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Abstract

There is a need of ensuring that learning (ML) models are interpretable.

Higher interpretability of the model means easier comprehension and explana-

tion of future predictions for end-users. Further, interpretable ML models

allow healthcare experts to make reasonable and data-driven decisions to pro-

vide personalized decisions that can ultimately lead to higher quality of service

in healthcare. Generally, we can classify interpretability approaches in two

groups where the first focuses on personalized interpretation (local interpret-

ability) while the second summarizes prediction models on a population level

(global interpretability). Alternatively, we can group interpretability methods

into model-specific techniques, which are designed to interpret predictions

generated by a specific model, such as a neural network, and model-agnostic

approaches, which provide easy-to-understand explanations of predictions

made by any ML model. Here, we give an overview of interpretability

approaches using structured data and provide examples of practical interpret-

ability of ML in different areas of healthcare, including prediction of health-

related outcomes, optimizing treatments, or improving the efficiency of screen-

ing for specific conditions. Further, we outline future directions for interpret-

able ML and highlight the importance of developing algorithmic solutions that

can enable ML driven decision making in high-stakes healthcare problems.
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1 | INTRODUCTION

There is a widespread usage of artificial intelligence (AI) due to tremendous progress in technology and industrial revo-
lution (Adadi & Berrada, 2018). The machine learning (ML) systems have shown a great success in analysis of complex
patterns (Murdoch, Singh, Kumbier, Abbasi-Asl, & Yu, 2018) and are present in a wide range of applications using
structured data in different fields, including healthcare. Nowadays, complex ML models are outperforming traditional
models in healthcare. Those are often difficult to understand because of lack of intuitiveness, difficult interpretation,
and lack of explanation of model predictions. ML models are often difficult to interpret due to the Complexity the lack
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of transparency in the process that was used to produce the final output. The lack of explanation regarding the deci-
sions made by models represents a major shortcoming in critical decision-making processes. It is important that ML
models have two main characteristics, understandability and explainability. Understandability is related to the question
of how an explanation is comprehended by the observer. Interpretability and explainability are similar concepts, often
used interchangeably (Carvalho, Pereira, & Cardoso, 2019). As stated by Adadi and Berrada (2018): “Interpretable sys-
tems are explainable if their operations can be understood by humans.” Interpretability of highly complex prediction
models are needed in healthcare because of the nature of the work. In recent years, more emphasis was given to the
recognition of healthcare solutions supported by ML (Ahmad, Eckert, & Teredesai, 2018). ML models are applicable,
for example, in predicting patient risk of disease, patient's likelihood of readmission, and predicting the need for care.
To understand and accept or reject predictions end-user and healthcare workers must understand reasoning behind the
prediction models (Ahmad, Eckert, & Teredesai, 2018).

Thus, the need for interpretable ML systems has increased as well (Carvalho et al., 2019). Further, the lack of inter-
pretability is a key factor that limits wider adoption of ML in healthcare. This is because healthcare workers often find
it challenging to trust complex ML models because the models are often designed and rigorously evaluated only on spe-
cific diseases in a narrow environment and depend on one's technical knowledge of statistics and ML. Obermeyer, Pow-
ers, Vogeli, and Mullainathan (2019) find the evidence of racial bias in US healthcare algorithms that guide health
decisions. Bias of prediction model can undermine the trust of the healthcare experts and other end-users of such
models. Furthermore, applying those models on the larger systems may not perform well because of the complexity of
the data and diversity of patients and diagnoses. Moreover, most of the models focus on accuracy prediction and rarely
explain their predictions in a meaningful way (Ahmad, Eckert, Teredesai, & McKelvey, 2018; Elshawi, Al-Mallah, &
Sakr, 2019). This is especially problematic in healthcare applications, where achieving high predictive accuracy is often
as important as understanding the prediction. Interpretable ML has thus emerged as an area of research that aims to
design transparent and explainable models and develop means to transform black-box methods into white-box methods
whose predictions are accurate and can be interpreted meaningfully.

