ys as follows.

Ys = Ãs
1B̃

s
1 + Ãs

2B̃
s
2 + · · · + Ãs

!B̃
s
! (89)

=
∑

l∈[!]

∆l,Kc
s




∑

k∈[Kc]

1
fl,k − αs

Al,k








∑

k∈[Kc]

1
fl,k − αs

Bl,k



 (90)

=
∑

l∈[!]

∆l,Kc
s




∑

k∈[Kc]

∑

k′∈[Kc]

Al,kBl,k′

(fl,k − αs)(fl,k′ − αs)





(91)

=
∑

l∈[!]

∑

k∈[Kc]

∏
k′∈[Kc]\{k}(fl,k′ − αs)

(fl,k − αs)
Al,kBl,k

+
∑

l∈[!]

∑

k,k′∈[Kc]
k &=k′




∏

k′′∈[Kc]\{k,k′}

(fl,k′′ − αs)



Al,kBl,k′ ,

(92)

where in the last step, we split the summation into two parts
depending on whether or not k = k′.

Let us consider the first term in (92). If we regard both
numerator and denominator as polynomials of αs, then by
long division of polynomials, for each l ∈ [#], k ∈ [Kc],
the following term

∏
k′∈[Kc]\{k}(fl,k′ − αs)

(fl,k − αs)
Al,kBl,k, (93)

can be expanded into weighted sums of the terms (fl,k −
αs)−1, 1, αs, · · · , αKc−2

s , i.e., it can be rewritten as
(
c−1(fl,k−αs)−1+c0+c1αs+. . .+cKc−2α

Kc−2
s

)
Al,kBl,k.

(94)

Now note that the numerator polynomial
∏

k′∈[Kc]\{k}
(fl,k′ −αs) has no root fl,k, while fl,k is the only root of the
denominator polynomial. Since (fl,k)l∈[!],k∈[Kc] are distinct
elements from F by definition, by the polynomial remainder
theorem, c−1 =

∏
k′∈[Kc]\{k}(fl,k′ − fl,k) *= 0.

Next we note that the second term in (92) can be expanded10

into weighted sums of the terms 1, αs, · · · , αKc−2
s , so in the

matrix form, answers from any R = (# + 1)Kc − 1 servers,
whose indices are denoted as s1, s2, · · · , sR, can be written
as (95), shown at the bottom of the next page, where we
have used ∗ to represent various combinations of interference
symbols that can be found explicitly by expanding (92), whose
exact forms are irrelevant. We note that R−L−1 = (#+1)Kc−
1−#Kc−1 = Kc−2. And we also note that for all l ∈ [#] and
k ∈ [Kc], cl,k =

∏
k′∈[Kc]\{k}(fl,k′ − fl,k) *= 0. Therefore,

guaranteed by Lemma 1 and the fact that the Kronecker
product of non-singular matrices is non-singular, the matrix
(V!,Kc,RV′

!,Kc,R)⊗Iλ is invertible. Therefore, the user is able
to recover desired products (Al,kBl,k)l∈[!],k∈[Kc] by inverting
the matrix. This completes the proof of R = (# + 1)Kc − 1
recovery threshold. For the upload costs, it is easy to see
that we have UA = UB = (#S)/L = S/Kc. The download
cost is D = R/L = ((# + 1)Kc − 1) /(#Kc). The computa-
tional complexity at each server is O(λκµ/Kc) if we assume
straightforward matrix multiplication algorithms.

Finally, let us consider the encoding and decoding com-
plexity. Recall the encoding functions (83), (84), (85), (86).
Note that each of the Ãs

! can be regarded as products of an
S × Kc Cauchy matrix with a total of λκ column vectors
of length Kc. Similarly, each of the B̃s

! can be considered
as products of an S × Kc Cauchy matrix by a total of
κµ column vectors of length Kc. Remarkably, the problem
of efficiently multiplying an S × S Cauchy matrix with a
column vector is known as Trummer’s problem [35]. Fast
algorithms exist [36]–[38] that solve Trummer’s problem with
computational complexity as low as Õ(S log2 S), in contrast to
straightforward algorithms that have computational complexity
of O(S2). Similarly, with fast algorithms the computational
complexity of multiplying a S × Kc Cauchy matrix with
a column vector is at most Õ(S log2 S), so the encoding
complexity of Ã[S] and B̃[S] is at most Õ

((
λκS log2 S

)
/Kc

)

and Õ
((

κµS log2 S
)
/Kc

)
, respectively. On the other hand,

consider the decoding procedure of CSA codes, which can
be regarded as solving a total of λµ linear systems defined
by an R × R coefficient matrix. Indeed, this coefficient
matrix is a Cauchy-Vandermonde matrix. There is a large
body of literature studying fast algorithms for solving linear
systems defined by R×R Cauchy-Vandermonde matrices, and
the best known computational complexity is Õ(R log2 R),

10When Kc = 1, the second term in (92) equal zero, thus the Vandermonde
terms do not appear and the matrix form representation only involves Cauchy
matrices, i.e., Cauchy-Vandermonde matrices without Vandermonde part.
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see, e.g., [39].11 Therefore, the decoding complexity of
Õ

(
(λµR log2 R)/L

)
= Õ(λµ log2 R) is achievable. This

completes the proof of Theorem 1.

D. Systematic Construction of CSA Codes

In this section, we present a systematic construction of
CSA codes. Instead of uploading coded version of matrices A
and B to all of the S servers, the systematic construction of
CSA codes uploads uncoded constituent matrix pair (As,Bs)
directly to the sth server for the first L servers, i.e., for all
s ∈ [L]. For the remaining S − L servers, coded shares are
uploaded following the same construction that was presented
in Section IV-C. We will see that the systematic construction
of CSA codes works on a smaller field F, compared to
the construction presented in Section IV-C. The systematic
construction of CSA codes requires less encoding complexity.
Its decoding complexity decreases as more of the first L
servers respond. In fact, if all of the first L servers respond,
then no computation is required at all for decoding. The
systematic construction also preserves backward compatibility
to current systems that apply straightforward parallelization
strategies. Formally, we have

Ãs = As, (96)

B̃s = Bs (97)

for all s ∈ [L] and

Ãs = (Ãs
1, Ã

s
2, . . . , Ã

s
!), (98)

B̃s = (B̃s
1 , B̃

s
2, . . . , B̃

s
! ) (99)

for all s ∈ {L+1, · · · , S}, where Ãs
[!] and B̃s

[!] are defined in
(85) and (86) respectively. Similarly, the answer returned by
the sth server is constructed as follows.

Ys = ÃsB̃s (100)

for all s ∈ [L] and
Ys =

∑

l∈[!]

Ãs
l B̃

s
l (101)

11The fast algorithm of solving Cauchy-Vandermonde type linear systems
here takes inputs of only parameters of a Cauchy-Vandermonde matrix V,
i.e, (αs1 , αs2 , · · · , αsR , f1,1, f1,2, · · · , f!,Kc) and a column vector y, and
outputs the column vector x such that Vx = y with the computational
complexity of at most O(R log2 R). Therefore, it is not necessary for the
user (decoder) to store extra information beyond α[S] and (fl,k)l∈[!],k∈[Kc].

for all s ∈ {L + 1, · · · , S}. Note that since coded shares are
used only for S−L servers, we no longer need distinct values
α1, α2, · · · , αL, so the field size required is only |F| ≥ S.

