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Abstract

We introduce a novel paraphrastic augmenta-
tion strategy based on sentence-level lexically
constrained paraphrasing and discriminative
span alignment. Our approach allows for the
large-scale expansion of existing datasets or
the rapid creation of new datasets using a small,
manually produced seed corpus. We demon-
strate our approach with experiments on the
Berkeley FrameNet Project, a large-scale lan-
guage understanding effort spanning more than
two decades of human labor. With four days
of training data collection for a span alignment
model and one day of parallel compute, we
automatically generate and release to the com-
munity 495,300 unique (Frame, Trigger)
pairs in diverse sentential contexts, a roughly
50-fold expansion atop FrameNet v1.7. The
resulting dataset is intrinsically and extrin-
sically evaluated in detail, showing positive
results on a downstream task.

1 Introduction

Data augmentation is the process of automatically
increasing the size or diversity of a dataset with
the goal of improving performance on a task
of interest. It has been applied in many areas
of machine learning including computer vision
(Shorten and Khoshgoftaar, 2019) and speech
recognition (Ragni et al., 2014; Ko et al., 2015).
With text-based datasets in particular, para-
phrastic augmentation, a technique to automat-
ically expand datasets in their overall size and
lexico-syntactic diversity via the use of a para-
phrase model, may be applied. In general, a
paraphrase model outputs a sentence S’ given
an input sentence S such that meaning(S) ~
meaning(S’) and S # S’. Prior work has
demonstrated that paraphrastically augmented
datasets are beneficial when applied to a vari-
ety of sentence-level tasks including machine
translation, natural language inference, and intent
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classification (Ribeiro et al., 2018; Hu et al.,

2019a; Kumar et al., 2019).
Often in paraphrastic augmentation an input

sentence is rewritten one or more times, with the
assumption the transformed sentence(s) preserve
the original label. For example, in sentiment
analysis, data consists of (Sentence;, Label;)
pairs, where each Label, is in {0,1}, indicat-
ing negative or positive sentiment. To augment
this kind of dataset, we can paraphrase each
Sentence; with a model f and thereby produce
an additional (f(Sentence;),Label;) pair,

doubling the size of the dataset.
In many natural language understanding tasks,

however, data contains span labels of the form:
(sentence;, {(start;i,end;1,type; ), 1),
where the latter element is a set of tuples indicating
each label’s location (as a contiguous subsequence
of the input tokens) and type. In this paper, we
develop a data augmentation strategy for span
labeling problems where we are concerned with
balancing the joint objectives of finding different
ways to express meaning at the level of a word or
phrase while ensuring the paraphrase is sensitive

to the context of the surrounding sentence.
Although a paraphrase is expected to have the

same meaning as the sentence from which it was
generated, words and phrases are usually added,
removed, or reordered. Thus for a given sentence
annotated with span labels, while we expect the
same label types to still apply to a paraphrase, the

locations (start and end) are expected to shift.
To address this issue, we introduce a new model

for span-based discriminative alignment. Given
an input sentence S, a paraphrase f(S), and a span
of tokens in S representing a label location, the
alignment model finds a semantically equivalent
span in f(S). We present the architectural details
of this model, a dataset for span alignment, and
corresponding results in §4.

A second problem is that most paraphrase mod-
els offer no control over specific words or phrases
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Three pieces of evidence[corroborate[® *-- ™ Three pieces of evidence =~
*.. "+ -. »|confirm|the key assumption that

democratic legislators are more

the key assumption that Democratic
legislators are more willing to engage
in local benefit-seeking than their

Republican colleagues. Span Alignmant ™

Original Iteration 1

N\, © {corroborate, confirm, support,

~—4 The fact that democratic legislators are
more willing to engage in local benefit-
seeking than their republican counterparts is

willing to pursue local benefits than s _’ by three pieces of information.

Iteration 6

Figure 1: Framework for iterative paraphrastic augmentation illustrated on an actual system output. The original,
manually annotated sentence contains a tag over the word ‘ ‘corroborate’’. In Iteration 1, the sentence is paraphrased
using a lexically constrained decoder with negative constraints on ‘‘corroborate’” and all associated inflectional
forms, guaranteeing that it will not appear in the paraphrase. Next, a span alignment model is used to obtain a
link between ‘‘corroborate’” in the original sentence and ‘‘confirm’’ in the paraphrase. All inflectional forms of
““‘confirm’’ are then unioned with the prior set of negative constraints and the process repeats for a predetermined

number of iterations.

to be included in or excluded from the final output.
As text-based data augmentation typically aims
to increase lexical diversity, it is useful to force
span label text to be rewritten in the paraphrase as
a synonymous or semantically similar phrase via
lexically constrained decoding (§3).

In §5 we describe an augmentation framework
that utilizes lexically constrained paraphrasing
and alignment together, iteratively, to expand
datasets for span labeling problems. An illustrative
diagram is given in Figure 1.

Finally, we demonstrate the application of this
framework to FrameNet in §6, resulting in a new
dataset with 495,300 unique (Frame, Trigger)
pairs in diverse sentential contexts. The intrinsic
quality of the dataset is evaluated manually and
its utility on external tasks is demonstrated with
positive results on the task of Frame ID.

2 Background

Monolingual Paraphrasing Coinciding with
the improvement of machine translation, sev-
eral works have explored sentential paraphrasing
through back-translation (Mallinson et al., 2017;
Wieting and Gimpel, 2018). One such model
(Wieting and Gimpel, 2018) was used for sentence
canonicalization, although its further usefulness
was hindered by lack of control over the para-
phrasing process. Hu et al. (2019b) introduced
constrained decoding (Post and Vilar, 2018) to
sentential paraphrasing, enabling lexical control
over the paraphrases. Wang et al. (2018) incorpo-
rated semantic frames and roles into Transformers
to produce better paraphrases. Our work can be
seen as taking their work in the opposite direction.
While they used semantic information to inform
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paraphrases, we leverage high-quality paraphrases
to generate new lexical units in semantic frames.

