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ABSTRACT

We describe the early-stage development of a tangible block editor

for the educational programming language Scratch that is intended

to contribute to an environment that will allow blind and visually

impaired (BVI) students (grades 6-12) to learn computer program-

ming concepts alongside their sighted peers (both independently

and in pairs) in mainstream classrooms. In this late breaking work,

we describe our design that incorporates many of the key strategies

of the Scratch visual code editor meant to promote engagement

and lower hurdles to programming. Novel key elements of the de-

sign include: the strategic use of magnets and locally interlocking

block edges to ensure only blocks with valid syntax can be con-

nected, the use of telescoping tubing to specify parameter/operand

location and allow their expansion for nested expressions and a

block-sized-channel grid work surface that provides structure to

aid BVI students in navigating and manipulating their programs.
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1 INTRODUCTION

Unfortunately programming environments being developed to in-

crease engagement and lower hurdles to programming for sighted

K-12 students, such as Scratch, are actually increasing barriers for

students who are blind or visually impaired (BVIs) due to their

highly visual nature. This is problematic as most BVI students are

taught in mainstream schools alongside their sighted peers and

where these programming environments predominate (as well as

in most computer clubs and camps). Although text-based program-

ming languages are much more accessible for BVIs through the use

of screen readers and other audio interfaces [18, 20ś22, 29], equal

but separate is not a solution. In addition, Scratch, in particular, has

thoughtfully incorporated ideas to increase engagement and ease

learning [17]. These should not be abandoned but rather translated

to an appropriate methodology for BVI students to benefit from as

well.

Our objective is to make the Scratch environment accessible

to BVI students to allow them to experience the lower barriers to

programming alongside their sighted peers. In this paper, we focus

on a nonvisual solution for the code editor that maintains some

important characteristics of the Scratch visual code editor, including:

(1) the use of code construction through action, (2) a design reducing

the need to struggle with syntax, (3) a straightforward environment

and (4) the ability to construct code individually and with others.

Our approach is to use a set of specially designed tangible blocks

that inherently implements the idea of code construction through

action, while also addressing the other issues mentioned above.

In this paper, we will first review related work, then present the

design and development of our system and finally summarize and

discuss future work.

2 RELATED WORK

There are two main approaches taken to make programming acces-

sible to BVIs: making text-based programming languages accessible

and making tangible programming languages (see [16, 29] for re-

views). For the most part, approaches making text-based languages

accessible have not been able to take advantage of the methods used

in visual block-based languages to lower the hurdles to program-

ming. One step in this direction, by Sanchez and Aguayo, limited

and made circular the command list to choose from to decrease the

emphasis on syntax [18]. However, studies on the use of tangibles

in teaching have shown that they naturally capture some of the

goals of visual block-based languages: encouraging engagement, ex-

citement and collaboration, promoting discovery and participation,

and making computation immediate and more accessible [7].
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For tangible approaches, two main directions have been taken:

active blocks with electronics embedded and passive blocks which

are tracked with a camera or scanner [16]. Project Torino’s product,

Code Jumper, is a prominent example of active blocks: it consists of

tangible łpodsž, containing custom printed microcontrollers, that

act as programming statements and interact with additional pods

with wired connections [16, 26]. However, the active blocks make

it expensive to extend beyond a small set of code pieces: this is

still appropriate for their targeted demographic of ages 7-11, but

not for the demographic of Scratch users (ages 11-18) for which

the ability to make more complex programs is desirable. Several

groups have considered the use of passive blocks with camera or

scanner tracking of tags for both computational (e.g., [28]) and non-

computational activities (e.g., [3]). In particular, the StoryBlocks

project uses tangible tiles with raised tactile symbols to construct

stories by fitting tiles together like puzzle pieces [28]. We believe

this type of approach can further take advantage of aspects of the

visual Scratch environment to help lower barriers to programming.

3 TANGIBLE BLOCK EDITOR DESIGN
OVERVIEW

The design approach worked to choose the most effective means

to address the requirements itemized in the introduction based

on the visual Scratch environment, previous work with tangible

environments for BVIs, knowledge of tactile and haptic perception,

and stakeholder involvement.

