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Food supply shocks are increasing worldwide'?, particularly the type of shock wherein
food production or distribution loss in one location propagates through the food
supply chain to other locations**. Analogous to biodiversity buffering ecosystems
against external shocks®®, ecological theory suggests that food supply chain diversity
is crucial for managing the risk of food shock to human populations”®. Here we show
that boostingacity’s food supply chain diversity increases the resistance of a city to
food shocks of mild to moderate severity by up to 15 per cent. We develop an
intensity—-duration-frequency model linking food shock risk to supply chain
diversity. The empirical-statistical model is based on annual food inflow observations
from all metropolitan areas in the USA during the years 2012 to 2015, years when most
of'the country experienced moderate to severe droughts. The model explains a city’s

resistance to food shocks of a given frequency, intensity and durationasa
monotonically declining function of the city’s food inflow supply chain’s Shannon
diversity. This modelis simple, operationally useful and addresses any kind of hazard.
Using this method, cities canimprove their resistance to food supply shocks with
policies thatincrease the food supply chain’s diversity.

Food supply shock is a pressing issue that may be increasing world-
wide'? Extreme-weather events, possibly exacerbated by climate
change®®, are a main driver of food supply shocks™. The risk of simul-
taneous global breadbasket failure is also probably rising'?, posing a
threat to systemic and catastrophic food production losses™. Geopoliti-
cal crisesand policy changes are also responsible for alarge proportion
of shocks to different food systems’. Moreover, threats to public health
can disrupt food supply chains, as shown by the coronavirus disease
2019 pandemic in several national economies around the world™.
Global and national food supply chains increase exposure to shocks
compared with local food supply chains*”>¢, but also add diversity
and resilience™",

Network topological diversity and connectivity arekey attributes of
resilient social-ecological™® systems. Food supply chains, along with
other material inflows such as water and energy, are a close analogy
to an ecological food web™?, Resilience to shock has “three R's”?
resistance to changing food inflows, robustness to a wide range of
hazards andrecovery or reorganization time after ashock. Therefore,
fromecological and resilience theory??**, afood shock resilience model
should relate the diversity and/or connectivity of the food supply chain
network to explain a city’s resistance to food shocks. Supply chain
diversity provides adaptive options for the city to exploit when some
of its supply chains suffer shock® %, thus boosting resilience to shock.
The methods in this paper measure resistance to food supply shock,
which is a specific subtype of resilience®.

If cities, companies and nations had access to a model estimating
their ability to buffer food supply chain shocks, this model could be
used in policy and management to optimize supply chains and control

therisk of shocks??%. The ideal model should be simple, quantitative,
accurate, operationally useful, applicable at the scale of cities (which
consume and process most food)?, ‘hazard agnostic’ for all causes
of shocks, and would explain shock risk as a function of factors that
a city, company or nation can control. We are skilled at modelling
hazard-specific risk management, but general hazard-agnostic models
ofresilience are better because they can potentially handle unexpected
extreme events that continue to threaten our human systems. Here,
we propose astatistical-empirical model meeting these ideal criteria,
explaining theresistance of USA cities to food supply shocks as afunc-
tion of the topological diversity of the city’s food supplier network.

Results

Using annual timescale food inflow supply networks (crops, live ani-
mals, feed and meat) for the cities of the USA, we extracted the annual
intranational food inflow subgraph of each metropolitan area for the
period 2012-2015, which is the period with available data® and when
food production systems were substantially affected by drought and
agricultural production shocks on the Great Plains and in the western
USA®"%2,In this model a shock occurs when food inflows drop by more
than the intensity threshold (ranging from 3% to 15%) for a duration
of ayear, with the drop measured against the average inflows of the
four-year time period.

Using observations of thousands of food inflows to hundreds of USA
cities across four years and four types of food, we calculate the prob-
ability (or frequency) of exceeding agivenshock intensity for an annual
duration for each USA city. The resistance of a city to food shocks is the
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Fig.1|Relationship between the probability of shock and supply chain
diversity.a, b, Empirical (a) and modelled (b) relationship between the
probability of food supply chain shock P(S >s) and supply chain diversity D for
differentshockintensities s. Food systems—each food system consists of the
supply chainfor one of the cities’ four food sectors—are classified into 6 bins of
supply chaindiversity (limits 0, 0.395, 0.497,0.585,0.665,0.755and 0.92) with
204,202,204,203,206 and 202 observations in each bin. These 6 bins each
have an average (with standard error givenin parentheses) supply chain
diversity of 0.28 (0.007), 0.45(0.002), 0.54 (0.002), 0.62 (0.002),0.71(0.002)
and 0.81(0.002), respectively. The probability of food supply chain shockin
eachbinis calculated as the number of food systems with shocks larger thana
shockintensity sdivided by the total number of food systems in the bin

complement to the probability of the shock. We find that resistance
relates positively to the Shannon diversity of a city’s food inflows. This
assumes that all cities’ supply chains were exposed to shocks of many
intensities during the study period. Thisis ajustified assumptionin the
USA for the study period of 2012-2015, because in 2012 the USA Great
Plains experienced an exceptionally severe drought®and in2012-2013
the western USA experienced a severe drought®, both with widespread
losses reported in crops and livestock®?*,

Theresulting model takes the operationally useful formof aninten-
sity—duration—frequency (IDF) relationship that is widely used for risk
and hazard engineering and as abasis for design codes and policies of
risk®. This model provides an all-hazards or ‘hazard agnostic’ approach,
because—although the empirically observed shocks underlying our
analysis are mostly due to drought affecting food suppliers—the model
isvalidin principle for all kinds of shocks to the city’s food supply net-
work.

