FlexPushdownDB: Hybrid Pushdown and Caching
in a Cloud DBMS

Yifei Yangl, Matt Youill?, Matthew Woicik?, Yizhou Liu’,
Xiangyao Yu!, Marco Serafini*, Ashraf Aboulnaga5, Michael Stonebraker?

'University of Wisconsin-Madison, 2Burnian, *Massachusetts Institute of Technology, *University of
Massachusetts-Ambherst, *Qatar Computing Research Institute
Uyyang673@, liu773@, yxy@cs.}wisc.edu, 2matt.youill@burnian.com, }*{mwoicik@, stonebraker@csail.Jmit.edu,

4

ABSTRACT

Modern cloud databases adopt a storage-disaggregation architec-
ture that separates the management of computation and storage.
A major bottleneck in such an architecture is the network con-
necting the computation and storage layers. Two solutions have
been explored to mitigate the bottleneck: caching and computation
pushdown. While both techniques can significantly reduce network
traffic, existing DBMSs consider them as orthogonal techniques
and support only one or the other, leaving potential performance
benefits unexploited.

In this paper we present FlexPushdownDB (FPDB), an OLAP cloud
DBMS prototype that supports fine-grained hybrid query execution
to combine the benefits of caching and computation pushdown in a
storage-disaggregation architecture. We build a hybrid query execu-
tor based on a new concept called separable operators to combine
the data from the cache and results from the pushdown processing.
We also propose a novel Weighted-LFU cache replacement policy
that takes into account the cost of pushdown computation. Our
experimental evaluation on the Star Schema Benchmark shows that
the hybrid execution outperforms both the conventional caching-
only architecture and pushdown-only architecture by 2.2X. In the
hybrid architecture, our experiments show that Weighted-LFU can
outperform the baseline LFU by 37%.

PVLDB Reference Format:

Yifei Yang, Matt Youill, Matthew Woicik, Yizhou Liu, Xiangyao Yu, Marco
Serafini, Ashraf Aboulnaga, Michael Stonebraker. FlexPushdownDB:
Hybrid Pushdown and Caching in a Cloud DBMS. PVLDB, 14(11): 2101 -
2113, 2021.

doi:10.14778/3476249.3476265

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/cloud- olap/FlexPushdownDB.git.

1 INTRODUCTION

Database management systems (DBMSs) are gradually moving from
on-premises to the cloud for higher elasticity and lower cost. Mod-
ern cloud DBMSs adopt a storage-disaggregation architecture that

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476265

2101

marco@cs.umass.edu, *aaboulnaga@hbku.edu.qa

divides computation and storage into separate layers of servers con-
nected through the network, simplifying provisioning and enabling
independent scaling of resources. However, disaggregation requires
rethinking a fundamental principle of distributed DBMSs: “move
computation to data rather than data to computation”. Compared
to the traditional shared-nothing architecture, which embodies that
principle and stores data on local disks, the network in the disag-
gregation architecture typically has lower bandwidth than local
disks, making it a potential performance bottleneck.

Two solutions have been explored to mitigate this network bot-
tleneck: caching and computation pushdown. Both solutions can
reduce the amount of data transferred between the two layers.
Caching keeps the hot data in the computation layer. Examples in-
clude Snowflake [21, 48] and Presto with Alluxio cache service [14].
The Redshift [30] layer in Redshift Spectrum [8] can also be consid-
ered as a cache with user-controlled contents. With computation
pushdown, filtering and aggregation are performed close to the
storage with only the results returned. Examples include Oracle
Exadata [49], IBM Netezza [23], AWS Redshift Spectrum [8], AWS
Aqua [12], and PushdownDB [53]. The fundamental reasons that
caching and pushdown have performance benefits are that local
memory and storage have higher bandwidth than the network and
that the internal bandwidth within the storage layer is also higher
than that of the network.

Existing DBMSs consider caching and computation pushdown
as orthogonal. Most systems implement only one of them. Some
systems, such as Exadata [49], Netezza [23], Redshift Spectrum [8],
and Presto [14] consider the two techniques as independent: query
operators can either access cached data (i.e., full tables) or push
down computation on remote data, but not both.

In this paper, we argue that caching and computation pushdown
are not orthogonal techniques, and that the rigid dichotomy of
existing systems leaves potential performance benefits unexploited.
We propose FlexPushdownDB (FPDB in short), an OLAP cloud DBMS
prototype that combines the benefits of caching and pushdown.

FPDB introduces the concept of separable operators, which com-
bine local computation on cached segments and pushdown on the
segments in the cloud storage. This hybrid execution can leverage
cached data at a fine granularity. While not all relational operators
are separable, some of the most commonly-used ones are, including
filtering, projection, aggregation. We introduce a merge operator to
combine the outputs from caching and pushdown.

Separable operators open up new possibilities for caching. Tra-
ditional cache replacement policies assume that each miss requires

https://doi.org/10.14778/3476249.3476265
https://github.com/cloud-olap/FlexPushdownDB.git
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476265

Figure 1: Distributed Database Architectures — (a) shared-nothing,
(b) shared-disk, and (c) storage-disaggregation.

loading the missing data block to the cache, which incurs a con-
stant cost if the blocks have the same size. In FPDB, however, this
assumption is no longer true because we can push down compu-
tation instead of loading data. The cost of a miss now depends on
how amenable the block is to pushdown—for misses that can be
accelerated with pushdown (e.g., high-selectivity filters), the cost of
a miss is lower. We develop a new benefit-based caching framework
and a new caching policy called Weighted-LFU, which incorporates
caching and pushdown into a unified cost model to predict the best
cache eviction decisions. We compare Weighted-LFU with popular
conventional policies, including least-recently used (LRU), least-
frequently used (LFU), and an optimal policy called Belady [18] that
assumes the availability of future access patterns. Our evaluation
shows that Weighted-LFU outperforms all these policies.
In summary, the paper makes the following key contributions:

e We develop a fine-grained hybrid execution mode for cloud
DBMSs to combine the benefits of caching and pushdown
in a storage-disaggregation architecture. The hybrid mode
outperforms both Caching-only and Pushdown-only architec-
tures by 2.2x on the Star Schema Benchmark (SSB) [38].

e We study the performance effect of various caching man-
agement policies. We developed a novel Weighted-LFU re-
placement policy that is specifically optimized for the dis-
aggregation architecture. Weighted-LFU outperforms the
second-best policy (i.e., LFU) by 37% and Belady by 47%.

o We present the detailed design and implementation of FPDB,
an open-source C++-based cloud-native OLAP DBMS. We
believe it can benefit the community given the lack of cloud-
DBMS prototypes.

The rest of the paper is organized as follows. Section 2 presents
the background and motivation of our design. After showing an
overview of FPDBin Section 3, Sections 4, 5, and 6 discuss the hybrid
execution model, the caching policy, and the detailed implemen-
tation of FPDB, respectively. Section 7 evaluates the performance
of FPDB over baseline architectures and policies. Finally, Section 8
discusses related work and Section 9 concludes the paper.

2 BACKGROUND AND MOTIVATION

This section describes the background on the storage-disaggregation
architecture (Section 2.1) and the new challenges, as well as why ex-
isting systems are sub-optimal in solving the problem (Section 2.2).

2102

Caching-only

Pushdown-only

Runtime

Hybrid

Cache size

Figure 2: Performance trade-off between caching, computation
pushdown, and an ideal hybrid approach.

2.1 Storage-disaggregation Architecture

According to the conventional wisdom, shared-nothing (Figure 1(a))
is the best architecture for high-performance distributed data ware-
housing systems, where servers with local memory and disks are
connected through a network. While a cloud DBMS can also adopt
a shared-nothing architecture, many cloud-native databases choose
to disaggregate the computation and storage layers (Figure 1(c)).
This brings benefits of lower cost, simpler fault tolerance, and higher
hardware utilization. Many cloud-native databases have been devel-
oped recently following such an architecture, including Aurora [46,
47], Redshift Spectrum [8], Athena [7], Presto [11], Hive [43], Spark-
SQL [16], Snowflake [21], and Vertica EON mode [36, 45].

Besides the separation of computation and storage, the disag-
gregation architecture also supports limited computation within the
storage layer. The computation can happen either on the storage
nodes (e.g., Aurora [46]) or in a different layer close to the storage
nodes (e.g., Redshift Spectrum [8] and Aqua [12]). This allows a
database to push filtering and simple aggregation operations into
the storage layer, leading to performance improvement and poten-
tial cost reduction as shown in previous work [53].

While the storage-disaggregation architecture sounds similar to
the well-known shared-disk architecture (Figure 1(b)), they actually
have significant differences. In a shared-disk architecture, the disks
are typically centralized, making it hard to scale out the system.
The disaggregation architecture, by contrast, can scale the storage
layer horizontally (both the computation and the capacity) just
like the computation layer. The disaggregation architecture also
provides non-trivial computation in the storage layer, while disks
are passive storage devices in the shared-disk architecture.

