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Fig. 1. Authoring and visualizing multiverse analyses with Boba. Users start by annotating a script with analytic decisions (a), from
which Boba synthesizes a multiplex of possible analysis variants (b). To interpret the results from all analyses, users start with a graph
of analytic decisions (c), where sensitive decisions are highlighted in darker blues. Clicking a decision node allows users to compare
point estimates (d, blue dots) and uncertainty distributions (d, gray area) between different alternatives. Users may further drill down to
assess the fit quality of individual models (e) by comparing observed data (pink) with model predictions (teal).

Abstract—Multiverse analysis is an approach to data analysis in which all “reasonable” analytic decisions are evaluated in parallel and
interpreted collectively, in order to foster robustness and transparency. However, specifying a multiverse is demanding because analysts
must manage myriad variants from a cross-product of analytic decisions, and the results require nuanced interpretation. We contribute
Boba: an integrated domain-specific language (DSL) and visual analysis system for authoring and reviewing multiverse analyses. With
the Boba DSL, analysts write the shared portion of analysis code only once, alongside local variations defining alternative decisions,
from which the compiler generates a multiplex of scripts representing all possible analysis paths. The Boba Visualizer provides linked
views of model results and the multiverse decision space to enable rapid, systematic assessment of consequential decisions and
robustness, including sampling uncertainty and model fit. We demonstrate Boba'’s utility through two data analysis case studies, and
reflect on challenges and design opportunities for multiverse analysis software.
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1 INTRODUCTION

The last decade saw widespread failure to replicate findings in pub-
lished literature across multiple scientific fields [2, 6,35,41]. As the
replication crisis emerged [1], scholars began to re-examine how data
analysis practices might lead to spurious findings. An important con-
tributing factor is the flexibility in making analytic decisions [16,17,48].
Drawing inferences from data often involves many decisions: what
are the cutoffs for outliers? What covariates should one include in
statistical models? Different combinations of choices might lead to
diverging results and conflicting conclusions. Flexibility in making
decisions might inflate false-positive rates when researchers explore
multiple alternatives and selectively report desired outcomes [48], a
practice known as p-hacking [34]. Even without exploring multiple
paths, fixating on a single analytic path might be less rigorous, as
multiple justifiable alternatives might exist and picking one would be
arbitrary. For example, a crowdsourced study [47] shows that well-
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intentioned experts still produce large variations in analysis outcomes
when analyzing the same dataset independently.

In response, prior work proposes multiverse analysis, an approach
to outline all “reasonable” alternatives a-priori, exhaust all possible
combinations between them, execute the end-to-end analysis per com-
bination, and interpret the outcomes collectively [49,50]. A multiverse
analysis demonstrates the extent to which conclusions are robust to
sometimes arbitrary analytic decisions. Furthermore, reporting the full
range of possible results, not just those which fit a particular hypothesis
or narrative, helps increase the transparency of a study [44].

However, researchers face a series of barriers when performing mul-
tiverse analyses. Authoring a multiverse is tedious, as researchers are
no longer dealing with a single analysis, but hundreds of forking paths
resulting from possible combinations of analytic decisions. Without
proper scaffolding, researchers might resort to multiple, largely redun-
dant analysis scripts [26], or rely on intricate control flow structure
including nested for-loops and if-statements [54]. Interpreting the
outcomes of a vast number of analyses is also challenging. Besides
gauging the overall robustness of the findings, researchers often seek to
understand what decisions are critical in obtaining particular outcomes
(e.g., [49,50,59]). As multiple decisions might interact, understanding
the nuances in how decisions affect robustness will require a compre-
hensive exploration, suggesting a need for an interactive interface.

To lower these barriers, we present Boba, an integrated domain-
specific language (DSL) and visualization system for multiverse author-



ing and interpretation. Rather than managing myriad analysis versions
in parallel, the Boba DSL allows users to specify the shared portion
of the analysis code only once, alongside local variations defining al-
ternative analysis decisions. The compiler enumerates all compatible
combinations of decisions and synthesizes individual analysis scripts
for each path. As a meta-language, the Boba DSL is agnostic to the
underlying programming language of the analysis script (e.g., Python
or R), thereby supporting a wide range of data science use cases.

The Boba Visualizer facilitates assessment of the output of all analy-
sis paths. We support a workflow where users view the results, refine
the analysis based on model quality, and commit the final choices to
making inference. The system first provides linked views of both anal-
ysis results and the multiverse decision space to enable a systematic
exploration of how decisions do (or do not) impact outcomes. Besides
decision sensitivity, we enable users to take into account sampling
uncertainty and model fit by comparing observed data with model
predictions [14]. After viewing the results, users can exclude models
poorly suited for inference by adjusting a model fit threshold, or adopt a
principled approach based on model averaging to incorporate model fit
in inference. We discuss the implications of post-hoc refinement, along
with other challenges in multiverse analysis, in our design reflections.

‘We evaluate Boba in a code comparison example and two data anal-
ysis case studies. We first demonstrate how the Boba DSL eliminates
custom control-flows when implementing a real-world multiverse of
considerable complexity. Then, in two multiverses replicated from prior
work [49, 59], we show how the Boba Visualizer affords multiverse
interpretation, enabling a richer understanding of robustness, decision
patterns, and model fit quality via visual inspection. In both case stud-
ies, model fit visualizations surface previously overlooked issues and
change what one can reasonably take away from these multiverses.

2 RELATED WORK

We draw on prior work on authoring and visualizing multiverse analy-
ses, and approaches for authoring alternative programs and designs.

2.1 Multiverse Analysis

Analysts begin a multiverse analysis by identifying reasonable analytic
decisions a-priori [37,49,50]. Prior work defines reasonable decisions
as those with firm theoretical and statistical support [49], and decisions
can span the entire analysis pipeline from data collection and wrangling
to statistical modeling and inference [30,56]. While general guidelines
such as a decision checklist [56] exist, defining what decisions are
reasonable still involves a high degree of researcher subjectivity.

The next step in multiverse analyses is to exhaust all compatible
decision combinations and execute the analysis variants (we call a vari-
ant a universe). Despite the growing interest in performing multiverse
analysis (e.g., [6,9,21,36,43]), few tools currently exist to aid authoring.
Young and Holsteen [59] developed a STATA module that simplifies
multimodel analysis into a single command, but it only works for sim-
ple variable substitution. Rdfanalysis [13], an R package, supports
more complex alternative scenarios beyond simple value substitution,
but the architecture assumes a linear sequential relationship between
decisions. Our DSL similarly provides scaffolding for specifying a
multiverse, but it has a simpler syntax, extends to other languages, and
handles procedural dependencies between decisions.

