
Exercise Perceptions: Experience Report From
A Secure Software Development Course?

Akond Rahman1[0000−0002−5056−757X], Shahriar Hossain2, and Dibyendu Brinto
Bose3

1 Tennessee Technological University, Cookeville, TN, USA, arahman@tntech.edu
2 Kennessaw State University, Kennessaw, Georgia, USA, hshahria2012@gmail.com

3 Reeve Systems, Dhaka, Bangladesh, brintodibyendu@gmail.com

Abstract. The ubiquitous use of software in critical systems necessi-
tates integrating cybersecurity concepts into the software engineering
curriculum so that students studying software engineering have adequate
knowledge to securely develop software projects, which could potentially
secure critical systems. An experience report of developing and conduct-
ing a course can help educators to gain an understanding of student
preferences on topics related to secure software development. We pro-
vide an experience report related to the ‘Secure Software Development’
course conducted at Tennessee Technological University. We discuss stu-
dent motivations, as well as positive and negative perceptions of students
towards exercises. Based on our findings, we recommend educators to in-
tegrate real-world exercises into a secure software development course
with careful consideration of tool documentation, balance in exercise di-
versity, and student background.

Keywords: devsecops · education · experience report · secure software

1 Introduction

With the emergence of the fourth industrial revolution 4 the use of software is
becoming pervasive in critical systems, such as energy, health care, and trans-
portation [3]. Security weaknesses in software used in critical systems can create
serious consequences, such as creating large-scale outages, as it happened for
Americold, a U.S.-based cold storage company 5. Examples of cybersecurity at-
tacks similar to that of Americold, highlight the need of educating software
developers about cybersecurity concepts. Educators have also acknowledged to
bring in cybersecurity research concepts into the curriculum of software engi-
neering so that students gain knowledge about the cybersecurity concepts [18].

To strengthen the computer science curriculum at Tennessee Technological
University (TnTU), a faculty at the Department of Computer Science (CS) in-
troduced the ‘Secure Software Development’ course in Fall 2020. The purpose

? Partially funded by the U.S. National Science Foundation (NSF) award # 2026869.
Special thanks to the PASER group at TnTU for their feedback.

4 https://jia.sipa.columbia.edu/fourth-industrial-revolution-shaping-new-era
5 https://threatpost.com/food-supply-americold-cyberattack/161402/



ii Rahman et al.

of this graduate-level course was to provide students with fundamental knowl-
edge and training on secure software development. The course focused on using
a hands-on approach where students will learn about cybersecurity and soft-
ware engineering concepts via class lectures as well as by solving programming
exercises.

We present an experience report of the exercises that were conducted as part
of the ‘Secure Software Development‘ course. Our reported experience related to
exercises can be helpful for other educators who want to adopt secure software
development as a course into their CS curriculum. Furthermore, our experience
report can provide clues for researchers on how to better integrate cybersecurity
into software engineering.

We answer the following research questions:

– RQ1: What are students’ motivations for enrolling in the ‘Secure Software
Development’ course? Based on student feedback, which components of the
‘Secure Software Development’ are aligned with student motivations?

– RQ2: What is the performance of students in exercises conducted as part of
the ‘Secure Software Development’ course?

– RQ3: What are the positive perceptions of exercises conducted as part of the
‘Secure Software Development’ course?

– RQ4: What are the negative perceptions of exercises conducted as part of the
‘Secure Software Development’ course?

We answer the research questions by analyzing grade books and survey re-
sults collected from a graduate course titled ‘Secure Software Development’,
which was introduced for the first time at TnTU. To synthesize students’ posi-
tive and negative perceptions we apply open coding [17], a qualitative analysis
technique to generate high-level categories from text input. Prior to conducting
the survey and analysis we obtain Internal Review Board (IRB) approval from
TnTU (IRB#2316).

Our contributions are listed as follows:

– A list of positive perceptions expressed by students regarding exercises con-
ducted in the ‘Secure Software Development’ course;

– A list of negative perceptions expressed by students regarding exercises con-
ducted in the ‘Secure Software Development’ course;

– A list of students’ motivations to enroll in the ‘Secure Software Development’
course; and

– A publicly-available repository of materials used to conduct exercises in the
‘Secure Software Development’ course [15].