3.1 Stakeholder Involvement

During the development process, feedback from BVIs and their

teachers/rehabilitation professionals was sought. The two main

methods were: obtaining feedback from BVI high school students

about the tangible block design and working with blind teachers

of the blind to develop the tangible block and tactile surface de-

signs. The first involved presenting tangible block prototypes to

seventeen BVI high school students during the 2019 Learning Excel-

lence in Academics Program (LEAP) summer program at Virginia

Commonwealth University. The second involved several meetings

with Michael Fish, lead technology instructor, and Domonique Law-

less, orientation and mobility instructor, at the Rehab Center of the

Virginia Department for the Blind and Visual Impaired (DBVI).

3.2 System Overview of Editor

The tangible block editor is designed as an alternate, BVI accessible

code editor for Scratch that can be used by both BVI and sighted

students, individually or in arbitrary pairs, to create programs of

small to moderate size. The target demographic is students from

grades 6 to 12 in computer education class settings and at home.

An approach using passive pieces was chosen due to the desired

maximum allowable program size (which would be cost prohibitive

with active pieces) and age group (i.e., old enough to follow a design

workflow) [16].

The main components of the design (Figure 1) are the tangible

code blocks themselves for which a physical łpalettež is created

to hold and organize the different types of code blocks when not

in use. Our initial version of the tangible block editor focuses on

the motion commands, control statements, operators, variables

and simple event blocks from the Scratch environment, although

eventually all commands will be included to allow accessibility to

any Scratch program created. The code assembly workspace is a

structured surface used to facilitate navigation and assembly of the

code blocks. A small part of the workspace, adjacent to the physical

palette, is dedicated to speaking the block name and parameter

requirements within that area.

The tangible code editor is meant as an alternative editor for

Scratch and we intend to map the tangible blocks into the visual

Scratch editor (where it enters the Scratch environment) in real-

time. For this, the tangible code blocks are identified and tracked

using markers placed on the bottom of individual pieces. A Logitech

web camera mounted in the center of the support frame underneath

the clear work surface determines each code block’s identity and

spatial location in real-time. A below surface rather than an above

surface camera was chosen to avoid occlusion of the blocks from

camera view by users’ arms and bodies. A second, above surface

Logitech web camera will potentially be used to track the user’s

fingers as part of a navigation assistance subsystem.

By acting as an interface for Scratch, users will be able of produce

programs of various complexities from simple looping examples to

creating robust computer games that can be shared online [17].

4 TANGIBLE ELEMENTS

4.1 Tangible Code Blocks

We have observed several features in the Scratch visual code blocks

that make them easy to use, promote program concepts and reduce

the emphasis on syntax. For easy selection of the appropriate code

block, blocks are grouped into categories, which are color coded,

and command labels are short and meaningful. Blocks are sized

for easy manipulation and snap together appropriately when the

syntax is valid. All code blocks with parameters have a specific

łslotž for each parameter, with a label, to ensure the correct number

of parameters are used. The shape of the slot ensures that only a

valid parameter type (i.e., logical versus numeric) is used. Another

important concept is that these parameters are łexpandablež to

allow for nested expressions not just explicit variables and literals.

If and repeat code blocks have similar vertical expansion abilities.

4.1.1 Overall Block Design. The prototype tangible blocks (e.g.,

Figure 2) were 3D-printed on an Ultimaker 3 using PLA. The gen-

eral shape of a basic block is a 1ž by 1ž square, which is easily

manipulated by the user and allows over 450 blocks to fit into a

rectangular area within the average 11-year old’s arm span [30]. To

identify the code block category, both the overall block color and

the texture along the bottom edge of the block are provided. Texture

is used rather than block shape (e.g., [28]) as it is easier and quicker

to process tactually [31], as well as distinct in nature from our

actual code block command symbols (Figure 2, right). In addition,

uniform blocks, in contrast to those varying in shape and/or size,

make it easier to construct a structured work surface to facilitate

program management. The final blocks will have distinct, bright

colors to aid students with low vision. Colors will match those in

the visual editor to aid sighted students moving between virtual

and tangible environments. The textures chosen were selected from

an experimentally derived texture palette [11].
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Figure 1: Left: Tangible workspace consisting of the program assembly area on the table top and the code block organizer