2.2 Challenges in Disaggregated DBMSs

The network connecting the computation and storage layers is a
major performance bottleneck in the storage-disaggregation archi-
tecture. The network bandwidth is significantly lower than the disk
10 bandwidth within a single server, leading to lower performance
than a shared-nothing DBMS [42]. Existing cloud DBMSs use two
solutions to alleviate this problem: caching and computation push-
down. Figure 2 shows the high-level performance trade-off between
the two approaches, which we describe below.

Solution 1: Caching. These systems keep hot data in the local
memory or disks of the computation nodes. The high-level archi-
tecture is shown in Figure 3(a). Cache hits require only local data

Caching
table data

s A

(a) Caching Only

Pushdown results

P00 - 0000
T

o Y

(b) Pushdown Only

R}

e—— Compute node

Near-storage
computation

— o—— Cloud storage
o A

(c) FPDB

Figure 3: System Architectures — High level architectural comparison between Caching-only, Pushdown-only, and FPDB.

accesses and are thus much faster than cache misses, which require
loading data over the network. As shown in Figure 2, as the cache
size increases, the query execution time decreases due to a higher
hit ratio. Snowflake [21] and Presto [14] support caching with the
LRU replacement policy. Redshift Spectrum [8] does not support
dynamic caching but allows users to specify what tables to keep in
the Redshift layer for fast IO. We are not aware of any thorough
study of more advanced caching policies in these systems.

Solution 2: Computation pushdown. The idea here is to perform
certain DBMS operators close to where the data resides; the high-
level architecture is shown in Figure 3(b). Computation pushdown
has been widely explored in the context of database machines [23,
25, 44, 49], Smart Disk/SSD [22, 26, 29, 35, 51, 52], processing-in-
memory (PIM) [27, 34], and cloud databases [8, 12, 37, 53]. They
are all based on the observation that the internal bandwidth in the
storage is higher than the external bandwidth between storage and
computation and that pushdown can reduce data transfer; the prob-
lem is particularly severe in cloud databases due to disaggregation.
As shown in Figure 2, the performance of computation pushdown is
independent of the cache size—the DBMS does not exploit caching.
When the cache size is small, pushdown outperforms caching
due to reduced network traffic; when the cache size is sufficiently
large, caching performs better due to a higher cache hit ratio. Ideally,
a system should adopt a hybrid design that combines the benefits
of both worlds—caching a subset of hot data and pushdown compu-
tation for the rest, which is shown as the bottom line in Figure 2.
Existing systems do not offer a fully hybrid design. While some
systems support both caching and pushdown, they select the op-
eration mode at the table granularity. The storage layer keeps ad-
ditional “external” tables that can be queried using computation
pushdown. But no system, to the best of our knowledge, can dy-
namically cache external tables at a fine granularity (e.g., subsets of
columns) without an explicit load command. A key challenge here
is to split a general query to exploit both techniques at a fine gran-
ularity. Another key challenge is to design a caching policy that is
aware of computation pushdown. FPDB addresses both challenges.

3 FPDB OVERVIEW

3.1 System Architecture

Figure 3(c) shows the high-level architecture of FPDB in contrast to
existing architectures of Caching-only (Figure 3(a)) and Pushdown-
only (Figure 3(b)). Similar to Caching-only, FPDB stores the hot

2103

input data in the local cache (i.e., main memory or disk) to take
advantage of fast I0. Similar to Pushdown-only, FPDB keeps the cold
input data in the external cloud storage and pushes down filters
to reduce network traffic. FPDB contains the following two main
modules to enable such hybrid query execution:

Hybrid query executor. The query executor takes in a logical
query plan from the optimizer and transforms it into a separable
query plan based on the content in the cache. The separable query
plan processes the cached data in the compute node and pushes
down filters and aggregation to the storage layer for uncached data.
The two portions are then merged and fed to downstream operators.
Section 4 will discuss the details of how operators are separated
and merged.

Cache manager. The cache manager determines what data should
be cached in the computation node. The cache eviction policy takes
into account the existence of computation pushdown to exploit fur-
ther performance improvement. For each query, the cache manager
updates the metadata (e.g., access frequency) for the accessed data
and determines whether admission and/or eviction should occur.

3.2 Design Choices

Designing FPDB requires making two high-level design decisions:
what to cache and at which granularity, which we discuss below.

Caching Table Data or Query Results. Two types of data can
potentially be cached in FPDB: table data and query results. Table
data can be either the raw input files or a subset of rows/columns of
the input tables. Query results can be either the final or intermediate
results of a query, which can be considered as materialized views.
We consider the caching of table data and results as two orthog-
onal techniques, with their own opportunities and challenges. In
FPDB, we explore caching only the table data since it is a simpler
problem. The extension to result caching is left to future work.

Storage and Caching Granularity. FPDB stores tables in a dis-
tributed cloud storage service. Tables are horizontally partitioned
based on certain attributes (e.g., primary key, sorted field, times-
tamp, etc.). Each partition is stored as a file in the cloud storage and
contains all the columns for the corresponding subset of rows.
The basic caching unit in FPDB is a segment, which contains
data for a particular column in a table partition (i.e., a column for a
subset of rows). A segment is uniquely identified by the segment
key, which contains three parts: the table name, the partition name,
and the column name. The data format of a segment (e.g., Apache

Arrow) can be potentially different from the data format of the raw
table file (e.g., CSV or Parquet).

4 HYBRID QUERY EXECUTOR

At a high level, the query executor converts the logical query plan
into a separable query plan by dispatching separable operators into
both local and pushdown processing; the results are then combined
through a merge operator. This section describes these modules and
then illustrates how the system works through an example query.

4.1 Separable Operators

We call an operator separable if it can be executed using segments
in both the cache and the cloud storage, with the results combined
as the final output. Not all the operators are separable (e.g., a join).
Below we analyze the separability of several common operators.

Projection. Projection is a separable operator. If only a subset of
segments in the queried columns are cached, the executor can load
the remaining segments from the storage layer. The results can be
then combined and fed to the downstream operator.

Filtering scan. Whether a filtering scan is separable depends on
the cache contents. Ideally, the executor can process some partitions
in the cache, push down filtering for the remaining partitions to the
storage, and then merge the results, thus separating the execution.
However, the situation can be complex when multiple columns are
selected but not all of them are part of the filtering predicate.
Consider a scan query that returns two sets of attributes A and B
from a table but the filtering predicate is applied on only attribute
set A. For a particular table partition, if all segments in both A
and B are cached, the partition can be processed using the data in
the cache. However, if only a subset of segments in A are cached,
the executor must either load the missing segments or push down
the scan of the partition to the storage. Finally, if all segments in
A but only a subset of segments in B are cached (call it B’), the
processing can be partially separated—the executor filters A and B’
using cached data, and pushes down the filtering for (B — B).

Base table aggregation. Pushdown computation can perform ag-
gregation on certain columns of a table. These operators can be
naturally separated: a partition is aggregated locally if all involved
segments are cached; otherwise the aggregation is pushed down
to the storage. The output can then be merged. For aggregation
functions like average, both local and remote sides return the sum
and count based on which the average is calculated.

Hash join. A join cannot be completely pushed down to the storage
layer due to limitations of the computation model that a storage
layer supports. Prior work [53] has shown that a bloom hash join
can be partially pushed down as a regular predicate on the outer
relation in a join. Given this observation, we conclude that the
building phase in hash join is not separable—the columns of interest
in the inner relation must be loaded to the compute node. The
probing phase is separable: cached segments of the outer relation
can be processed locally, while uncached segments can be filtered
using the bloom filter generated based on the inner relation.

Sort. Theoretically, sort is separable—a remote segment can be
sorted through pushdown and the segments are then merged in
the computation node. Such techniques have been explored in the

2104

m

eoe
<~
00O

(b) Separable Query Plan

Local Cache

Local Cache

o

(a) Original Query Plan

Figure 4: Example of a Separable Query Plan — The hybrid query
plan contains a parallel merge operator that combines the results
from cache and computation pushdown.

context of near-storage processing [32] using FPGA. However, since
the cloud storage today does not support sorting (e.g., S3 Select),
the separation of sorting is not supported in FPDB.

4.2 Separable Query Plan

A query plan is separable if it contains separable operators. Figure 4
shows examples of a conventional query plan without pushdown
(Figure 4(a)) and a separable query plan (Figure 4(b)).

A conventional query plan reads all the data from the compu-
tation node’s local cache (i.e., buffer pool). For a miss, the data
is loaded from the storage layer into the cache before query pro-
cessing. A separable query plan, by contrast, splits its separable
operators and processes them using both the cached data and push-
down computation. How the separation occurs depends on the
current content in the cache, as described in Section 4.1.

