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Abstract

Summary: Accurate prediction of drug–target interactions (DTI) is crucial for drug discovery. Recently, deep learning
(DL) models for show promising performance for DTI prediction. However, these models can be difficult to use for
both computer scientists entering the biomedical field and bioinformaticians with limited DL experience. We present
DeepPurpose, a comprehensive and easy-to-use DL library for DTI prediction. DeepPurpose supports training of cus-
tomized DTI prediction models by implementing 15 compound and protein encoders and over 50 neural architec-
tures, along with providing many other useful features. We demonstrate state-of-the-art performance of
DeepPurpose on several benchmark datasets.

Availability and implementation: https://github.com/kexinhuang12345/DeepPurpose.

Contact: jimeng@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Drug–target interactions (DTI) characterize the binding of com-
pounds to protein targets (Santos et al., 2017). Accurate identifica-
tion of molecular drug targets is fundamental for drug discovery and
development (Rutkowska et al., 2016; Zitnik et al., 2019) and is es-
pecially important for finding effective and safe treatments for new
pathogens, including SARS-CoV-2 (Velavan and Meyer, 2020).

Deep learning (DL) has advanced traditional computational
modeling of compounds by offering an increased expressive power
in identifying, processing and extrapolating complex patterns in mo-
lecular data (Lee et al., 2019; Öztürk et al., 2018). There are many
DL models designed for DTI prediction (Lee et al., 2019; Nguyen
et al., 2020; Öztürk et al., 2018). However, to generate predictions,
deploy DL models in practice, test and evaluate model performance,
one needs considerable programming skills and extensive biochem-
ical knowledge. Prevailing tools are designed for experienced inter-
disciplinary researchers. They are challenging to use by both
computer scientists entering the biomedical field and domain bioin-
formaticians with limited experience in training and deploying DL
models. Furthermore, each open-sourced tool has a different pro-
gramming interface and is coded differently, which prevents easy in-
tegration of outputs from various methods for model ensembles
(Yang et al., 2019).

Here, we introduce DeepPurpose, a DL library for encoding and
downstream prediction of proteins and compounds. DeepPurpose
allows rapid prototyping via a programming framework that imple-
ments over 50 DL models, seven protein encoders and eight com-
pound encoders. Empirically, we find that models implemented in
DeepPurpose achieve state-of-the-art prediction performance on
DTI benchmark datasets.

2 DeepPurpose library

DL models for DTI prediction can be formulated as an encoder-
decoder architectures (Cho et al., 2014). DeepPurpose library imple-
ments a unifying encoder-decoder framework, which makes the li-
brary uniquely flexible. By merely specifying an encoder’s name, the
user can automatically connect a encoder of interest with the rele-
vant decoder. DeepPurpose then trains the corresponding encoder-
decoder model in an end-to-end manner. Finally, the user accesses
the trained model either programmatically or via a visual interface
and uses the model for DTI prediction.

2.1 Module for encoding proteins and compounds
DeepPurpose takes the compound’s simplified molecular-input line-
entry system (SMILES) string and protein amino acid sequence pair
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as input. Then, they are fed into molecular encoders which specifies
a deep transformation function that maps compounds and proteins
to a vector representation. In particular, for compounds,
DeepPurpose provides eight encoders using different modalities of
compounds: Multi-Layer Perceptrons (MLP) on Morgan, PubChem,
Daylight and RDKit 2D Fingerprint; Convolutional Neural
Network (CNN) on SMILES strings; Recurrent Neural Network
(RNN) on top of CNN; transformer encoders on substructure fin-
gerprints; message passing graph neural network on molecular
graph. For proteins, DeepPurpose provides seven encoders for the
input amino acid sequence: MLP on Amino Acid Composition
(AAC), Pseudo AAC, Conjoint Triad, Quasi-Sequence descriptors;
CNN on amino acid sequences; RNN on top of CNN; transformer
encoder on substructure fingerprints. Note that alternative input fea-
tures may not work for a specific encoder architecture. The detailed
encoder specifications and references are described in
Supplementary Material.