Interpretable ML is fundamentally complex and represents a rapidly developing field of research (Gilpin et al., 2019;
Hall & Gill, 2018). Several terms can be found describing the interpretability and related concepts, such as the multi-
plicity of good models or model locality (Breiman, 2001; Hall & Gill, 2018), comprehensibility, or understandability
(Piltaver, Luštrek, Gams, & Martinči�c-Ipši�c, 2016), and mental fit or explanatory ML (Bibal & Frenay, 2016).

Interpretability is frequently defined as a degree to which a human can understand the cause of a decision from an
ML model (Miller, 2019). Gilpin et al. (2019) describe the main goal of interpretability as the ability to describe system
internals to humans in an understandable way. Many terms are related to interpretability of ML models but refer to dif-
ferent concepts. Interpretability has a subjective nature, thus there is no consensus about the definition of how to mea-
sure or define it. An interpretable model is one that can be understood and is related to accuracy, explainability, and
efficiency. On the other hand, efficiency must be taken into account where time needed for the user to grasp the model
is of high importance (Bibal & Frenay, 2016). The term explainable artificial intelligence was described by van Lent,
Fisher, and Mancuso (2004) to explain the behavior of artificial intelligence-controlled entities in game applications.
The aim of explainable artificial intelligence is to ensure easily understandable reasoning for the end-user through the
artificial intelligence knowledge and inference. Moreover, interpretability is often mentioned as a key area in the new
wave of ML research. In this case, it is used to ensure the confidence in the process of development of ML systems for
the end-users of such systems (Carvalho et al., 2019). The interpretation of ML models is often governed by various
motivations, such as interpretability requirements, high-stakes decisions impact, societal concerns, and ML desiderata,
regulations, and so on (Carvalho et al., 2019). Our operational definition of interpretable models in healthcare is end-
user focused, more precisely, a model is interpretable if it can be evaluated by the end-user, where the reasoning behind
the prediction is explained giving the end-users reasons to accept or reject predictions and recommendations (Ahmad,
Eckert, Teredesai, & McKelvey, 2018). Based on this operational definition basic examples of interpretable models
include short decision trees, linear and logistic regression with more examples presented in the next section, non-
interpretable or black-box models usually include complex models with a focus on outcomes, for example, ensembles of
classifiers or deep neural networks.

The European General Data Protection Regulation (GDPR) policy on the rights of citizens states that researchers
must explain algorithmic decisions that have been made in ML models (Greene, Shmueli, Ray, & Fell, 2019; Wachter,
Mittelstadt, & Floridi, 2017; Wallace & Castro, 2018). Consequently, this means that there must be a possibility to make
the results re-traceable or in other words, the end-user has the right to explanation of all decisions made by the com-
puter. On the other hand, one can also find literature questioning the importance of the model interpretability. For
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example, in a recent review paper on the state of AI in healthcare Wang and Preininger (2019) quote Geoff Hinton, one
of the pioneers in the field of AI, saying: “Policymakers should not insist on ensuring people understand exactly how a
given AI algorithm works, because people can't explain how they work, for most of the things they do.” On the other
hand, Rudin (2019) suggests the following: “People have hoped that creating methods for explaining these black-box
models will alleviate some of these problems, but trying to explain black-box models, rather than creating models that
are interpretable in the first place, is likely to perpetuate bad practices and can potentially cause catastrophic harm to
society.” To solve this problem Rudin suggests using inherently interpretable models and provides several examples of
replacing the black-box models with interpretable models like sparse scoring systems (Ustun & Rudin, 2017) that are
particularly suitable for the healthcare domain. The above-mentioned arguments have been the source of debates at the
recent conferences and in the literature. Some interesting opinions on positive and negative aspects can also be found
in a recent paper by Jia, Ren, and Cai (2020) that presents the experiences of some respected researchers working in the
ML field. Healthcare professionals are often overwhelmed with the number of patients, the amount of data, and associ-
ated tasks. Thus, providing ML models that are easy to interpret and are explainable is necessary (Ahmad, Eckert, Ter-
edesai, & McKelvey, 2018). Moreover, interpretable ML models are needed to support healthcare workers in decision
making and to ensure quality and better patients’ outcomes (Carvalho et al., 2019). ML techniques are effective in iden-
tifying risk factors and various diseases. Predictive models allow healthcare professionals in healthcare resources alloca-
tion, better care, and patient outcomes. Although complicated models may have high accuracy, they are not easily
explainable (e.g., deep neural networks; Michalopoulos et al., 2020). On the other hand, Vellido (2019) states that
improving model interpretability is very important in the field of healthcare for the adoption in practice. However,
there is a need for integrating healthcare experts in the design of data analysis and interpretation. However, there are
also negative aspects in ML models that we need to take into account, including dataset shift, accidental confounders
fitting, unintended discriminatory bias, the challenges of generalization of findings, and the unintended negative conse-
quences on health outcomes (Kelly, Karthikesalingam, Suleyman, Corrado, & King, 2019). Although deep learning is
an advanced ML technique, deep learning algorithms are often considered as black boxes with no clear interpretation.
Ren (2020) explains that AI models could address this problem. However, this should not be a requirement for the
implementation of AI technologies, because AI can be developed as tool with human approval and oversight and can
be made both effective and safe through training and verification. The authors also state that patients often find effec-
tiveness more important than interpretability (Jia et al., 2020).