Now, let us prove that the recovery threshold R is not
affected by the systematic construction, i.e., the desired prod-
ucts are still recoverable from the answers of any R =
L + Kc − 1 servers. Denote the set of responsive servers as
R, |R| = R. Note that if [L] ⊂ R, then the desired products
AB can be directly recovered from answers of the first L
servers. On the other hand, if [L] ∩ R = ∅, then we can
recover the desired products AB following the same argument
that was presented in Section IV-C. When [L] ∩ R *= ∅,
denote the elements in the set R \ [L] as (s1, s2, · · · , sR′).
The answers from these R′ servers can be written in the matrix
form (102), shown at the bottom of the next page. Note that
the dimension of the first matrix on the RHS, or the decoding
matrix, is (R′ × R), thus it appears to be not invertible.
However, from answers of the servers in the set R ∩ [L],
we can directly recover |R ∩ [L]| desired products. Note
that the desired products appear along the dimension spanned
by the Cauchy part. By subtracting these known products
from the answers, we obtain the decoding matrix of dimension
(R′ × R′), which is invertible by Lemma 1. This completes
the proof of recovery threshold R = L + Kc − 1. It is easy to
see that the upload and download costs are also not affected
by the systematic construction. For the encoding complexity,
the systematic construction requires less arithmetic operations
because no computation is needed to obtain Ã[L] and B̃[L].
For the decoding complexity, when [L] ⊂ R, no computation
is needed, and when [L]∩R = ∅, it follows the same argument
presented in Section IV-C. When [L] ∩ R *= ∅, the user
(decoder) eliminates all products obtained from answers of
the servers in the set R∩ [L], and then decodes the remaining
products according to the fast decoding algorithm. Thus the
decoding complexity is not increased.

V. GENERALIZED CROSS-SUBSPACE ALIGNMENT (GCSA)
CODES: COMBINING BATCH PROCESSING AND

MATRIX-PARTITIONING

In this section, we present Generalized CSA codes (GCSA
codes), which combine the batch processing of CSA codes
with the matrix-partitioning approach of EP codes. Although
we have shown that batch processing with CSA codes signifi-
cantly improves the tradeoff between upload-download costs,





Ys1

Ys2

...
YsR




=





1
f1,1−αs1

1
f1,2−αs1

· · · 1
f!,Kc−αs1

1 αs1 · · · αR−L−1
s1

1
f1,1−αs2

1
f1,2−αs2

· · · 1
f!,Kc−αs2

1 αs2 · · · αR−L−1
s2

...
...

...
...

...
...

...
...

1
f1,1−αsR

1
f1,2−αsR

· · · 1
f!,Kc−αsR

1 αsR · · · αR−L−1
sR





︸ ︷︷ ︸
V!,Kc,R





c1,1

c1,2

. . .
c!,Kc

1
. . .

1





︸ ︷︷ ︸
V′

!,Kc,R

⊗Iλ





A1,1B1,1

A1,2B1,2
...

A!,KcB!,Kc

∗
...
∗





,

(95)
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evidently CSA codes require at least one matrix multiplica-
tion of dimensions λ × κ and κ × µ at each server. For
a computation-latency limited setting, partitioning may be
necessary to reduce the computation load per server. A naive
approach to combine the batch processing of CSA codes and
the partitioning of EP codes is to first (separately for each
l ∈ [L]) apply EP codes for each pair of matrices, Al,Bl.
Next, since only matrix multiplication is involved in obtaining
the answers for EP codes, we can then apply CSA codes for
these matrix multiplications. Specifically, for positive integers
#′, K ′

c, S
′, p, m, n such that L = #′K ′

c, m | λ, n | µ, p | κ and
S′ ≥ pmn + p − 1, apply EP codes of parameter p, m, n
with S′ servers for each matrix multiplication. This yields
a total of S′#′K ′

c matrix multiplications. For these matrix
multiplications, we can further apply CSA codes. Now we
can see that by this construction, if we choose CSA codes
parameters # = #′, Kc = K ′

cS
′, we can achieve the upload

cost (UA, UB) = (S/(K ′
cpm), S/(K ′

cpn)). It is also easy to
see that for this simple combination of EP and CSA codes, the
recovery threshold achieved is R = #′K ′

cS
′ + K ′

cS
′ − 1, and

the download cost is D = (#′K ′
cS

′ + K ′
cS

′ − 1)/(#′K ′
cmn).

However, we will see that under the same upload cost, GCSA
codes can improve the recovery threshold to R = pmn(#′K ′

c+
K ′

c − 1)+ p− 1 and the download cost to D = (pmn(#′K ′
c +

K ′
c − 1) + p − 1)/(#′K ′

cmn). This result is better than the
naive construction because S′ ≥ pmn + p − 1 ≥ 1. On the
other hand, note that the Lagrange Coded Computation (LCC)
codes in [5] can be regarded as a special case of CSA codes
with parameter # = 1, so the naive approach of combining
LCC codes with EP codes achieves the recovery threshold
of R = 2LS′ − 1. With GCSA codes of parameter # = 1,
the recovery threshold is improved to R = 2Lpmn + p − 1.

A. GCSA Codes: Main Result

Our main result for GCSA codes appears in the following
theorem.

Theorem 2: For CDBMM over a field F with S servers,
and positive integers (#, Kc, p, m, n) such that m | λ, n | µ,
p | κ and L = #Kc ≤ |F|− S, the GCSA codes presented in
this work achieve

Recovery Threshold: R = pmn((# + 1)Kc − 1) + p − 1,

(103)

Upload Cost for Ã[S], B̃[S]: (UA, UB) =
(

S

Kcpm
,

S

Kcpn

)
,

(104)

Download Cost: D =
pmn((# + 1)Kc − 1) + p − 1

mn#Kc
, (105)

Server Computation Complexity: Cs = O
(

λκµ

Kcpmn

)
,

(106)

Encoding Complexity for Ã[S], B̃[S]:

(CeA, CeB) =
(
Õ

(
λκS log2 S

Kcpm

)
, Õ

(
κµS log2 S

Kcpn

))
,

(107)

Decoding Complexity: Cd = Õ
(
λµp log2 R

)
. (108)

B. Observations

1) GCSA codes generalize almost all state of art
approaches for coded distributed batch matrix multipli-
cation. Setting m = n = p reduces GCSA codes to
CSA codes. Further setting # = 1 recovers LCC codes.
Setting # = Kc = 1 reduces GCSA codes to EP codes.
Further setting p = 1 recovers Polynomial codes, while
setting m = n = 1 recovers MatDot codes.

2) Let us explain why GCSA codes, which include CSA
codes, LCC codes and EP codes as special cases, are
capable of achieving more than what each of these codes
can achieve in general. Consider a finite horizon setting,
where12 the job size J , i.e., the number of matrices
to be multiplied, is fixed. So we need to compute J
matrix multiplications, A1B1, · · · ,AJBJ , where each
Aj ,Bj , j ∈ [J ] is a λ × λ matrix. Suppose each scalar
multiplication takes Tm seconds, and it takes Tc seconds
to communicate one scalar over any communication
channel. For simplicity let us assume that multiplying
two λ × λ matrices requires λ3 Tm seconds of com-
putation time. There is a required latency constraint for
this job, such that the total computation time at each
server cannot exceed λ3Tm/K , where K > 1 is a given
parameter that determines the server latency constraint.
Note that this latency constraint immediately rules out
LCC codes, and even CSA codes because they need at
least λ3Tm seconds of computation time at each server
which violates the given constraint. Now consider EP
codes which can partition the matrices to reduce the size

12We make a distinction between batch size and job size, in that the job
size is fixed as part of the problem specification while the batch size may be
chosen arbitrarily by a coding scheme, e.g., to partition the job into smaller
jobs.