Automatic Lexicon Expansion As an alterna-
tive to manual labor, past work has sought to auto-
matically build on existing semantic resources.
Snow et al. (2006) used hypernym predictions
and coordinate term classifiers to add 10,000 new
WordNet entries with high precision. FrameNet+
(Pavlick et al., 2015) tripled the size of FrameNet
by substituting words from PPDB (Ganitkevitch
et al., 2013), a collection of primarily word-level
paraphrases obtained via bilingual pivoting. PPDB
paraphrases lack sentential context; for example,
““river bank’’, ‘‘bank account’’, and ‘‘data bank’’
are listed as paraphrases of ‘‘bank’’, in addition
to the broader and incorrectly cased °‘organi-
zations’” and less related still, ‘‘administrators’’,’
without any means of determining when one might
not be a valid substitute.> While the FrameNet+
expansion itself involved little cost, the lexicalized
nature of their procedure failed to capture word
senses in context and resulted in many false posi-
tives, requiring costly manual evaluation of every
sentence. In contrast, we seek to mitigate false pos-
itives and enhance lexical and syntactic diversity
by using a context-aware paraphrase model.

Paraphrasing for Structured Prediction Struc-
tured prediction finds a mapping between a surface
form and some aspect of its underlying structure.

"http://paraphrase.orqg/#/search?q=bank
&filter=%5BNN%$5D, $5BNNP%5D, $5BNP%5D&lang
=en.

2Even if we could determine contextually synonymous
words for a (sentence, word) pair, they may not be
grammatically or semantically valid when substituted
back into the sentence, further motivating sentence-level
paraphrasing.
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that express the same meaning (i.e., paraphrases)
which makes learning this mapping nontrivial.

Berant and Liang (2014) leveraged unstructured
Q&A data by learning a paraphrasing model that
maps a new query to existing ones with known
structures. More relevant to our work, Wang et al.
(2015) built a semantic parser from a small
seed lexicon by generating canonical utterances
from a domain-general grammar and then man-
ually collecting paraphrases of these utterances
through crowd-sourcing. A semantic parser is
then trained on the paraphrases to produce the
underlying structures that generated them. Our
work is distinct in that we automatically expand
our seed lexicon, collecting human judgments on
a small subset of outputs in order to assess qual-
ity. Moreover, we introduce a general framework
for augmenting data for span labeling, whereas
Wang et al. (2015) focused on parsing. Choe and
McClosky (2015) improved parsing performance
by jointly parsing a sentence and its paraphrases.
In addition, they constructed the paraphrases
manually and discouraged syntactic diversity, as
it lowered parsing performance.

Monolingual Span Alignment Yao et al.
(2013a) introduced a discriminatively trained
CRF model for monolingual word alignment,
expanded to span alignment by Yao et al. (2013b).
Ouyang and McKeown (2019) introduced a
pointer-network-based phrase-level aligner for
paraphrase alignment that obtains high recall on
several tasks. Syntactic chunking is used to build
a candidate set of phrases in both source and
paraphrase sequences, which the model is then
tasked with aligning. Their model is applied to an
open alignment task, where more than one phrase
in the source and paraphrase should be aligned,
differing from the setting described in §4.

While we have chosen to make use of span-
pooled BERT representations in our alignment
model, a natural direction for future work would
be to use span-based representations such as
SpanBERT (Joshi et al., 2020).

The Berkeley FrameNet Project FrameNet
(Baker et al., 2007) is the application of frame-
semantic theory (Fillmore, 1982) to real-world
data. Each FrameNet frame contains a descrip-
tion of a concept, a list of entities participating in
the frame (frame elements), and a list of lexical
units, which are the semantically similar words
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Frame: Commerce_sell Lexical Unit: sell.v]

seller: Watson

goods: more than one hundred of his
otherwise unsalable machines

buyer:

“Watson SOLD more than one hundred of his
otherwise unsalable machines ”

Figure 2: An example annotation from FrameNet. The
trigger, ‘‘sold’’, an instance of the se11 . v lexical unit,
evokes the Commerce_sell frame. The participating
entities, or frame elements, are represented as colored
text.

that evoke, or trigger, the given concept. Figure 2
illustrates a sentence labeled under the FrameNet
protocol. FrameNet v1.7 contains roughly 1,200
frames, 8,500 annotated lexical units, and 200,000
annotations over English text taken from newspa-
pers, journals, popular fiction, and other sources.

FrameNet has been used in tasks ranging from
question-answering (Shen and Lapata, 2007)
and information extraction (Ruppenhofer and
Rehbein, 2012) to semantic role labeling (Gildea
and Jurafsky, 2002) and recognizing textual en-
tailment (Burchardt and Frank, 2006), in addition
to finding utility as a lexicographic compendium.
As a manually created resource, FrameNet is
limited by the size of its lexical inventory and
number of annotations (Shen and Lapata, 2007;
Pavlick et al., 2015).

3 Lexically Constrained Paraphrasing

Sentential paraphrasing is a sequence generation
problem where the goal is to find an output se-
quence conveying similar semantics to the input
sequence while also ensuring that the two se-
quences are lexically or syntactically distinct. Re-
cent prior work has approached this problem with
sequence-to-sequence neural networks (Wieting
and Gimpel, 2018; Hu et al., 2019a), where
an encoder embeds the input sequence into a
fixed-dimensional space and a decoder produces
a sequence auto-regressively. Often, the decoder
uses beam search to explore the output space more
efficiently.

Lexically constrained decoding allows one to
dynamically include or exclude token sequences
from the output via user-supplied positive or neg-
ative constraints. When combined with paraphras-
ing, it can boost external NLP task performance
via data augmentation (Hu et al., 2019a). Our
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work uses negative constraints, which exclude
certain token sequences from the output by set-
ting the likelihood of the last token in the nega-
tive constraint phrase to zero when all preceding
tokens in the phrase have been generated (Hu
et al., 2019a).

In our experiments, we follow the model archi-
tecture’® described by Hu et al. (2019a) with minor
changes: 1) we use SentencePiece (Kudo and
Richardson, 2018) unigrams instead of tokeniza-
tion, following Hu et al. (2019c¢); 2) we do not
use source factors, as SentencePiece unigrams
are case-sensitive. These changes allow us to
rewrite raw text without tokenization. The model
is trained to convergence on a corpus (Hu et al.,
2019c¢) with rich lexical and syntactic diversity,
as measured by human judgment and parse-tree
edit-distance, respectively.