For good performance and scalability, the merge operator in
FPDB is implemented across multiple parallel threads. Specifically,
each operator in FPDBis implemented using multiple worker threads
and each worker thread is assigned multiple segments of data. The
segments assigned to a particular worker might be entirely cached,
entirely remote, or a mixture of both. For threads with a mixture of
data sources, the results must be first merged locally into a unified
data structure. The data across different threads does not need to be
explicitly merged—they are directly forwarded to the downstream
operators (e.g., joins) following the original parallel query plan.

4.3 Example Query Execution

SELECT R.B, sum(S.D)

FROM R, S

WHERE R.A = S.C AND R.B > 1@ AND S.D > 20
GROUP BY R.B

Listing 1: Example query joining relations R and S.

We use the query above as an example to further demonstrate
how the hybrid query executor works; the plan of the query is
shown in Figure 5. The example database contains two relations R
and S with the assumption that |R| < |S|, and each relation has two
partitions (as shown in the cloud storage in Figure 5). Relation R
has two attributes A and B, and relation S has two attributes C and

(Relation R)

| Filtering Scan ” Filtering Scan |

]

Relation R Relation S
DGR
Local Cache I A2| B2| lCz| Dzl
= [
Cloud Storage

Figure 5: Separable Query Plan — For the query in Listing 1.

D. Four segments are cached locally, as shown in the Local Cache
module in Figure 5.

To execute the query using hash join, the DBMS first scans R
to build the hash table and scans S to probe the hash table. The
output of the join is fed to the group-by operator. Four partitions
are involved in the join, i.e., partitions 1 and 2 in relations R and S,
respectively. Depending on what segments are cached, the partition
can be scanned locally, remotely, or in a hybrid mode.

Scanning relation R. For the first partition in R, both segments
(i.e., A1 and By) are cached. Therefore, the executor reads them
from the local cache and no pushdown is involved. For the second
partition in R, neither segment (i.e., Ay and By) is cached, thus the
filter is pushed down to the storage layer, which returns the subset
of rows in Az and By that satisfy the predicate. Finally, the local
and remote results are combined through a merge operator.

Scanning relation S. For the first partition in S, only segment C;
is cached, but the filter predicate of relation S is on attribute D, so
the filtering scan cannot be processed locally and must be pushed
down to the storage, which returns the filtered segments C; and
Dj. For the second partition in S, only segment Dy is cached. Since
the filter predicate is on D, the DBMS can directly read from the
cache to process Ds. Since the scan should also return attribute Cy,
the DBMS can push down the filter to the storage to load Cz. Note
that it is also possible to process this partition by pushing down
the processing of both segments Cz and D2, namely, ignoring the
cached Djy. This alternative design avoids evaluating the predicate
twice (i.e., for the cached data and remote data) but incurs more
network traffic. FPDB adopts the former option.

In the discussion so far, only the filtering scan is executed in
a hybrid mode. As described in Section 4.1, the probe table in a
hash join can also be partially pushed down. For the example query
in particular, the DBMS can scan relation R first, builds a bloom
filter on attribute R.A, and consider this bloom filter as an extra

2105

predicate when scanning relation S; namely, the predicates on S
then become S.D > 20 AND bloom_filter(S.C). Note the bloom
filter can only be constructed after the entire column of attribute
R.A is loaded. Therefore, when pushing down the probe table of
the hash join, the scan of relation S can start only after the scan
of relation R completes. In contrast, both scans can be executed in
parallel when the bloom filter is not pushed down.

4.4 Execution Plan Selection

FPDB currently uses heuristics to generate separable query plans.
It takes an initial plan from the query optimizer, and splits the
execution of separable operators based on the current cache content.
Specifically, an operator on a partition is always processed based on
cached segments whenever the accessed data is cached. Otherwise,
we try to pushdown the processing of the partition as much as we
can. If neither works (e.g., the operator is not separable), we fall
back to the pullup solution and load the missing segments from
the storage layer. Note that the heuristics we adopt can generate
only one separable plan given an input query plan. We adopt these
heuristics based on the following two assumptions:

e Local processing on cached data is more efficient than push-
down processing in the storage layer.

e Pushdown processing is more efficient than fetching all the
accessed segments and then processing locally.

The two conditions can hold in many cloud setups with storage
disaggregation. The computation power within the storage layer
is still limited compared to the local computation nodes and the
network between the compute and storage layers has lower band-
width than the aggregated disk IO bandwidth within the storage
layer. Evaluation in Section 7 will demonstrate the effectiveness of
the heuristics in improving system performance.

Although our heuristics are simple and effective, we do note that
they may not always lead to a globally optimal separable query
plan, because the two assumptions may not hold universally. For
example, pushdown may outperform due to its massive parallelism
even if all the data is cached. An important follow-up work is to
develop a pushdown-aware query optimizer that can deliver better
performance than the simple heuristics. We leave such exploration
to future work.

5 CACHE MANAGER

The cache manager decides what table segments should be fetched
into the cache and what segments should be evicted, as well as when
cache replacement should happen. We notice a key architectural
difference in FPDB that makes conventional cache replacement poli-
cies sub-optimal: in a conventional cache-only system, cache misses
require loading data from storage to cache. If cached segments are
of equal size, each cache miss incurs the same cost. In FPDB, how-
ever, we can push down computation instead of loading data. Some
segments may be more amenable to pushdown than others, which
affects the benefit of caching. In other words, segments that cannot
be accelerated through pushdown should be considered for caching
with higher weight; and segments that can already be significantly
accelerated through pushdown can be cached with lower weight—
the extra benefit of caching beyond pushdown is relatively smaller.

Hybrid Executor
Query plan (Sgction 4)
—_

=

| Local Cache

cooo - 0000

Figure 6: Integration of Executor and Cache Manager — The cache
manager determines what segments should stay in cache.

Cache Manager
(Section 5)
_— . .
¢ Admission
* Eviction

Caching
| i request

We develop a Weighted-LFU (WLFU) cache replacement policy for
FPDB based on this observation.

In the rest of this section, we describe the integration of the
cache manager and the hybrid executor in Section 5.1 and present a
generic benefit-based caching framework in Section 5.2. We describe
how conventional replacement policies (i.e., LRU, LFU, and Belady)
fit into this framework in Section 5.3 and present the proposed
Weighted-LFU policy in Section 5.4.

5.1 Integration with Hybrid Executor

Figure 6 demonstrates how the cache manager is integrated with
the hybrid executor in FPDB. The hybrid executor takes a query plan
as input and sends information about the accessed segments to the
cache manager. The cache manager updates its local data structures,
determines which segments should be admitted or evicted, and
loads segments from the cloud storage into the cache.

For cache hits, the hybrid executor processes the query using
the cached segments. Cache misses include two cases: First, if the
caching policy decides not to load the segment into the cache, then
FPDB exploits computation pushdown to process the segment. Oth-
erwise, if the caching policy decides to cache the segment, the
DBMS can either wait for the cache load or push down the com-
putation. The tradeoff here is between query latency and network
traffic. FPDB adopts the former to minimize network traffic.

5.2 Benefit-Based Caching Framework

The cache manager determines which segments to admit or evict.
The key design decisions here are the admission and eviction policies,
which vary depending on the algorithm being implemented.

Ideally, a cache should contain the segments that can benefit the
most from caching. We use the benefit value, s.benefit, to represent
the benefit that segment s can get from staying in the cache. The
key differences among caching policies are the different ways of
determining the benefit value. For example, the benefit value repre-
sents recency and frequency information for LRU and LFU policies,
respectively. The details on determining the benefit value will be
discussed in Sections 5.3 and 5.4.

Algorithm 1 shows how the benefit-based caching framework
works in FPDB. When a set of segments are accessed, their benefit
values are updated (lines 1-2) to reflect the new accesses. Then for
each missing segment s in the order of decreasing benefit, we try
to cache the segment if there is still space in the cache (lines 3-6).

2106

If the space is insufficient, we make space by evicting the segment
with the least benefit (i.e., segment t) from the cache until ¢ has a
higher benefit value than the newly updated segments (lines 8-12),
at which point the caching algorithm stops loading new segments.

Algorithm 1: Benefit-Based Caching Framework

Input: list of accessed segments S;p,
1 foreach s in S;, do
2 L update the benefit of s

3 while s < get missing segment in S;,, with highest benefit do

4 if cache has enough space to hold s then

5 issue request to load segment s

6 Sin-remove(s)

7 else

8 t « get segment in cache with lowest benefit
9 if t.benefit < s.benefit then

10 ‘ evict segment ¢ from cache

1 else

12 L break

Note that our framework makes a few simplifying assumptions
regarding the caching policy. For example, we assume an eager
admission policy where a segment is immediately admitted when it
can be. The algorithm is also greedy since we consider segments for
caching strictly in the decreasing order of benefit values. Alternative
designs that break these assumptions should be orthogonal to the
rest of the paper and beyond the scope of this work.