to the right of the user (who would sit in the chair). Both cameras are shown, one above and one beneath. Right: Diagram

of workflow of system: Top left, users take appropriate blocks out of organization bins; Top right, as blocks are placed on

workspace, they are visual track by associated web cameras; Bottom right, user creates Scratch program with tactile blocks;

Bottom left, positions and placement of tactile blocks are translated in digital Scratch GUI.

Code block commands are represented by simple and intuitive

raised relief symbols in a high contrast color of either black or white

(depending on the block color), with a raised orientation marker in

the upper left-hand corner used to orient the piece (Figure 2, left).

Tactile symbols were chosen as a representation (similar to e.g.,

[28]), rather than text or Braille, as Roman letters are very difficult

to perceive tactually and most people (BVI or sighted) do not know

Braille. Previous work on tactile character recognition [11] and

feedback from our stakeholders were used in creating symbols that

were legible and intuitive.

All blocks also have magnets (carefully selected in strength)

embedded in them on their top and bottom sides (Figure 2, right),

where correctly orienting the polarity for the top and bottom sides

of the block allow pieces to snap together if correctly aligned and

placed close together. Feedback from our stakeholders suggested

that this provided a stronger sense of blocks łbelonging togetherž

than using interlocking edges alone. The magnets also facilitate the

movement of whole multi-line program chunks on the workspace

and provide resistance to the inevitable disturbance by tactile ex-

ploration and manipulation of the assembled code by the hands

(although this contrasts with the experiences in [16] with Mag-

nets construction blocks). Although snap-fits are a cost effective

alternative, they wear easily and can become ineffective with use.

The back of each block has a raised square łpegž which allows

for each piece to slide along the channels of the tactile surface of

the workspace (see Section 4.2). These pegs are also recessed to

accept (and protect from damage) a small visual orientation marker,

used to track block movement (see Section 5.1).

4.1.2 Blocks with Parameters. The design for blocks with parame-

ters incorporates the design ideas for the visual Scratch blocks: (1) a

łslotž is provided for each parameter, (2) blocks or block expressions

cannot physically be attached in a slot if they do not belong, and

(3) slots can expand to allow for nested expressions. These ideas

were implemented in the tangible code editor by a block assembly

with physical, expandable slots for parameters that can only be

Figure 2: Tangible code block for łIf on edge, bouncež. Left:

facing the back surface. Right: facing the top surface; yellow

boxes highlight the imbedded magnets used in the blocks

and the red box highlights the orientation marker.

inserted when valid (e.g., Figure 4). The slots are created and made

expandable through the use of copper telescoping tubing. Copper

was chosen due to its much larger modulus of elasticity compared

to plastics and even aluminum: this was important as more com-

pliant materials caused bending, resulting in sticking when the

tubing was expanded and contracted. Other methods tried, such

as using tangible reels [5] or physical string or cord [26, 28], had

a hard time clearly showing the relation between the parameters

and the code command, especially for nested expressions. Syntax is

enforced using the location of interlocking juts and notches rather

than connection shape (as in visual Scratch). This choice was for

two reasons: (a) connection shape is not easily discernible by touch

and (b) magnets can be used to enhance the use of location to define

syntax but not the use of connection shape.

The created block assemblies are illustrated for the PLUS opera-

tor and the AND operator in Figure 3. For both operator assemblies,

we have bounding blocks, which could be thought of as parentheses

in text-based code and which are implicit in the visual blocks of

Scratch. The main block is the operator, with the appropriate num-

ber of slots added for the given operator. For the tangible blocks, the

location of the notches(s) on the left side of a parameter slot (indi-

cated in red in Figure 3) indicate what type of expression resultant
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Figure 3: Left: PLUS operatorwith expandable slots, Right: ANDoperatorwith expandable slots. Both: telescoping tubes appear

as parallel sets of brass tubing between each block in the expandable elements. Note that neither assembly includes the texture

and color for Operator blocks.