4 Alignment Models

4.1 BERT-based Span Alignment Model

We present a model based on BERT (Devlin et al.,
2018) to align spans of text between paraphrastic
sentence pairs. The model is trained and evaluated
on a new dataset* released alongside this paper,
consisting of 36,417 labeled sentence pairs.

Architecture Our model takes as input two
tokenized English-language sentences S (source,
with n tokens) and S’ (reference, with m tokens),
where S’ is a paraphrase of S. The model also takes
asinput a span s in S: a contiguous subsequence of
tokens with length between 1 and n, initially rep-
resented as a tuple of (start, end) offsets into
the source-side token sequence. Given this input
the model predicts a span § € {(i,7)|1 < i <
j < m}, representing the best alignment between
s and the O(n?) possible candidate spans> in S'.
In the forward pass, we embed S and S’ using
a pretrained 12-layer BERT-Base model with
frozen parameters, obtaining a hidden vector
t; € R™® for each of the (m + n + 3) input
tokens. S and S’ are embedded at the same time,
that is, as [CLS] S [SEP] S’ [SEP], follow-
ing the Microsoft Research Paraphrase Corpus

3Transformer with 6-layer encoder, 4-layer decoder, 8
heads, 512-d embeddings, and feed-forward size of 2048.

“http://nlp.jhu.edu/parabank.

5The model only explicitly scores the O(n) reference
spans whose length is within £ of the source-side span.
Remaining spans are implicitly assigned zero probability.
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(Dolan and Brockett, 2005) paraphrase classifi-
cation experiments of Devlin et al. (2018).

Next, we obtain a fixed-size representation
S € R™ of the source-side span by mean-
pooling the corresponding hidden states. In the
same way, we compute span representations C;
for each of the O(n) reference-side candidate
answer spans whose length® is within k& of the
length of the source-side span s. For each span
pair representation (S, C;) we create an aggregate
V; € R0 by concatenating three vectors:

e Element-wise difference (Df): S — C;
e Element-wise maxima (Mx): max(S, C;)

e Positional cues (Cue): start index and length
per span’

We expect that the element-wise difference of
the two span representations is close to the zero
vector when the spans are close in meaning; a use-
ful signal for the model. Concatenating element-
wise maxima to the representation was beneficial
empirically. Since word spans in the source likely
startin a similar position and are of a similar length
as compared to corresponding word spans in the
reference, positional cues provide useful informa-
tion. Finally, the aggregate vector V; is fed into a
simple feedforward neural network f, consisting
of one layer with 770 hidden units, PReLU acti-
vations, batchnorm, and a sigmoid output layer.

We use binary cross entropy loss with soft
labels: Rather than labeling each C; candidate
span as 1 or 0 depending on whether it is the gold-
standard span, we assign labels according to the
function 2-%S€1) | where d measures the absolute
difference of the start and end offsets between two
spans: d(a,b) = |a; — b1| + |ag — b|. In this way,
the gold span is given a label of 1, candidate spans
that are close to the gold-standard span are given
partial credit, and partial credit exponentially ap-
proaches O as the distance between the candi-
date span and gold-standard span increases. This
labeling strategy has two motivations. First, since
only one of the O(n) candidates is correct, there
are many more negative examples than positive

®In our experiments we used k = 5; this was the lowest
value that guaranteed the gold-standard reference span would
be considered as a possible candidate 100% of the time in the
training set.

"This vector contains four elements: the start index and
length corresponding to the S representation, and the start
index and length corresponding to the C; representation.
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original: Three pieces of evidence corroborate, ...

paraphrase: The fact... is ilgrﬂ out by three pieces.™

\

f
SN

a_rgmax(l:(),()] 0.12 0.09 ... 0.02 0.72 0.01 :l)

Figure 3: Span alignment inference. A BERT-based
representation of the source-side span ‘‘corroborate’’
is passed to a neural network f, scoring against possible
reference-side candidate spans.

ones; thus, this strategy decreases the label imbal-
ance. Second, we believe that tokens close to
the gold span are more likely to be semantically
similar to the gold span than far away tokens on
average, so this strategy avoids harshly penalizing
the model when it predicts a nearby (and likely
semantically similar) span.

At inference time, we choose the span corre-
sponding to the aggregate representation V; that is
assigned the highest score by the neural network f
(i.e., § = argmax; f(V;)). A diagram illustrating
the inference procedure is given in Figure 3.

Data To train and evaluate our model we crowd-
sourced a span alignment dataset consisting of
36,417 labeled sentence pairs. Each instance in
the dataset consists of a natural language sentence
taken from FrameNet, a span in the sentence corre-
sponding to a FrameNet trigger span, an automatic
paraphrase, and a span in the automatic paraphrase
that has been manually aligned with the source-
side span. In our experiments, we split the data
randomly as 80% train, 10% dev, and 10% test.
Automatic paraphrases of FrameNet sentences
were generated using the model described in
§3, where a negative constraint was placed on
the source-side span text and its morphological
variants in order to force the model to replace the
original trigger with a semantic equivalent. Each
paraphrase was decoded using top-k sampling
with £ = 10. In order to ensure broad lexical
coverage we paraphrased up to® four sentences for
each of the roughly 10k lexical units in FrameNet.
Annotators were presented with a highlighted
trigger span from a FrameNet sentence and asked
to identify an analogous span in the automatic

80n rare occasion, some lexical units had fewer than four
annotated sentences.
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paraphrase. The annotation interface allowed
workers to state that the paraphrase did not con-
tain any semantically equivalent phrase, which
occurred 9% of the time. In a 1260-sentence study
of span labeling inter-annotator agreement with
3-way redundancy, of the cases where the three
annotators did select a span, they chose the same
span (exact match) 88% of the time.