5.3 Traditional Replacement Policies

We explore three traditional caching policies: least-recently-used
(LRU), least-frequently-used (LFU), and an optimal policy Belady.

Least-Recently Used (LRU). LRU is the most widely used cache
replacement policy. A new cache miss always replaces the cached
segment(s) that are least-recently used. LRU assumes that more
recently used data are also likely to be used again in the future,
thus having a higher priority to be cached. In our framework, this
means the benefit value of a segment is simply the timestamp of its
last access. Segment size does not play a role in our LRU algorithm.

Least-Frequently Used (LFU). In LFU, the frequency counter of a
segment is incremented by 1/(segment.size) whenever it is accessed.
The counter captures the size-normalized access frequency of the
segment. If a missing segment’s counter is larger than the smallest
counter of cached segments, the least-frequently used segment
in the cache is replaced. In our framework, the benefit value of
segment s is simply the size-normalized frequency counter.

Belady Replacement Policy. Belady [18] is an optimal replace-
ment policy that assumes availability of future information. Specif-
ically, upon a miss, the algorithm replaces the segment that will
not be accessed again for the longest time in the future. The benefit
value of a segment s is therefore 1/(the number of queries until the
segment is accessed again).

The Belady algorithm has been proven optimal when all the
segments have the same size and all cache misses have the same
cost. Since these assumptions are not always true in FPDB (due to

variable segment size and pushdown), Belady is no longer optimal
in our setting. Even so, we use it as a baseline to gain insights about
different replacement policies.

5.4 Weighted-LFU Replacement Policy

As discussed at the beginning of this section, the hybrid caching
and pushdown design in FPDB changes a fundamental assumption
of cache replacement—cache misses for different segments incur
different costs. Specifically, consider two segments, A and B, where
A is accessed slightly more frequently than B, so that an LFU policy
prefers caching A. However, it can be the case that segment A can
benefit from computation pushdown so that a cache miss is not very
expensive, while segment B is always accessed with no predicate
hence cannot benefit from pushdown. In this case, it might be more
beneficial if the DBMS prefers B over A when considering caching.

In the benefit-based caching framework, we can incorporate
the above intuition by taking pushdown into consideration when
calculating the benefit values. Specifically, we modify the existing
LFU policy to achieve this goal. Instead of incrementing the fre-
quency counter by 1/segment.size for each access to a segment, we
increment the counter by a weight, the value of which depends
on whether the segment can be pushed down and if so, what cost
pushdown is. Intuitively, the more costly the pushdown is, the more
benefit we get from caching, hence the higher weight.

While there are many different ways to calculate the weight,
in FPDB, we choose a straightforward formulation to represent a
weight by the estimated total amount of work (measured in time)
of pushdown computation, which is modeled by three components:
time of network transfer, time of data scanning, and time of com-
putation, as shown in Equation 1. The total time is divided by the
segment size to indicate the size-normalized benefit of caching.

total_work(s) _ tnet(s) + tscan(s) + teompute(s)
size(s) - size(s)

1

w(s) =

We estimate the time of each component using the following
simple equations (Equations 2-4).

selectivity(s) x size(s)

tnet(s) =)
ne BWhet
troan(s) Ntuples(s) X size(tuple) @
s) =
scan BWeoan
Niuples($) X Npredicates
tcompute(s) = P P (4)

BWeompute

The equations above assume the data within the cloud storage
is in row-oriented format (e.g., CSV)—they can be easily accom-
modated for column-format data (e.g., Parquet) by adjusting data
scan amount to the size of columns accessed instead of the whole
object. The time of each component is essentially the total amount
of data transfer or computation divided by the corresponding pro-
cessing bandwidth. Most of the parameters in the numerators can
be statically determined from the statistics (e.g., size(s), size(tuple),
Niupies(s)) or from the query (e.g., Npredicates)> €xcept for selectiv-
ity(s) which can be derived after the corresponding segment has
been processed by the executor.

For the bandwidth numbers in the denominators, we run simple
synthetic queries that exercise the corresponding components to

2107

estimate their values. This process is performed only once before
all the experiments are conducted.

6 IMPLEMENTATION

Given that not many open-source cloud-native DBMSs exist, we
decided to implement a new prototype, FPDB, in C++ and make
the code publicly available to the community!. In this section, we
describe different aspects of our system.

6.1 Cloud Environment

FPDB adopts a storage-disaggregation architecture. We choose the
widely used AWS Simple Storage Service (S3) [9] as the cloud stor-
age service. We also use S3 Select [31], a feature where limited
computation can be pushed down onto S3, including projection,
filtering scan, and base table aggregation. FPDB currently supports
a single computation node.

FPDB requests data from S3 through AWS C++ SDK. We config-
ure rate limits, timeouts, and connections in AWS ClientConfigura-
tion high enough for better performance. Besides, FPDB does not
use HTTPS/SSL which incurs extra overhead, as we expect analytics
workloads would typically be run in a secure environment.

6.2 Data Format

FPDB supports table data in the cloud storage in both CSV and
Parquet [4] format. Within the database engine and the cache, we
use Apache Arrow [3] to manage data; table data is converted
to Arrow within the scan operator. Arrow is a language-agnostic
columnar data format designed for in-memory data processing. In
the executor, we encapsulated Arrow’s central type, the Array, to
represent a data segment. Arrays are one or more contiguous mem-
ory blocks holding elements of a particular type. The number of
blocks required depends on several parameters such as the element
type, whether null values are permitted, and so on. Using the same
data format for the processing engine and the cache eliminates the
overhead of an extra data type conversion.

6.3 In-Memory Parallel Processing

Below we describe the details of FPDB’s in-memory parallel pro-
cessing engine in a bottom-up fashion.

Expression Evaluation. FPDB uses Gandiva [10] for efficient ex-
pression evaluation. Gandiva compiles and evaluates expressions on
data in Arrow format. It uses LLVM to perform vectorized process-
ing and just-in-time compilation to accelerate expression evaluation
and exploit CPU SIMD instructions for parallelism.

While Gandiva supports multi-threaded expression execution
we found multi-threaded expression compilation troublesome. An
attempt to compile multiple expressions simultaneously often failed
in LLVM code generation or produced incomplete expressions.
Therefore, we use serial compilation only.

Actor-Based Parallel Processing. FPDB supports parallel query
execution using the C++ Actor Framework (CAF) [19]. CAF is a
lightweight and efficient implementation of the Actor model [15]
similar to those found in Erlang [17] or Akka [1]. Queries are
composed of a number of operator types arranged in a tree. Scan

!https://github.com/cloud-olap/FlexPushdownDB.git

https://github.com/cloud-olap/FlexPushdownDB.git

operators form the leaves and a single collate operator forms the
root. Operators communicate via message passing from producers
to consumers, i.e., messages flow from leaves to the root.

Each operator type is instantiated into multiple actors. For the
scan operator, an actor is created for each input table partition. For
other operators, the number of actors is determined by the number
of CPU cores. By default, CAF multiplexes the execution of these
actors over all CPU cores on the host machine.

When query execution starts, a query coordinator instructs each
operator to begin execution, in parallel, and then tracks each op-
erator’s completion status. Operators perform their work, which
may depend on the work of upstream operators, and send output
messages to consumers, in a pipelined fashion. On completion of
all operators the coordinator delivers the query result, from the
collate operator, to the client executing the query.

Finally, both parallel hash join and parallel aggregation are im-
plemented in FPDB. With actor-based parallel processing, FPDB can
achieve a CPU utilization of more than 96%.

Caching. We perform caching using the main memory (RAM) of
the compute nodes. The cache in FPDB is also implemented as an
actor with cache contents managed by the caching policy. The cache
communicates with other operators through message passing to
admit and evict data segments.

7 EVALUATION

In this section, we evaluate the performance of FPDB by focusing
on the following key questions:

e How does the hybrid architecture perform compared to base-
line architectures?

e How does Weighted-LFU perform compared to traditional
cache replacement policies?

e What is the impact of the network bandwidth?

e What is the resource usage and monetary cost of FPDB?

7.1 Experimental Setup

Server configuration. We conduct all the experiments on AWS
EC2 compute-optimized instances. To thoroughly evaluate the per-
formance, we pick two instance types with different network band-
width, c5a.8xlarge (which costs $1.52 per hour in US-West-1 pricing),
with 32 vCPU, 64 GB memory, and a 10 Gbps network bandwidth,
and c5n.9xlarge (which costs $2.43 per hour in US-West-1 pricing),
with 36 vCPU, 96 GB memory, and a 50 Gbps network bandwidth.
Unless otherwise specified, we use the c5a.8xlarge instance as de-
fault. The server runs the Ubuntu 20.04 operating system.