After running all universes, the next task is to interpret results col-
lectively. Some prior studies visualize results from individual universes
by either juxtaposition [42,49, 50] or animation [12]. Visualizations
in other studies apply aggregation [11,40], for example showing a his-
togram of effect sizes. The primary issue with juxtaposing or animating
individual outcomes is scalability, though this might be circumvented
by sampling [49]. Our visualizer shows individual outcomes, but over-
lays or aggregates outcomes in larger multiverses to provide scalability.

Besides the overall robustness, many studies also investigate which
analytic decisions are most consequential. The simplest approach is a
table [8,10,42,50] where rows and columns map to decisions, and cells
represents outcomes from individual universes. Simonsohn et al. [49]
extend this idea, visualizing the decision space as a matrix beneath
a plot of sorted effect sizes. These solutions might not scale as they

juxtapose individual outcomes, and the patterns of how outcomes vary
might be difficult to identify depending on the spatial arrangements
of rows and columns. Another approach [40] slices the aggregated
distribution of outcomes along a decision dimension to create a trellis
plot (a.k.a. small multiples [53]). The trellis plot shows how results
vary given a decision, but does not convey what decisions are prominent
given certain results. Our visualizer uses trellis plots and supplements
it with brushing to show how decisions contribute to particular results.

Finally, prior work relies on various strategies to infer whether a
hypothesized effect occurs given a multiverse. The simplest approach
is counting the fraction of universes having a significant p-value [8, 50]
and/or an effect with the same sign [11]. Young and Holsteen [59]
calculate a robustness ratio analogous to the #-statistic. Simonsohn
et al. [49] compare the actual multiverse results to a null distribution
obtained from randomly shuffling the variable of interest. We build
upon Simonsohn’s approach and use weighted model averaging based
on model fit quality [58] to aggregate uncertainty across universes.

While multiverse analysis is a recent concept, prior work has devel-
oped visual analytics approaches for similar problems. For example,
multiverse analysis fits into the broader definition of parameter space
analysis [5,46], a concept originally proposed for understanding inputs
and outputs of simulation models. Visual analytics systems for pre-
processing time-series data [3,4] also propose ways to generate and
visualize alternative results, for example via superposition.

2.2 Authoring Alternative Programs and Designs

Analysts often manage alternatives from exploratory work by duplicat-
ing code snippets and files, but these ad-hoc variants can be messy and
difficult to keep track of [18,26]. Provenance tracking tools, especially
those with enhanced history interactions [26,27], provide a mechanism
to track and restore alternative versions. In Variolite [26], users select a
chunk of code directly in an editor to create and version alternatives.
We also allow users to insert local alternatives in code, but instead of
assuming that users interact with one version at a time, we generate
multiple variants mapping to possible combinations of alternatives.

A related line of work supports manipulating multiple alternatives
simultaneously. Techniques like subjunctive interfaces [31,32] and
Parallel Pies [52] embed and visualize multiple design variants in the
same space, and Parallel Pies allows users to edit multiple variants in
parallel. Juxtapose [19] extends the mechanism to software develop-
ment, enabling users to author program alternatives as separate files and
edit code duplicates simultaneously with linked editing. A visualization
authoring tool for responsive design [20] also enables simultaneous
editing across variants. Our DSL uses a centralized template such that
edits in the shared portion of code affect all variants simultaneously.

3 DESIGN REQUIREMENTS

Our overarching goal is to make it easier for researchers to conduct
multiverse analyses. From prior literature and our past experiences, we
identify barriers in authoring a multiverse and visualizing its results,
and subsequently identify tasks that our tools should support.

3.1

As noted in prior work [12,30], specifying a multiverse is tedious. This
is primarily because a multiverse is composed of many forking paths,
yet non-linear program structures are not well supported in conventional
tools [45]. One could use a separate script per analytic path, such that
it is easy to reason with an individual variant, but these variants are
redundant and difficult to maintain [26]. Alternatively, one could rely on
control flows in a single script to simulate the nonlinear execution, but it
is hard to selectively inspect and rerun a single path, and deeply nested
control flows are thought to be a software development anti-pattern [33].
Instead, a tool should eliminate the need to write redundant code and
custom control flows, while allowing analysts to simultaneously update
variants and reason with a single variant. Compared to arbitrary non-
linear paths from an iterative exploratory analysis, the forking paths
in multiverses are usually highly systematic. We take advantage of
this characteristic, and account for other scenarios common in existing
multiverse analyses. We distill the following design requirements:

Requirements for Authoring Tool
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R1: Multiplexing. Users should be able to specify a multiverse
by writing the shared portion of the analysis source code along with
analytic decisions, while the tool creates the forking paths for them.
Users should also be able to reason about a single universe and update
all universes simultaneously.

R2: Decision Complexity. Decisions come in varying degrees of
complexity, from simple value replacements (e.g., cutoffs for excluding
outliers) to elaborate logic requiring multiple lines of code to imple-
ment. The tool should allow succinct ways to express simple value
replacements while at the same time support more complex decisions.

R3: Procedural Dependency. Existing multiverses [9,50] contain
procedural dependencies [30], in which a downstream decision only
exists if a particular upstream choice is made. For example, researchers
do not need to choose priors if using a Frequentist model instead of a
Bayesian model. The tool should support procedural dependencies.

R4: Linked Decisions. Due to idiosyncrasies in implementation, the
same conceptual decision can manifest in multiple forms. For example,
the same set of parameters can appear in different formats to comply
with different function APIs. Users should be able to specify different
implementations of a high-level decision.

R5: Language Agnostic. Users should be able to author their anal-
ysis in any programming languages, as potential users are from various
disciplines adopting different workflows and programming languages.

3.2 BRequirements for Visual Analysis System

After executing all analytic paths in a multiverse to obtain correspond-
ing results, researchers face challenges interpreting the results collec-
tively. The primary task in prior work (Sect. 2) is understanding the
robustness of results across all reasonable specifications. If robustness
checks indicate conflicting conclusions, a natural follow-up task is to
identify what decisions are critical to reaching a particular conclusion
or what decisions produce large variations in results.