Figure 4: (x < (y < x)), correct expression. Note that the resultant of (y < x) is a logical value.

is accepted: the top notch is for logicals and the bottom notch is

for regular numbers. The notch on the right-hand side of a slot

is positioned so that the command cannot be completed without

a parameter (indicated in green in Figure 3). Again, magnets are

used for a łsnap effectž, this time placed directly in the juts and

notches of the interlocking connections. The telescoping used in the

parameter slots (e.g., Figure 4) currently allows 2 levels of nesting.

4.1.3 Variables and Literals. Variables and literals are more difficult

to represent in a tangible interface as compared to a virtual one

as they must be represented physically despite being any of an

infinite number of values/names. Multi-digit combination łlocksž

were considered for literals, however the feasibility and cost of

producing a tangible version did not seem realistic. Using a Braille

label maker and sticking the created number on a blank block is

possible but would require a method for the editor to automatically

interpret the created value. However, for our initial development

we will only allow the use of variables (which also encourages good

programming practice).

Variables are represented by blocks with their name in raised

relief (e.g., łxž and łyž in Figure 4), with duplicate blocks provided to

allowmultiple instances of each variable in a program.Wewill work

with our stakeholders to select 10 easily discernible names/symbols

for our variables, and provide up to 10 instances of each. Users will

be able to assign initial values and give their variables meaningful

descriptions within a specific area of the tangible workspace. In the

future, we will explore using user generated Braille labels on blank

blocks.

4.2 Tangible Workspace

An important concept of the visual Scratch workspace is that is

designed to promote tinkering by: (a) being able to make changes

to code while it is running, (b) creating parallel threads by sim-

ply creating parallel stacks of blocks, and (c) the ability to leave

extra blocks or stacks around in case they are needed later [17].

In order to create moderately sized programs and provide for the

latter two functions of tinkering, a sufficiently large workspace

is needed. However, the use of a tangible environment by BVIs

presents a unique problem as the spatial field of view through

touch is significantly more limited than vision. This means that the

conceptual organization of the workspace in the user’s mind must

be done through sequential contact with the hands, which is slow

and cognitively very demanding [31].

Educators of BVIs have suggested that a confined space be used

for programming [32]. However, feedback from our stakeholders

suggested that this was insufficient. They felt it was hard to struc-

ture lines of code in an emptyworkspace andwanted some structure.

They also thought that a surface structure that facilitated the con-

nection of code blocks would be beneficial. A tangible workspace

(Figure 1) was created with a structured surface to address these

concerns and an organizational method for code blocks being stored

off the surface in bins.

4.2.1 Surface. The structured surface consists of a grid of channels

(Figure 1) that the tangible code blocks fit in and can slide along.

Program code elements (blocks and block assemblies) are made

in a standard size or integer units of the standard size to enable

movement within the channels. The created grid of channel grooves

results in the bottom łpostž of each block (Figure 2) being restricted

to movement within the grooves, which maintains alignment of a

block along a row or column while it is moving. The standardized

size of the grid (and blocks) allows adjacent blocks to be connected

across the channels in both horizontal and vertical directions. The

channeled grid is meant to prevent accidental movement of the

code blocks when reading the program with the hands and to

facilitate alignment when assembling adjacent pieces. The grid

organization is also intended to facilitate the user’s recall of where

they placed blocks in the workspace. The structured surface was

created from a sheet of transparent acrylic 23.5 inches by 48 inches,

which translates into 23 by 48 code blocks. Horizontal and vertical

channels were ground into the top surface of the sheet using a CNC

End Mill. Tolerances were chosen to allow the blocks to slide in

horizontal and vertical directions in the channels, while preventing

the blocks from rotating freely.