Benchmark. We use the Star Schema Benchmark (SSB) [38] with
a scale factor 100. Each table is partitioned into objects of roughly
150 MB when using CSV format, which is large enough to avoid
generating many scan operators and the associated scheduling
overhead. Each request to S3 is responsible for 15 MB data, which
is small enough to leverage parallelism when loading data from
the storage layer. Parquet data is derived from CSV data. The SSB
dataset has five tables—four dimension tables and one fact table. The
fact table is much larger than the dimension tables, and contains
foreign keys which refer to primary keys in the dimension tables.

2108

We implement a random query generator based on SSB queries. A
query is generated based on a query template with parameters in the
filter predicates randomly picked from a specified range of values
(or a set of values for categorical data). We incorporate skewness
into the benchmark by picking the values following a Zipfian [28]
distribution with tunable skewness that is controlled by a parameter
0. Skewness is applied to the fact table (i.e. lineorder) such that more
recent records are accessed more frequently. A larger 0 indicates
higher skewness. The default value of 6 is 2.0, where about 80%
queries access the 20% most recent data (i.e. hot data). We set the
default cache size to 8 GB which is enough to cache the hot data
under the default skewness.

Measurement. Each experiment executes a batch of queries se-
quentially. The experiment contains a warmup phase and an exe-
cution phase. The warmup phase contains 50 queries sequentially
executed; we have conducted separate experiments and found that
50 is sufficient to warm up the cache. The execution phase contains
50 sequentially executed queries on which we report performance.

Architectures for Comparison. The following system architec-
tures are implemented in FPDB for performance comparison:

o Pullup: Data is never cached in the computation node. All
accesses load table data from S3. This design is used in
Hive [43], SparkSQL [16], and Presto [11].

e Caching-only: Data is cached in the computation node with
no pushdown supported. This design has been adopted in
Snowflake [21] and Presto with Alluxio caching [14].

o Pushdown-only: Filtering scan is always pushed down to the
storage layer whenever possible. Data is never cached in the
computation node. This design is used in PushdownDB [53]
and Presto with S3 Select enabled.

e Hybrid: The hybrid caching and pushdown architecture pro-
posed in this paper.

7.2 Performance Evaluation

This subsection evaluates the performance of FPDB. We compare
and analyze the query execution time of different caching and
pushdown architectures. Then we evaluate the effectiveness of
the Weighted-LFU caching policy. Finally, we study the impact of
network bandwidth between the compute and storage layers.

7.2.1 Caching and Pushdown Architectures.

We start with comparing the performance of the hybrid architecture
with baseline architectures. We use LFU as the default cache replace-
ment policy for Caching-only and Hybrid. We report performance
varying two parameters: the cache size and the access skewness in
the workload (i.e., 8), on both c5a.8xlarge and c5n.9xlarge instances.

Overall Performance. Figure 7 shows the runtime comparison
on the c5a.8xlarge instance. Figure 7(a) compares the performance
between different caching/pushdown architectures when the cache
size changes. First, we observe that the performance of Pullup and
Pushdown-only are not affected by the cache size; this is because data
is never cached in either architecture. Pushdown-only outperforms
Pullup by 5.2, because computation pushdown can significantly
reduce the network traffic. The Caching-only architecture, in con-
trast, can take advantage of a bigger cache for higher performance.
When the cache is small, its performance is close to Pullup. When

—e— Pullup Pushdown-only —»— Caching-only = —4— Hybrid

500
= J—
& 400
2
g300
& 200
5 100 3
& .
0
5 10 15 20 25 04 08 12 1.6 20 24

Cache Size (GB)

Skew Factor (6)

(a) Runtime with Varying Cache Size (b) Runtime with Varying Skewness

Figure 7: Performance Comparison (c5a.8xlarge) — The runtime
with different (a) cache sizes and (b) access skewness.

[+ Pullup Pushdown-only —w— Caching-only —&— Hybrid

160

-
o
=3

-

1N}

=]
-
N}
=]

N
o
o~
o

Runtime (sec)
o
o
Runtime (sec)
==}
(=}

=)
=)

5 10 15 20 25 0.4 0.8 1.2 1.6 2.0 2.4
Cache Size (GB) Skew Factor (8)

(a) Runtime with Varying Cache Size (b) Runtime with Varying Skewness
Figure 8: Performance Comparison (c5n.9xlarge) — The runtime
with different (a) cache sizes and (b) access skewness.

the cache size is bigger than 12 GB, it outperforms Pushdown-only
due to the sufficiently high cache hit ratio.

Finally, the performance of Hybrid is consistently better than
all other baselines. When the cache is small, FPDB behaves like
Pushdown-only; when the cache is large enough to hold the working
set, FPDB behaves like Caching-only. For cache sizes in between,
Hybrid can exploit both caching and pushdown to achieve the
best of both worlds. At the default cache size (i.e., 8 GB), Hybrid
outperforms Pushdown-only by 80%, Caching-only by 3.0, and
Pullup by 9.4x. At the crossing point of Pushdown-only and Caching-
only (i.e., roughly 12 GB), Hybrid outperforms both by 2.2x.

Figure 7(b) shows the performance of different architectures as
the access skewness increases. Pullup and Pushdown-only are not
sensitive to changing skewness. Both Caching-only and Hybrid see
improving performance for higher skew, due to a higher cache hit
ratio since there is less hot data.

We further evaluate FPDB on the c5n.9xlarge instance which
has a 50 Gbps network. Figure 8(a) compares the performance of
different architectures with different cache sizes. The general trends
are similar to c5a.8xlarge, and Hybrid consistently outperforms all
baselines. With a higher network bandwidth, Pushdown-only is
2x faster than Pullup, which is lower than the speedup on the
c5a.8xlarge instance because loading segments missing from the
cache is faster. The crossing point of Pushdown-only and Caching-
only shifts towards the left to roughly 6 GB, at which point Hybrid
outperforms both baselines by 51%.

The performance results with increasing access skew on the
c5n.9xlarge instance are shown in Figure 8(b). The general trend is
also similar to c5a.8xlarge.

From the results above, we observe that different hardware con-
figurations can shift the relative performance of pushdown and
caching, but the hybrid design always outperforms both baselines.

2109

[- Pullup Pushdown-only mmm Caching-only - Hybrid]

==
® N O

Average Speedup
'~

o

Pushdown Outperforms Caching Outperforms Similar Performance

Figure 9: Per-Query Speedup — The average speedup of each repre-
sentative case in different architectures.

Per-Query Analysis.

We dive deeper into the behavior of the system by inspecting
the behavior of individual queries, and observe that they can be
categorized into three representative cases: (1) caching has better
performance, (2) pushdown has better performance, and (3) both
have similar performance. For each category, we compute the av-
erage speedup of different architectures compared to Pullup. The
results on c5a.8xlarge are shown in Figure 9. Although not shown
here, the results on c5n.9xlarge have a similar trend.

In all three cases, the performance of Hybrid can match the best
of the three baseline architectures. When pushdown (or caching)
achieves a higher speedup, Hybrid slightly outperforms Pushdown-
only (or Caching-only). When the two techniques have similar
performance, Hybrid can outperform either baseline significantly.
The performance results in Figure 7 and Figure 8 are an aggregated
effect of these three categories of queries.

Comparison against Existing Solutions.

To further validate the performance of our system, we com-
pare FPDB with Presto, a production cloud database. We use Presto
v0.240 which supports computation pushdown through S3 Select
and caching through Alluxio cache service [14]. For Alluxio, we
cache data in main memory, which is consistent with FPDB. We con-
duct the experiment under the default workload on an m5a.8xlarge
instance? on CSV data.

Table 1: Performance Comparsion between Presto and FPDB — The
runtime (in seconds) of different architectures in both systems
(Pushdown-only as PD-only, Caching-only as CA-only) on CSV data.

Architecture Pullup PD-only CA-only Hybrid
Presto 588.7 271.3 536.3 -
FPDB 472.1 111.2 225.7 80.8

The result is shown in Table 1. FPDB outperforms Presto by 25%
in Pullup and 2.4X in Pushdown-only, which implies that query
processing inside FPDB is efficient. In Caching-only FPDB is 2.4X
faster than Presto with Alluxio caching. A few reasons explain this
performance gain: First, Alluxio caches data at block granularity,
which is more coarse-grained than FPDB. Second, Alluxio manages
cached data through its file system, incurring higher overhead than
FPDB, which manages cached data directly using heap memory. We

2We run Presto on AWS Elastic MapReduce (EMR) which currently does not support
c5a and c5n instances in US-West-1. m5a has the most similar configuration.

————— Pullup (CSV)
—— Pullup (Parquet)

PD-only (CSV) --»-- CA-only (CSV) --e-- Hybrid (CSV)
PD-only (Parquet) —— CA-only (Parquet) —— Hybrid (Parquet)

[S3
=3
S

160

@-0=0-=0-=0-=O-mmmBmmmmBmmmnO

-~
o
S
-
%)
=3

Runtime (sec)
#
Runtime (sec)
- ©
o o

=N
=3
S

o

5 10 15 20 25 5 10 15 20 25
Cache Size (GB) Cache Size (GB)

(a) c5a.8xlarge (b) c5n.9xlarge

Figure 10: Parquet Performance — The runtime estimation of differ-
ent architectures with different cache sizes on Parquet data. Results
on CSV data (Figure 7(a), 8(a)) are added for reference.

further note that only FPDB supports Hybrid query execution. The
Alluxio caching layer is unaware of the pushdown capability of S3
while loading data, thus only one technique can be used.