We also propose new tasks to cover potential blind spots in prior
work. First, besides point estimates, a tool should convey appropriate
uncertainty information to help users gauge the end-to-end uncertainty
caused by both sampling and decision variations, and compare the
variance between conditions. Second, it is important to assess the model
fit quality to distinguish trustworthy models from the ones producing
questionable estimates. Uncertainty information and fit issues become
particularly important during statistical inference. Users should be able
to propagate uncertainty in the multiverse to support judgments about
the overall reliability of effects, and they should be able to refine the
multiverse to exclude models with fit issues before making inferences.

We identify six tasks that our visual analysis system should support:

* T1: Decision Overview — gain an overview of the decision space
to understand the multiverse and contextualize subsequent tasks.

* T2: Robustness Overview — gauge the overall robustness of find-
ings obtained through all reasonable specifications.

» T3: Decision Impacts — identify what combinations of decisions
lead to large variations in outcomes, and what combinations of
decisions are critical in obtaining specific outcomes.

» T4: Uncertainty — assess the end-to-end uncertainty as well as
uncertainty associated with individual universes.

» TS: Model Fit — assess the model fit quality of individual universes
to distinguish trustworthy models from questionable ones.

» Té6: Inference — perform statistical inference to judge how reliable
the hypothesized effect is, while accounting for model quality.

Besides the tasks, our system should also support the following data
characteristics (S1) and types of statistical analyses (S2). First, our
visual encoding should be scalable to large multiverses and large input
datasets. This is because the multiverse size increases exponentially

(a) input.R

df = read_csv("data.csv") %>%
filter(speed > {{cutoff=10, 200}})

model = Im(log_y ~ x, data = df)

model = brm(y ~ x, data = df
family = {{brm_family="binomial", "lognormal“}}())
(b) output files (c) 1.R

File cutoff brm_family df = read_csv("data.csv") %>%

1R 10 filter(speed > 10))
model = Im(log_y ~ x, data = df)

2.R 200
3R 10 binomial (d) 4.R
4R 10 lognormal df = read_csv("data.csv") %>%

) ) filter(speed > 10))
5.R 200 binomial model = brm(y ~ x, data = df,
6.R 200 lognormal family = lognormal())

Fig. 3. An example Boba specification. The user annotates an R script (a)
with two placeholder variables (blue) and three code blocks (pink). The
compiler synthesizes six files (b). In the example output files (c) and (d),
placeholder variables are replaced by their possible values, and only one
version of the decision block M is present.

with the number of decisions, with the median size in practice being in
the thousands [30]. The input datasets might also have arbitrarily many
observations. Second, we should support common simple statistical
tests in HCI research [39], including ANOVA and linear regressions.

3.3 Workflow

We propose a general workflow for multiverse analysis with four stages
(Fig. 2). In this workflow, users author the multiverse specification,
explore the results, refine the multiverse by pruning universes with
poor model quality, and make inference. Users should be free to cycle
between the first three stages, because upon exploring the results, users
might discover previously overlooked alternatives, or notice that certain
decisions are poorly suited for inference. In this case, they might iterate
on their multiverse specification to include only decisions resulting in
universes that seem “reasonable”. However, once users proceed to the
inference stage, they should not return to any of the prior stages.

4 THE BoBA DSL

We design a domain-specific language (DSL) to aid the authoring of
multiverse analyses. The DSL formally models an analysis decision
space, providing critical structure that the visual analysis system later
leverages. With the DSL, users annotate the source code of their analy-
sis to indicate decision points and alternatives, and provide additional
information for procedural dependencies between decisions. The speci-
fication is then compiled to a set of universe scripts, each containing
the code to execute one analytic path in the multiverse. An example
Boba specification for a small multiverse is shown in Fig. 3.

4.1 Language Constructs

The basic language primitives in the Boba DSL consist of source code,
placeholder variables, blocks, constraints, and code graphs.

Source Code. The most basic ingredient of an annotated script is the
source code (Fig. 3a, black text). The compiler treats the source code
as a string of text, which according to further language rules will be
synthesized into text in the output files. As the compiler is agnostic
about the semantics of the source code, users are free to write the source
code in any programming language (RS).

Placeholder Variables. Placeholder variables are useful to specify
decisions points consisting of simple value substitution (R2). To define
a placeholder variable, users provide an identifier and a set of possible
alternative values that the variable can take up (Fig. 3a, blue text).
To use the variable, users insert the identifier into any position in the
source code. During synthesis, the compiler removes the identifier and
replaces it with one of its alternative values. Variable definition may
occur at the same place as its usage (Fig. 3a) or ahead of time inside
the config block (supplemental Fig. 2).



Code Blocks. Code blocks (Fig. 3a, pink text) divide the source code
into multiple snippets of one or more lines of code, akin to cells in a
computational notebook. A block can be a normal block (Fig. 3a, block
A), or a decision block (Fig. 3a, block M) with multiple versions. The
content of a normal block will be shared by all universes, whereas only
one version of the decision block will appear in a universe. Decision
blocks allow users to specify alternatives that require more elaborate
logic to define (R2). In the remainder of Sect. 4, decision points refer
to placeholder variables and decision blocks.

With the constructs introduced so far, a natural way to express
procedural dependency (R3) is to insert a placeholder variable in some,
but not all versions of a decision block. For example, in Fig. 3, the
variable brm_family only exists when bayesian of block M is chosen.

Constraints. By default, Boba assumes all combinations between de-
cision points are valid. Constraints allow users to express dependencies
between decision points, for example infeasible combinations, which
will restrict the universes to a smaller set. Boba supports two types of
constraints: procedural dependencies (R3) and linked decisions (R4).

A procedural dependency constraint is attached to a decision point
or one of its alternatives, and has a conditional expression to deter-
mine when the decision/alternative should exist (Fig. 4b, orange text).
Variables within the scope of the conditional expression are declared de-
cision points, and the values are the alternatives that the decision points
have taken up. For example, the first constraint in Fig. 4b indicates that
ECL computed is not compatible with NMO reported.

The second type of constraint allows users to /ink multiple decision
points, indicating that these decision points are different manifesta-
tions of a single conceptual decision (R4, see supplemental Fig. 2).
Linked decisions have one-to-one mappings between their alternatives,
such that the i-th alternatives are chosen together in the same universe.
One-to-one mappings can also be expressed using multiple procedural
dependencies, but linked decisions make them easier to specify.