Ys1

Ys2

...
YsR′




=





c1,1
f1,1−αs1

c1,2
f1,2−αs1

· · · c!,Kc
f!,Kc−αs1

1 αs1 · · · αR−L−1
s1

c1,1
f1,1−αs2

c1,2
f1,2−αs2

· · · c!,Kc
f!,Kc−αs2

1 αs2 · · · αR−L−1
s2

...
...

...
...

...
...

...
...

c1,1
f1,1−αsR′

c1,2
f1,2−αsR′

· · · c!,Kc
f!,Kc−αsR′

1 αsR · · · αR−L−1
sR′




⊗ Iλ





A1,1B1,1

A1,2B1,2
...

A!,KcB!,Kc

∗
...
∗





, (102)
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of computation task at each server, but need to repeat the
process J times because each AjBj is computed sepa-
rately. EP codes need computation time Jλ3Tm/(pmn)
at each server, so they can satisfy the latency constraint
by choosing pmn ≥ JK . On the other hand, GCSA
codes with, say # = 1 and Kc = J , need computa-
tion time λ3Tm/(p′′m′′n′′) at each server. So GCSA
codes can satisfy the latency constraint by choosing
p′′m′′n′′ ≥ K , i.e., with less partitioning than needed for
EP codes. Note that GCSA codes need less partitioning
than EP codes to satisfy the same latency constraint,
because they make up some of the computation time by
batch processing of the J multiplications that must be
carried out separately by EP codes. It turns out that this
allows GCSA codes to have lower communication cost.
EP codes require a total download time of JREP λ2Tc

mn =
J(pmn+p−1)λ2Tc

mn , and an upload time of JSλ2Tc
pm +

JSλ2Tc
pn seconds, where S is the number of servers

utilized by the scheme. For straggler tolerance, suppose
REP /S = η < 1, so that the upload time is expressed
as J(pmn+p−1)λ2Tc

ηp ( 1
m + 1

n ). For balanced upload and
download times we need m = n and ηpm/2 ≈ m2,
so that the balanced upload/download time for EP codes
is ≈ J(2m3/η+2m/η−1)λ2Tc

m2 . Given the latency constraint
which forces 2m3/η ≥ JK , we find that the opti-
mal balanced upload/download time for EP codes is

achieved with m ≈
(

ηJK
2

)1/3
. On the other hand,

now consider GCSA codes, which need total down-
load time of RGCSAλ2Tc

m′′n′′ = (p′′m′′n′′(2J−1)+p′′−1)λ2Tc

m′′n′′ ,
and total upload time of S′′λ2Tc

p′′m′′ + S′′λ2Tc
p′′n′′ . For sim-

ilar straggler robustness, let RGCSA/S′′ = η be the
same as for EP codes. For balanced costs, similarly
set m′′ = n′′ and ηp′′m′′/2 ≈ m′′2. Thus GCSA
codes achieve balanced upload/download time of ≈
((2m′′3/η)(2J−1)+2m′′/η−1)λ2Tc

m′′2 , respectively. Combined
with the latency constraint which forces 2m′′3/η ≥
K , we find that the optimal balanced upload/download
time for this particular construction of GCSA codes is

achieved with m′′ ≈
(

ηK
2

)1/3
. For a quick compari-

son of approximately optimal balanced upload/download
time, note that for EP codes it is lower bounded by
2Jmλ2Tc

η , and for GCSA codes it is upper bounded by
8Jm′′λ2Tc

η , so EP codes need more balanced communi-

cation time by a factor of at least m
4m′′ ≈ J1/3

4 which
can be significantly larger than 1 for large job sizes J .
To complement the approximate analysis, Figure 3
explicitly compares the balanced upload/download time
(the maximum of upload and download times) versus the
job latency constraint parameter K . The values shown
for EP codes are precisely lowerbounds, i.e., EP codes
cannot do any better, while those for GCSA codes are
strictly achievable. Thus, GCSA codes can achieve more
than what can be achieved by CSA, LCC or EP codes.

3) The finite horizon, i.e., fixed job size and fixed latency
constraint for each job is important in the previous

Fig. 3. Balanced upload/download time vs the value of the latency constraint
parameter K for EP codes, CSA/LCC codes and GCSA codes (normalized by
λ3 Tc). CSA/LCC codes are not feasible for K > 1. The values for EP codes
are lower bounds while those for GCSA codes are upper bounds, showing
that GCSA codes strictly outperform both batch processing (CSA/LCC) and
matrix-partitioning (EP) codes.

discussion. If instead of the absolute value of server
latency for a fixed job size, we only insisted on nor-
malized server latency per job, where each job is still
comprised of J matrix multiplications, then we could
jointly process K jobs codes with an absolute latency
of λ3Tc which allows LCC and CSA codes, while still
achieving the latency per job of λ3/K . Since batch
processing approaches like LCC codes and CSA codes
have already been shown to achieve better communica-
tion costs than any matrix partitioning approach, neither
EP codes nor GCSA codes would be needed in that case.
On the other hand, it is also worth noting that if we go
to the other extreme and require a fixed server latency of
less than λ3Tc/K for each matrix multiplication, i.e., set
J = 1, then it can be seen that batch processing cannot
help, i.e., matrix partitioning alone is enough. In other
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Fig. 4. Lower convex hulls of achievable (balanced upload cost, download
cost) pairs (U, D) of GCSA codes for various bounds on pmn, given that
S = 300 and the overall recovery threshold R ≤ 250. Note that EP codes
and LCC codes are also special cases of GCSA codes, obtained by setting
# = Kc = 1, and # = m = n = p = 1, respectively. CSA codes are
obtained by setting m = n = p = 1.

words, if latency constraints are imposed on each matrix
multiplication (J = 1), then EP codes suffice, and
neither LCC codes, nor CSA or GCSA codes are needed.

4) Figure 3 shows the advantage of GCSA codes in terms
of communication cost over exclusively batch process-
ing (LCC) and matrix-partitioning (EP) codes under
absolute server latency constraints, even when GCSA
codes are restricted to the choice # = 1. However,
the advantage of GCSA codes over LCC and EP codes
can be seen even without absolute latency constraints.
This is illustrated in Figure 4 which only constrains
the recovery threshold R and the number of servers
S. The figure shows lower convex hulls of achievable
(balanced upload cost, download cost) pairs of GCSA
codes for various bounds on the matrix partitioning
parameters pmn, given that the number of servers S =
300 and the overall recovery threshold R ≤ 250. Each
value of (S, R, pmn) produces an achievable region
in the (U, D) plane (including all possible choices of
parameters m, n, p, #, Kc). What is shown in the figure is
the union of these regions. The larger the value of
pmn, the more the GCSA code construction shifts
toward EP codes, generally with the benefit of reduced
latency of computation at each server that comes with
matrix partitioning. On the other hand, the smaller the
value of pmn, the more the GCSA code construction
shifts toward CSA codes, with the benefit of improved
communication costs that come with batch processing.
As noted previously, when no matrix partitioning is
allowed, LCC codes can be recovered as a special case
of GCSA codes by setting # = 1. The figure also shows
how GCSA codes are capable of improving upon LCC
codes in terms of download cost by choosing # > 1.

