A Tangible Block Editor for the Scratch Programming Language

Bryson, J, Goolsby
Virginia Commonwealth University, USA

goolsbybj@vcu.edu
Dianne, TV, Pawluk

Virginia Commonwealth University, USA
dtpawluk@vcu.edu

ABSTRACT

We describe the early-stage development of a tangible block editor
for the educational programming language Scratch that is intended
to contribute to an environment that will allow blind and visually
impaired (BVI) students (grades 6-12) to learn computer program-
ming concepts alongside their sighted peers (both independently
and in pairs) in mainstream classrooms. In this late breaking work,
we describe our design that incorporates many of the key strategies
of the Scratch visual code editor meant to promote engagement
and lower hurdles to programming. Novel key elements of the de-
sign include: the strategic use of magnets and locally interlocking
block edges to ensure only blocks with valid syntax can be con-
nected, the use of telescoping tubing to specify parameter/operand
location and allow their expansion for nested expressions and a
block-sized-channel grid work surface that provides structure to
aid BVI students in navigating and manipulating their programs.
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1 INTRODUCTION

Unfortunately programming environments being developed to in-
crease engagement and lower hurdles to programming for sighted
K-12 students, such as Scratch, are actually increasing barriers for
students who are blind or visually impaired (BVIs) due to their
highly visual nature. This is problematic as most BVI students are
taught in mainstream schools alongside their sighted peers and
where these programming environments predominate (as well as
in most computer clubs and camps). Although text-based program-
ming languages are much more accessible for BVIs through the use
of screen readers and other audio interfaces [18, 20-22, 29], equal
but separate is not a solution. In addition, Scratch, in particular, has
thoughtfully incorporated ideas to increase engagement and ease
learning [17]. These should not be abandoned but rather translated
to an appropriate methodology for BVI students to benefit from as
well.

Our objective is to make the Scratch environment accessible
to BVI students to allow them to experience the lower barriers to
programming alongside their sighted peers. In this paper, we focus
on a nonvisual solution for the code editor that maintains some
important characteristics of the Scratch visual code editor, including:
(1) the use of code construction through action, (2) a design reducing
the need to struggle with syntax, (3) a straightforward environment
and (4) the ability to construct code individually and with others.
Our approach is to use a set of specially designed tangible blocks
that inherently implements the idea of code construction through
action, while also addressing the other issues mentioned above.
In this paper, we will first review related work, then present the
design and development of our system and finally summarize and
discuss future work.

2 RELATED WORK

There are two main approaches taken to make programming acces-
sible to BVIs: making text-based programming languages accessible
and making tangible programming languages (see [16, 29] for re-
views). For the most part, approaches making text-based languages
accessible have not been able to take advantage of the methods used
in visual block-based languages to lower the hurdles to program-
ming. One step in this direction, by Sanchez and Aguayo, limited
and made circular the command list to choose from to decrease the
emphasis on syntax [18]. However, studies on the use of tangibles
in teaching have shown that they naturally capture some of the
goals of visual block-based languages: encouraging engagement, ex-
citement and collaboration, promoting discovery and participation,
and making computation immediate and more accessible [7].
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For tangible approaches, two main directions have been taken:
active blocks with electronics embedded and passive blocks which
are tracked with a camera or scanner [16]. Project Torino’s product,
Code Jumper, is a prominent example of active blocks: it consists of
tangible “pods”, containing custom printed microcontrollers, that
act as programming statements and interact with additional pods
with wired connections [16, 26]. However, the active blocks make
it expensive to extend beyond a small set of code pieces: this is
still appropriate for their targeted demographic of ages 7-11, but
not for the demographic of Scratch users (ages 11-18) for which
the ability to make more complex programs is desirable. Several
groups have considered the use of passive blocks with camera or
scanner tracking of tags for both computational (e.g., [28]) and non-
computational activities (e.g., [3]). In particular, the StoryBlocks
project uses tangible tiles with raised tactile symbols to construct
stories by fitting tiles together like puzzle pieces [28]. We believe
this type of approach can further take advantage of aspects of the
visual Scratch environment to help lower barriers to programming.