Code Graph. Users may further specify the execution order between
code blocks as a directed acyclic graph (DAG), where a parent block
executes before its child. To create a universe, the compiler selects a
linear path from the start to the end, and concatenates the source code of
blocks along the path. Branches in the graph represent alternative paths
that appear in different universes. Users can flexibly express complex
dependencies between blocks with the graph, including procedural de-
pendencies (R3). For example, to indicate that block prior should only
appear after block bayesian but not block frequentist, the user sim-
ply makes prior a descendant of bayesian but not frequentist.

4.2 Compilation and Runtime

The compiler parses the input script, computes compatible combina-
tions between decisions, and generates output scripts. More details
about compilation are in the supplemental material. Besides executable
universe scripts, the compiler also outputs a summary table that keeps
track of all the decisions made in each universe, along with other
intermediate data that can be ingested into the Boba Visualizer.

Boba infers the language of the input script based on its file ex-
tension and uses the same extension for output scripts. These output
scripts might be run with the corresponding script language interpreter.
Universe scripts log the results into separate files, which will be merged
together after all scripts finish execution. Each universe must output
a point estimate, along with other optional data such as a p-value, a
model quality metric, or a set of sampled estimates to represent uncer-
tainty. As the universe scripts are responsible for computations such
as extracting point estimates and computing uncertainty, we provide
language-specific utilities for a common set of model types to generate
these visualizer-friendly outputs. We also provide a command-line tool
for users to (1) invoke the compiler, (2) execute the generated universe
scripts, (3) merge the universe outputs, and (4) invoke the visualizer as
a local server reading the intermediate output files.

4.3 Example: Replicating a Real-World Multiverse

We use a real-world multiverse example [50] to illustrate how the Boba
DSL eliminates the need for custom control flows otherwise required

# preprocessing code (b)
[...]1

# -—— (NMO) computed
[...]1 # code for the 1st NMO option

¥ el
1 lloo
} else

lis

e it # -—— (NMO) reported

[...] # code for the second NMO option

: ' # -—— (NMO) estimate
fertility option 11 [...] # code for the third NMO option
bounds = c(7,8,9,8,9)
dfsfertilityldfscycle > bounds[j1] = ‘High' = 12
(B 13 # — (F)
14 df$fertility[dfscycle > {{bound=7,8,9,8,9}}] = ‘High’
[...]

17 # -— (ECL) none
18 [...] # code for the first ECL option

20 # -—- (ECL) computed
21 [...] # code for the second ECL option

23 # -—— (ECL) reported
24 [...] # code for the third ECL option

# two more decisions are omitted

Fig. 4. Specification of a real-world multiverse analysis [50] with five
decisions and a procedural dependency. (a) Markup of the R code
written by original authors, with custom control flow (nested for-loops and
if-statements) highlighted. (b) Markup of the Boba DSL specification.

for authoring a multiverse in a single script. The multiverse, originally
proposed by Steegen et al. [50], contains five decisions and a procedural
dependency. Fig. 4a shows a markup of the R code implemented by the
original authors (we modified the lines in purple to avoid computing
infeasible paths). The script starts with five nested for-loops (yellow
highlight) to repeat the analysis for every possible combination of the
five decisions. Then, depending on the indices of the current decisions,
the authors either index into an array, or use if-statements to define
alternative program behaviors (blue highlight). Finally, to implement
a procedural dependency, it is necessary to skip the current iteration
when incompatible combinations occur (purple highlight).

The resulting script has multiple issues. First, the useful snippets
defining multiverse behavior start at five levels of nesting at minimum.
Such deeply nested code is often considered to be hard to read [33].
Second, nested control flows are not easily amenable to parallel execu-
tion. Third, without additional error-handling mechanisms, an error in
the middle will terminate the program before any results are saved.

The corresponding specification in the Boba DSL is shown in Fig. 4b.
The script starts directly with the preprossessing code shared by all uni-
verses. It then uses decision code blocks to define alternative snippets
in decision NMO and ECL, and uses a placeholder variable to simulate the
value array for a simpler decision F. It additionally specifies constraints
(orange text) to signal incompatible paths. Compared to Fig. 4a, this
script reduces the amount of boilerplate code needed for control-flows
and does not require any level of nesting. The script compiles to 120
separate files. Errors in one universe no longer affect the completion of
others due to distributed execution, it is trivial to execute universes in
parallel, and users can selectively review and debug a single analysis.

5 THE BOBA VISUALIZER

Next, we introduce Boba Visualizer, a visual analysis system for in-
terpreting the outputs from all analysis paths. We present the system
features and design choices in a fictional usage scenario where Emma,
an HCI researcher, uses the visualizer to explore a multiverse on data
collected in her experiment. We construct the multiverse based on how
the authors of a published research article [28] might analyze their data,
but the name “Emma” and her workflow are fictional.

Emma runs an experiment to understand whether “Reader View” —
a modified web page layout — improves reading speed for individuals
with dyslexia. She assigns participants to use Reader View or standard
websites, measures their reading speed, and collects other variables
such as accuracy, device, and demographic information. She plans
to build a model with reading speed as the dependent variable. To
check whether her conclusion depends on idiosyncratic specifications,
Emma identifies six analytic decisions, including the device type
and accuracy cutoff used to filter participants, ways to operationalize
dyslexia, the statistical model, and its random and fixed terms. She
then writes a multiverse specification in the Boba DSL, compiles it to
216 analysis scripts, and runs all scripts to obtain a set of effect sizes.
She loads these outputs into the Boba Visualizer.
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Fig. 5. Decision view and outcome view. (a) The decision view shows
analytic decisions as a graph with order and dependencies between
them, and highlights more sensitive decisions in darker colors. (b) The
outcome view visualizes outputs from all analyses, including individual
point estimates and aggregated uncertainty.

5.1

On system start-up, Emma sees an overview distribution of point esti-
mates from all analyses (Fig. 5b). The majority of the coefficients are
positive, but a smaller peak around zero suggests no effect.

The outcome view visualizes the final results of the multiverse, in-
cluding point estimates (e.g., model coefficient of reader view, the
independent variable encoding experimental conditions) and uncer-
tainty information. By default, the chart contains outcomes from all
universes in order to show the overall robustness of the conclusion (T?2).

Boba visualizes one point estimate from each universe using a den-
sity dot plot [57] (Fig. 5b, blue dots). The x-axis encodes the magnitude
of the estimate; dots in the same bin are stacked along the y-axis. To
accommodate large multiverses (S1), we allow dots to overlap along the
y-axis, which represents count. Density dot plots more accurately de-
pict gaps and outliers in data than histograms [57]. One-to-one mapping
between dots and universes affords direct manipulation interactions
such as brushing and details-on-demand, as we introduce later.