7.2.2 Parquet Performance.

In this experiment, we investigate the performance of FPDB on
data in Parquet [4], a columnar data format commonly used in
data analytics. The challenge, however, is that current S3 Select has
poor performance on Parquet — pushdown of Parquet processing
returns results in CSV, leading to even worse performance than
processing CSV data. We studied a few other cloud-storage systems
but they either have the same problem [5] or do not support Parquet
pushdown at all [2, 13].

In order to estimate the performance of an optimized Parquet
pushdown engine, we built an analytical model to predict the sys-
tem performance under different scenarios [50]. Our model is based
on real measurements in software and hardware, and assumes one
of the key hardware resources is saturated (e.g., network band-
width, host processing speed, storage I0 bandwidth). In a separate
document [50], we present the detailed model and verify that it pro-
duces very accurate predictions for CSV data under different cache
size, filtering selectivity, among other important configurations. To
accurately model Parquet performance, we implement a program
that efficiently converts Parquet to Arrow format and processes
filtering to mimic the behavior of Parquet pushdown, and plug
into the model the performance numbers measured through this
program. The key parametric difference between CSV and Parquet
includes the amount of network traffic and the speed of pushdown
processing.

We perform the estimation for both c5a.8xlarge and c5n.9xlarge
instances and report results in Figure 10. We add the performance
on CSV data for reference. We observe that the performance on
Parquet is always better than the performance on CSV. The gain
is more prominent for Pullup and Caching-only since projection
pushdown is free in the Parquet format, leading to network traffic
reduction. Gains are less significant for Pushdown-only and Hybrid
since both exploit pushdown already. Comparing Figure 10(a) and
10(b), we also observe that the gain of Parquet is more prominent
when the network bandwidth is low, in which case a more severe
bottleneck is being addressed.

With Parquet, Hybrid still achieves the best performance among
all the architectures. When the network is a lesser bottleneck (e.g.,
faster network or Parquet format), the performance advantage of

2110

Hybrid is smaller and the crossing point of Pushdown-only and
Caching-only shifts towards the left in the figures. Even with Par-
quet data and fast network (c5n.9xlarge), at the crossing point,
Hybrid outperforms both Pushdown-only and Caching-only by 47%.

We provide the following intuition as to why Hybrid’s advan-
tage remains in Parquet data. In essence, the performance gain of
pushdown mainly comes from three aspects: (1) network traffic
reduction from projection pushdown; (2) network traffic reduction
from selection pushdown; (3) parsing and filtering data with mas-
sive parallelism. With Parquet, all architectures have the benefit of
(1), but only pushdown processing has the advantages of (2) and
(3). For example, under the default cache size (i.e. 8 GB), Hybrid
reduces network traffic by 66% over Caching-only on Parquet data
(as opposed to 93% on CSV).

7.2.3 Weighted-LFU Caching Policy.

In this experiment we study the cache replacement policy proposed
in this paper, Weighted-LFU (cf. Section 5.4). Figure 11 compares it
with conventional cache replacement policies. We have conducted a
separate experiment which shows that LRU has worse performance
than LFU and Belady, and thus exclude it from this experiment.

In the default SSB queries, predicates on different attributes
have similar selectivity, making the pushdown cost of different
segments similar. To measure the effectiveness of Weighted-LFU,
we change the SSB queries to incorporate different pushdown costs,
by varying the selectivity of filter predicates. Specifically, we change
predicates on some attributes to equality predicates which have
very high selectivity (e.g. lo_quantity = 10) while keeping others
range predicates (e.g. lo_discount < 3 or lo_discount > 6).

As Figure 11 shows, WLFU consistently outperforms the base-
line LFU and Belady. The biggest speedup happens when 6 = 0.3
(i.e., low access skewness), where WLFU outperforms LFU and Be-
lady by 37% and 47%, respectively. We further measure network
traffic incurred and find WLFU reduces network traffic by 66%
and 78%, compared to the baseline LFU and Belady respectively.
Recall that the optimization goal of WLFU is to reduce network
traffic; this demonstrates that the algorithm achieves the goal as
expected. Interestingly, Belady underperforms the baseline LFU
and incurs more network traffic, because Belady keeps prefetching
entire segments for future queries, which takes little advantage of
computation pushdown.

As 0 increases, the performance benefit of WLFU decreases.
When 6 is small, there is little access skewness, so segments with
higher pushdown cost are cached, leading to the higher effective-
ness of WLFU. When 0 is large, the access skewness overwhelms the
difference of pushdown cost among segments. In this case, almost
all the hot segments are cached, leading to reduced performance
gains for WLFU.

7.2.4 Impact of the Network Bandwidth.

A major bottleneck in the storage-disaggregation architecture is the
network bandwidth between the computation and storage layers,
thus in this experiment we study its impact on the performance.
We evaluate on the c5n.9xlarge instance and vary the network
bandwidth by artificially setting readRateLimiter of the S3 client.

The Hybrid Architecture. We first study the effect of the network
bandwidth on different architectures. Pullup always has the worst

—e— Speedup% of WLFU over LFU

--a- Speedup% of WLFU over Belady

100%

—o— Speedup of Hybrid over Caching-only
-a- Speedup of Hybrid over Pushdown-only

—e— Speedup% of WLFU over LFU
-4 Speedup% of WLFU over Belady

o
S

< 80% 400 mmm Caching-only 8 - Hybrid (LFU)
2 a 9 Pushdown-only 8 120 Hybrid (Belady)
b 0% § 2300 = Hybrid 52 &
£ o @
g 20% 2 E 200 a3 & 80
5 . @ g A =
g 20% 2100 A 2 g 40
0% o L] 0 0
00 03 06 09 12 15 20 7 a 2 4 6 & 10 15 20 25

Skew Factor (6)

(a) Architectures

Figure 11: Weighted-LFU Cache Replacement Pol-
icy — Runtime comparison of Weighted-LFU
(WLFU) and baseline replacement policies (i.e.,
LFU and Belady) with varying access skewness.

performance so we do not include it in this experiment. We use
the same workload as Section 7.2.1 with the default cache size and
skewness, and report the results in Figure 12(a). Hybrid suffers the
least from the limitation of the network bandwidth, since it incurs
the least network traffic. With throttled network, the more network
traffic involved, the higher latency during network transfer, so
the performance benefit of Hybrid keeps increasing. With 2 Gbps
network bandwidth, Hybrid achieves 8.7x speedup over Caching-
only, and 2.9x speedup over Pushdown-only.

Weighted-LFU Caching Policy. Next we investigate the impact
of the network bandwidth on different caching policies. We use
the same workload as Section 7.2.3 with the default cache size and
small 0 (i.e., 0 = 0). As described in Section 7.2.3, with a large 6, seg-
ments with a higher access frequency are cached, so both LFU and
WLFU cache hot data, leading to similar performance; i.e. WLFU
outperforms LFU more with a small 0. In this experiment we set 0
to 0. We compare Weighted-LFU, LFU, and Belady caching policies
in the Hybrid architecture, and report the result in Figure 12(b).
Among different caching policies, WLFU suffers the least from the
limitation of the network bandwidth. With the network gradually
being throttled, the performance benefit of WLFU over LFU be-
comes more significant, due to the amplification of the benefit from
the reduction of network traffic. When the network bandwidth is
limited to 2 Gbps, WLFU outperforms baseline LFU and Belady by
2.3% and 2.9x, respectively.

7.3 Resource Usage and Cost

In this subsection, we investigate the resource usage and cost of
different architectures. We note that a specific pricing model (e.g.,
AWS S3 Select) may involve various non-technical factors, and thus
may not be the best metric in measuring the efficiency of a system.
Therefore, we build a resource usage model purely based on the
usage of CPU and network resources, then we explain how the
resource usage model is related to various pricing models.

We consider two kinds of resources: CPU and network. Table 2
compares the network usage of different architectures; these num-
bers are directly measured at the compute node. Hybrid reduces
the network traffic by 79% over Pushdown-only due to caching and
data reuse, and 93% over Caching-only because Hybrid can push
down filtering to the storage layer.

In a cloud database, the compute servers can be either dedicated
to a user or shared across multiple tenants (e.g., a serverless model).

2111

6 8
Network bandwidth (Gbps)

Network bandwidth (Gbps)

(b) Caching Policies

Figure 12: Network Bandwidth — The runtime of different (a) architectures
and (b) cache replacement policies as the network bandwidth varies.