3 TANGIBLE BLOCK EDITOR DESIGN
OVERVIEW

The design approach worked to choose the most effective means
to address the requirements itemized in the introduction based
on the visual Scratch environment, previous work with tangible
environments for BVIs, knowledge of tactile and haptic perception,
and stakeholder involvement.

3.1 Stakeholder Involvement

During the development process, feedback from BVIs and their
teachers/rehabilitation professionals was sought. The two main
methods were: obtaining feedback from BVI high school students
about the tangible block design and working with blind teachers
of the blind to develop the tangible block and tactile surface de-
signs. The first involved presenting tangible block prototypes to
seventeen BVI high school students during the 2019 Learning Excel-
lence in Academics Program (LEAP) summer program at Virginia
Commonwealth University. The second involved several meetings
with Michael Fish, lead technology instructor, and Domonique Law-
less, orientation and mobility instructor, at the Rehab Center of the
Virginia Department for the Blind and Visual Impaired (DBVI).

3.2 System Overview of Editor

The tangible block editor is designed as an alternate, BVI accessible
code editor for Scratch that can be used by both BVI and sighted
students, individually or in arbitrary pairs, to create programs of
small to moderate size. The target demographic is students from
grades 6 to 12 in computer education class settings and at home.
An approach using passive pieces was chosen due to the desired
maximum allowable program size (which would be cost prohibitive
with active pieces) and age group (i.e., old enough to follow a design
workflow) [16].

The main components of the design (Figure 1) are the tangible
code blocks themselves for which a physical “palette” is created
to hold and organize the different types of code blocks when not
in use. Our initial version of the tangible block editor focuses on
the motion commands, control statements, operators, variables

Bryson Goolsby et al.

and simple event blocks from the Scratch environment, although
eventually all commands will be included to allow accessibility to
any Scratch program created. The code assembly workspace is a
structured surface used to facilitate navigation and assembly of the
code blocks. A small part of the workspace, adjacent to the physical
palette, is dedicated to speaking the block name and parameter
requirements within that area.

The tangible code editor is meant as an alternative editor for
Scratch and we intend to map the tangible blocks into the visual
Scratch editor (where it enters the Scratch environment) in real-
time. For this, the tangible code blocks are identified and tracked
using markers placed on the bottom of individual pieces. A Logitech
web camera mounted in the center of the support frame underneath
the clear work surface determines each code block’s identity and
spatial location in real-time. A below surface rather than an above
surface camera was chosen to avoid occlusion of the blocks from
camera view by users’ arms and bodies. A second, above surface
Logitech web camera will potentially be used to track the user’s
fingers as part of a navigation assistance subsystem.

By acting as an interface for Scratch, users will be able of produce
programs of various complexities from simple looping examples to
creating robust computer games that can be shared online [17].

4 TANGIBLE ELEMENTS
4.1 Tangible Code Blocks

We have observed several features in the Scratch visual code blocks
that make them easy to use, promote program concepts and reduce
the emphasis on syntax. For easy selection of the appropriate code
block, blocks are grouped into categories, which are color coded,
and command labels are short and meaningful. Blocks are sized
for easy manipulation and snap together appropriately when the
syntax is valid. All code blocks with parameters have a specific
“slot” for each parameter, with a label, to ensure the correct number
of parameters are used. The shape of the slot ensures that only a
valid parameter type (i.e., logical versus numeric) is used. Another
important concept is that these parameters are “expandable” to
allow for nested expressions not just explicit variables and literals.
If and repeat code blocks have similar vertical expansion abilities.