5) While in this work we do not explore improvements that
are possible by using more efficient matrix multiplica-
tion algorithms, it is worthwhile to note that stronger
constructions can indeed be built upon more efficient

matrix multiplication algorithms, e.g., Strassen’s algo-
rithm. For example, it is recently shown in [50] that the
recovery threshold of 2LR(p, m, n) − 1 is achievable
where R(p, m, n) is the bilinear complexity for multi-
plying two matrices of sizes m×p and p×n. Note that
R(p, m, n) < pmn. On the other hand, since GCSA
codes are built upon straightforward matrix multiplica-
tion algorithms, there is a leading factor of pmn in the
expression of the recovery threshold of GCSA codes.
As a result, the recovery threshold achieved in [50]
is order-wise better than GCSA codes for large batch
size L. It is notable that for smaller batch sizes, GCSA
codes based on straightforward matrix multiplication
can still outperform those in [50] that are based on
more sophisticated matrix multiplication algorithms. For
example, it is known that R(2, 2, 2) = 7. Thus if we set
# = 1, we have 2LR(2, 2, 2)− 1 ≥ 8(2L− 1) + 1 when
L = 1, 2, 3.

C. Proof of Theorem 2

Let us recall the standard result for Confluent
Cauchy-Vandermonde matrices [49], reproduced here
for the sake of completeness.

Lemma 2: If f1,1, f1,2, · · · , f!,Kc , α1, α2, · · · , αR are R+L
distinct elements of F, with |F| ≥ R + L and L = #Kc, then
the R × R Confluent Cauchy-Vandermonde matrix (109),
shown at the bottom of the next page, is invertible over F.

Before presenting the generalized CSA codes construction
let us start with an illustrative example.

1) # = 1, Kc = 2, L = 2, p = 2, m = n = 1: Let
f1,1, f1,2, α1, α2, . . . , αS represent (S + 2) distinct elements
from F. For all s ∈ [S], define,

∆1,2
s = (f1,1 − αs)2(f1,2 − αs)2. (110)

We set A1,1 = A1, A1,2 = A2, B1,1 = B1 and B1,2 = B2.
Besides, we partition each of the matrices A1,1 and A1,2

into 1 × 2 blocks, denoted as A1,1
1,1, A1,2

1,1 and A1,1
1,2, A1,2

1,2

respectively. Similarly, we partition each of the matrices
B1,1 and B1,2 into 2 × 1 blocks, denoted as B1,1

1,1, B2,1
1,1

and B1,1
1,2, B2,1

1,2 respectively. Note that the desired products
A1,1B1,1,A1,2B1,2 can be written as follows.

A1,1B1,1 = A1,1
1,1B

1,1
1,1 + A1,2

1,1B
2,1
1,1, (111)

A1,2B1,2 = A1,1
1,2B

1,1
1,2 + A1,2

1,2B
2,1
1,2. (112)

Shares of matrices A are constructed as follows.

Ãs = ∆1,2
s

(
1

(f1,1 − αs)2
(
A1,1

1,1 + (f1,1 − αs)A1,2
1,1

)

+
1

(f1,2 − αs)2
(
A1,1

1,2 + (f1,2 − αs)A1,2
1,2

))
(113)

= (f1,2 − αs)2
(
A1,1

1,1 + (f1,1 − αs)A1,2
1,1

)

︸ ︷︷ ︸
P 1,1

s

+ (f1,1 − αs)2
(
A1,1

1,2 + (f1,2 − αs)A1,2
1,2

)

︸ ︷︷ ︸
P 1,2

s

. (114)
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Note that now the term P 1,1
s follows the construction of

Entangled Polynomial codes of parameter m = n = 1, p = 2,
and it is a polynomial of (f1,1 −αs). Similarly, the term P 1,2

s

follows the construction of Entangled Polynomial codes, and
it is a polynomial of (f1,2 − αs). Shares of matrices B are
constructed as follows.

B̃s =
1

(f1,1 − αs)2
(
(f1,1 − αs)B1,1

1,1 + B2,1
1,1

)

︸ ︷︷ ︸
Q1,1

s

+
1

(f1,2 − αs)2
(
(f1,2 − αs)B1,1

1,2 + B2,1
1,2

)

︸ ︷︷ ︸
Q1,2

s

. (115)

The terms Q1,1
s and Q1,2

s also follow the construction of EP
codes for the given parameter values p, m, n, and they are
polynomials of (f1,1 − αs) and (f1,2 − αs) respectively.

The answer from the sth server, Ys is constructed as Ys =
ÃsB̃s. To see why it is possible to recover the desired products
from the answers of any R = 7 servers, let us rewrite Ys as
follows.

Ys = ÃsB̃s (116)

=
(f1,2 − αs)2

(f1,1 − αs)2
P 1,1

s Q1,1
s +

(f1,1 − αs)2

(f1,2 − αs)2
P 1,2

s Q1,2
s

+ (P 1,1
s Q1,2

s + P 1,2
s Q1,1

s ) (117)

=
((f1,1 − αs) + (f1,2 − f1,1))2

(f1,1 − αs)2
P 1,1

s Q1,1
s

+
((f1,2 − αs) + (f1,1 − f1,2))2

(f1,2 − αs)2
P 1,2

s Q1,2
s

+ (P 1,1
s Q1,2

s + P 1,2
s Q1,1

s ) (118)

=
(

c1,1,0

(f1,1 − αs)2
+

c1,1,1

f1,1 − αs

)
P 1,1

s Q1,1
s

+
(

c1,2,0

(f1,2 − αs)2
+

c1,2,1

f1,2 − αs

)
P 1,2

s Q1,2
s

+ (P 1,1
s Q1,1

s + P 1,2
s Q1,2

s + P 1,1
s Q1,2

s + P 1,2
s Q1,1

s ),
(119)

where in the last step, we perform binomial expansion for
numerator polynomials. According to the Binomial Theorem,
(c1,k,i)k∈[2],i∈{0,1} are non-zero. Note that

P 1,1
s Q1,1

s = A1,1
1,1B

2,1
1,1 + (f1,1 − αs)(A1,1

1,1B
1,1
1,1 + A1,2

1,1B
2,1
1,1)

+ (f1,1 − αs)2A1,2
1,1B

1,1
1,1, (120)

P 1,2
s Q1,2

s = A1,1
1,2B

2,1
1,2 + (f1,2 − αs)(A1,1

1,2B
1,1
1,2 + A1,2

1,2B
2,1
1,2)

+ (f1,2 − αs)2A1,2
1,2B

1,1
1,2. (121)

Therefore, we can further rewrite the first term in (119) as
follows.

c1,1,0A1,1
1,1B

2,1
1,1

(f1,1 − αs)2

+
c1,1,1A1,1

1,1B
2,1
1,1 + c1,1,0(A1,1

1,1B
1,1
1,1 + A1,2

1,1B
2,1
1,1)

f1,1 − αs

+ (c1,1,0A1,2
1,1B

1,1
1,1 + c1,1,1(A1,1

1,1B
1,1
1,1 + A1,2

1,1B
2,1
1,1))

+ (f1,1 − αs)(c1,1,1A1,2
1,1B

1,1
1,1). (122)

The second term in (119) can be similarly rewritten. Note
that the third term in (119) and the last two terms in (122)
can be expanded into weighted sums of the terms 1, αs, α2

s,
so in the matrix form, answers from any 7 servers, whose
indices are denoted as s1, s2, · · · , s7, can be written as (123),
shown at the bottom of the next page, where we have used
∗ to represent various combinations of interference symbols
that can be found explicity by exapnding (119), whose exact
forms are irrelevant. Note that the matrix V̂′

1,2,2,7 is a block
diagonal matrix composed with two lower triangular toeplitz
matrices and an identity matrix, thus is invertible, and the
matrix V̂1,2,2,7V̂′

1,2,2,7⊗Iλ/m is then invertible from Lemma 2
and the fact that the Kronecker product of invertible matrices is
invertible. Therefore, the user is able to recover desired prod-
ucts, i.e., (A1,1

1,1B
1,1
1,1 +A1,2

1,1B
2,1
1,1) and (A1,1

1,2B
1,1
1,2 +A1,2

1,2B
2,1
1,2),

from the answers of any 7 servers by inverting the matrix.
This completes the proof of recovery threshold R = 7.
Finally, it is straightforward to verify that the upload cost is
UA = S/4 = S/(Kcpm), UB = S/4 = S/(Kcpn), and the
download cost is D = 7/2, which matches Theorem 2.