2 Overview of the Course and Exercises

The course is titled ‘Secure Software Development’, which was introduced in the
graduate curriculum in the Department of Computer Science (CS) at TnTU for
the first time. The pre-requisite of this course for students was to be enrolled



Exercises in a Secure Software Development Course iii

Table 1. Students’ Experience in Cybersecurity and Software Engineering

Experience Cybersecurity Soft. Engg.

< 1 year 8 4
1 − 2 years 2 1
3 − 4 years 2 4
> 4 years 0 3

as a graduate student in the Department of CS at TnTU. Prior to conducting
the course, the syllabus of the course was shared amongst all graduate students
through e-mails in April 2020. A total of 12 students enrolled in the course.
The instructor of the course conducted an initial survey of students’ experience
in software engineering and cybersecurity. The students’ reported academic and
professional experience in software engineering and cybersecurity is presented in
Table 1. The course included three components: class lectures, exercises, and a
semester long project assigned individually to each student.

The course included eight exercises that discussed eight topics related to
secure software development. Before assigning each exercise necessary theoret-
ical concepts were covered by the instructor. Each of the exercises maps to a
knowledge unit (KU) recommended by the U.S. National Center of Academic
Excellence in Cyber Defense Education (CAE-CD) [12]. KUs are CS-related top-
ics deemed essential or recommended by the U.S. National Center of Academic
Excellence to develop a curriculum related to cyber defense education. We de-
scribe each of the exercises below:
Exercise#1 - Git Hooks for Automated Security Static Analysis : The
purpose of this exercise was to help students learn how to integrate security using
a single example of Git hook 6. Automated security static analysis is considered
as a good practice to integrate security into software development workflows. If
a software repository uses Git, then using Git-based utilities, such as Git Hooks,
automated security static analysis can be performed. As part of this exercise,
students were asked to learn about Git hooks, and how to create a Git hook
so that upon committing a file, a security static analysis tool can run and scan
all files in the repository. To perform security static analysis the students used
cppcheck, a security static analysis tool for C/C++ code 7.
Exercise#2 - Logging Location : The purpose of this exercise was to identify
locations where logging needs to be enabled for machine learning projects. In
this exercise the students were asked to inspect machine learning code imple-
mentation in Python and identify locations where logging needs to be enabled
but is not. Before assigning this exercise the students were exposed to concepts
related to security-related logging provided by prior work [8] [4].
Exercise#3 - Privacy Violations in Software Projects : The purpose of
this exercise was to make students aware of how implementation of a software
project can violate privacy properties of individuals using the software. As part of

6 https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
7 http://cppcheck.sourceforge.net/



iv Rahman et al.

this exercise, first, the students read a scientific paper [14] and identified person-
ally identifiable identifiers (PIIs), i.e., what utilities of the Android development
kit are susceptible to leaking information that can identify an individual. Exam-
ples of PIIs include permissions used in Android, such as ACCESS FINE LOCATION

and GET ACCOUNTS. Second, the students had to identify if these permissions are
used in a set of 50 Android applications. Finally, the students were required to
report which of the identified permissions from the first step were used in the
source code of the collected Android applications.

Exercise#4 - Security Requirements Validation : The purpose of this exer-
cise was to help students understand how security requirements can be translated
to test cases and observe if a given piece of software satisfy the specified require-
ments. Security requirements are a specific sub-category of software requirements
that are related to ensuring confidentially, integrity, or availability [6]. As part
of this exercise the students conducted test driven development, where they first
wrote test cases for a simple calculator to satisfy the following requirements:
(i) the calculator must be able to multiply and divide, (ii) all methods related
to mathematical operations should sanitize input, (iii) all methods related to
mathematical operations should handle division-by-zero exceptions, and (iv) all
methods related to mathematical operations should be fast. Second, following the
practice of test-driven development, the students were required to write code so
that the test cases written in the first step are satisfied.

Exercise#5 - Security Smells : The purpose of this exercise was to allow
students to apply their knowledge related to security smells gathered in the
lecture and apply it to SaltStack 8 scripts. Security smells are recurring coding
patterns that are indicative of security weaknesses [16]. SaltStack scripts are
used to implement the practice of infrastructure as code (IaC), the practice
of managing system configuration automatically using dedicated programming
languages and by applying recommended software engineering best practices [16].
As part of this exercise the students were asked to perform two tasks: first,
the students were asked to manually inspect three SaltStack scripts to identify
security smells. Second, the students were asked to build an automated program
to detect the identified security smell instances.