Boba visualizes end-to-end uncertainty from both sampling and de-
cision variations (T4) as a background area chart (Fig. 5b, gray area).
When the uncertainty introduced by sampling variations is negligible,
the area chart follows the dot plot distribution closely. In contrast, the
mismatch of the two distributions in Fig. 5b indicates considerable
sampling uncertainty. We compute the end-to-end uncertainty by ag-
gregating over modeling uncertainty from all universes. Specifically,
we first calculate f(x) = XY | fi(x), where fi(x) is the sampling distri-
bution of the i-th universe, and N is the overall multiverse size. Then,
we scale the height of the area chart such that the total area under f(x)
is approximately the same as the total area of dots in the dot plot.

Besides aggregated uncertainty, Boba allows users to examine uncer-
tainty from individual universes (Fig. 7). In a dropdown menu, users
can switch to view the probability density functions (PDFs) or cumula-
tive distribution functions (CDFs) of all universes. A PDF is a function
that maps the value of a random variable to its likelihood, whereas a
CDF gives the area under the PDF. In both views, we draw a cubic
basis spline for the PDF or CDF per universe, and reduce the opacity of
the curves to visually “merge” the curves within the same space. There
is again a one-to-one mapping between a visual element and a universe
to afford interactions. To help connect point estimates and uncertainty,
we draw a strip plot of point estimates beneath each PDFs/CDFs chart
(Fig. 7, blue dashes), and show the corresponding sampling distribution
PDF when users mouse over a universe in the dot plot.

0.06 0.07 0.08

Outcome View

5.2 Decision View

As the overall outcome distribution suggests conflicting conclusions,
Emma wants to investigate what decisions lead to changes in results.
She first familiarizes herself with the available decisions.

The decision view shows a graph of analytic decisions in the multi-
verse, along with their order and dependencies (Fig. 5a), helping users
understand the decision space and inviting further exploration (T1).
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Fig. 6. Facet and Brushing. Clicking a node in the decision view (a)
divides the outcome view into a trellis plot (b), answering questions like
“does the decision lead to large variations in effect size?” Brushing a
region in the outcome view (c) reveals dominant alternatives in the option
ratio view (d), answering questions like “what causes negative results?”
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Fig. 7. PDFs (a) and CDFs (b) views visualize sampling distributions
from individual universes. Toggling these views in a trellis plot allows
users to compare the variance between conditions.

We adapt the design of Analytic Decision Graphs [30] to show deci-
sions in the context of the analysis process. Nodes represent decisions
and edges represent the relationships between decisions: light gray
edges encode femporal order (the order that decisions appear in analy-
sis scripts) and black edges encode procedural dependencies. To avoid
visual clutter, we aggregate the information about alternatives, using
the size of a node to represent the number of alternatives and listing a
few example alternative values besides a node. Compared to viewing
decisions in isolation, this design additionally conveys the analysis
pipeline to help users better reason with the ramifications of a decision.

The underlying data structure for the graph is inferred from the Boba
DSL specification. We infer decision names from variable identifiers.
We extract temporal order as the order that decision points are first
used in the specification, and detect procedural dependencies from user-
specified constraints and code graph structure. After we extract the
data structure, we apply a Sugiyama-style [51] flow layout algorithm,
as implemented in Dagre [38], to compute the graph layout.

5.2.1

When viewing the decision graph, Emma notes a sensitive decision
“Device” which is highlighted in a darker color (Fig. 5a).

To highlight decisions that lead to large changes in analysis outcomes
(T3), we compute the marginal sensitivity per decision and color the
nodes using a sequential color scale. The color encoding helps draw
the user’s attention to consequential decisions to aid initial exploration.

Boba implements two methods for estimating sensitivity. The first
method is based on the F-Test in one-way ANOVA, which quantifies
how much a decision shifts the means of results compared to vari-
ance (details in supplemental material). The second method uses the
Kolmogorov—Smirnov (K-S) statistic, a non-parametric method to
quantify the difference between two distributions. We first compute
pairwise K-S statistics between all pairs of alternatives in decision D:

Sensitivity
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where f;(x) is the empirical distribution function of results following
the i-th alternative, and S = {1,2,...,k} where k is the number of alter-
natives in D. We then take the median of K as the sensitivity score sp.
In both methods, we map sp to a single-hue color ramp of blue shades.
As the F-Test relies on variance, which is not a reasonable measure
for dispersion of some distributions, Boba uses the nonparametric K-S
statistic by default. Users can override the default in the config file.

5.3 Facet and Brushing

Seeing that the decision “Device” has a large impact, Emma clicks
on the node to further examine how results vary (Fig. 6a). She finds
that one condition exclusively produces point estimates around zero
(Fig. 6b) and it also has a much larger variance (Fig. 7).

Clicking a node in the decision graph facets the outcome distribution
into a trellis plot, grouping subsets of universes by shared decision
alternatives. This allows users to systematically examine the trends
and patterns caused by a decision (T3). Akin to the overall outcome
distribution, users can toggle between point estimates and uncertainty
views to compare the variance between conditions. The trellis plot can
be further divided on a second decision by shift-clicking a second node
to show the interaction between two decisions. With faceting, users
may comprehensively explore the data by viewing all univariate and
bivariate plots. Sensitive decisions are automatically highlighted, so
users might quickly find and examine consequential decisions as well.

What decisions lead to negative estimates? Emma brushes negative
estimates in a subplot (Fig. 6¢) and inspects option ratios (Fig. 6d).

Brushing a region in the outcome view updates the option ratio view.
The option ratio view shows percentages of decision options to reveal
dominating alternatives that produce specific results (T3).

The option ratio view visualizes each decision as a stacked bar chart,
where bar segment length encodes the percentage of results coming
from an alternative. When the user brushes a range of results, the bars
are updated accordingly to reflect changes, and dominating alternatives
(those having a higher percentage than default) are highlighted. For
example, Emma notices that the 1Imer model (i.e., linear mixed-effect
model in R) and two sets of fixed effects are particularly responsible
for the negative outcomes in Fig. 6¢c. We color the bar segments using a
categorical color scale to make bars visually distinguishable. Decisions
used to divide a trellis plot are marked by a striped texture, as each
trellis subplot only contains one alternative by definition.