2) Arbitrary (#, Kc, p, m, n) and L = #Kc: Define
R′ = pmn. Let f1,1, f1,2, · · · , f!,Kc , α1, α2, · · · , αS be
(S +L) distinct elements from the field F. For all l ∈ [#], k ∈
[Kc], we define cl,k,i, i ∈ {0, 1, · · · , R′(Kc − 1)} to be the
coefficients satisfying

Ψl,k(α) =
∏

k′∈[Kc]\{k}

(α + (fl,k′ − fl,k))R′

=
R′(Kc−1)∑

i=0

cl,k,iα
i, (124)

i.e., they are the coefficients of the polynomial Ψl,k(α) =∏
k′∈[Kc]\{k} (α + (fl,k′ − fl,k))R′

, which is defined here by
its roots. Now for all l ∈ [#], s ∈ [S], let us define

∆,Kc
s =

∏

k∈[Kc]

(fl,k − αs)R′
. (125)

V̂!,Kc,R′,R !





1
(f1,1−α1)R′ · · · 1

f1,1−α1
· · · 1

(f!,Kc−α1)R′ · · · 1
f!,Kc−α1

1 · · · αR−R′L−1
1

1
(f1,1−α2)R′ · · · 1

f1,1−α2
· · · 1

(f!,Kc−α2)R′ · · · 1
f!,Kc−α2

1 · · · αR−R′L−1
2

...
...

...
...

...
...

...
...

...
...

1
(f1,1−αR)R′ · · · 1

f1,1−αR
· · · 1

(f!,Kc−αR)R′ · · · 1
f!,Kc−αR

1 · · · αR−R′L−1
R




(109)
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Let us also split the L = #Kc instances of A and B matrices
into # groups, i.e.,

Al,k = AKc(l−1)+k, (126)

Bl,k = BKc(l−1)+k (127)

for all l ∈ [#], k ∈ [Kc]. Further, for each matrix Al,k, we par-
tition it into m× p blocks, denoted as A1,1

l,k ,A1,2
l,k , · · · ,Am,p

l,k .
Similarly, for each matrix Bl,k, we partition it into p × n
blocks, denoted as B1,1

l,k ,B1,2
l,k , · · · ,Bp,n

l,k . Now, for all l ∈
[#], k ∈ [Kc], let us define

P l,k
s =

∑

m′∈[m]

∑

p′∈[p]

Am′,p′

l,k (fl,k − αs)p′−1+p(m′−1), (128)

Ql,k
s =

∑

p′∈[p]

∑

n′∈[n]

Bp′,n′

l,k (fl,k − αs)p−p′+pm(n′−1), (129)

i.e., we apply EP codes for each Al,k and Bl,k. Note that the
original EP codes can be regarded as polynomials of αs, and
here for each (l, k), we construct the EP codes as polynomials
of (fl,k−αs). Now recall that by the construction of EP codes,
the product P l,k

s Ql,k
s can be written as weighted sums of the

terms 1, (fl,k − αs), · · · , (fl,k − αs)R′+p−2, i.e.,

P l,k
s Ql,k

s =
R′+p−2∑

i=0

C(i+1)
l,k (fl,k − αs)i, (130)

where C(1)
l,k ,C(2)

l,k , · · · ,C(R′+p−1)
l,k are various linear combi-

nations of products of blocks of Al,k and blocks of Bl,k.
In particular, the desired product Al,kBl,k can be obtained
from C(1)

l,k , · · · ,C(R′)
l,k . Now we are ready to formally present

the construction of generalized CSA codes. For all s ∈ [S],
let us construct shares of matrices A and B at the sth server
as follows.

Ãs = (Ãs
1, Ã

s
2, . . . , Ã

s
!), (131)

B̃s = (B̃s
1 , B̃

s
2 , . . . , B̃

s
! ), (132)

where for l ∈ [#], let us set

Ãs
l = ∆l,Kc

s

∑

k∈[Kc]

1
(fl,k − αs)R′ P

l,k
s , (133)

B̃s
l =

∑

k∈[Kc]

1
(fl,k − αs)R′ Q

l,k
s . (134)

The answer returned by the sth server to the user is constructed
as follows.

Ys =
∑

l∈[!]

Ãs
l B̃

s
l . (135)

Now let us prove that the generalized CSA codes are R =
pmn((# + 1)Kc − 1) + p − 1 recoverable. Let us rewrite Ys

as follows.

Ys = Ãs
1B̃

s
1 + Ãs

2B̃
s
2 + · · · + Ãs

!B̃
s
! (136)

=
∑

l∈[!]

∆l,Kc
s




∑

k∈[Kc]

1
(fl,k − αs)R′ P

l,k
s








∑

k∈[Kc]

1
(fl,k − αs)R′ Q

l,k
s



 (137)

=
∑

l∈[!]

∑

k∈[Kc]

∏
k′∈[Kc]\{k}(fl,k′ − αs)R′

(fl,k − αs)R′ P l,k
s Ql,k

s

+
∑

l∈[!]

∑

k,k′∈[Kc]
k &=k′




∏

k′′∈[Kc]\{k,k′}

(fl,k′′ − αs)R′



P l,k
s Ql,k′

s .

(138)

Note that in the last step, we split the summation into two
parts depending on whether or not k = k′.

Let us consider the first term in (138). For each l ∈ [#], k ∈
[Kc], we have

∏
k′∈[Kc]\{k}(fl,k′ − αs)R′

(fl,k − αs)R′ P l,k
s Ql,k

s (139)

=

∏
k′∈[Kc]\{k} ((fl,k − αs) + (fl,k′ − fl,k))R′

(fl,k − αs)R′ P l,k
s Ql,k

s

(140)

=
Ψl,k(fl,k − αs)
(fl,k − αs)R′ P l,k

s Ql,k
s (141)

=
(

cl,k,0

(fl,k − αs)R′ +
cl,k,1

(fl,k − αs)R′−1
+ · · ·

+
cl,k,R′−1

fl,k − αs

)
P l,k

s Ql,k
s





Ys1

Ys2

...
Ys7




=





1
(f1,1−αs1)2

1
f1,1−αs1

1
(f1,2−αs1)2

1
f1,2−αs1

1 αs1 α2
s1

1
(f1,1−αs2)2

1
f1,1−αs2

1
(f1,2−αs2)2

1
f1,2−αs2

1 αs2 α2
s2

...
...

...
...

...
...