Exercise#6 - Security Static Analysis for Adversarial Machine Learn-
ing : The purpose of this exercise was to help students learn about how security
static analysis can be conducted for machine learning projects at scale. Adver-
sarial machine learning focuses on securing implementation of machine learn-
ing projects to protect against adversaries. Practitioners consider application
of security static analysis as an important practice to protect machine learning
projects against adversarial attacks [9]. As part of the exercise, first, the stu-
dents were asked to use bandit, a static analysis tool for Python 9, and apply
it automatically for 175 machine learning projects collected from the Model-

8 https://www.saltstack.com/
9 https://bandit.readthedocs.io/en/latest/



Exercises in a Secure Software Development Course v

Zoo repository 10. Second, the students were asked to automatically filter static
analysis results that are of ‘low’ severity as reported by Bandit.

Exercise#7 - Taint Analysis : The purpose of this exercise was to give stu-
dents hands-on experience about taint analysis. Taint analysis is the technique
of tracking a potential security weakness in the source code for the software of
interest [7]. Taint analysis can help to reduce false positives during security static
analysis and also help understand which parts of the software are affected by
the security weaknesses. As part of this exercise, the students had to inspect one
Python file and perform two tasks: first, they had to report the complete flow of
a taint, i.e., hard-coded password in the Python file. Second, they had to mine
abstract syntax tree of the Python file to automatically report the complete flow
of the taint.

Exercise#8 - White-box Fuzzing : The purpose of this exercise was to help
students get hands-on experience on white box fuzzing and understand how white
box fuzzing can help find faults in software. White-box fuzzing is the technique
of providing malicious input by inspecting the source code of software artifacts
and identify faults within the software [1]. In this exercise the students were
asked to craft malicious input semi-automatically for an Ansible script. Ansible
is a tool to implement the practice of IaC [16], which compiles and executes
Ansible scripts to automatically provision cloud computing resources.

3 RQ1: Student Motivations

In this section we provide the methodology and findings for RQ1: What are
students’ motivations for enrolling in the ‘Secure Software Develop-
ment’ course? Based on student feedback, which components of the
‘Secure Software Development’ are aligned with student motivations?

3.1 Methodology to Answer RQ1

We collect student responses through an online survey that was deployed at
the beginning of the semester. The purpose of this survey was to understand the
experience level of students with software engineering and cybersecurity. As part
of the survey we asked: “What were your motivations to enroll in the ‘Secure
Software Development’ course”? The question was open-ended.

We apply a qualitative analysis technique called open coding [17] to generate
categories from the text responses to the question. The derived categories of
student perceptions are susceptible to rater bias as the categories are all derived
by the first author. We mitigate this limitation by allocating another rater who
is the last author of the paper. The last author provided a mapping for the
obtained responses to the identified categories. The agreement rate is 100% with
a Cohen’s Kappa [5] of 1.0.

10 https://modelzoo.co/



vi Rahman et al.

3.2 Answer to RQ1

We identify three motivation categories for enrolling in the ‘Secure Software
Development’ course. We describe these categories below. The name of each
category related to student motivations is followed by the count of students who
mentioned the identified category:

Motivation#1 - Academic Requirements (2 out of 12): Two students
enrolled in the course to satisfy course requirements: “this class will be helpful
for my masters thesis and professional career”.

Motivation#2 - Career Development (7 out of 12): Students were mo-
tivated by the fact that the content of the course could help in their career
pursuits. As reported in Table 1, the enrolled students’ experience in software
engineering and cybersecurity varied, yet majority of the students perceived the
course content to advance their professional career. One student stated “I will
be pursuing a cybersecurity related position, but I think that it [the course] will
be something that will serve me well whether I choose to stay in a government
position, go into private industry, or in academia”. Strengthening software en-
gineering skills was also a motivating factor as one student stated “software
development is not my strong suit and I want to gain knowledge on how I can
develop software applications in a more robust way considering security”.