This article outlines the basic taxonomy of interpretability approaches in ML-based prediction models in healthcare.
Therefore, it aims to provide simple definitions that can be used by readers beginning to use ML methods as well as
healthcare professionals to get better understanding of the fast-emerging field.

It must be noted that approaches focusing on the interpretability of ML models built on nonstructured data such as
different types of medical images, text, or other signal-based data are not included in this study. To obtain more infor-
mation on a more general view of interpretability and explainable AI in healthcare, the reader is referred to works by
Holzinger, Langs, Denk, Zatloukal, and Müller (2019) or London (2019). Recently, a broader concept of responsible ML
in healthcare was presented (Wiens et al., 2019), which proposes that an interdisciplinary team of engaged stakeholders
(policy makers, health system leaders, and individual researchers) systematically progress from problem formulation to
widespread deployment, where also the level of required transparency and thus interpretability is addressed.

2 | CATEGORIZATION OF ML MODELS INTERPRETABILITY

There are different criteria for classifying methods for ML interpretability such as intrinsic or post hoc classification,
premodel, in-model, or postmodel and classification based on the model outcome (Carvalho et al., 2019; Molnar, 2020).
Intrinsic interpretability refers to a process of selecting and training a ML model that is intrinsically interpretable due
to its simple structure (e.g., simple decision tree or regression model). However, it needs to be noted that both, decision
trees and regression models offer only a limited interpretability, especially in case of capturing the nonlinearity in data.
Post hoc (postmodel) interpretability usually describes application of interpretability methods after the training of the
model (Molnar, 2020). Interpretability methods can also be classified based on the time of building the ML model.
Premodel methods are independent of the model and can be used before the decision on which model will be used is
taken. These methods are, for example, descriptive statistics, data visualization, Principal Component Analysis (PCA),
t-Distributed Stochastic Neighbor Embedding (t-SNE), and clustering methods. Even though Molnar (2020) classifies
PCA, t-SNE, and clustering methods under interpretable methods it needs to be noted that interpretability of attributes
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transformed using PCA, embeddings or clusters cannot offer comprehensible medical interpretation, but can be used in
visualization of the results where patterns of interest from the interpretability point of view might be seen. So-called in-
model prediction models have inherent interpretability integrated into the model itself. Postmodel interpretability refers
to improving interpretability after building a model (post hoc; Carvalho et al., 2019). Moreover, Murdoch et al. (2018)
define post hoc interpretability methods as methods that “provide insight into what a trained model has learned, with-
out changing the underlying model”.

Interpretability methods can also be classified by the results of the interpretability model. Examples of such
approaches include the following methods (Molnar, 2020):

• Feature summary statistics which refer to summary of each feature statistic that affects the model predictions.
• Feature summary visualization describing the methods where the results are only meaningful if we present them

using visualization techniques, as they are difficult or impossible to interpret when presented in the form of a table.
• Model internals approach is model specific and refers to the interpretation of intrinsically interpretable models.