...
1

(f1,1−αs7)2
1

f1,1−αs7

1
(f1,2−αs7)2

1
f1,2−αs7

1 αs7 α2
s7





︸ ︷︷ ︸
V̂1,2,2,7




T(c1,1,0, c1,1,1)

T(c1,2,0, c1,2,1)
I3





︸ ︷︷ ︸
V̂′

1,2,2,7

⊗Iλ/m





A1,1
1,1B

2,1
1,1

A1,1
1,1B

1,1
1,1 + A1,2

1,1B
2,1
1,1

A1,1
1,2B

2,1
1,2

A1,1
1,2B

1,1
1,2 + A1,2

1,2B
2,1
1,2

∗
∗
∗





, (123)
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+




R′(Kc−1)∑

i=R′

cl,k,i(fl,k − αs)i−R′



 P l,k
s Ql,k

s , (142)

where in (141), we used the definition of Ψl,k(·), and in the
next step, we rewrite the polynomial Ψl,k(fl,k −αs) in terms
of its coefficients. Let us consider the first term in (142).

(
cl,k,0

(fl,k − αs)R′ +
cl,k,1

(fl,k − αs)R′−1
+ · · · + cl,k,R′−1

fl,k − αs

)

P l,k
s Ql,k

s (143)

=
(

cl,k,0

(fl,k − αs)R′ +
cl,k,1

(fl,k − αs)R′−1
+ · · · + cl,k,R′−1

fl,k − αs

)

R′+p−2∑

i=0

C(i+1)
l,k (fl,k − αs)i (144)

=
R′−1∑

i=0

∑i
i′=0 cl,k,i−i′C

(i′+1)
l,k

(fl,k − αs)R′−i

+
p−2∑

i=0

(fl,k − αs)i




R′+i∑

i′=i+1

cl,k,R′−i′+iC
(i′+1)
l,k





+
R′+p−3∑

i=p−1

(fl,k − αs)i




R′+p−2∑

i′=i+1

cl,k,R′−i′+iC
(i′+1)
l,k



 .

(145)

We further note that when Kc = 1, for all i *= 0, cl,k,i = 0,
thus the second term in (138), the second term in (142) and the
third term in (145) equal zero. The second term in (145) can be
expanded13 into weighted sums of the terms 1, αs, · · · , αp−2

s .

13When Kc = p = 1, the second term in (145) is zero, thus the
Vandermonde terms do not appear. The matrix form representation now
involves only confluent Cauchy matrices, i.e., confluent Cauchy-Vandermonde
matrices without Vandermonde part.

Since Kc = 1, we can equivalently write these terms as
1, αs, · · · , αR′(Kc−1)+p−2

s . On the other hand, when Kc >
1, the second term in (138), the second term in (142),
the second and the third terms in (145) can also be expanded
into weighted sums of the terms 1, αs, · · · , αR′(Kc−1)+p−2

s .
Because R′(Kc−1)+p−2 = R−R′L−1, in the matrix form,
answers from any R = pmn((# + 1)Kc − 1) + p − 1 servers,
whose indices are denoted as s1, s2, · · · , sR, can be written
as (146), shown at the bottom of the page. We have used ∗
to represent various combinations of interference symbols that
can be found explicitly by expanding (138), whose exact forms
are irrelevant. Now since f1,1, f1,2, · · · , f!,Kc are distinct, for
all l ∈ [#], k ∈ [Kc], we must have

cl,k,0 =
∏

k′∈[Kc]\{k}

(fl,k′ − fl,k)R′
(147)

are non-zero. Hence, the lower triangular toeplitz matri-
ces T(c1,1,0, c1,1,1, · · ·, c1,1,R′−1), · · · ,T(c!,Kc,0, c!,Kc,1, · · · ,
c!,Kc,R′−1) are non-singular, and the block diagonal matrix
V̂′

!,Kc,R′,R is invertible. Guaranteed by Lemma 2 and the
fact that the Kronecker product of non-singular matrices is
non-singular, the matrix (V̂!,Kc,R′,RV̂′

!,Kc,R′,R) ⊗ Iλ/m

is invertible. Therefore, the user is able to recover
(C(i)

l,k)l∈[!],k∈[Kc],i∈[R′] by inverting the matrix. And
the desired products (AlBl)l∈[L] are recoverable from
(C(i)

l,k)l∈[!],k∈[Kc],i∈[R′], guaranteed by the construction of
Entangled Polynomial codes. This completes the proof of
recovery threshold R = pmn((# + 1)Kc − 1) + p − 1. It is
also easy to see that the upload cost UA = S/(Kcpm)
and UB = S/(Kcpn). Note that we are able to recover
Lmn desired symbols from R downloaded answers, so the
download cost is D = R

Lmn = pmn((!+1)Kc−1)+p−1
mn!Kc

. Thus the
desired costs are achievable. Note that the encoding procedure
can be considered as products of Confluent Cauchy matrices





Ys1

Ys2

...
YsR




=





1
(f1,1−αs1 )R′ · · · 1

f1,1−αs1
· · · 1

(f!,Kc−αs1)R′ · · · 1
f!,Kc−αs1

1 · · · αR−R′L−1
s1

1
(f1,1−αs2 )R′ · · · 1

f1,1−αs2
· · · 1

(f!,Kc−αs2)R′ · · · 1
f!,Kc−αs2

1 · · · αR−R′L−1
s2

...
...

...
...

...
...

...
...

...
...

1
(f1,1−αsR )R′ · · · 1

f1,1−αsR
· · · 1

(f!,Kc−αsR )R′ · · · 1
f!,Kc−αsR

1 · · · αR−R′L−1
sR





︸ ︷︷ ︸
V̂!,Kc,R′,R





T(c1,1,0, · · · , c1,1,R′−1)
. . .

T(c!,Kc,0, · · · , c!,Kc,R′−1)
IR−R′L





︸ ︷︷ ︸
V̂′

!,Kc,R′,R

⊗Iλ/m





C(1)
1,1
...

C(R′)
1,1
...

C(1)
!,Kc

...
C(R′)

!,Kc

∗
...
∗





, (146)
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by vectors. By fast algorithms [51], the encoding complexity
of (CeA, CeB) =

(
Õ

(
λκS log2 S

Kcpm

)
, Õ

(
κµS log2 S

Kcpn

))
is

achievable. Now let us consider the decoding complexity.
Note that the decoding procedure involves matrix-vector
multiplications of inverse of Toeplitz matrix and inverse of
confluent Cauchy-Vandermonde matrix. From the inverse
formula of confluent Cauchy-Vandermonde matrix presented
in [52], the matrix-vector multiplication of the inverse
of confluent Cauchy-Vandermonde matrix V̂!,Kc,R′,R can
be decomposed into a series of structured matrix-vector
multiplications including confluent Cauchy matrix, transpose
of Vandermonde matrix, Hankel matrix and Toeplitz matrix.
By fast algorithms [51], [53], the complexity of decoding
is at most Õ(λµp log2 R). With straightforward matrix
multiplication algorithms, the server computation complexity
is Cs = (λκµ)/(Kcpmn). This completes the proof of
Theorem 2.

VI. N -CSA CODES FOR N -LINEAR CODED DISTRIBUTED

BATCH COMPUTATION (N -CDBC)

A. N -CSA Codes: Main Result

In this section, let us generalize CSA codes for N -CDBC.
The generalization, called N -CSA codes, is presented in the
following theorem.