Motivation#3 - Gain Research Background (3 out of 12): Students
mentioned the focus and the content of the course may help them to conduct
their research projects. One student mentioned “I enjoy working in software
security and I will be doing my course project consistent with my research work”.

We also asked students about which course component helped them to sat-
isfy their motivations. The question was presented as a survey and all students
participated. As shown in Table 2 we observe students to perceive exercises to
be most aligned with their motivations to enroll in the course, followed by the
semester-long project.

Table 2. Exercises are Perceived to be Best Suited with Enrollment Motivations

Experience Respondent count

Exercise 11
Semester-long Project 9
Lectures 8

4 RQ2: Student Performance in Exercises

In this section, we provide the methodology and results for RQ2: What is the
performance of students in exercises conducted as part of the ‘Secure
Software Development’ course?



Exercises in a Secure Software Development Course vii

4.1 Methodology to Answer RQ2

We answer RQ2 by using information related to percentage of task completed
obtained from the course gradebook. Once the deadline for each exercise passed
the instructor inspected and graded the submission materials. Grades were as-
signed based on the amount completed and correctness of the provided solution.

4.2 Answer to RQ2

We answer RQ2 by reporting summary statistics for grades obtained for each
exercise. The summary statistics for grades is provided in Table 3. From the
statistics presented in Table 3, we observe students to perform the worst for
taint analysis. Students performed the best for security requirements validation.

Table 3. Summary Statistics of Grades For Eight Exercises

Exercise Name Stats (Min., Median, Max.)

Git Hooks for Automated Security Static Analysis (30%, 100%, 100%)

Logging Location (71%, 100%, 100%)

Privacy Violations in Software Projects (50%, 95%, 100%)

Security Requirements Validation (85%, 100%, 100%)

Security Smells (45%, 65%, 100%)

Security Static Analysis for Adversarial Machine
Learning

(80%, 100%, 100%)

Taint Analysis (20%, 30%, 70%)

White-box Fuzzing (45%, 100%, 100%)

5 RQ3: Positive Perceptions of Exercises

In this section we provide the methodology and results for RQ3: What are
the positive perceptions of exercises conducted as part of the ‘Secure
Software Development’ course?

5.1 Methodology to Answer RQ3

For each exercise the students were required to participate in a survey that asked
two questions: (i) Survey Q1: What are the positive aspects of the exercise?, and
(ii) Survey Q2: What are the negative aspects of the exercise? We use the an-
swers provided by the students for Survey Q1 to answer RQ3. We apply open
coding [17] to determine categories that express positive aspects of the students
for each exercise. Our process of applying open coding was similar to that of de-
riving student motivations described in Section 3.1. Similar to RQ1, we conduct
rater verification, where the last author provided a mapping for the obtained
responses to the identified categories related to positive perceptions of students.
The agreement rate between the first and last author for the obtained responses
is 65% with a Cohen’s Kappa [5] of 0.53.



viii Rahman et al.

5.2 Answer to RQ3

We identify six categories of positive perceptions. A mapping between each iden-
tified category and each exercise is presented in Table 4. The number of students
who have reported the category for an exercise is presented in parenthesis. For ex-
ample according to Table 4, skill set development was mentioned by six students
for the exercise related to security smell detection. We describe each identified
category related to positive perception below:

Table 4. Positive Perceptions and Corresponding Exercises.

Exercise Topic Reported Positive Perception

Git Hooks for Automated Security
Static Analysis

Skill Set Development (8), Practicality (7)

Logging Location Skill Set Development (4), Lecture Reinforcement (4),
Program Comprehension (1), Practicality (4)

Privacy Violations in Software
Projects

Skill Set Development (7), Practicality (4)

Security Requirements Validation Skill Set Development (4), Practicality (3)

Security Smells Skill Set Development (6), Lecture Reinforcement (3),
Practicality (5), Sense of Accomplishment (1)

Security Static Analysis for Adver-
sarial Machine Learning

Practicality (4)

Taint Analysis Skill Set Development (5), Program Comprehension
(3), Practicality (2), Self Evaluation (1)

White-box Fuzzing Skill Set Development (6), Lecture Reinforcement (2),
Practicality (7), Sense of Accomplishment (2), Self
Evaluation (1)