5.4 Model Fit View

Now that Emma understands what decisions lead to null effects, she
wonders if these results are from trustworthy models. She changes the
color-by field to get an overview of model fit quality (Fig. 8a) and sees
that the universes around zero have a poorer fit. She then uses a slider
to remove universes that fail to meet a quality threshold (Fig. 8b).

Boba enables an overview of model fit quality across all universes
(T5) by coloring the outcome view with a model quality metric (Fig. 8a).
We use normalized root mean squared error (NRMSE) to measure
model quality and map NRMSE to a single-hue colormap of blue
shades where a darker blue indicates a better fit.

To obtain NRMSE, we first compute the overall mean squared pre-
diction error (MSE) from a k-fold cross validation:

1 &1 & )
MSE = % Y =Y 0oi-%
j=1"j =1

where k is the number of folds (we set k = 5 in all examples), n; is the
size of the test set in the j-th fold, y; is the observed value, and yj; is
the predicted value. We then normalize the MSE by the span of the
maximum Yy, and minimum Yy,,;, values of the observed variable:

NRMSE = VMSE | (Ymax — Ymin)

We use k-fold cross validation [55] because metrics such as Akaike
Information Criterion cannot be used to compare model fit across
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Fig. 8. (a) Coloring the universes according to their model fit quality. (b)
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Fig. 9. Inference views. (a) Aggregate plot comparing the possible
outcomes of the actual multiverse (blue) and the null distribution (red).
(b) Detailed plot showing the individual point estimates and the range
between the 2.5th and 97.5th percentile in the null distribution (gray line).
Point estimates outside the range are colored in orange. (c) Alternative
aggregate plot where a red line marks the expected null effect.

classes of models (e.g., hierarchical vs. linear) [15]. Prior work shows
that cross validation performs better in estimating predictive density
for a new dataset than information criteria [55], suggesting that it is a
better approximation of out-of-sample predictive validity.

To further investigate model quality, Emma drills down to individual
universes by clicking a dot in the outcome view. She sees in the model
fit view (Fig. le) that a model gives largely mismatched predictions.
Clicking a result in the outcome view populates the model fit view
with visual predictive checks, which show how well predictions from a
given model replicate the empirical distribution of observed data [14],
allowing users to further assess model quality (T5). The model fit
visualization juxtaposes violin plots of the observed data and model
predictions to facilitate comparison of the two distributions (see Fig. le).
Within the violin plots, we overlay observed and predicted data points
as centered density dot plots to help reveal discrepancies in approxima-
tion due to kernel density estimation. When the number of observations
is large (S1), we plot a representative subset of data, sampled at evenly
spaced percentiles, as centered quantile dotplots [25]. As clicking indi-
vidual universes can be tedious, the model fit view suggests additional
universes that have similar point estimates to the selected universe.

5.5 Inference

After an in-depth exploration, Emma proceeds to the final step, asking
“given the multiverse, how reliable is the effect?” She confirms a warning
dialog to arrive at the inference view (Fig. 9).

To support users in making inference and judging how reliable the
hypothesized effect is (T6), Boba provides an inference view at the end
of the analysis workflow, after users have engaged in exploration. Once
in the inference view, all earlier views and interactions are inaccessible
to avoid multiple comparison problems [60] arising from repeated
inference. The inference view contains different plots depending on
the outputs from the authoring step, so that users can choose between
robust yet computationally-expensive methods and simpler ones.

A more robust inference utilizes the null distribution — the expected
distribution of outcomes when the null hypothesis of no effect is true.
In this case, the inference view shows an aggregate plot followed by a
detailed plot (Fig. 9ab). The aggregate plot (Fig. 9a) compares the null
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distribution (red) to possible outcomes of the actual multiverse (blue)
across sampling and decision variations. The detailed plot (Fig. 9b)
shows point estimates (colored dots) against 95% confidence intervals
representing null distributions (gray lines) for each universe. Each
point estimate is orange if it is outside the range, or blue otherwise.
Underneath both plots, we provide descriptions (supplemental Fig. 1)
to guide users in interpretation: For the aggregate plot, we prompt users
to compare the distance between the averages of the two densities to the
spread. For the detailed plot, we count the number of universes with the
point estimate outside its corresponding range. If the null distribution
is unavailable, Boba shows a simpler aggregate plot (Fig. 9c) where the
expected effect size under the null hypothesis is marked with a red line.
To compute the null distribution, we permute the data with random
assignment [49]. Specifically, we shuffle the column with the indepen-
dent variable (reader view in this case) N times, run the multiverse
of size M on each of the shuffled datasets, and obtain N x M point es-
timates. As reader view and speed are independent in the shuffled
datasets, these N x M point estimates constitute the null distribution.
In addition, Boba enables users to propagate concerns in model
fit quality to the inference view in two possible ways. The first way
employs a model averaging technique called stacking [58] to take
a weighted combination of the universes according to their model
fit quality. The technique learns a simplex of weights, one for each
universe model, via optimization that maximizes the log-posterior-
density of the held-out data points in a k-fold cross validation. Boba
then takes a weighted combination of the universe distributions to
create the aggregate plot. While stacking provides a principled way to
approach model quality, it can be computationally expensive. As an
alternative, Boba excludes the universes below the model quality cutoff
users provide in Sect. 5.4. The decisions of the cutoff and whether to
omit the universes are made before a user enters the inference view.

6 CASE STUDIES

We evaluate Boba through a pair of analysis case studies, where we
implement the multiverse using the Boba DSL and interpret the results
using the Boba Visualizer. The supplemental material contains the
Boba specifications of both examples, additional figures, and a video
demonstrating all the interactions described below.

6.1 Case Study: Mortgage Analysis

The first case study demonstrates how analysts might quickly arrive
at insights provided by summary statistics in prior work, while at the
same time gaining a richer understanding of robustness patterns. We

also show that by incorporating uncertainty and model fit checks, Boba
surfaces potential issues that prior work might have neglected.

Young et al. [59] propose a multimodel analysis approach to gauge
whether model estimates are robust to alternative model specifications.
Akin to the philosophy of multiverse analysis, the approach takes
all combinations of possible control variables in a statistical model.
The outputs are multiple summary statistics, including (1) an overall
robustness ratio, (2) uncertainty measures for sampling and modeling
variations, and (3) metrics reflecting the sensitivity of each variable.