4.2 Word-level Baselines

We compare our span alignment model with two
word-level alignment baselines: FastAlign (Dyer
et al., 2013) and DiscAlign (Stengel-Eskin et al.,
2019). The former is a fast implementation of
IBM Model 2 (Brown et al., 1993), which de-
composes the conditional probability of a target
sequence given a source sequence into a lexical
model and an alignment model. FastAlign is an
asymmetric model, meaning that it must be run
in both directions (source to paraphrase and para-
phrase to source) and then these alignments must
be combined using some heuristic—we use the
grow-diag-final-and heuristic. A FastAlign model
was run over the concatenation of the test data,
the train data, and paraphrased FrameNet data to
obtain the final test alignments.

DiscAlign is a discriminatively trained neural
alignment model that uses the matrix product
of contextualized encodings of the source and
paraphrase word sequences to directly model the
probability of an alignment given the source and
paraphrase sequences. Unlike FastAlign, which is
trained on bitext alone, DiscAlign is pre-trained on
bitext and fine-tuned on gold-standard alignments.
For this task, a DiscAlign model was pre-trained
with 141 million sentences of ParaBank data (Hu
et al., 2019b) and finetuned on a 713 sentence
subset of the Edinburgh++ corpus (Cohn et al.,
2008).° Both DiscAlign and FastAlign have been
successfully used for cross-lingual word align-
ment, with DiscAlign outperforming FastAlign
on Arabic-English and Chinese-English alignment
by a large margin (Stengel-Eskin et al., 2019).

4.3 Evaluation

Since the baseline aligners are word-level and our
model is span-level, in order to have a fair compar-
ison we evaluate on span F; (Table 1), computing
the overlap between predicted and gold spans.

Because the aligner requires fully aligned training data,

we did not use larger partially aligned corpora such as the
Microsoft Research Paraphrase Corpus.
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Method P R ) O

DiscAlign 34.11 39.69 36.69
FastAlign 78.64 7213 75.25

Df+Mx+Cue+SBCE | 96.75 88.24 92.30

Table 1: Soft-match span F; on the test set,
calculated using the precision and recall of pre-
dicted tokens vs. gold truth tokens; allows for
partial matches. Word-level baselines are com-
pared against our best performing BERT-based
span alignment model.

Predicted spans are obtained from word-level
alignments by following alignments of each word
in the source span to the paraphrase and taking the
maximal span covered by those alignments. The
span F; metric allows partial credit to be awarded
in cases where the predicted span and gold span
do not match exactly. We also evaluate exact span
match (Table 2), where credit is awarded only if
the predicted span matches the gold span exactly.

4.4 Results

Table 1 shows that when evaluated on span over-
lap, our model significantly outperforms both
baselines. Table 2 shows that these results gen-
eralize to the more difficult exact match setting.
While all models experience a drop in perfor-
mance, our model continues to outperform both
baselines. Because no prediction threshold was
used in the baselines (unlike in our model) the
values for precision and recall are equal for the
baselines but can differ slightly for our model, as
the addition of a threshold allows the model to
incur a false negative without a false positive.

4.5 Discussion

Because our model is trained to choose spans by
design, the probability of an exact match is higher
a priori: Rather than choosing the words of a span
independently, it chooses them as a set, with limits
on the difference in length between the source and
target spans. This is reflected in the better perfor-
mance of our model on both evaluation metrics.
The bottom two rows of Table 2 show that SBCE
boosts recall with almost no loss of precision.
Our intuition is that the increased proportion of
non-zero labels causes the model to make more
threshold-exceeding predictions on reasonable
candidate spans. We expect that future work—for
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Method P R Fy

DiscAlign (29.82) (29.82) 29.82
FastAlign (71.02) (71.02) 71.02
Cue 10.39 9.77 10.07
Mx 80.65 7792 79.26
Df 87.31 8542 86.36
Mx+Cue 87.50 86.49 86.99
Df+Cue 88.74 8696 87.84
Df+Mx 89.27 87.29 88.27
Df+Mx+Cue 89.15 88.19 88.67
Df+Mx+Cue+SBCE | 89.14 88.99 89.06

Table 2: Exact-match span F; on the test set; does
not allow for partial matches. {Disc, Fast}Align
are both word alignment models, where ours were
trained for span alignment. Cue adds positional
information, Mx adds max pooling of span rep-
resentations, Df adds element-wise difference of
span representations, and SBCE adds soft binary
Cross entropy.

example, experimenting with alternative label-
ing strategies or model architectures—may lead
to improvements in the span alignment com-
ponent of our overall framework, although our
core intended contribution is the framework itself
and its successful application to data augmenta-
tion and subsequent improved performance on
a downstream task. In particular, we expect
model performance to increase as contextualized
representations become more powerful.

4.6 Analysis

Memorization Since our model could be mem-
orizing a large static mapping between lexical
units, we tested the ability of our model to
generalize by running an experiment where all
source-side spans in the test set were guaranteed to
not have been observed at training time.'” Under
this setting, the loss of F'; was minimal (roughly
2 points), suggesting that the model is robust to
unseen lexical units.

Syntactic Diversity In Table 3 we measure the
amount of syntactic diversity that is introduced by

1°Tn our main experiments, (original sentence, trigger,
paraphrase, alignment) combinations are disjoint between
train and test, but it is possible to observe the same trigger
(with a different sentence, paraphrase, or alignment) at both
train- and test-time.
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Comparison -EXT JCD WJCD

Source vs. Model | 31.08 28.94 29.31
Source vs. Gold 3454 30.60 31.05

Table 3: Percentage of part of speech differ-
ences between source-side and reference-side
spans. "EXT is the percentage of span pairs
whose POS tags did not exactly match. Since an
exact match would be precluded in the case of
differing span lengths we also include Jaccard
distance'! (JCD) and weighted Jaccard dis-
tance'? (WJCD), the latter of which is sensitive
to tag frequency. In row one the reference-
side spans are produced by the alignment model
whereas in row two the analysis uses gold
manually annotated span labels.

running a part-of-speech tagger'® over each (source,
reference) pair and then comparing the POS tag(s)
of the source-side trigger span (over natural lan-
guage) to the POS tag(s) of the reference-side
span (over automatically paraphrased text). Spans
predicted by the alignment model are reasonably
syntactically diverse, having different POS tags
than those of the source-side span 31.08% of the
time. The alignment model has a slight inclination
to retain the part of speech of source-side span
given that gold spans are more diverse (34.54%).