2.2 Module for DTI prediction
DeepPurpose feeds the learned protein and compound embeddings
into an MLP decoder to generate predictions. Output scores include
both continuous binding scores, such as the median inhibitory con-
centration (IC50), as well as binary outputs indicating whether a pro-
tein binds to a compound. The library detects whether the task is
regression or classification and switches to the correct loss function
and evaluation metrics. In the case of regression, we use the Mean
Square Error (MSE) as the loss function and MSE, Concordance
Index and Pearson Correlation as performance metrics. In the classi-
fication case, we use Binary Cross Entropy as the loss function and
Area Under the Receiver Operating Characteristics (AUROC), Area
Under Precision-Recall (AUPRC) and F-1 score as performance met-
rics. At inference, given new proteins and new compounds,
DeepPurpose returns prediction scores representing predicted proba-
bilities of binding between compounds and proteins.

2.3 Modules for other downstream prediction tasks
DeepPurpose includes repurposing and virtual_screening functions.
Using only a few lines of codes that specify a list of compounds li-
brary to be screened upon and an optional set of training dataset,
DeepPurpose trains five DL models, aggregates prediction results
and generates a descriptive ranked list in which compound candi-
dates with the highest predicted binding scores are placed at the top.
If the user does not specify a training dataset, DeepPurpose uses a

pre-trained deep model for prediction. This list can then be exam-

ined to identify promising compound candidates for further experi-
ments. Second, DeepPurpose also supports user-friendly
programming frameworks for other modeling tasks, including drug

and protein property prediction, drug–drug interaction prediction
and protein–protein interaction prediction (see Supplementary

Material). Third, DeepPurpose provides an interface to many types
of data, including public large binding affinity dataset (Liu et al.,
2007), bioassay data (Kim et al., 2019) and a drug repurposing li-

brary (Corsello et al., 2017).

2.4 Programming framework and implementation

details
The functionality of DeepPurpose is modularized into six key steps

where a single line of code can invoke each step: (i) Load the dataset
from a local file or load a DeepPurpose benchmark dataset. (ii)

Specify the names of compound and protein encoders. (iii) Split the
dataset into training, validation and testing sets using data_process
function, which implements a variety of data-split strategies. (iv)

Create a configuration file and specify model parameters. If needed,
DeepPurpose can automatically search for optimal values of hyper-

parameters. (v) Initialize a model using the configuration file.
Alternatively, the user can load a pre-trained model or a previously
saved model. (vi) Finally, train the model using train function and

monitor the progress of training and performance metrics.
DeepPurpose is OS-agnostic and uses the Jupyter Notebook inter-
face. It can be run in the cloud or locally. All datasets, models, docu-

mentation, installation instructions and tutorials are provided at
https://github.com/kexinhuang12345/DeepPurpose.

3 Using DeepPurpose for DTI prediction

To demonstrate the use of DeepPurpose, we compare DeepPurpose
with KronRLS (Pahikkala et al., 2015), a popular DTI method, and

GraphDTA (Nguyen et al., 2020) and DeepDTA (Öztürk et al.,
2018), state-of-the-art DL methods. We find that many
DeepPurpose models achieve comparable prediction performance

on two benchmark datasets, DAVIS (Davis et al., 2011) and KIBA
(He et al., 2017) (Fig. 1D). A complete script to generate the results
is provided in Supplementary Material.

Fig. 1. Overview of DeepPurpose library. (A) DeepPurpose takes as input the SMILES of a compound and a protein’s amino acid sequence and then generates embeddings for

them. (B) The learned embeddings are then concatenated and fed into a decoder to predict DTI binding affinity. (C) DeepPurpose provides a simple but flexible programming

framework that implements over 50 state-of-the-art DL models for DTI prediction. (D) DeepPurpose models achieve comparable performance with three other DTI prediction

algorithms on two benchmark datasets. (E) Finally, DeepPurpose has many functionalities, including monitoring the training process, debugging and generation ranked lists

for repurposing and screening. Further, DeepPurpose supports other downstream prediction tasks (e.g. drug–drug interaction prediction, compound property prediction)
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4 DeepPurpose with interactive web interface

In addition to rapid model prototyping, DeepPurpose also provides
utility functions to load a pre-trained model and make predictions
for a new drug and target inputs. This functionality allows domain
scientists to examine predictions quickly, modify the inputs based
on predictions, and iterate on the process until finding a drug or tar-
get with desired properties. We leverage Gradio (Abid et al., 2019)
to create a web interface programmatically. We use a user-trained
DeepPurpose model in the backend and create a custom web inter-
face in fewer than ten code lines. This web interface takes the
SMILES and amino acid sequence as the input and returns predic-
tion scores with less than 1-second latency. We provide examples in
the Supplementary Material.
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