As an example, the authors present a case study on mortgage lend-
ing, asking “are female applicants more likely to be approved for a
mortgage?” They use a dataset of publicly disclosed loan-level infor-
mation about mortgage, and fit a linear regression model with mortgage
application acceptance rate as the dependent variable and female as one
independent variable. In their multimodel analysis, they test different
control variables capturing demographic and financial information. The
resulting summary statistics indicate that the estimate is not robust to
modeling decisions with large end-to-end uncertainty, and two control
variables, married and black, are highly influential. These summary
statistics provide a powerful synopsis, but may fail to convey more
nuanced patterns in result distributions. The authors manually cre-
ate additional visualizations to convey interesting trends in data, for
instance the estimates follow a multimodal distribution. These visual-
izations, though necessary to provide a richer understanding of model
robustness, are ad-hoc and not included in the software package.

We replicate the analysis in Boba. The Boba DSL specification
simply consists of eight placeholder variables, each indicating whether
to include a control variable in the model formula. Then, we compile the
specification to 256 scripts, run them all, and start the Boba Visualizer.

We first demonstrate that the default views in the Boba Visualizer
afford similar insights on uncertainty, robustness, and decision sensi-
tivity. Upon launching the visualizer, we see a decision graph and an
overall outcome distribution (Fig. 10). The decision view (Fig. 10a)
highlights two sensitive decisions, black and married. The outcome
view (Fig. 10b) shows that the point estimates are highly varied with
conflicting implications. The aggregated uncertainty in the outcome
view (Fig. 10b, background gray area) has a wide spread, suggesting
that the possible outcomes are even more varied when taking both
sampling and decision variability into account. These observations
agree with the summary metrics in previous work, though Boba uses
a different, non-parametric method to quantify decision sensitivity, as
well as a different method to aggregate end-to-end uncertainty.

The patterns revealed by ad-hoc visualizations in previous work
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are also readily available in the Boba Visualizer, either in the default
views or with two clicks guided by prominent visual cues. The de-
fault outcome view (Fig. 10b) shows that the point estimates follow a
multimodal distribution with three separate peaks. Clicking the two
highlighted (most sensitive) nodes in the decision view (Fig. 10a) pro-
duces a trellis plot (Fig. 10c), where each subplot contains only one
cluster. From the trellis plot, it is evident that the leftmost and rightmost
peaks in the overall distribution come from two particular combinations
of the influential variables. Alternatively, users might arrive at similar
insights by brushing individual clusters in the default outcome view.
Finally, the uncertainty and model fit visualizations in Boba sur-
face potential issues that previous work might have overlooked. First,
though the point estimates in Fig. 10b fall into three distinct clusters, the
aggregated uncertainty distribution appears unimodal despite a wider
spread. The PDF plot (Fig. 10e) shows that sampling distribution from
one analysis typically spans the range of multiple peaks, thus explain-
ing why the aggregated uncertainty is unimodal. These observations
suggest that the multimodal patterns exhibited by point estimates are
not robust when we take sampling variations into account. Second,
we assess model fit quality by clicking a dot in the outcome view and
examining the model fit view (Fig. 10d). As shown in Fig. 10d, while
the observed data only takes two possible values, the linear regression
model produces a continuous range of predictions. It is clear from this
visual check that an alternative model, for example logistic regression,
is more appropriate than the original linear regression models, and we
should probably interpret the results with skepticism given the model
fit issues. These observations support our arguments in Sect. 3.2 that
uncertainty and model fit are potential blind spots in prior literature.

6.2 Case Study: Female Hurricanes Caused More Deaths?

Next, we replicate another multiverse where Simonsohn et al. [49]
challenged a previous study [23]. The original study [23] reports that
hurricanes with female names have caused more deaths, presumably
because female names are perceived as less threatening and lead to less
preparation. The study used archival data on hurricane fatalities and
regressed death count on femininity. However, the study led to a heated
debate on proper ways to conduct the data analysis. To understand if the
conclusion is robust to alternative specifications, Simonsohn et al. iden-
tified seven analytic decisions, including alternative ways to exclude

outliers, operationalize femininity, select the model type, and choose
covariates. They then conducted a multiverse analysis and interpreted
the results in a visualization called a specification curve.

We build the same multiverse using these seven analytic decisions
in Boba. In the Boba DSL specification, we use a decision block
to specify two alternative model types: negative binomial regression
versus linear regression with log-transformed deaths as the dependent
variable. The rest of the analytic decisions are placeholder variables
that can be expressed as straightforward value substitutions. However,
the two different model types lead to further differences in extracting
model estimates. For example, we must invert the log-transformation
in the linear model to obtain predictions in the original units. We create
additional placeholder variables for implementation differences related
to model types and link them with the model decision block. The
specification compiles to 1,728 individual scripts.

We then interpret the results using the Boba Visualizer. As shown
in the overview distribution (Fig. 11a), the majority of point estimates
support a small, positive effect (female hurricanes lead to more deaths,
and the extra deaths are less than 20), while some estimates suggest a
larger effect. A small fraction of results have the opposite sign.

What analytic decisions are responsible for the variations in the
estimates? The decision view indicates that multiple analytic decisions
might be influential (Fig. 11a). We click on the relatively sensitive
decisions, outliers, damage and model, to examine their impact. In
the corresponding univariate trellis plots (supplemental Fig. 3), certain
choices tend to produce larger estimates, such as not excluding any
outliers, using raw damage instead of log damage, and using negative
binomial regression. However, in each of these conditions, a consider-
able number of universes still support a smaller effect, suggesting that
it is not a single analytic decision that leads to large estimates.

Next, we click on two influential decisions to examine their in-
teraction. In the trellis plot of model and damage (Fig. 11b), one
combination (choosing both log damage and negative binomial model)
produces mostly varied estimates without a dominating peak next to
zero. Brushing the large estimates in another combination (raw damage
and linear model) indicates that these results are coming from specifi-
cations that additionally exclude no outliers. Removing these decision
combinations will eliminate the possibility of obtaining a large effect.

But do we have evidence that certain outcomes are less trustworthy?