Positive Perception#1 - Lecture Reinforcement : The conducted exercises
provided students the opportunity to get a better understanding of what was
being taught in the class lectures. The exercises complemented the class lectures
by providing students clarity, as noticed by one student for the security smell
exercise “[it] was nice to actually use what we learned in class and reinforce the
material”. For the logging-related exercise one student stated “I got to actually
implement some of the concepts discussed in class which can be beneficial to
future work I will perform”. One student found the exercises to be a better
medium for learning the concepts taught as part of the lecture “I always learn
better from assignments that involve coding rather reading/studying the subject”.
Positive Perception#2 - Practicality : All exercises were perceived as prac-
tical by the students. For the exercise related to privacy violation one student
stated “practical knowledge of identifying personally identifiable information
(PII) in Android project source code”. For the exercise related to security re-
quirements validation one student stated “I had been introduced to TDD before
theoretically, and the process did not really make sense to me. With this [exer-
cise] and actually going through the process with a practical, hands-on example



Exercises in a Secure Software Development Course ix

was very helpful in understanding how it works and the usefulness of the practice;
practical knowledge gain”.

Positive Perception#3 - Program Comprehension : For exercises related
to logging location, security smell detection, and taint analysis, students were
required to inspect source code. As part of the assignment students navigated
source code files written in Python and SaltStack, which helped them to better
navigate source code. The exercises helped students to get better at program
comprehension. For example, in the case of taint analysis one student stated
“The exercise of manually going through the code to track the tainted paths was
a valuable and helpful exercise”.

Positive Perception#4 - Self Evaluation : Students mentioned how the
exercises helped them to self-evaluate their programming skills. The exercise
related to taint analysis required programming using the ‘ast’ library 11, which
helped students to assess what they knew. One student stated that the exercises
are helpful because: “they are highly applicable and from my personal point of
view they exposing my shortcomings in programming”.

Positive Perception#5 - Sense of Accomplishment : The exercises helped
students to gain a sense of accomplishment. For the white-box fuzzing exercise
one student was able to find a bug in the Ansible compiler, which the student
perceived as an accomplishment: “Being able to use fuzzing to test a production
application and being able to cause a crash in that application”.

Positive Perception#6 - Skill Set Development : For multiple exercises
the students mentioned that the assigned exercises help them to learn new tools
and techniques needed in software engineering. For the security smell exercise
one student stated exercises of this nature “is highly appreciated as it helps to get
a diverse skill set”. Completion of the fuzzing-related exercise required students
to learn on how to parse YAML files, which one student perceived positively and
stated “it was cool to use pyyaml, I haven’t done that before”. About the exercise
that involved security requirement validation a student stated: “I’ve never used
the python unit test module, and I believe this [exercise] gave me exposure and a
hands on experience on performing/creating unit tests in Python”. The idea of
using Git hooks for secure software development came as a pleasant surprise for
one student “Very cool to learn about git hooks and realize how useful it could be
for software projects. I was not aware that git provided this feature prior”.

6 RQ4: Negative Perceptions of Exercises

In this section, we provide the methodology and results for RQ4: What are
the negative perceptions of exercises conducted as part of the ‘Secure
Software Development’ course?

11 https://docs.python.org/3/library/ast.html



x Rahman et al.

6.1 Methodology to Answer RQ4

We use the answers provided by the students for Survey Q2 (‘What are the
negative aspects of the exercise?’) included in our survey to answer RQ4. We
apply open coding [17] to determine categories that express negative perceptions
of students for each exercise. Our process of applying open coding was similar to
that of RQ1 and RQ3. We also conduct rater verification, where the last author
provided a mapping for the obtained responses to the identified categories related
to negative perceptions of students. The agreement rate between the first and
last author for the obtained responses is 83% with a Cohen’s Kappa [5] of 0.62.