We estimate the CPU usage in both cases. For the compute server,
we monitor the CPU usage using vmstat. Since we cannot directly
measure the CPU usage for S3 storage servers, we estimate it by
running the same pushdown task in the compute node and measur-
ing the CPU usage. With a dedicated server, users pay for the entire
server for the duration of query execution; idle but reserved CPUs
are considered “used” during query execution. Table 3 shows the
CPU usage. Pullup and Caching-only have no CPU usage of storage
since there is no pushdown. Hybrid incurs the least CPU usage due
to its low runtime.

In the multi-tenant case, users pay only for the CPU-time actu-
ally consumed by the query. The CPU usage is shown in Table 4.
Hybrid reduces the CPU usage by 60% compared to Pushdown-
only. However, Hybrid increases the total CPU usage by 20% over
Caching-only because of the redundant work performed at both the
compute and storage sides during pushdown, including evaluating
the same filter predicate (cf. Section 4.3) and data parsing. The extra
CPU resource consumption of pushdown is relatively small.

As a conclusion, Hybrid achieves higher performance using com-
parable CPU resource and much less network resource.

How the resource usage model translates to monetary cost de-
pends on the use case of the system. We identify the following three
common use cases:

(1) Users deploy the cloud storage service on their own infras-
tructures. Examples include Ceph [2] and MinlO [5]. Private
clouds fall into this category.

Table 2: Network Usage (GB) of different architectures.

Architecture Pullup PD-only CA-only Hybrid

Usage 460.9 37.1 112.6 7.9

Table 3: CPU Usage (with dedicated compute servers) — CPU time
(in minutes) of different architectures (normalized to the time of 1
vCPU).

Architecture Pullup PD-only CA-only Hybrid

Compute 249.6 48.5 70.3 23.2
Storage 0.0 31.1 0.0 7.4
Total 249.6 79.6 70.3 30.6

Table 4: CPU Usage (with multi-tenant compute servers) — CPU
time (in minutes) of different architectures (normalized to the time
of 1 vCPU).

Architecture Pullup PD-only CA-only Hybrid

Compute 41.8 15.9 15.7 11.5
Storage 0.0 31.1 0.0 7.4
Total 41.8 47.0 15.7 18.9

(2) Users adopt public cloud storage like S3, computation occurs
in a different data center from the storage.

(3) Users adopt public cloud storage like S3, computation occurs
in the same data center as the storage.

In case 1, users are already paying for the storage infrastructure.
Pushdown is simply exploiting otherwise underutilized resources
within the storage layer and does not introduce extra cost.

In case 2, most cloud service providers charge significantly more
when the data is transferred outside of a region. For example,
AWS charges $0.09/GB for data transferred outside the cloud and
$0.02/GB for data transferred across data centers. In this case, the
traffic reduction of Hybrid leads to significant cost savings.

In case 3, the cost depends on the pricing model of computation
pushdown. We observe that S3 Select charges significantly more
for storage-layer computation than regular EC2 computation. As
a result, Hybrid is more expensive than Caching-only in S3 Select
today. We believe future systems will offer a more fair pricing model,
making pushdown computation more attractive in terms of cost.

8 RELATED WORK

In this section, we discuss further related work that has not been
discussed earlier in the paper.

Cloud Databases. Modern cloud databases adopt an architecture
with storage disaggregation. This includes conventional data ware-
housing systems adapting to the cloud (e.g., Vertica [36] Eon [45]
mode) as well as databases natively developed for the cloud (e.g.,
Snowflake [21, 48], Redshift [30], Redshift Spectrum [8], Athena [7]).

Besides data warehousing systems, transactional databases also
benefit from storage-disaggregation. AWS Aurora [46, 47] is an
OLTP database deployed on a custom-designed cloud storage layer
where functionalities including log replay and garbage collection
are offloaded to the storage layer. The disaggregation of computa-
tion and storage also allows each component to easily adapt the
workload requirements dynamically.

Computation Pushdown. The technique of computation push-
down has been explored in multiple research areas, both within and
beyond database systems, including in-cloud databases, database
machines, Smart Disks/SSD, and processing-in-memory (PIM).
Many in-cloud databases push certain computation tasks near
the data source, such as AWS Redshift Spectrum [8], S3 Select [31],
and PushdownDB [53]; these systems use software techniques to
implement pushdown functionalities. Recently, AWS Advanced
Query Accelerator (AQUA) [12] announced to use special hardware
accelerators (i.e., AWS Nitro chips [6]) to implement pushdown
functions with faster speed and lower energy consumption.

2112

Database machines have emerged since the 1970s. Many of them
push computation to storage via special hardwares. The Intelligent
Database Machines (IDM) [44] pushes most DBMS functionalities
to the backend machine which sits closer to disks. In Grace [25],
multiple filter processors are connected to disks to perform selec-
tion and projection. IBM Netezza data warehouse appliances [23]
enable pushdown of selection, projection, and compression to disks
through FPGA-enabled near-storage processors. Finally, Exadata
Cells in the storage layer of Oracle Exadata Database Machine [49]
support operations including selection, projection, bloom join, and
indexing. To the best of our knowledge, none of these systems
support fine-grained hybrid caching and pushdown like FPDB does.

Smart Disks/SSD is another line of research exploiting computa-
tion pushdown. Projects including Active Disks [39] and IDISKS [33]
have investigated the idea of pushing computation to magnetic
storage devices. Summarizer [35] and Biscuit [29] are near-data
processing architectures supporting selection pushdown to the
SSD processor. Both filtering and aggregation are pushed to smart
SSDs [22] and near-storage FPGAs [26, 51] to accelerate relational
analytical processing. AQUOMAN [52] supports pushing down
most SQL operators including multi-way joins to SSDs. Again, none
of these systems support fine-grained hybrid caching/pushdown
like FPDB does.

Moreover, some recent work explored processing-in-memory
(PIM) to push computation into DRAM or NVM. Modern 3D-stacked
DRAM implemented a logic layer underneath DRAM cell arrays
within the same chip [20], avoiding unnecessary data movement
between memory and the CPU [27]. Kepe et al. [34] presented an
experimental study focusing on selection in PIM.

Client-server Architectures. Many distributed databases adopt
a client-server architecture. These systems can move the data to
the client where the query is initiated (i.e., caching); alternatively,
the query can be moved to the servers where the data resides (i.e.,
pushdown). Plenty of research focused on query optimization by
combining both. Franklin et al. [24] introduced Hybrid Shipping
which executes some query operators at the client-side, where the
query is invoked, and some at the server-side, where data is stored.
Garlic [41] extended this approach by pushing query operators to
heterogeneous data stores. MOCHA [40] supports pushing both
query operators and their code to remote sites where these opera-
tors are not even implemented. The key difference between FPDB
and these systems is that FPDB is built for a storage-disaggregation
architecture in a cloud database, where the computation power
inside the cloud storage is more limited than the servers in a client-
server architecture.

9 CONCLUSION

This paper presented FPDB, a cloud-native OLAP database that
combines the benefits of caching and computation pushdown in a
storage-disaggregation architecture through fine-grained hybrid
execution. We explored the design space in a hybrid query execu-
tor and designed a novel Weighted-LFU cache replacement policy
specifically optimized for the disaggregation architecture. Evalua-
tion on the Star Schema Benchmark demonstrated that the hybrid
execution can outperform both Caching-only and Pushdown-only
architectures by 2.2x.

REFERENCES Data Warehouses. In SIGMOD. 1917-1923.

2012. Akka. https://akka.io/. [31] Randall Hunt. 2018. S3 Select and Glacier Select — Retrieving Subsets of Objects.

2012. Ceph. https:/ceph.io/. https://aws.amazon.com/blogs/aws/s3-glacier-select/.

[32] Sang-Woo Jun, Shuotao Xu, and Arvind. 2017. Terabyte Sort on FPGA-accelerated

Flash Storage. In IEEE International Symposium on Field-Programmable Custom

Computing Machines (FCCM). 17-24.

Kimberly Keeton, David A Patterson, and Joseph M Hellerstein. 1998. A Case for

Intelligent Disks (IDISKs). SIGMOD Record 27, 3 (1998), 42-52.

Tiago R. Kepe, Eduardo C. de Almeida, and Marco A. Z. Alves. 2019. Database
1 Processing-in-Memory: An Experimental Study. VLDB 13, 3 (2019), 334-347.

[9] 2018. Amazon S3. https://aws.amazon.com/s3/. [35] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Krishna Giri Narra, Jing Li, Hung-
] 2018. Gandiva: an LLVM-based Arrow expression compiler. https://arrow.apache. Wei Tseng, Steven Swanson, and Murali Annavaram. 2017. Summarizer: Trading

. ; Communication with Computing Near Storage. In MICRO. 219-231.
org/blog/2018/12/05/gandiva (_lonatmn/. [36] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver,
[11] 2018. Presto. https://prestodb.io/.