We toggle the color-by drop-down menu so that each universe is colored
by its model quality metric (Fig. 11b). The large estimates are almost
exclusively coming from models with a poor fit. We further verify
the model fit quality by picking example universes and examining the
model fit view (Fig. 11c). The visual predictive checks confirm issues
in model fit, for example the models fail to generate predictions smaller
than 3 deaths, while the observed data contains plenty such cases.
Now that we have reasons to be skeptical of the large estimates, the
remaining universes still support a small, positive effect. How reliable
is the effect? We proceed to the inference view to compare the possible
outcomes in the observed multiverse and the expected distribution
under the null hypothesis (Fig. 11d). The two distributions are different
in terms of mode and shape, yet they are highly overlapping, which
suggests the effect is not reliable. The detail plot depicting individual
universes (supplemental Fig. 1) further confirms this observation. Out
of the entire multiverse, only 3 universes have point estimates outside
the 2.5th and 97.5th percentile of the corresponding null distribution.

7 DiIsScuUSSION

Through the process of designing, building, and using Boba, we gain
insights into challenges that multiverse analysis poses for software
designers and users. We now reflect on these challenges and additional
design opportunities for supporting multiverse analysis.

While Boba is intended to reduce the gulf of execution for multiverse
analysis, conducting a multiverse analysis still requires statistical exper-
tise. The target users of our current work are experienced researchers
and statisticians. Future work might attempt to represent expert statis-
tical knowledge to lower the barriers for less experienced users. One
strategy is to represent analysis goals in higher-level abstractions, from
which appropriate analysis methods might be synthesized [22]. An-
other is to guide less experienced users through key decision points and
possible alternatives [30], starting from an initial script.

Running all scripts produced by Boba can be computationally expen-
sive due to their sheer number. Boba already leverages parallelism, ex-
ecuting universes across multiple processes. Still, scripts often perform
redundant computation and the compiler may produce prohibitively
many scripts. Future work should include optimizing multiverse exe-
cution, for example caching shared computation across universes, or
efficiently exploring decision spaces via adaptive sampling.

As a new programming tool, Boba requires additional support to
increase its usability, including code editor plugins, debugging tools,
documentation, and community help. In this paper we assess the
feasibility of Boba, with the understanding that its usability will need to
be subsequently evaluated. Currently, Boba specifications are compiled
into scripts in a specific programming language, so users can leverage
existing debugging tools for the corresponding language.

However, debugging analysis scripts becomes difficult at the scale of
a multiverse because a change that fixes a bug in one script might not
fix bugs in others. When we attempt to run a multiverse of Bayesian
regression models, for example, models in multiple universes do not
converge for a variety of reasons including problems with identifiability
and difficulties sampling parameter spaces with complex geometries.
These issues are common in Bayesian modeling workflows and must
be resolved by adjusting settings, changing priors, or reparameterizing
models entirely. At the scale of multiverse analysis, debugging this
kind of model fit issue is particularly difficult because existing tools for
diagnostics and model checks (e.g., trace and pairs plots) are designed
to assess one model at a time. While this points to a need for better
debugging and model diagnostic tools in general, it also suggests that
these tools must be built with a multiplexing workflow in mind if they
are going to facilitate multiverse analysis.

Analysts must take care when reviewing and summarizing multiverse
results, as a multiverse is not a set of randomly drawn, independent
specifications. In general, the Boba Visualizer avoids techniques that
assume universe results are independent and identically distributed. A
possible venue for future work is to explicitly account for statistical
dependence among universes to remove potential bias. Boba might also
do more to aid the communication of results, for example helping to
produce reports that communicate multiverse results [12].

Previous approaches to multiverse analysis have largely overlooked
the quality of model fit, focusing instead on how to enumerate anal-
ysis decisions and display the results from the entire multiverse. We
visualize model fit in two ways: we use color to encode the NRMSE
from a k-fold cross validation in the outcome view, and use predictive
checks to compare observed data with model predictions in the model
fit view. Together these views show that a cross-product of analytic
decisions can produce many universes with poor model fits, and many
of the results that prior studies include in their overviews may not
provide a sound base for subsequent inferences. The prevalence of fit
issues, which are immediately apparent in the Boba Visualizer, calls
into question the idea that a multiverse analysis should consist of a
cross-product of all a-priori “reasonable” decisions.

We propose adding a step to the multiverse workflow where analysts
must distinguish between what seems reasonable a-priori vs. post-hoc.
Boba supports this step in two ways: in the inference view we can use
model averaging to produce a weighted combination of universes based
on model fit, or we can simply omit universes below a certain model
fit threshold chosen by the users. The latter option relies on analysts
making a post-hoc subjective decision and might be susceptible to
p-hacking. However, one can pre-register a model quality threshold
to eliminate this flexibility. Should we enable more elaborate and
interactive ways to give users control over pruning? If so, how do
we prevent analysts from unintentionally biasing the results? These
questions remain future work.

Indeed, a core tension in multiverse analysis is balancing the im-
perative of transparency with the need for principled reduction of
uncertainty. Prior work on researcher degrees of freedom in analysis
workflows [24] identifies strategies that analysts use to make decisions
(see also [7,29]), including two which are relevant here: reducing
uncertainty in the analysis process by following systematic procedures,
and suppressing uncertainty by arbitrarily limiting the space of possible
analysis paths. In the context of Boba, design choices which direct
the user’s attention toward important information (e.g., highlighting
models with good fit and decisions with a large influence on outcomes)
and guide the user toward best practices (e.g., visual predictive checks)
serve to push the user toward reducing rather than suppressing uncer-
tainty. Allowing users to interact with results as individual dots in the
outcome view while showing aggregated uncertainty in the background
reduces the amount of information that the user needs to engage with
in order to begin exploring universes, while also maintaining a sense of
the range of possible outcomes. We believe that guiding users’ attention
and workflow based on statistical principles is critical.

8 CONCLUSION

This paper presents Boba, an integrated DSL and visual analysis system
for authoring and interpreting multiverse analyses. With the DSL, users
annotate their analysis script to insert local variations, from which the
compiler synthesizes executable script variants corresponding to all
compatible analysis paths. We provide a command line tool for com-
piling the DSL specification, running the generated scripts, merging
the outputs, and invoking the visual analysis system. We contribute a
visual analysis system with linked views between analytic decisions
and model estimates to facilitate systematic exploration of how deci-
sions impact robustness, along with views for sampling uncertainty and
model fit. We also provide facilities for principled pruning of “unrea-
sonable” specifications, and support inference to assess effect reliability.
Using Boba, we replicate two existing multiverse studies, gain a rich
understanding of how decisions affect results, and find issues around
uncertainty and model fit that change what we can reasonably take
away from these multiverses. Boba is available as open source software
athttps://github.com/uwdata/boba.
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