Weights of the linear regression models or features and thresholds used for the splits in the decision trees represent
examples of such approaches.

• The data point interpretability is based on data instances and often uses similar instances to an instance for which
we are trying to obtain a prediction model-based interpretation. Such approach to local interpretability is useful in
image and text classification, but less in high-dimensional tabular data.

• Intrinsically interpretable models aim to interpret black box models by approximating them with an interpretable
model (see next section for more details).

Another approach to interpretability of ML models categorizes the interpretability into global and local. Tradition-
ally, the focus in ML research was on global interpretability in an effort to help users understand the relationship
between all possible inputs to an ML model and the space of all predictions made by the model (Bratko, 1997; Martens,
Huysmans, Setiono, Vanthienen, & Baesens, 2008). In contrast, local interpretation helps users to understand a predic-
tion for a specific individual or about a small, specific region of the trained prediction function (Hall, Gill, Kurka, &
Phan, 2019; Stiglic, Mertik, Podgorelec, & Kokol, 2006). Both types of approaches have been successfully used in differ-
ent healthcare domains and are still being advanced in parallel with novel methodological approaches in development
of ML-based prediction models.

In the clinical setting ML prediction models, we are frequently interested in different evaluation metrics as in other
fields where estimation of area under the ROC curve (AUC) is often enough to assess the performance of the prediction
model. Use of sensitivity or positive predictive value might be of higher importance in some applications of prediction
models in clinical environment (Simon, Shortreed, & Coley, 2019; Steyerberg, 2019) and can also influence the inter-
pretability of the results from prediction models. We propose a categorization of interpretability that is simple and can
be used by experts and nonexperts in the field. Therefore, we categorize interpretability approaches in two nonexclusive
groups—that is, model-specific or model-agnostic and local or global.

3 | MODEL-SPECIFIC OR MODEL-AGNOSTIC INTERPRETABILITY

Model-agnostic and model-specific models are used to either interpret the decision directly from the model
(e.g., extracting all rules from the decision tree) or use some specific technique like knowledge distillation (Hinton,
Vinyals, & Dean, 2015) to build a simple model that can be interpreted (e.g., a decision tree, set of rules, or a regression
function). Model-specific interpretation methods are limited to specific models and derive explanations by examining
internal model parameters (Du, Liu, & Hu, 2019). Model-agnostic methods can be used on any ML model and are usu-
ally applied post hoc (Molnar, 2020), where internal model parameters are not inspected as the model is treated as a
black box (Du et al., 2019), thus creating a distinction with model-specific methods where this is the case. Typically, to
achieve model-agnostic interpretability, one can use a surrogate or a simple proxy model to learn a locally faithful
approximation of a complex, black-box model based on outputs returned by the black-box model. One of the earliest
approaches of approximating the black-box model using a simple interpretable model can be found in a study where
Craven and Shavlik (1994) extracted rules from the neural networks. Another similar approach was introduced in a
paper on model compression by Bucil�a, Caruana, and Niculescu-Mizil (2006) and was recently revived and updated
under the name of knowledge distillation (Hinton et al., 2015).
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Here we will briefly mention another specific interpretability method, both model-specific and model-agnostic,
Graph Neural Network Explainer (GNNExplainer; Ying, Bourgeois, You, Zitnik, & Leskovec, 2019), which uses graph
representation and requires a special ML framework for the complexity of data representation, such as the current
state-of-the-art Graph Neural Network (GNN), which is experiencing a surge of interest (Xu, Hu, Leskovec, &
Jegelka, 2018).

The details are outside the purview of this article, the reader is referred to works by Hamilton and colleagues
(Hamilton, Ying, & Leskovec, 2017), but since GNNExplainer provides both global and local interpretability it might
prove useful for practitioners of GNN in the future, as it provides the ability to visualize relevant structures to inter-
pretability and gives insights into errors of faulty GNNs (Ying et al., 2019).