Multi-word Spans  Figure 4 shows the distribu-
tion of length for source-side spans, reference-side
gold spans, and model-predicted spans. Alignment
model F; over the test set is given for each bin.
Model-predicted spans and reference spans are
shorter than source-side spans on average; 1.22,
1.34, and 1.53 tokens, respectively. Multi-word
spans constitute 14.71% of model-predicted spans,
21.88% of reference-side spans, and 34.18% of
source-side spans. The shorter average span length
of the gold spans (annotated over automatic para-
phrases) suggests the synthetic text from our
paraphrase model may be biased in ways that
distinguish it from natural language. Although the
alignment model predicts shorter spans on aver-
age, when it does predict a longer span, F; is
higher.

Of two sets S and T: 1 — }ggp

_ min(u;,v;)

120f two vectors u and v: 1 — 2127
] max(u;,v;)

Bnttps://github.com/explosion/spacy—

models/releases//tag/en_core.web_1g-2.3.1.
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and model-predicted span length in the test set, with
per-bin F; above each bar.
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Figure 5: Distribution of absolute difference between
source-side and reference-side span positions in the test
set, with per-bin F;.

Source and Reference Span Positions Fig-
ure 5 shows the distribution of absolute difference
between source and reference spans, defined as
d(a,b) = |a; — by| + |ag — bo|, giving a mea-
sure of the positional differences between spans
in FrameNet sentences and their corresponding
paraphrases. The first three bins (0, 5, and 10)
contain 97.49% of the data. F; experiences a
modest decrease across the first three bins and is
unsteady in subsequent bins due to data sparsity.

S5 Iterative Augmentation Procedure

Our alignment model (§4) is paired with a
lexically constrained paraphrase model (§3) to
form an iterative procedure for augmenting data
of the form: (Sentencei,{(starti,l,endm,
type;),...}). The process consists of three
steps: constraint expansion, paraphrasing, and
alignment. In constraint expansion, we negatively
constrain on a text span of interest, including
its upper/lowercase counterparts and morpho-
logical variants using the pattern software
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package (Smedt and Daelemans, 2012). By ap-
plying negative constraints, the paraphrase model
is forced to generate a semantically equivalent
sentence with a different surface form of the
labeled text, creating a target for the alignment
model. In the alignment stage, we score the orig-
inal text span’s representation together with each
candidate span in the paraphrase and choose the
one with the highest score under the model. Using
the newly obtained aligned phrase as input to
constraint expansion, we repeat the process for a
predetermined number of iterations.

Although we apply the iterative augmentation
procedure to English language text, the method
could be applied to other languages as long as a
dataset exists on which to train a monolingual
paraphrase model, which could then be used to
generate data to be manually annotated for the
span alignment training set. Our paraphrase model
is trained on data that ultimately needs backtrans-
lation, which requires a set of aligned bilingual
sentence pairs, though there are other types of
paraphrase models that use only monolingual data
(Roy and Grangier, 2019). Software such as
pattern that allow the procedure to negatively
constrain on morphological inflections of a given
word would speed up the rate at which new lem-
mas are generated; however, even without such
software, the paraphrase model would eventually
discover inflections independently and negatively
constrain on them. Languages with richer mor-
phological structure would benefit more from
this kind of software as the paraphrase model
might otherwise waste computational resources
generating sentences with many inflections of the
same word.

6 Experiments

Our approach lends itself to two applications: In
§6.1 we are concerned with building a semantic
resource from scratch, whereas in §6.2 we are con-
cerned with expanding a pre-existing resource.
We demonstrate the usefulness of our approach
on downstream tasks in §6.3, where we apply
our generated paraphrastic dataset to the task
of Frame ID. Following Pavlick et al. (2015),
we consider FrameNet as an illustrative resource
motivating augmentation. In all experiments we
treat each system output (paraphrase and align-
ment) as evoking the same frame as the original
FrameNet input sentence.
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6.1 Building FrameNet (nearly)
from Scratch

To simulate constructing a resource using itera-
tive paraphrastic augmentation, we consider what
FrameNet would have looked like in its earliest
stages of development.!* Using each object’s
‘“‘created date’’ attribute, we ablate all but the
20 earliest-added frames, the three earliest-added
lexical units per frame, and the three earliest-
added annotations per lexical unit, for a total of
at most'> 180 annotations in our seed corpus.

We then ran 10 iterations of augmentation with
a beam size of 30 for the paraphrase model.
For each input, we ran the alignment model on
each of the top-20 beam elements and chose the
beam element with the highest score under the
alignment model. This resulted in 1710 para-
phrased and aligned sentences'® and 1316 unique
(Frame,LexicalUnit) pairs. Some generated
words lemmatized to the same form, causing the
number of lexical units to be less than the number
of sentences.

Automatic Evaluation Prior to ablation, the 20
frames in the seed corpus contained a total of 360
lexical units, of which 60 were chosen to remain in
the seed. We treat the set of 300 unobserved lex-
ical units as gold standard and compute precision
and recall of the lexical units contained within
the 1710-sentence system output. Lexical units
were only considered correct if they were in the
correct frame; comparisons were made between
(Frame,LexicalUnit) pairs.

Our system produced 128 true positives, 1188
false positives, and 112 false negatives,!” yielding
a precision of 9.7% and recall of 53.33%.

Since the hypothetical complete set of lexical
units for a given frame is vast and the lexical units
already in FrameNet constitute a small subset of
the complete set, we are not surprised to see the
probability is low that the lexical units gener-
ated by our framework fall into the small subset

14The decision to select our seeds based on frame creation
date—in contrast to some other sub-selection strategy—was
informed by discussions with FrameNet creators.

5In practice we were left with slightly fewer (171), as
we removed sentences that were observed by the alignment
model at training time, and some lexical units contained fewer
than three annotations.

16171 sentences rewritten 10 times each.

17"We exclude from the false negative count the 60 lexical
units in the seed corpus since they are guaranteed to not be
generated due to the negative constraints placed upon them.