Lyric Doshi huck Bear. 2012. Th ica Analytic D : C-
[12] 2020. AQUA (Advanced Query Accelerator) for Amazon Redshift. https://pages. yric Doshi, and Chuck Bear. 20 e Vertica Analytic Database: C-Store 7
N Years Later. VLDB 5, 12 (2012), 1790-1801.
awscloud.com/AQUA_Preview.html/.

[13] 2020. Azure Data Lake Storage query acceleration. https://docs.microsoft.com/en- Sergey Melnik, Andrey Gubarev, leg llng Long, Geoffrey Romle T, Shiva thv—
us/azure/storage/blobs/data-lake-storage- query-acceleration/ akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interactive Analysis of

- X . . Web-Scale Datasets. VLDB 3, 1-2 (2010), 330-339.
[14] 2020. Presto docurn'entatlon, Alluxio Cache Service. https://prestodb.io/docs/ Patrick O'Neil, Elizabeth O°'Neil, Xuedong Chen, and Stephen Revilak. 2009, The
current/cache/alluxio.html/.

[15] Gul Agha. 1986. Actors: A Model of Concurrent Computation in Distributed Systems. Star Schema Benchmark and Augmented Fact Table'Indexmg. In Technology
MIT Press Conference on Performance Evaluation and Benchmarking. 237-252.
[16] Michael Armbrust, Reynold . Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. E}‘Ik Riedel, Christos Faloutsos, Qarth A Gibson, and David Nagle. 2001. Active
. disks for large-scale data processing. Computer 34, 6 (2001), 68-74.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. 2015. Spark SOL: Relational Data P ine in Spark. In SIGMOD Manuel Rodriguez-Martinez and Nick Roussopoulos. 2000. MOCHA: A Self-
1 32361 1 ;9 4arla. - Spark SQL: Relational Data Processing in Spark. In : Extensible Database Middleware System for Distributed Data Sources. In SIGMOD.

213-224.
Joe Armstrong. 1996. Erlang—a Survey of the Language and its Industrial Appli-) '
cations. In Proc. INAP, Vol, 96. Mary Tork Roth and Peter M. Schwarz. 1997. Don’t Scrap It, Wrap It! A Wrapper

Archi for L D . In VLDB. 266-275.
[18] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-Storage Jur:‘.;te,crtaurfeT;ZnZEaéﬁanf;sﬁ;::}fe‘: Perron §(6ian75 20 Yu. Michael Stone-
Computer. IBM System Journal 5, 2 (1966), 78-101. Jay ’ : > gy °

e ; . . braker, David DeWitt, Marco Serafini, Ashraf Aboulnaga, and Tim Kraska. 2019.
Dominik Charous‘set, Raphael Hiesgen, and Thomas C. Schmidt. 2016. Revisiting Choosing A Cloud DBMS: Architectures and Tradeoffs. VLDB 12, 12 (2019),
Actor Programming in C++. Computer Languages, Systems & Structures 45, C 21702182
(2016). .

Ashish Th Namit Jain, Zh hao, P hakk:
[20] Hybrid Memory Cube Consortium. 2014. HMCSpecification2.1. STS us00, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,

[21] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Ning Zhang, Suresh Antony, Hao L}u, and Raghotham Murthy. 2010. Hive — A
: . Petabyte Scale Data Warehouse Using Hadoop. In ICDE. 996-1005.
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel, Michael Ubell. 1985. The Intelligent Database Machine (IDM). In Query processing
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,

. . . : . in database systems. 237-247.
_I;;tegPOVlEZkC’ Cgle & Sa}gl’fp\};ldo}? Tnanlt aleucl;;’/glg I;kllgh_pzngnterbrunner. 2016. Ben Vandiver, Shreya Prasad, Pratibha Rana, Eden Zik, Amin Saeidi, Pratyush
Jae;ozz‘gDo eYar?gS—lSCuk ,{Il(:e J?;;ezﬁsf/i ;atel Chax'lik Park kwanghyun Park Parimal, Styliani Pantela, and Jaimin Dave. 2018. Eon Mode: Bringing the Vertica

and David J. DeWitt. 2013. Query Processing on Smart SSDs: Opportunities and g?el;::iireD\::S;ZiitoAt}rl;rC;gug;lI;t:I%Ag]i%jZflz:ﬁz' Murali Brahmadesam
Challenges. In SIGMOD. 1221-1230. d > 3 8

K 1 Gupta, R Mittal, Sailesh Krish: thy, Sandor Maurice, Tengi
[24] Michael J. Franklin, Bjérn Thér Jénsson, and Donald Kossmann. 1996. Perfor- N & . y) &

g . for High Throughput Cloud-Native Relational Databases. In SIGMOD. 1041-1052.
ﬁzriieﬁ’(l)‘radeoﬁs for Client-Server Query Processing. SIGMOD Record 25,2 (1996), Alexandre Verbitski, Anurag Gupta, Debanjan Saha, James Corey, Kamal Gupta,

Murali Brahmadesam, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice,

(1]
[2]
[3] 2016. Apache Arrow. https://arrow.apache.org/.

[4] 2016. Apache Parquet. https://parquet.apache.org/.

[5] 2016. MinIO. https://min.io/.

[6] 2017. AWS Nitro System. https://aws.amazon.com/ec2/nitro/.

[7] 2018. Amazon Athena — Serverless Interactive Query Service. https://aws.
amazon.com/athena/.

2018. Amazon Redshift. https://aws.amazon.com/redshift/.

@
&

™
)

@
=

[38

[39

[40

(17

(41

=
L)

[19

[43

(44

[45

[22

[46

N
=)

25] Shinya Fushimi, Masaru Kitsuregawa, and Hidehiko Tanaka. 1986. An Overview . R o . L

] of T})lle System Software of A Pagrallel Relational Database Machine GRACE. In Tengiz Kharatishvilli, et al. 2018. Amazon Aurora: On Avoiding Distributed
VLDB 28]9_219 . Consensus for I/Os, Commits, and Membership Changes. In SIGMOD. 789-796.

[26] Ming};u Gao an'd Christos Kozyrakis. 2016. HRL: Efficient and Flexible Reconfig- (48] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Motivala,

and Thierry Cruanes. 2020. Building an Elastic Query Engine on Disaggregated
Storage. In NSDI. 449-462.

Ronald Weiss. 2012. A Technical Overview of the Oracle Exadata Database
Machine and Exadata Storage Server. Oracle White Paper. (2012).

Matthew Woicik. 2021. Determining the Optimal Amount of Computation Push-
down for a Cloud Database to Minimize Runtime. MIT Master Thesis (2021).
Louis Woods, Zsolt Istvan, and Gustavo Alonso. 2014. Ibex: an Intelligent Storage
Engine with Support for Advanced SQL Offloading. VLDB 7, 11 (2014), 963-974.
Shuotao Xu, Thomas Bourgeat, Tianhao Huang, Hojun Kim, Sungjin Lee, and
Arvind Arvind. 2020. AQUOMAN: An Analytic-Query Offloading Machine. In
MICRO. 386-399.

Xiangyao Yu, Matt Youill, Matthew Woicik, Abdurrahman Ghanem, Marco Ser-
afini, Ashraf Aboulnaga, and Michael Stonebraker. 2020. PushdownDB: Acceler-
ating a DBMS using S3 Computation. In ICDE. 1802-1805.

urable Logic for Near-Data Processing. In HPCA. 126-137.

[27] Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, and

Onur Mutlu. 2018. Enabling the Adoption of Processing-in-Memory: Challenges,

Mechanisms, Future Research Directions. arXiv preprint arXiv:1802.00320 (2018).

Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and Peter J. Wein-

berger. 1994. Quickly Generating Billion-Record Synthetic Databases. SIGMOD

Record 23, 2 (1994), 243-252.

[29] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun
Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jacheon
Jeong, and Duckhyun Chang. 2016. Biscuit: A Framework for Near-Data Process-
ing of Big Data Workloads. In ISCA. 153-165.

[30] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano
Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case for Simpler

[49

[50

[28

[51

o
£,

[53

2113

https://akka.io/
https://ceph.io/
https://arrow.apache.org/
https://parquet.apache.org/
https://min.io/
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/athena/
https://aws.amazon.com/athena/
https://aws.amazon.com/redshift/
https://aws.amazon.com/s3/
https://arrow.apache.org/blog/2018/12/05/gandiva-donation/
https://arrow.apache.org/blog/2018/12/05/gandiva-donation/
https://prestodb.io/
https://pages.awscloud.com/AQUA_Preview.html/
https://pages.awscloud.com/AQUA_Preview.html/
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-query-acceleration/
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-query-acceleration/
https://prestodb.io/docs/current/cache/alluxio.html/
https://prestodb.io/docs/current/cache/alluxio.html/
https://aws.amazon.com/blogs/aws/s3-glacier-select/