4 | LOCAL OR GLOBAL INTERPRETABILITY

Methods can explain a single prediction (local interpretability) or the entire model behavior (global interpretability;
Molnar, 2020). Local interpretation of the models can be achieved by designing justified model architectures that
explains why a specific decision was made. It can also be achieved by providing similar examples of instances to the tar-
get instance. For example, by emphasizing specific characteristics of a patient that are similar to characteristics of a
smaller group of patients but different in other patients. Local interpretation techniques were not so frequently used
until recently, but in the last 10 years many novel techniques were introduced that allow at least feature importance
estimation for prediction at the personalized level suitable for the models with no or weak interpretability (Lundberg &
Lee, 2017; Ribeiro, Singh, & Guestrin, 2016; Ribeiro, Singh, & Guestrin, 2018). On the other hand, globally interpretable
models offer transparency about what is going on inside a model on an abstract level (Du et al., 2019). In order to
explain global output of the model one needs a trained model, knowledge about the algorithm and the data
(Lipton, 2016). Some authors (Ahmad, Eckert, Teredesai, & McKelvey, 2018) also argue about the specific group of
interpretability approaches called cohort-specific interpretability, where they focus on characteristics of population
subgroups in relation to the predicted outcome. However, we can also classify such cases as either global if the sub-
group is treated as the subpopulation or as local if single prediction interpretations for the subgroup are grouped
together (Molnar, 2020). An example of such model is Model Understanding through Subspace Explanations (MUSE),
where it uses the behavior of subspaces characterized by certain features of interest for explanation (Lakkaraju, Kamar,
Caruana, & Leskovec, 2019).

5 | CATEGORIZATION OF INTERPRETABLE ML MODELS

Some examples of prediction models that are interpretable using global/local or model-specific/model-agnostic inter-
pretability techniques are shown in Table 1. Historically, global interpretability was widely used to extract knowledge
from the prediction models such as decision trees (difficulty of interpretability depends on depth and number of termi-
nal nodes), linear and logistic regression models (prediction as a weighted sum or weighted sum transformed by the
logistic function) or naive Bayes (models based on the independence, thus conditional probability can be interpreted
and for each feature, the contribution can be assessed). Figure 1 presents four representative examples of interpretabil-
ity approaches based on the examples given in Table 1.

Each of the four approaches to interpretability can be applied to real-world problems based on the characteristics of
the environment where we would like to apply a specific approach. The global specific models are the most appropriate
in cases where the user is interested in global interpretation and can afford to sacrifice some prediction performance to
get a directly interpretable model.

One can overcome the weakness of lower prediction performance mentioned for the global model-specific interpre-
tation approaches by employing more complex and usually more accurate models such as ensembles of classifiers or
deep neural networks. These models can in most cases only be interpreted by model-agnostic approaches, where some
exceptions exist, such as variable importance in Random Forests, but one has to be careful depending on the method
used since bias could be possibly present making the ranking unreliable (Nebrini, 2019). In the case of global model-
agnostic approaches where surrogate models are most often used as a summarization with a more interpretable approx-
imation, for example, linear regression, decision tree, it can be expected that some critical elements of the more com-
plex model are missing.
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On the other side, there are specific cases where interpretation of the models will demand local interpretation. One
of the strengths in local model-specific approaches is their ability to present the reasons for a decision in a very compre-
hensible and intuitive way (a small number of rules, part of a decision tree, or a few examples representing the nearest
neighbors of the example of interest). Again, the weakness of such approach is in the prediction performance which is
usually lower than in the case of model-agnostic approaches often employing more complex models. Unfortunately,
most of the approaches in this group only allow very limited, usually variable importance based, reasoning about the
outcome for an example of interest.

6 | APPLICATIONS OF INTERPRETABLE ML IN HEALTHCARE

In this section, we provide examples of real-world studies that employed at least one interpretability approach men-
tioned in the previous section to demonstrate their use in different fields of healthcare.