120z Jequieideg z( uo Jasn Aysieaiun supdoH suyor Aq ypd-08£00 € |9B/2614261/08€00 € 9B)/Z91 L0 1L/10p/4pd-a[01e/|0B) /NP W 1081p//:diY WOl papeojumoq



Frame: Judgment

Score: 15

Frame: Posture

Score: 45

Frame: Motion

Score: 90

Original: British television is almost as widely admired abroad as it is at home.
Paraphrase: Britain's TV is almost as much advertised abroad as it is at home.

Original: They sat facing each other, so they might look as much as they wished, and then began to talk.
Paraphrase: The two of them gathered together to appear as they wished, and then began to speak.

Original: The smoke was drifting slowly across the farm buildings in the still air.
Paraphrase: In the still air, the smoke streaked slowly through the farm buildings.

Figure 6: Sample of actual system outputs and associated manually judged scores. Annotators did not see
the original sentence when assigning scores but they are provided here for reference. In the first example, the
paraphrase model makes a mistake; in the second, the sentence is roughly synonymous but borderline out-of-frame;
in the third, both the paraphrase and alignment are high-quality.

already in FrameNet. Upon manual inspection, we
found that many of the words predicted by the
framework were valid yet absent from FrameNet,
motivating us to develop a more sophisticated
evaluation method.

Manual Evaluation We conducted a 3-way-
redundant manual evaluation of the 1710 system
outputs using skilled, locally trained annotators.
For each system output—a paraphrase with a
highlighted phrase corresponding to the span pre-
dicted by the alignment model—we provided a
description of the anticipated frame'® and three
gold-standard example annotations'® to reinforce
the frame definition. Workers were then asked
to rate three candidate sentences, each with a
highlighted trigger phrase, on a scale of 0-100,
as to how well the highlighted trigger evoked
the given frame in the context of the sentence.
Unbeknownst to annotators, of the three candidate
sentences in each task, only one of them (in a
random position) was an actual system output; the
other two were positive or negative gold-standard
sentences taken from FrameNet:

1. System output: Frame a and lexical unit b.
2. Gold in-frame: Frame a and lexical unit —b.

3. Gold out-of-frame (adversarial): Frame —a.

3We assume that the paraphrase transformation is label-
preserving so the anticipated frame is simply the frame of the
original FrameNet sentence.

9The trigger words in the example sentences were made to
be disjoint with the trigger words in the candidate sentences
in order to avoid biasing annotators.
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The scores collected on gold in- and out-
of-frame control sentences provide a means to
ground the interpretation of scores on system out-
puts and also enable us to gauge overall annotator
understanding of the task by scoring sentences for
which we know the correct response.

Since each system output was judged by three
distinct annotators, we average each triple of judg-
ments and treat values less than 50 as a rejection
(“‘the highlighted trigger, in the context of the
sentence, does not evoke the given frame’’) and
values greater than or equal to 50 as an acceptance.
Gold in- and out-of-frame sentences had accep-
tance rates of 95.26% and 6.57%, respectively,
suggesting workers possessed a relatively strong
understanding of the task. Figure 6 provides a
sample of actual system outputs and associated
individual scores.

Inter-annotator Agreement Fleiss’ kappa for
the binarized scores of judgments of system out-
puts is 0.5641, indicating moderate to substantial
agreement. Separately, all three annotators made
the same binarized judgment 71.18% of the time.

Analysis Figure 7 shows how human judgments
distribute over the [0,100] range for in-frame
sentences (average 77.36), system outputs (aver-
age 59.35), and out-of frame sentences (average
23.17). Judgments of in- and out-of-frame sen-
tences are neatly partitioned, with in-frame
sentences being concentrated in the [50,100]
range and out-of-frame judgments concentrating
in the [0,50] range. Annotators tend not to make
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Figure 7: Distribution of human judgments for in-frame
sentences, system outputs, and adversarial out-of-frame
sentences. System output is unfiltered; in §6.1 we
experiment with methods to automatically remove low
quality system outputs.

judgments at the extrema of the range. Judgments
of system outputs skew towards the the upper
half of the range although they are more split
than judgments of in- and out-of-frame sentences.
This distribution and the associated averages are
calculated using the unfiltered set of system out-
puts; in §6.1 we test several ways of automatically
identifying system outputs that are likely to be
low quality, enabling the removal of such outputs
and the creation of a higher quality dataset.

Filtering Methods We experiment with several
methods of filtering system outputs, providing a
trade-off between the competing goals of quality
and size. Each system output has an associated
iteration number, score under the paraphrase
model, and score under the alignment model;
each filtering method then uses this information
to select a subset of the unfiltered system outputs.

We report the precision (the ratio of elements in
the subset that had a score over 50) and recall (the
number of elements in the subset with a score over
50, divided by the number of elements in the unfil-
tered set that also had a score over 50) in Table 4.
The upper section of Table 4 presents results for
a variety of heuristic filtering methods, for exam-
ple, the subset of system outputs with an iteration
number of three or lower, while the lower section
presents results for a neural filtering model.

The neural model takes as input a system out-
put’s iteration number, score under the paraphrase
model, and score under the alignment model, and
produces a score between 0 and 1, where O repre-
sents a decision to filter an output, and 1 represents
a decision to keep it. Architecturally, the model
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Filtering P R Multiple
Unfiltered 68.25 100 11x
Iter = 90.06 13.20 2x
Iter < 3 81.29 35.73 4x
Paraphrase score < 0.6 | 90.14  5.48 1.42x
Paraphrase score < 0.8 | 74.86 34.45 4.14x
Aligner score > .99 85.01 32.56 3.61x
Aligner score > .95 76.72  85.00 8.56x
Lax conjunction 87.73 20.82 2.62x
Strict conjunction 9254 531 1.39x
P-Classifier 95.00 15.61 2.28x
R-Classifier 81.19 96.99 10.27x