6.2 Answer to RQ4

We identify three categories of negative perceptions expressed by students for ex-
ercises. A complete mapping between the identified categories and the applicable
exercise is provided in Table 5. In Table 5, the ‘Reported Negative Perception’
column states the negative perception category names and the count of stu-
dents who stated the category enclosed within parenthesis. ‘None’ indicates that
no negative perceptions were reported by students for a certain exercise. We
describe each of the categories below:
Negative Perception#1 - Artifact Management : All artifacts i.e., datasets
and scripts for each exercise was shared using a Docker image. The Docker
image was available using the instructor’s DockerHub account, which included
all necessary dependencies to run certain programs needed to complete each
exercise. While downloading the Docker images one student commented: “seems
unnecessary to download a docker image of some 800+ MB to work on a small
python file”. Transfer of files back and forth between the Docker image and the
development environment also created negative experience for one student: “dev
environment is in Windows ... Docker is in a virtual machine ... passing files
back and forth is tedious”.
Negative Perception#2 - Lack of Background : Despite detailed written
instructions, we observe students to express a lack of background for each of
the eight exercises. For example, while identifying and detecting security smells
in SaltStack scripts one student found comprehension of SaltStack scripts to be
difficult: “I think SaltStack scripts are hard to look through especially if your
not familiar ... I spent a lot of time trying to look up and research how to get
the scripts to parse”. For the logging-related exercise, one student was not fa-
miliar with machine learning, and stated “I cannot really think of any negatives
other than my limited experience with machine learning and zero experience with
the Keras library. I struggled to know exactly what the code was doing in the
doDeepLearning function.”. Even though the instructions on how to use the
Docker image were given for each exercise, the students faced challenges: “I
didn’t know that ‘exiting’ from the shell will destroy the running image, and
when I rerun the Docker image all my work was gone”.
Negative Perception#3 - Limiting Documentation : Students expressed
negative perceptions while following the instructions provided in the documen-
tation of software libraries. For the taint analysis exercise one student found the



Exercises in a Secure Software Development Course xi

documentation of the Python-based ‘ast’ library: “Need to use the python library
AST, which is difficult to understand from the documentation”. Such views were
expressed by multiple students for the Python-based ‘javalang’ library that was
needed to complete the exercise related related to privacy: “Struggled to find
good resources for the javalang library beyond the basic examples and just ran
out of time to try to get it to work”. Another student stated “Couldn’t find good
documentation for javalang. Figuring out how to use the package was mostly
trial and error with the dir() function and interactive python console to learn
how to get the needed information”.

Table 5. Negative Perceptions and Corresponding Exercises.

Exercise Topic Reported Negative Perception

Git Hooks for Automated Secu-
rity Static Analysis

None

Logging Location Lack of Background (2), Artifact Management (1)

Privacy Violations in Software
Projects

Limiting Documentation (4)

Security Requirements Valida-
tion

None

Security Smells Lack of Background (2), Artifact Management (1)

Security Static Analysis for Ad-
versarial Machine Learning

Artifact Management (1)

Taint Analysis Limiting Documentation (2), Artifact Management (1)

White-box Fuzzing Artifact Management (3)

7 Discussion

We discuss the lessons that we learned from our findings as follows:
Students Prefer Real-world Exercises: We observe students to positively
perceive exercises that involve code snippets collected from real-world open
source projects and usage of real-world tools that are well-known in industry.
Based on our findings, we advocate cybersecurity educators to design exercises
and exams using real-world projects for a secure software development course.
The Good and the Bad of Exercise Diversity: Topic-wise exercises in
the ‘Secure Software Development’ course are diverse, which involved a diverse
set of technologies, such as SaltStack, Ansible, Python-based TDD, Android
applications, Git hooks, and machine learning code developed in Python. On one
side we have observed positive aspects of such diversity, for example, students
being exposed to a diverse set of tools and techniques that enhance their skill
set. On the other hand, students face challenges as they do not have necessary
background. Based on our experience, we urge educators to be aware of the
possible and negative aspects for introducing a diverse set of exercises, and find
a balance that is adequate for a secure software development course.



xii Rahman et al.

Documentation and Tool Challenges: For multiple exercises students men-
tioned existing documentation to be limiting. For example, while completing
the exercise related to taint analysis the documentation for ‘ast’ was hard to
comprehend. Similarly, for the privacy violation exercise, students found the
‘javalang’ documentation to be hard to follow. Our findings show that students
face documentation-related challenges while completing exercises. We urge soft-
ware engineering researchers to systematically investigate the pervasiveness of
the reported documentation-related challenges and identify techniques to miti-
gate such challenges.