Model-specific approaches focused on global interpretability of ML-based models in healthcare have been in use for
more than two decades. Due to their high level of interpretability and simple use in practice, the approaches like linear
regression or naive Bayes models are still used in different fields of healthcare like urology (Otunaiya & Muham-
mad, 2019; Zhang, Ren, Ma, & Ding, 2019), toxicology (Zhang et al., 2019; Zhang, Ma, Liu, Ren, & Ding, 2018), endocri-
nology (Alaoui, Aksasse, & Farhaoui, 2019), neurology (Zhang & Ma, 2019), cardiology (Doshi-Velez & Kim, 2018;
Feeny et al., 2019; Salmam, 2019), or psychiatry (Guimar~aes, Araujo, Araujo, Batista, & de Campos Souza, 2019; Obeid
et al., 2019). However, even linear regression or naive Bayes models are only interpretable to some extent as it is diffi-
cult to interpret the results of such models in case of nonlinearity or nonhomogeneous attributes. Model-specific
approaches focusing on local interpretation that can be based, for example, on k-NN or decision trees were recently
used for interpretation in prediction of health-related conditions, including occupational diseases (Di Noia, Martino,
Montanari, & Rizzi, 2020) or knee osteoarthritis (Jamshidi, Pelletier, & Martel-Pelletier, 2019), cancer (e.g., breast can-
cer or prostate cancer; Aro, Akande, Jibrin, & Jauro, 2019; Seker, Odetayo, Petrovic, Naguib, & Hamdy, 2000), severity
of a disease, including chronical diseases (e.g., diabetes or Alzheimer's disease; Bucholc et al., 2019; Karun, Raj, &
Attigeri, 2019), and mortality rates (e.g., myocardial infarction or perinatal stroke; Gao et al., 2020; Prabhakararao &

TABLE 1 Examples of approaches to interpretability of prediction regression models

Global Local

Model-specific - Decision trees (depends on depth and number of terminal
nodes; Hastie, Tibshirani, & Friedman, 2009; Stiglic,
Kocbek, Pernek, & Kokol, 2012),

- Linear and logistic regression models (Harrell Jr, 2015),
- Generalized linear models (GLM) and generalized additive
models (GAM; Hastie et al., 2009),

- Naive Bayes classifier (Kononenko, 1993),
- GNNExplainer (Ying et al., 2019)

- Set of rules (for specific individual; Visweswaran,
Ferreira, Ribeiro, Oliveira, & Cooper, 2015),

- Decision trees (by tree -decomposition; Visweswaran
et al., 2015),

- Visual analytics-based approaches (interactive
visualization techniques for interpretation focusing
on individual prediction),

- k-Nearest neighbors (k-NN; depends on the number
of important features, retrieving k-nearest neighbors
for interpretation; Yuwono et al., 2015),

- GNNExplainer (Ying et al., 2019)

Model-agnostic - Different variants of model compression/knowledge
distillation/global surrogate models (Elshawi, Al-Mallah,
& Sakr, 2019),

- Partial Dependence Plots (PDP; Elshawi, Al-Mallah, &
Sakr, 2019),

- Individual Conditional Expectation (ICE) plots (Elshawi,
Al-Mallah, & Sakr, 2019),

- Black Box Explanations through Transparent
Approximations (BETA; Lakkaraju, Kamar, Caruana, &
Leskovec, 2017)

- Model understanding through subspace explanations
(MUSE; Lakkaraju et al., 2019).

- Local interpretable model-agnostic explanations
(LIME; Ribeiro et al., 2016),

- Shapley additive explanations (SHAP; Lundberg &
Lee, 2017),

- Anchors (Ribeiro et al., 2018),
- Attention map visualization,
- Model understanding through subspace explanations
(MUSE; Lakkaraju et al., 2019).
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Dandapat, 2019). Local and model-agnostic interpretability can be used in interpretability of complex models, such as
deep learning models. For example, SHAP was used in interpretation of predictions for the prevention of hypoxaemia
during surgery (Lundberg et al., 2018), which increased the anaesthesiologists anticipation of hypoxemia events by 15%.