4.2.2 Palette Organization. Given the large number of coding com-

mands, amethod to organize and easily retrieve tangible code blocks

is essential. A preliminary organizational prototype for the tangible



A Tangible Block Editor for the Scratch Programming Language CHI ’21 Extended Abstracts, May 08–13, 2021, Yokohama, Japan

block palette uses stackable storage bins (Figure 1). Each category

of code blocks is in a different row, with one type of code block per

bin (labelled with a plate that contains the front face of the block).

4.2.3 Block Management Area. Again, given the large number of

different coding commands used in the tangible editor, as well as

their representation solely by tactile symbols, a sub-area of the

workspace (beside the palette organizer) is used to provide audio

descriptions of any blocks or block systems placed in it. This is

also where we expect to assign variable values, although currently

variables are only represented symbolically in the editor.

5 SOFTWARE DESIGN

5.1 Real-time Marker Information Extraction
and Translation

The identity and location of the code blocks on the workspace are

determined using the OpenCV library to track ArUco markers on

the back of the blocks (Figure 2) via the camera positioned below

the clear workspace surface (Figure 1). The OpenCV detection al-

gorithm provides the relative distances between the markers it

tags. Markers placed at known distances from each other on the

workspace surface (one in each corner) are used to determine abso-

lute position of each code block. To date, the detection method has

not failed to detect a code block’s id and location (x,y,θ ) in spite

of the structure of the workspace surface which interferes with its

optical clarity to some degree. Current work is now focused on

using the extracted data in real-time to create a homomorphic rep-

resentation in the visual Scratch editor through Blocky keystroke

commands (as Blocky underlies the visual Scratch code editor).

5.2 Navigation Assistance Subsystem

An important consideration for BVI students is: how do they, when

working on a program, interact with a teacher (who may be refer-

ring to a highly visual lesson plan at the front of the room) or other

students (both BVI or sighted, who may be working with them such

as in paired programming)? What tools need to be provided for

communication? Even if a sighted person is close enough to łpullž a

BVI student’s hand to what they want to show, it is more desirable

for BVI students to have agency over themselves. However, haptic

exploration of the workspace without vision is slow. The naviga-

tion assistance subsystem is predicated on the belief that guidance

inherently built into the tangible editor system itself will be useful

and inoffensive to BVI students. Currently we are testing this belief

with a variety of different audio feedback algorithms. If desirable, a

functional subsystem will be developed.

6 DISCUSSION

In this paper we presented a prototype tangible block editor that

can be used as a code editor for Scratch by both BVI and sighted stu-

dents. The design approach preserves the constructivist approach

of Scratch by using tangible code blocks to enact code construc-

tion through action. The approach also preserves the low barri-

ers to programming by implementing puzzle piece style fits and

snap to connections for syntax, and expandable parameter slots for

nested expressions. Modifications were also made to accommodate

differences in haptic and visual perception, particularly the diffi-

culty of navigating space haptically, without vision: In particular,

a channeled grid-based surface was created and automated audio

navigation assistance proposed. These new design components

are currently being assessed for their usability and usefulness. We

should also acknowledge the limitations in the design, which are

primarily due to using a physical rather than a virtual environment:

the size of the programs that can be constructed has a limit, nesting

of operator expressions is currently restricted to two levels deep,

and variables are not easily created and assigned. For the most part,

we do not expect these limitations to be too restrictive for our aim

in improving educational access to Scratch for BVIs.

7 FUTUREWORK

The most immediate next step is to complete a fully functional

tangible block editor and perform an objective assessment of its

usability and ability to engage BVI students. However, it is not

the only component of Scratch that needs to be made accessible

for BVIs. At the very least, a method to execute (and follow the

execution of) the developed code is critical for learning how to

program. We are exploring several different approaches: 1) the use

of mini robots as dynamic interaction objects (similar to Ducasse’s

work [6]), 3D sound (similar to computer action games), descriptive

audio and a combination of all three. In doing so, we believe one

of the most critical properties of any approach is that it needs to

be interchangeable with Scratch’s stage (where code is animated

visually). This, as well as to be developed web access tools, will be

critical to attain the social, shareable (in class and online) aspect

of Scratch programs, which is an important facilitator of student

engagement.
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