From our reported findings in Section 6.2, we observe that use of Docker
image may be inappropriate for exercises as it incurs overhead with respect to
computation time and storage. We urge CS education researchers to synthe-
size the best practices on sharing artifacts for students, which will ensure that
necessary dependencies of a software artifact is installed with limited overhead.
The Curious Case of Taint Analysis: From Table 3, we observe majority of
the students to not complete the exercise related to taint analysis. Even though
the students expressed positive perceptions about the exercise itself, we observe
a disconnect between their perceptions and their ability to complete the exercise.
One possible explanation can be attributed to the documentation of ast, which
students found lacking. Another possible explanation is that students were not
previously exposed to compiler-related courses, which hindered the students to
conduct the exercise. Till date, TnTU does not offer compiler-related course,
which could have exposed students to concepts, such as parse trees and abstract
syntax trees. The instructor used one class lecture to expose students to concepts,
such as parse trees, liveness of variables, and recursion, but that may not have
been sufficient to mitigate the deficiency of the students. The lesson learned from
conducting the taint analysis exercise is that (i) not all graduate students may
not be proficient in parse tree mining and/or recursion, and (ii) before assigning
taint analysis exercises instructors should dedicate multiple lectures on program
analysis and recursion.
Limitations of the Paper: Our derived categories related to perceptions are
susceptible to rater bias, as they were derived by the first author. We mitigate
this limitation by assigning another rater who mapped student response to the
identified categories. We also acknowledge the identified findings are limited to
the sample size: our findings may not be generalizable to other courses related to
secure software development that are conducted at other universities. Further-
more, our findings are derived from a course that was conducted once.

8 Related Work

Our paper is closely related with prior publications related to cybersecurity ed-
ucation. Beach [2] surveyed 129 education institutions that offer cybersecurity
programs and reported 62% of the surveyed institutions do not consider human
factors while developing their cybersecurity curriculum. Wood and Raj [20] de-
scribed how key-logger exercises can be integrated into cybersecurity education



Exercises in a Secure Software Development Course xiii

curriculum. Lukowiak et al. [10] reported that presenting the course materials
in an incremental manner helped students to reinforce the content provided in
class lectures. Veneruso et al. [19] described their experience of using ‘CyberVR’,
a game that uses visual reality, to teach cybersecurity concepts to students.
Mountrouidou et al. [11] described their experience in integrating cybersecu-
rity concepts into the general curriculum of a liberal arts degree and reported
that if cybersecurity modules are flexible, then they can be incorporated into
a general education curriculum. Olano et al. [13] reported their experience of
introducing ‘SecurityEmpire’ in an undergraduate course to teach cybersecu-
rity concepts to students. They [13] reported SecurityEmpire to help increase
awareness and engagement about cybersecurity amongst students. Veneruso et
al. [19] reported CyberVR to be equally effective, but more engaging in teaching
cybersecurity-related concepts, compared to that of textbook-based methods.
Theisen et al. [18] documented their experience of conducting a massively on-
line open course (MOOC) related to secure software development, and observed
on-campus students to have higher quiz scores than that of MOOC students.

The above-mentioned description shows the prevalence of experience reports
related to a wide range of cybersecurity education concepts, such as hardware
device, gaming, MOOCs, virtual reality, and industrial control systems. However,
we observe a lack of research that discusses the experience of conducting a course
related to secure software development, which we address in this paper.

9 Conclusion

We have reported our experience in conducting a secure software development
course for the first time at TnTU. We document multiple types of perceptions
that express students’ positive attitude towards the assigned exercises, such as
self evaluation, skill set development, and practicality. Students reported three
categories of negative perceptions too, namely, lack of background, limiting doc-
umentation, and artifact management. Based on our findings, we recommend
educators to integrate real-world exercises into a secure software development
course with careful consideration of tool documentation, balance in exercise di-
versity, and student background.

References

1. Ammann, P., Offutt, J.: Introduction to software testing. Cambridge University
Press (2016)

2. Beach, S.K.: Usable cybersecurity: Human factors in cybersecurity education cur-
ricula. Nat. Cybersecur. Inst. J 1(1), 5–15 (2014)

3. Bures, T., Weyns, D., Schmer, B., Tovar, E., Boden, E., Gabor, T., Gerostathopou-
los, I., Gupta, P., Kang, E., Knauss, A., et al.: Software engineering for smart
cyber-physical systems: Challenges and promising solutions. ACM SIGSOFT Soft-
ware Engineering Notes 42(2), 19–24 (2017)

4. Chuvakin, A., Peterson, G.: How to do application logging right. IEEE Security
Privacy 8(4), 82–85 (2010). https://doi.org/10.1109/MSP.2010.127



xiv Rahman et al.