As already mentioned in the previous section, some recent approaches to interpretability cannot be simply classified
in one of the four groups displayed in Figure 1. Model interpretability focusing on feature subspaces defined by the
domain experts was proposed by Lakkaraju et al. (2019). MUSE was used to help in explaining decisions from the
three-level neural network trained on depression diagnosis dataset. It generates sets of if-then rules that describe the
model decisions on a global level, but it also provides a separate set of rules for a subspace based on the features
selected by a healthcare expert working with patients. More specifically, authors demonstrate the effectiveness of MUSE
to produce rules optimized for fidelity, unambiguity, and interpretability for a subspace focusing on excursive and
smoking as those two features might be chosen by the expert as actionable features. A typical global interpretability
approach would not consider the fact that there are features in the datasets that are more interesting than others as it is
possible for the patient and healthcare expert to influence their values by introducing some interventions. As such,
MUSE could be classified as a global model-agnostic interpretability approach, but it also demonstrates characteristics
of approaches focusing on personalized interpretation by narrowing the subspace of search by end-user input.

In addition to technical challenges related to the development of interpretable models, we also need to address a
myriad of ethical, legal, and regulatory challenges, for example, the GDPRs right to explanation (Wachter et al., 2017;
Wallace & Castro, 2018). The latter type of interpretability is usually represented as a user-centric approach that enables
users to find an appropriate model for a specific problem. For example, when the interpretation of general predictions
at the population level is required, then global and model-specific models might be an appropriate choice. However,
most practical applications of prediction models in healthcare are focused on the individual and would therefore
require local model-specific interpretability approaches to allow the highest possible level of interpretability. On the
other hand, most of the local model-specific prediction models (e.g., personalized rule sets or k-NN) cannot achieve the
level of prediction performance of the more advanced models where model-specific interpretability is not possible (e.g.,
most deep learning approaches).

FIGURE 1 Visual representation of interpretability approaches for machine learning-based predictive modeling in healthcare
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7 | DISCUSSION

This article provides a current and practical overview of interpretability methods for prediction models in healthcare,
with a focus on usability from an end-user perspective. In contrast to many other fields, decisions in healthcare are
high-stake decisions as they can directly influence a treatment outcome or even survival of a patient. From the techni-
cal perspective, this article focuses on structured data where a lot of emphasis is on feature (variable) importance. In
contrast to structured data, the interpretability represents an important research topic in medical computer vision (CV)
and natural language processing (NLP) as well (Lei, 2017). In CV, the focus is on identification of the image sections
that are responsible for successful recognition of critical, health condition-specific regions in the image that might be
relevant for medical experts (Escalante et al., 2018; Hosny, Parmar, Quackenbush, Schwartz, & Aerts, 2018;
Mazurowski, Buda, Saha, & Bashir, 2019; Razzak, Naz, & Zaib, 2018). Although this type of approaches to interpretabil-
ity is specific, they could be adapted to unstructured data by transforming the data to a format similar to images. In the
NLP, the focus in interpretability is on marking the sections of text representing the content of interest. An example of
such approach is classification of documents where the ML-based interpretability approaches are used to mark sections
of textual documents that explain why they were categorized to a specific group (Arras, Horn, Montavon, Müller, &
Samek, 2017). In case of healthcare applications, the textual parts of electronic healthcare records could be used to
obtain more information on a patient by extracting marked information from the clinical text.

In recent years, a shift in the research of interpretability methods can be observed from model-specific and global
interpretable models to model-agnostic and local interpretable models, where one of the reasons is the availability of
massive datasets in healthcare (Esteva et al., 2019). It needs to be noted that this overview does not provide an in-depth

BOX 1 Visual analytics and interpretability

In recent years, researchers are increasingly relying on visual analytics (VA) techniques to support interpret-
ability of ML models within healthcare fields (Simpao, Ahumada, Gálvez, & Rehman, 2014). Visual analytics
extends the interaction paradigm of traditional information visualization techniques to support both the inter-
pretation of ML models and model steering with feedback from end-users (Endert et al., 2017). Vellido (2019)
argues that medical experts need to be integrated into the design of these data analysis interpretation strategies,
so as to become a part of routine clinical and health care practice. The idea can be traced back to Kovalerchuk,
Vityaev, and Ruiz (2001).