Table 4: Human evaluation of system outputs
across several filtering methods, with manually
judged Precision for the subset of outputs re-
maining after applying the given filter, Recall of
sentences manually judged to be acceptable, and
the Multiple (in terms of number of sentences) of
the resulting dataset in relation to the original
seed corpus. Filtering methods consider the
iteration number, and scores from the paraphrase
and aligner models for a given system output.
The “‘lax’’ row applies a filter consisting of
the conjunction of the criteria from rows 3, 5,
and 7 (relatively lenient conditions) whereas the
““strict”” row conjoins the criteria from rows 2,
4, and 6 (which are stricter, and lead to higher
precision but fewer lexical units).

is a feed-forward neural network with two hidden
layers, 10 units per hidden layer, and a sigmoid
output layer, trained to minimize binary cross
entropy loss. We trained one model to favor preci-
sion by downweighting the training loss when the
label was 1, and a second model to favor recall by
downweighting when the label was 0. As training
data, we used the 1710 aggregated manual judg-
ments from above (where each system output has
a label of 0 or 1), plus 2988 additional judgments
collected specifically for this model. We split the
data as 90% train (4228) and 10% test (470), and
present results,?” in the lower section of Table 4.

Discussion The upper section of Table 4 sug-
gests that iteration number, paraphrase model
score, and aligner model score each have slightly
different filtering characteristics, and a simple

20Results in the upper section of Table 4 are reported over
the 1710 system outputs from §6.1 while the results in the
lower section are reported over the 470-element test set.
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conjunction of criteria achieves higher precision
than any condition alone. The P-Classifier, opti-
mized to select a high-precision subset of the data,
achieves higher precision than any of the heuris-
tic methods, and higher recall than the highest-
precision heuristic method. The precision of the
P-classifier (95%) is roughly the same as the
human-level acceptance rate on gold in-frame sen-
tences (95.26%) while generating a resource that
is 2.28x as large as the original. A higher recall
subset may be obtained with the R-Classifier,
which retains 96.99% of acceptable outputs with
a precision of 81.19%.

6.2 Expanding Existing FrameNet

In this section we report the results of applying
large-scale iterative augmentation to an existing
resource. As in our reconstruction experiment,
we ran 10 iterations of augmentation, but with
minor configuration changes®' to enable faster
processing over the roughly 200,000 FrameNet
annotations.??

Our unfiltered dataset,” which excludes the
original FrameNet data, contains 1,983,680 auto-
matically paraphrased and aligned English-language
sentences and 495,300 (Frame, Trigger) pairs**
in diverse sentential contexts. As the underlying
text of our generated resource is automatically
paraphrased, it is synthetic and may contain
biases that distinguish it from natural language.
Of the 495,300 new triggers, 428,416 are unique
after applying lemmatization; each lemma has
4.63 automatic in-context annotations on average.
We use the filter models from §6.1 to select
high quality and high quantity subsets of the
unfiltered data; each system output in our data
release has an associated score from both filter
classifiers to enable post-hoc filtering. The P-
Classifier retains 138,797 sentences and 33,332
(Frame, Trigger) pairs, while the R-classifier
retains 1,807,235 sentences and 425,050 pairs. To
enable further experimentation, each sentence in
our release is linked to FrameNet v1.7.

t,23

2'We used a beam size of 20 to decode paraphrases and
ran the alignment model on each of the top-3 beam elements,
choosing the beam element with the highest score under the
alignment model.

22In practice, we filtered out sentences with greater than
80 tokens due to a limitation in the paraphrase model, leaving
198,368, or 99.55% of the original sentences.

Bhnttp://nlp. jhu.edu/parabank.

XA (Frame,Trigger) pair can be thought of as an
inflected surface form of a given word sense.
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Because our data only contains alignments of
triggers and not frame elements, it cannot be
directly used for full FrameNet semantic role
labeling (SRL). However, by additionally apply-
ing positive constraints on frame element spans
during lexically constrained decoding, an align-
ment link may be trivially obtained, allowing our
framework to be used for full SRL.

6.3 Using Paraphrastic Data on a
Downstream Task

In this section, we use the expanded FrameNet
resource from §6.2 to improve model robustness
on the task of Frame ID, a key subtask in FrameNet
SRL (Das et al., 2010; Hermann et al., 2014).

It is often prohibitively expensive to anno-
tate entire documents under protocols such as
FrameNet, and full-document annotation may not
provide full coverage of the ontology due to the
rarity of some ontological types. A commonly
used alternative to full-document annotation is
exemplar-based annotation, where several canon-
ical examples (or ‘‘exemplars’’) are identified
for each ontological type, ensuring full coverage
of the ontology. Below, we conduct experiments
to show that the addition of paraphrastic data to
full-document and exemplar annotations boosts
Frame ID model performance.

Task FrameNet parsing (Das et al., 2014;
Kshirsagar et al., 2015; Roth and Lapata, 2015;
Swayamdipta et al., 2018) is an established task in
the field of semantic parsing. Most previous work
has viewed FrameNet parsing as SRL, where the
goal is to identify the frame and label all frame ele-
ments given a sentence with a known trigger span,
but little attention has been paid to identifying
trigger spans themselves (Das et al., 2014).
Given the practical importance of finding trig-
gers, we focus on jointly identifying both triggers
and frames, rather than frames alone.
Specifically, given a sequence of words, our
task is to find all contiguous subsequences? that
trigger a frame and to identify the corresponding
frames. We pose this as a span tagging problem,
with trigger spans being tagged with the associated
frame and non-trigger spans tagged as NULL.2

BFollowing the convention of Das et al. (2014) we do
not capture discontiguous trigger spans; e.g., we treat there
would be as an instance of the lexical unit there be.v

260.05% of the full-text annotations contained triggers
that evoked two frames; we discard the second frame for
simplicity.
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Model We adopt a two-pass Long Short-Term
Memory (LSTM) model for the Frame ID task. We
first convert the sentence S = (s1, s9, ..., s7) into
a sequence of embedding vectors (e}, e, ..., eY),
where each embedding € is a concatenation of
GloVe, BERT (first subtoken, fixed), character,
and POS embeddings (Pennington et al., 2014;
Devlin et al., 2018; Alberti et al., 2019). Next, we
use a [-layer stacked bidirectional LSTM model
(Hochreiter and Schmidhuber, 1997) to obtain a
contextual embedding for each word:

(el eh....e}) = BILSTM((el, €], e}))

We then apply another unidirectional LSTM
model on top to get a representation for a span

Sj.j:

e = LSTM((eé,eéﬂ, R e§~>)
As in the alignment model, we empirically
choose a maximum span length?’ to reduce the
computational complexity from O(1?) to O(I).