5. Cohen, J.: A coefficient of agreement for nominal scales. Ed-
ucational and Psychological Measurement 20(1), 37–46 (1960).
https://doi.org/10.1177/001316446002000104

6. Firesmith, D., et al.: Engineering security requirements. J. Object Technol. 2(1),
53–68 (2003)

7. Gupta, M.K., Govil, M.C., Singh, G.: Static analysis approaches to detect sql
injection and cross site scripting vulnerabilities in web applications: A survey.
In: International Conference on Recent Advances and Innovations in Engineering
(ICRAIE-2014). pp. 1–5 (2014). https://doi.org/10.1109/ICRAIE.2014.6909173

8. King, J., Pandita, R., Williams, L.: Enabling forensics by proposing heuristics to
identify mandatory log events. In: Proceedings of the 2015 Symposium and Boot-
camp on the Science of Security. HotSoS ’15, Association for Computing Machinery,
New York, NY, USA (2015). https://doi.org/10.1145/2746194.2746200

9. Kumar, R.S.S., Nyström, M., Lambert, J., Marshall, A., Goertzel, M., Comis-
soneru, A., Swann, M., Xia, S.: Adversarial machine learning–industry perspec-
tives. arXiv preprint arXiv:2002.05646 (2020)

10. Lukowiak, M., Radziszowski, S., Vallino, J., Wood, C.: Cybersecurity education:
Bridging the gap between hardware and software domains. ACM Trans. Comput.
Educ. 14(1) (Mar 2014). https://doi.org/10.1145/2538029

11. Mountrouidou, X., Li, X., Burke, Q.: Cybersecurity in liberal arts general edu-
cation curriculum. In: Proceedings of the 23rd Annual ACM Conference on In-
novation and Technology in Computer Science Education. p. 182–187. ITiCSE
2018, Association for Computing Machinery, New York, NY, USA (2018).
https://doi.org/10.1145/3197091.3197110

12. NIETP: NIETP About CAE Program. https://www.iad.gov/nietp/

CAERequirements.cfm (2020), [Online; accessed 18-Dec-2020]
13. Olano, M., Sherman, A., Oliva, L., Cox, R., Firestone, D., Kubik, O., Patil, M.,

Seymour, J., Sohn, I., Thomas, D.: Securityempire: Development and evaluation
of a digital game to promote cybersecurity education. In: 2014 USENIX Summit
on Gaming, Games, and Gamification in Security Education (3GSE 14). USENIX
Association, San Diego, CA (Aug 2014), https://www.usenix.org/conference/
3gse14/summit-program/presentation/olano

14. Onik, M.M.H., Kim, C.S., Lee, N.Y., Yang, J.: Personal information classification
on aggregated android application’s permissions. Applied Sciences 9(19), 3997
(2019)

15. Rahman, A.: Materials for the Secure Software Development Course (12 2020),
https://figshare.com/s/f40c6df28ab2a2b55165

16. Rahman, A., Rahman, M.R., Parnin, C., Williams, L.: Security smells in ansible
and chef scripts: A replication study. ACM Trans. Softw. Eng. Methodol. 30(1)
(Jan 2021). https://doi.org/10.1145/3408897

17. Saldana, J.: The coding manual for qualitative researchers. Sage (2015)
18. Theisen, C., Williams, L., Oliver, K., Murphy-Hill, E.: Software security educa-

tion at scale. In: Proceedings of the 38th International Conference on Software
Engineering Companion. pp. 346–355 (2016)

19. Veneruso, S.V., Ferro, L.S., Marrella, A., Mecella, M., Catarci, T.: Cybervr: An
interactive learning experience in virtual reality for cybersecurity related issues.
In: Proceedings of the International Conference on Advanced Visual Interfaces.
AVI ’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3399715.3399860

20. Wood, C., Raj, R.: Keyloggers in cybersecurity education. In: Security and Man-
agement. pp. 293–299. Citeseer (2010)