Both model-specific and model-agnostic approaches have been researched in VA prototypes. RetainVis
(Kwon et al., 2018) is a prominent example of a model-specific VA approach that visualizes a recurrent neural
network to support interpretation and diagnosis of the model. RetainVis uses t-SNE (Maaten & Hinton, 2008)
to project patients on a 2D space and explains the model's interpretation of data by showing which patients are
closely located in the latent space. The approach has been used to predict future diagnosis of heart failure and
cataract. Although the approach is promising, van der Maaten (2018) also points out limitations, as t-SNE will
not help assign meaning to point densities in clusters.

Most other approaches are model-agnostic. RuleMatrix (Ming, Qu, & Bertini, 2018) is a prominent example
that relies on extracted rule-based knowledge from the input–output behavior of a model. The system helps
domain experts understand and inspect classification models using rule-based explanations and was used to
improve cancer and diabetes classification. Prospector (Krause, Perer, & Bertini, 2016) is a second model-
agnostic example that leverages the concept of partial dependencies that communicate how individual features
or multiple input variables affect the prediction. The system also supports instance-level explanations, enabling
users to understand why certain data results in a specific prediction. Zintgraf, Cohen, Adel, and Welling (2017)
present a method that visualizes which pixels of an input image are evidence for or evidence against a node in
a deep neural network. Moreover, Li, Fujiwara, Choi, Kim, and Ma (2020) focus on visualizing features to
explain the reasoning of a model. The approach is used to explain and compare different models for clinical
data beyond their accuracy scores. The VA system visualizes an overview of the similarities of local feature con-
tributions of different models using t-SNE. The system also incorporates a model summary view to analyze the
differences in consistencies of the features across models.
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analysis of some topics that are still open (Ahmad, Eckert, Teredesai, & McKelvey, 2018), such as simplification of complex
models for explanations that may result in suboptimal results, thus auditing output for fairness and bias might be a better solu-
tion (Tomasello, 1999), scalability of interpretable ML models (e.g., LIME or SHAP values can be computationally expensive)
and methods for evaluation of explanation models (e.g., different models with similar error rate but different explanations).
Another current research topic related to interpretability of ML models in healthcare is causality (Holzinger et al., 2019), which
is defined as causal understanding with effectiveness, efficiency, and satisfaction in a specified context of use (Box 1).

8 | CONCLUSION

To trust, maintain fairness and transparency of a specific model and its predictions, it is important that we understand
different approaches to model interpretability. Interpretability can be categorized in terms of model-specific and model-
agnostic or global and local interpretability. There are various new techniques and approaches available for interpret-
able ML. However, the key challenges are still unsolved, and future research is needed to find new and reasonable solu-
tions for the progress in this field. In many cases, the challenges of interpreting the results of prediction models are
related to more and more complex prediction models. For example, recent solutions incorporating the medical knowl-
edge in the form of knowledge graphs represent a specific problem also in the interpretability and representation of the
results. Some speculations on possible improvements that would allow more effective interpretability solutions by com-
bining approaches presented in this article are presented in the remainder of this section.

In the future, we expect more approaches like MUSE (Lakkaraju et al., 2019) where a global interpretability
approach is supplemented by specific interpretations that can explain predictions either for a single individual or a
smaller group of individuals. Although it is difficult to predict the exact direction of future research in this field, it is
certain that interpretability techniques represent an important concept that needs to be taken into account when devel-
oping prediction models for healthcare. Another avenue of research might lie with GNN, which combines node feature
information and graph structure by using neural networks (Ying et al., 2019) and the aforementioned GNN Explainer
as a tool for post hoc explanation of GNN. However, there is a limited understanding of GNN properties and limitations
(Xu et al., 2018). Moreover, it is necessary to understand and additionally improve the generalization properties of
GNNs. Future research should focus on developing algorithmic solutions that enable ML driven decision-making for
various healthcare problems that influence disease course and outcome.
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