Theorem 3: For N -CDBC over a field F with S servers,
and positive integers #, Kc such that L = #Kc ≤ |F| − S,
the N -CSA codes introduced in this section achieve

Recovery Threshold: R = Kc(N + # − 1) − N + 1, (148)

Upload Cost for X̃(n)
[S]

, n ∈ [N ]: UX(n) =
S

Kc
, (149)

Download Cost: D =
Kc(N + # − 1) − N + 1

#Kc
, (150)

Server Computation Complexity: Cs = O(ω/Kc), (151)

Encoding complexity for X̃(n)
[S]

, n ∈ [N ]:

CeX(n) = Õ
(

dim(Vn)S log2 S

Kc

)
, (152)

Decoding complexity:

Cd = Õ
(

# + N − 1
#

dim(W )R log2 R

)
, (153)

where ω is the number of arithmetic operations required to
compute the N -linear map Ω(·).

B. Proof of Theorem 3

Now let us present the construction of N -CSA codes for
N -CDBC. Let f1,1, f1,2, · · · , f!,Kc , α1, α2,
· · · , αS represent (S + L) distinct elements from F. For all
l ∈ [#], s ∈ [S], let us define

∆,Kc
s =

∏

k∈[Kc]

(fl,k − αs). (154)

For all n ∈ [N ], l ∈ [#], k ∈ [Kc], we define

x(n)
l,k = x(n)

Kc(l−1)+k. (155)

For all s ∈ [S], n ∈ [N ], we construct X̃(n)
s

as follows.

X̃(n)
s

= (X̃(n)
s

1, X̃(n)
s

2, · · · , X̃(n)
s

!), (156)

where for l ∈ [#], let us set

X̃(n)
s

l = ∆,Kc
s

∑

k∈[Kc]

1
fl,k − αs

x(n)
l,k . (157)

The answer returned by the sth server is constructed as
follows.

Ys =
∑

l∈[!]

1
∆,Kc

s

Ω(X̃(1)
s

l , X̃
(2)

s

l , · · · , X̃(N)
s

l ). (158)

To prove that the code is R-recoverable, let us rewrite Ys as
follows.

Ys =
∑

l∈[!]

1
∆,Kc

s

Ω(X̃(1)
s

l , X̃(2)
s

l , · · · , X̃(N)
s

l ) (159)

=
∑

l∈[!]

1
∆,Kc

s

Ω



∆,Kc
s

∑

k∈[Kc]

1
fl,k − αs

x(1)
l,k , · · · ,

∆,Kc
s

∑

k∈[Kc]

1
fl,k − αs

x(N)
l,k



 (160)

=
∑

l∈[!]

(∆,Kc
s )N−1




∑

k1∈[Kc]

1
fl,k1 − αs

· · ·

∑

kN∈[Kc]

1
fl,kN − αs

(
Ω(x(1)

l,k1
, · · · , x(N)

l,kN
)
)


 (161)

=
∑

l∈[!]

∑

k∈[Kc]

∏
k′∈[Kc]\{k}(fl,k′ − αs)N−1

(fl,k − αs)

Ω(x(1)
l,k , · · · , x(N)

l,k )

+
∑

l∈[!]

∑

k1,··· ,kN∈[Kc],
¬(k1=···=kN )

(
(∆,Kc

s )N−1

(fl,k1 − αs) · · · (fl,kN − αs)

Ω(x(1)
l,k1

, · · · , x(N)
l,kN

)
)

, (162)

where in (162), we split the summation depending on whether
or not k1 = k2 = · · · = kN . Following the same argument
presented in Section IV-C, by performing long division of
polynomials for the first term in (162), and noting that
the second term in (162) can be expanded to weighted sums
of the terms 1, αs, α2

s, · · · , αKc(N−1)−N
s , the presented code

is (R = Kc(N + # − 1) − N + 1)-recoverable as long as the
following matrix is non-singular.





1
f1,1−αs1

1
f1,2−αs1

· · · 1
f!,Kc−αs1

1 αs1 · · · αR−L−1
s1

1
f1,1−αs2

1
f1,2−αs2

· · · 1
f!,Kc−αs2

1 αs2 · · · αR−L−1
s2

...
...

...
...

...
...

...
...

1
f1,1−αsR

1
f1,2−αsR

· · · 1
f!,Kc−αsR

1 αsR · · · αR−L−1
sR





︸ ︷︷ ︸
V!,Kc,R
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



c1,1

c1,2

. . .
c!,Kc

1
. . .

1





︸ ︷︷ ︸
V′

!,Kc,R

, (163)

where for all l ∈ [#], k ∈ [Kc], cl,k =
∏

k′∈[Kc]\{k}(fl,k′ −
fl,k)N−1. The indices of any R responsive servers are
denoted as s1, s2, · · · , sR. Since f1,1, f1,2, · · · , fl,k are dis-
tinct elements from F, (cl,k)l∈[!],k∈[Kc] are non-zero, and
R − L − 1 = Kc(N − 1) − N , the matrix V!,Kc,RV′

!,Kc,R is
invertible guaranteed by Lemma 1. This completes the proof

of recovery threshold. The upload cost for X̃(n)
[S]

, n ∈ [N ]
is readily verified to be S/Kc, and the download cost is
D = R/L = Kc(N+!−1)−N+1

!Kc
. By fast algorithms dis-

cussed in Section IV-C, we can achieve the encoding/decoding
complexity as presented in Theorem 3. The computational
complexity at each server is O(#ω/L) = O(ω/Kc), where
ω is the number of arithmetic operations required to compute
Ω(·). This completes the proof of Theorem 3.

Remark 1: Let us regard a multivariate polynomial of
total degree N as a linear combination of various restricted
evaluations of N -linear maps.14 Note that the construction for
X̃(n)

s
is symmetric across all n ∈ [N ]. N -CSA codes can

also be transformed to evaluate a multivariate polynomial at
L points as follows. For each server s ∈ [S], the answer is
computed for each N -linear map according to N -CSA codes,
and each server returns the user with the linear combination
of the answers. It is easy to see that the user is able to
recover the evaluation of the multivariate polynomial of total
degree N at the given L points from the answers of any
R = Kc(N + # − 1) − N + 1 servers. The LCC codes in
[5], which achieve the recovery threshold R = KcN −N +1,
are a special case of this construction, where # = 1.

Remark 2: The systematic construction presented in
Section IV-D can be also applied directly to N -CSA codes for
N -CDBC, i.e., for all s ∈ [L], uncoded variables (x(n)

s )n∈[N ]

are uploaded to the sth server, and coded shares are uploaded
to the remaining S −L servers, according to the same coding
scheme. Similarly, the recovery threshold is not affected by
the systematic construction.

Remark 3: The Lagrange codes presented in [5] for
N -CDBC and can be considered as a special case of N -CSA
codes obtained by setting the parameter # = 1. Note that the
download cost can be written as D = 1 +

(
N−1

!

)(
Kc−1

Kc

)
.

The parameter # plays an important role in improving the
download cost, which may be of interest when N is large
and the down-link is costly. For example, let us assume that

14Note that this does not alter the computation complexity of the multivariate
polynomial. For any monomial of the polynomial of degree M < N , when
it is viewed as a restricted N -linear map, it is viewed as a product of M
variables, along with (N − M) ones. The latter is constant, which requires
no extra computation.

R/S is held constant, then the order of the download cost
achieved is O(1+(N −1)/#) and the order of the upload cost

for X̃(n)
[S]

, n ∈ [N ] achieved is O(#+(N −1)), which offers
flexible trade-off between the upload cost and download cost.