A fully connected neural network is then applied
to transform the representation e;.; into a logit
vector, which is then translated by softmax into a
distribution over the label set composed of frames
and NULL. We train with cross-entropy loss.

The FrameNet corpus provides two sets of anno-
tated sentences: full-text and exemplar, where
full-text annotations consist of exhaustively anno-
tated documents, whereas exemplar annotations
are only annotated with one frame for every sen-
tence. For the full-text sentences, we treat both the
trigger and non-trigger spans as training examples,
but for the exemplar and paraphrastic sentences,
non-trigger spans are excluded due to the fact that
they represent incomplete annotations rather than
true negative examples. Furthermore, Das et al.
(2014) pointed out that some triggers are not anno-
tated in the full-text sentences, leading to false neg-
ative training examples. In light of this, we apply
the label smoothing trick (Szegedy et al., 2016)*
on negative examples to smooth the point distri-
bution, resulting in a 3-point F; improvement.

Experiments To illustrate the utility of the
paraphrastic data generated by our augmentation
framework in low-resource settings, we sample
{10%, 20%, . . ., 100%} of full-text sentences as

?"In this case 3, which only excludes 0.24% of the target
words, which are treated as false negative during evaluation.
28 A smoothing factor 0.2 is empirically chosen.
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Figure 8: Frame ID results with different full-text
percentages, with and without paraphrastic data. Each
experiment is repeated 5 times with resampled train-
ing data. ““FN’’ is the original FrameNet data, and
“FN + Para’’ uses both FrameNet and paraphrastic
data for training. 10" and 100" indicate that exemplar
sentences are added.

training data. In two experiments we also incor-
porate exemplar sentences.”’ For each sample
k of original FrameNet sentences, we conduct
a parallel experiment adding in corresponding
paraphrases of sentences in k, taken from our
resource in §6.2.

Using the FrameNet v1.7 release,* we adopt the
same development and test split proposed by Das
and Smith (2011), treating all other documents as
training examples. We use greedy search to find
the optimal hyperparameters, used for conducting
all experiments. We evaluate model performance
using Frame ID F; score, where a frame prediction
is viewed as true positive when both the trigger
span and frame match exactly.

Results and Analysis Based on the results
shown in Figure 8, we can see that we get higher
F; when using more data, and paraphrases boost
the F; for every experiment, particularly in low-
resource settings where only a small fraction of
the full-text data is accessed. If we provide the
model with both full-text and exemplar sentences,
the improvement brought by paraphrases is less,
but still significant. Peng et al. (2018) reported
state-of-the-art results on Frame ID with 90.00%
accuracy on FrameNet v1.5; however, this is not
comparable with our result because their model is
provided gold triggers and has only to identify the

We extract the first 3 lexical units for every frame and the
first 3 exemplar sentences for every lexical unit. The lexical
units and exemplar sentences are sorted by the annotation
date.

30 Accessed using the FrameNet support within NLTK
(Schneider and Wooters, 2017) to process the raw data.
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frame, whereas our model jointly identifies both
triggers and frames.

Comparison to Lexical Substitution To
demonstrate’! that paraphrases are more beneficial
when they are contextual, with sentence-level
alterations to the input, rather than the result of
simple word- or short phrase-level substitutions
(c.f. Ganitkevitch et al.,, 2013) we conducted
additional experiments using paraphrases obtained
via lexical substitution.

For each FrameNet sentence and its correspond-
ing paraphrase, we replace the original trigger in
the FrameNet sentence with the automatically
aligned trigger from the paraphrase. To ensure
that the resulting sentences are grammatical, we
only keep sentences that have the same part-of-
speech tag(s) over the trigger span as the original
sentences; this filter removed approximately 35%
of the resulting word-level paraphrases. We
use 100% of the full-text FrameNet annotations
as the base training data and reuse the same
hyperparameters as our previous experiments.

The model trained on full-text annotation +
word-level paraphrases achieved an F; score of
49.59 + 2.59 (averaged over 5 runs), which is
lower than the full-text only result (61.63 & 0.49)
and lower still than the full-text + sentence-level
paraphrase result (66.37+0.63). This suggests that
simple lexical substitution produces lower quality
paraphrases, translating into the result that these
sentences actually hurt performance on Frame ID.

Future Work While we have shown that
paraphrasing is beneficial for training a Frame
ID model in a low-resource setting, it is important
to be aware of the limitations of paraphrastic data.
The paraphrasing generation process does not
guarantee that the resulting data will be beneficial
since it is possible that some of the paraphrases
are already well understood by the model (Ribeiro
et al., 2018). Furthermore, paraphrases could
include lexical units that fall outside of the on-
tology being used, leading to a negative impact
with respect to evaluation.

Future work may investigate tactical data aug-
mentation such as the filtering score proposed by
Ribeiro et al. (2018) or automatic scoring func-
tions such as those proposed by Lee et al. (2019).

31 Aside from these empirical results we also describe two
a priori issues with lexical substitution-based methods in §2
— Automatic Lexicon Expansion.
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Our method might be extended to task-oriented
dialog in a number of domains, for example,
SMCalFlow (Andreas et al., 2020), where data
sparsity often poses a problem.

7 Conclusion

We introduced a novel approach for iterative
construction of semantic resources via automatic
paraphrasing. To demonstrate two possible uses
of our framework, we simulated the rapid creation
of a new semantic resource from a small seed
corpus and generated a large-scale expansion of
an existing resource. The latter experiment, run
on FrameNet data, generated a lexically diverse
dataset with 495,300 unique (Frame, Trigger)
pairs in diverse sentential contexts, 50x the
number of such pairs originally in FrameNet,
which we release to the community alongside our
36,417-instance span alignment dataset.
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