4.1.1 Overall Block Design. The prototype tangible blocks (e.g.,
Figure 2) were 3D-printed on an Ultimaker 3 using PLA. The gen-
eral shape of a basic block is a 17 by 1” square, which is easily
manipulated by the user and allows over 450 blocks to fit into a
rectangular area within the average 11-year old’s arm span [30]. To
identify the code block category, both the overall block color and
the texture along the bottom edge of the block are provided. Texture
is used rather than block shape (e.g., [28]) as it is easier and quicker
to process tactually [31], as well as distinct in nature from our
actual code block command symbols (Figure 2, right). In addition,
uniform blocks, in contrast to those varying in shape and/or size,
make it easier to construct a structured work surface to facilitate
program management. The final blocks will have distinct, bright
colors to aid students with low vision. Colors will match those in
the visual editor to aid sighted students moving between virtual
and tangible environments. The textures chosen were selected from
an experimentally derived texture palette [11].
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Figure 1: Left: Tangible workspace consisting of the program assembly area on the table top and the code block organizer
to the right of the user (who would sit in the chair). Both cameras are shown, one above and one beneath. Right: Diagram
of workflow of system: Top left, users take appropriate blocks out of organization bins; Top right, as blocks are placed on
workspace, they are visual track by associated web cameras; Bottom right, user creates Scratch program with tactile blocks;
Bottom left, positions and placement of tactile blocks are translated in digital Scratch GUIL

Code block commands are represented by simple and intuitive
raised relief symbols in a high contrast color of either black or white
(depending on the block color), with a raised orientation marker in
the upper left-hand corner used to orient the piece (Figure 2, left).
Tactile symbols were chosen as a representation (similar to e.g.,
[28]), rather than text or Braille, as Roman letters are very difficult
to perceive tactually and most people (BVI or sighted) do not know
Braille. Previous work on tactile character recognition [11] and
feedback from our stakeholders were used in creating symbols that
were legible and intuitive.

All blocks also have magnets (carefully selected in strength)
embedded in them on their top and bottom sides (Figure 2, right),
where correctly orienting the polarity for the top and bottom sides
of the block allow pieces to snap together if correctly aligned and
placed close together. Feedback from our stakeholders suggested
that this provided a stronger sense of blocks “belonging together”
than using interlocking edges alone. The magnets also facilitate the
movement of whole multi-line program chunks on the workspace
and provide resistance to the inevitable disturbance by tactile ex-
ploration and manipulation of the assembled code by the hands
(although this contrasts with the experiences in [16] with Mag-
nets construction blocks). Although snap-fits are a cost effective
alternative, they wear easily and can become ineffective with use.

The back of each block has a raised square “peg” which allows
for each piece to slide along the channels of the tactile surface of
the workspace (see Section 4.2). These pegs are also recessed to
accept (and protect from damage) a small visual orientation marker,
used to track block movement (see Section 5.1).

4.1.2  Blocks with Parameters. The design for blocks with parame-
ters incorporates the design ideas for the visual Scratch blocks: (1) a
“slot” is provided for each parameter, (2) blocks or block expressions
cannot physically be attached in a slot if they do not belong, and
(3) slots can expand to allow for nested expressions. These ideas
were implemented in the tangible code editor by a block assembly
with physical, expandable slots for parameters that can only be

Figure 2: Tangible code block for “If on edge, bounce”. Left:
facing the back surface. Right: facing the top surface; yellow
boxes highlight the imbedded magnets used in the blocks
and the red box highlights the orientation marker.

inserted when valid (e.g., Figure 4). The slots are created and made
expandable through the use of copper telescoping tubing. Copper
was chosen due to its much larger modulus of elasticity compared
to plastics and even aluminum: this was important as more com-
pliant materials caused bending, resulting in sticking when the
tubing was expanded and contracted. Other methods tried, such
as using tangible reels [5] or physical string or cord [26, 28], had
a hard time clearly showing the relation between the parameters
and the code command, especially for nested expressions. Syntax is
enforced using the location of interlocking juts and notches rather
than connection shape (as in visual Scratch). This choice was for
two reasons: (a) connection shape is not easily discernible by touch
and (b) magnets can be used to enhance the use of location to define
syntax but not the use of connection shape.