VII. CONCLUSION

The main contribution of this work is a class of codes,
based on the idea of Cross Subspace Alignment (CSA) that
originated in private information retrieval (PIR) literature.
These codes are shown to unify, generalize and improve
upon existing algorithms for coded distributed batch matrix
multiplication, N -linear batch computation, and multivariate
batch polynomial evaluation, such as Polynomial, MatDot and
PolyDot codes, Generalized PolyDot and Entangled Polyno-
mial (EP) codes, and Lagrange Coded Computing (LCC).
CSA codes for coded distributed batch matrix multiplica-
tion, which include LCC codes as a special case, improve
significantly upon state of art matrix-partitioning approaches
(EP codes) in terms of communication cost, and upon
LCC codes in download-constrained settings. Generalized
CSA (GCSA) codes bridge the extremes of matrix partitioning
based approaches (EP codes) and batch processing approaches
(CSA codes, LCC codes), and allow a tradeoff between server
computation complexity, which is improved by emphasiz-
ing the matrix partitioning aspect, and communication costs,
which are improved by emphasizing the batch processing
aspect. N -CSA codes for N -linear batch computations and
multivariate polynomial evaluations similarly generalize LCC
codes, offering advantages especially in download constrained
settings. As a final observation, note that LCC codes in [5] also
allow settings with X-secure data and B-byzantine servers.
Given that cross-subspace alignment schemes originated in
PIR with X-security constraints [25] and have also been
applied to B-byzantine settings in [28], extensions of CSA
codes, GCSA codes and N -CSA codes to X-secure and B-
byzantine settings are relatively straightforward, as shown in
Appendix . An interesting direction for future work is the
possibility of task partitioning (similar to matrix partitioning)
for N -CSA codes to reduce the computation cost per server in
settings where latency constraints prevent any server from fully
computing the N -linear map, or the multivariate polynomial
evaluation by itself.

APPENDIX

Let us consider the problem of X-secure B-byzantine
N -linear coded distributed batch computation (XSBNCDBC)

over a finite field Fq , where the shares X̃(n)
[S]

, n ∈ [N ] are
coded in an X-secure fashion, i.e., any X colluding servers
learn nothing about the data, x(n)

[L] . Formally, we have

I

(
X̃(n)

X
; x(n)

[L]

)
= 0, ∀X ⊂ [S], |X | = X, n ∈ [N ].

(164)

Furthermore, we assume that there exists a set of servers
B, B ⊂ [S], |B| ≤ B, known as Byzantine servers. The
user knows the number of Byzantine servers B but the
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realization of the set B is not known to the user apriori.
The Byzantine servers respond to the user arbitrarily, possibly
introducing errors. However, the remaining servers, i.e., all
servers s ∈ [S] \ B, if they respond at all, respond truthfully
with the function hs. We will follow the problem statement
and definitions of N -CDBC in all other aspects. The goal
in this section is to present a generalized N -CSA codes
construction for XSBNCDBC, which achieves the recovery
threshold R = Kc(N+#−1)+N(X−1)+2B+1. To construct
N -CSA codes for XSBNCDBC, let f1,1, f1,2, · · · , f!,Kc and
α1, α2, · · · , αS be (S + L) distinct elements from Fq, where
q ≥ S + L. For all n ∈ [N ], let (z(n)

l,k,x)l∈[!],k∈[Kc],x∈[X] be
independent uniformly random noise vectors from Vn, that are
used to guarantee the security. The independence between data
and random noise symbols is specified as follows.

H(x[L], (z
(n)
l,k,x)n∈[N ],l∈[!],k∈[Kc],x∈[X])

= H(x[L]) +
∑

n∈[N ],l∈[!],
k∈[Kc],x∈[X]

H(z(n)
l,k,x). (165)

For all l ∈ [#], s ∈ [S], let us define

∆,Kc
s =

∏

k∈[Kc]

(fl,k − αs). (166)

For all n ∈ [N ], l ∈ [#], k ∈ [Kc], we define

x(n)
l,k = x(n)

Kc(l−1)+k. (167)

For all s ∈ [S], n ∈ [N ], we construct X̃(n)
s

as follows.

X̃(n)
s

= (X̃(n)
s

1, X̃
(n)

s

2, · · · , X̃(n)
s

!), (168)

where for l ∈ [#], let us set

X̃(n)
s

l = ∆,Kc
s




∑

k∈[Kc]

1
fl,k − αs

x(n)
l,k +

∑

x∈[X]

αx−1
s z(n)

l,k,x



 .

(169)

Now it is readily seen that the X-security of data is guar-
anteed by the i.i.d. and uniformly distributed noise terms,
i.e., (z(n)

l,k,x)n∈[N ],l∈[!],k∈[Kc],x∈[X] that are coded according
to an MDS(X, S) code (a Reed-Solomon code). The answer
returned by the sth server is constructed as follows.

Ys =
∑

l∈[!]

1
∆,Kc

s

Ω(X̃(1)
s

l , X̃
(2)

s

l , · · · , X̃(N)
s

l ). (170)

Now let us see why it is possible to recover the desired
evaluations from the answers of any R = Kc(N + # − 1) +
N(X − 1) + 1 servers. Note that Ys can be rewritten as

follows.

Ys =
∑

l∈[!]

1
∆,Kc

s

Ω(X̃(1)
s

l , X̃(2)
s

l , · · · , X̃(N)
s

l ) (171)

=
∑

l∈[!]

(∆,Kc
s )N−1

Ω




∑

k∈[Kc]

1
fl,k − αs

x(1)
l,k +

∑

x∈[X]

αx−1
s z(1)

l,k,x, · · · ,

, · · · ,
∑

k∈[Kc]

1
fl,k − αs

x(N)
l,k +

∑

x∈[X]

αx−1
s z(N)

l,k,x





(172)

=
∑

l∈[!]

∑

k∈[Kc]

∏
k′∈[Kc]\{k}(fl,k′ − αs)N−1

(fl,k − αs)

Ω(x(1)
l,k , · · · , x(N)

l,k )

+
∑

i∈[(Kc−1)(N−1)+NX]

αi−1
s Ii. (173)

In (173), we rewrite (172) following the same argument that
we used in Section IV-C. Note that Ii, i ∈ [(Kc−1)(N −1)+
NX ] represent various linear combinations of Ω(·), which can
be found explicitly by expanding (172). Their exact forms are
irrelevant, hence omitted for ease of exposition. Now we can
see that the answers from any R = Kc(N+#−1)+N(X−1)+
2B + 1 servers, whose indices are denoted as s1, s2, · · · , sR,
are coded according to the following R× (R− 2B) generator
matrix of an MDS(R − 2B, R) code.




1
f1,1−αs1

1
f1,2−αs1

· · · 1
f!,Kc−αs1

1 αs1 · · · αR−2B−L−1
s1

1
f1,1−αs2

1
f1,2−αs2

· · · 1
f!,Kc−αs2

1 αs2 · · · αR−2B−L−1
s2

...
...

...
...

...
...

...
...

1
f1,1−αsR

1
f1,2−αsR

· · · 1
f!,Kc−αsR

1 αsR · · · αR−2B−L−1
sR




.

(174)

Thus the user (decoder) can correct up to (R − (R − 2B))/
2 = B errors in the answers. Upon error correction, the user
is able to recover desired evaluations, which appear along
the dimensions spanned by the Cauchy part. This completes
the proof of recovery threshold R = Kc(N + # − 1)+
N(X − 1) + 2B + 1.

Remark 1: Because of the X-secure constraint, the system-
atic construction presented in Section IV-D cannot be applied
to N -CSA codes for XSBNCDBC.

Remark 2: GCSA codes for coded distributed batch matrix
multiplication presented in Section V can similarly be gen-
eralized to allow X-secure and B-Byzantine settings. Such a
generalization is straightforward, thus omitted here.
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