The created block assemblies are illustrated for the PLUS opera-
tor and the AND operator in Figure 3. For both operator assemblies,
we have bounding blocks, which could be thought of as parentheses
in text-based code and which are implicit in the visual blocks of
Scratch. The main block is the operator, with the appropriate num-
ber of slots added for the given operator. For the tangible blocks, the
location of the notches(s) on the left side of a parameter slot (indi-
cated in red in Figure 3) indicate what type of expression resultant
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Figure 3: Left: PLUS operator with expandable slots, Right: AND operator with expandable slots. Both: telescoping tubes appear
as parallel sets of brass tubing between each block in the expandable elements. Note that neither assembly includes the texture

and color for Operator blocks.

Figure 4: (x < (y < x)), correct expression. Note that the resultant of (y < x) is a logical value.

is accepted: the top notch is for logicals and the bottom notch is
for regular numbers. The notch on the right-hand side of a slot
is positioned so that the command cannot be completed without
a parameter (indicated in green in Figure 3). Again, magnets are
used for a “snap effect”, this time placed directly in the juts and
notches of the interlocking connections. The telescoping used in the
parameter slots (e.g., Figure 4) currently allows 2 levels of nesting.

4.1.3  Variables and Literals. Variables and literals are more difficult
to represent in a tangible interface as compared to a virtual one
as they must be represented physically despite being any of an
infinite number of values/names. Multi-digit combination “locks”
were considered for literals, however the feasibility and cost of
producing a tangible version did not seem realistic. Using a Braille
label maker and sticking the created number on a blank block is
possible but would require a method for the editor to automatically
interpret the created value. However, for our initial development
we will only allow the use of variables (which also encourages good
programming practice).

Variables are represented by blocks with their name in raised
relief (e.g., “x” and “y” in Figure 4), with duplicate blocks provided to
allow multiple instances of each variable in a program. We will work
with our stakeholders to select 10 easily discernible names/symbols
for our variables, and provide up to 10 instances of each. Users will
be able to assign initial values and give their variables meaningful
descriptions within a specific area of the tangible workspace. In the
future, we will explore using user generated Braille labels on blank
blocks.

4.2 Tangible Workspace

An important concept of the visual Scratch workspace is that is
designed to promote tinkering by: (a) being able to make changes
to code while it is running, (b) creating parallel threads by sim-
ply creating parallel stacks of blocks, and (c) the ability to leave
extra blocks or stacks around in case they are needed later [17].
In order to create moderately sized programs and provide for the
latter two functions of tinkering, a sufficiently large workspace
is needed. However, the use of a tangible environment by BVIs
presents a unique problem as the spatial field of view through

touch is significantly more limited than vision. This means that the
conceptual organization of the workspace in the user’s mind must
be done through sequential contact with the hands, which is slow
and cognitively very demanding [31].

Educators of BVIs have suggested that a confined space be used
for programming [32]. However, feedback from our stakeholders
suggested that this was insufficient. They felt it was hard to struc-
ture lines of code in an empty workspace and wanted some structure.
They also thought that a surface structure that facilitated the con-
nection of code blocks would be beneficial. A tangible workspace
(Figure 1) was created with a structured surface to address these
concerns and an organizational method for code blocks being stored
off the surface in bins.

4.2.1 Surface. The structured surface consists of a grid of channels
(Figure 1) that the tangible code blocks fit in and can slide along.
Program code elements (blocks and block assemblies) are made
in a standard size or integer units of the standard size to enable
movement within the channels. The created grid of channel grooves
results in the bottom “post” of each block (Figure 2) being restricted
to movement within the grooves, which maintains alignment of a
block along a row or column while it is moving. The standardized
size of the grid (and blocks) allows adjacent blocks to be connected
across the channels in both horizontal and vertical directions. The
channeled grid is meant to prevent accidental movement of the
code blocks when reading the program with the hands and to
facilitate alignment when assembling adjacent pieces. The grid
organization is also intended to facilitate the user’s recall of where
they placed blocks in the workspace. The structured surface was
created from a sheet of transparent acrylic 23.5 inches by 48 inches,
which translates into 23 by 48 code blocks. Horizontal and vertical
channels were ground into the top surface of the sheet using a CNC
End Mill. Tolerances were chosen to allow the blocks to slide in
horizontal and vertical directions in the channels, while preventing
the blocks from rotating freely.

4.2.2  Palette Organization. Given the large number of coding com-
mands, a method to organize and easily retrieve tangible code blocks
is essential. A preliminary organizational prototype for the tangible
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block palette uses stackable storage bins (Figure 1). Each category
of code blocks is in a different row, with one type of code block per
bin (labelled with a plate that contains the front face of the block).

4.2.3 Block Management Area. Again, given the large number of
different coding commands used in the tangible editor, as well as
their representation solely by tactile symbols, a sub-area of the
workspace (beside the palette organizer) is used to provide audio
descriptions of any blocks or block systems placed in it. This is
also where we expect to assign variable values, although currently
variables are only represented symbolically in the editor.

5 SOFTWARE DESIGN

5.1 Real-time Marker Information Extraction
and Translation

The identity and location of the code blocks on the workspace are
determined using the OpenCV library to track ArUco markers on
the back of the blocks (Figure 2) via the camera positioned below
the clear workspace surface (Figure 1). The OpenCV detection al-
gorithm provides the relative distances between the markers it
tags. Markers placed at known distances from each other on the
workspace surface (one in each corner) are used to determine abso-
lute position of each code block. To date, the detection method has
not failed to detect a code block’s id and location (x,y,0) in spite
of the structure of the workspace surface which interferes with its
optical clarity to some degree. Current work is now focused on
using the extracted data in real-time to create a homomorphic rep-
resentation in the visual Scratch editor through Blocky keystroke
commands (as Blocky underlies the visual Scratch code editor).

5.2 Navigation Assistance Subsystem

An important consideration for BVI students is: how do they, when
working on a program, interact with a teacher (who may be refer-
ring to a highly visual lesson plan at the front of the room) or other
students (both BVI or sighted, who may be working with them such
as in paired programming)? What tools need to be provided for
communication? Even if a sighted person is close enough to “pull” a
BVI student’s hand to what they want to show, it is more desirable
for BVI students to have agency over themselves. However, haptic
exploration of the workspace without vision is slow. The naviga-
tion assistance subsystem is predicated on the belief that guidance
inherently built into the tangible editor system itself will be useful
and inoffensive to BVI students. Currently we are testing this belief
with a variety of different audio feedback algorithms. If desirable, a
functional subsystem will be developed.

6 DISCUSSION

In this paper we presented a prototype tangible block editor that
can be used as a code editor for Scratch by both BVI and sighted stu-
dents. The design approach preserves the constructivist approach
of Scratch by using tangible code blocks to enact code construc-
tion through action. The approach also preserves the low barri-
ers to programming by implementing puzzle piece style fits and
snap to connections for syntax, and expandable parameter slots for
nested expressions. Modifications were also made to accommodate
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differences in haptic and visual perception, particularly the diffi-
culty of navigating space haptically, without vision: In particular,
a channeled grid-based surface was created and automated audio
navigation assistance proposed. These new design components
are currently being assessed for their usability and usefulness. We
should also acknowledge the limitations in the design, which are
primarily due to using a physical rather than a virtual environment:
the size of the programs that can be constructed has a limit, nesting
of operator expressions is currently restricted to two levels deep,
and variables are not easily created and assigned. For the most part,
we do not expect these limitations to be too restrictive for our aim
in improving educational access to Scratch for BVIs.

7 FUTURE WORK

The most immediate next step is to complete a fully functional
tangible block editor and perform an objective assessment of its
usability and ability to engage BVI students. However, it is not
the only component of Scratch that needs to be made accessible
for BVIs. At the very least, a method to execute (and follow the
execution of) the developed code is critical for learning how to
program. We are exploring several different approaches: 1) the use
of mini robots as dynamic interaction objects (similar to Ducasse’s
work [6]), 3D sound (similar to computer action games), descriptive
audio and a combination of all three. In doing so, we believe one
of the most critical properties of any approach is that it needs to
be interchangeable with Scratch’s stage (where code is animated
visually). This, as well as to be developed web access tools, will be
critical to attain the social, shareable (in class and online) aspect
of Scratch programs, which is an important facilitator of student
engagement.
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