Food shocks and supply chain diversity
For citiesin the USA, the probability of an annual food supply shock S
being greater than ashock intensity s, P(S>s) (see Methods), declines
asthediversity D ofacity’s food inflows supply chainincreases (Fig. 1a).
Our measure of supply chain diversity is calculated using the Shannon
diversity of a city’s supply chain network of intranational trading part-
ners based on a combination of five different indicators (Methods).
Using data for 284 citiesand 4 food sectors, the annual probabilities of
food supply shocks are calculated by measuring, for each city and food
sector, the maximum food supply departure from the annual average
during 2012-2015 (Methods). We utilize atotal of 4,884 buyer-supplier
subgraphs and 1,221 time series to calculate P(S > s) and D.

Our resultsindicate that with greater supply chain diversity D, cities
aremorelikely to avoid or resist shocks of increasing intensity (3%, 5%,
10% and15%; Fig.1a). The shock intensity is quantified as the occurrence
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(Methods). For clarity, panel a shows the probabilities of food supply chain
shockforse€ {3,5,10, 15} (for other s values see Supplementary Fig.1). Foreachs
value, the empirical value of P(S > s) is fitted against D using a constrained
exponential function (curvesina). The confidenceboundsrepresent +1s.d. of
thefitted curves (degrees of freedom =4). The parameter values and
goodness-of-fit results for these exponential fits are shown in Extended Data
Table 1. With the exponential fit of the empirical relationship, the curvesin
panelbare obtained by relating the parameters from the exponential fits to the
shockintensity susinglinear regression (Extended DataFig.1a,b). The
parameter values and goodness-of-fit results for these linear fits are shownin
Extended Data Table 2.

of afood supply loss greater than a specified percentage threshold s.
On average, 1in 4 cities (probability of shock 0.25; Fig. 1a) with D of
0.20 experience a supply shock greater than 15% in any of their food
sectors, while for the same threshold, cities with D values of 0.45, 0.54,
0.63, 0.71and 0.83 experience food supply shocks 1 out of 6, 8, 14,17
and 202 times, respectively (probabilities of 0.18,0.12,0.07,0.06 and
0.004, respectively; Fig. 1a). The same trend is observed for shock
intensities greater than 3%, 5% and 10% (Fig. 1a). The relationship in
Fig.1aholds when controlling for changesin demand using population
or food inflows as proxy for demand (Methods). It also holds when the
analysis is performed using the original food flow data with 69 cities
rather than the 284 cities in Fig. 1a (Methods). In addition, although
the five indicators used to calculate diversity have a varied influence
ontherelationshipinFig.1a, theinclusionof allindicatorsin the supply
chaindiversity measureincreases the Pearson correlation between the
datain Fig.1a (Methods).

We use the observed empirical relationship between P(S >s) and D
to build a statistical IDF model of food supply shocks. Letting
F(D) = In(P(S>s)), the model takes the following form

FS(D)z_ks(D_DO,s)'XD_DO,s' (1)
where k;and D, s are fitting parameters that depend on the shock inten-
sity s. The parameters are estimated using nonlinear least squares. The
exponential function in equation (1) provides a good fit to the data
(R?>0.73; Extended Data Table 1) and it has the desirable characteris-
tics of being simple to implement and bounded at P(S > s) €[0, 1]and
De[0,1].

Many different (social, economic, infrastructural and environmental)
urbanindicators of city functioning have been shown to scale with the
city size at the metropolitan level’*”, where populationis typically used
to quantify city size. Hence, we evaluate whether Dvariesin asystematic
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Fig.2|Map of expected shockintensities of an annual duration food supply chain shock withannual occurrence probability of 1%. The shock intensities are
represented as afraction of the average annual inflows. The annual occurrence probability of 1% is also known as a100-year food supply shock.

way with thecity size. For allfood sectors, Dshows a very weak positive
trend with population (Supplementary Fig. 2). Since larger cities tend
to have slightly more diverse supply chains (Supplementary Fig. 2),
they areslightly less likely to experience shocks of increasing intensity.

A general model of food shocks to cities

We use the model parameters fitted using equation (1) to derive and
extrapolate afamily of IDF curves covering awide range of shock inten-
sities. The model parameters k;and D, ; are each linearly regressed
against the shock intensity s to obtain parameter values for different
intensities (Extended DataFig.1a, b). The fitted linear regressions show
good performance (R?> 0.80; Extended Data Table 2). Using these
regressed parameter values in equation (1), we obtain the IDF curvesin
Fig.1b. The probability of shock equations for different shock intensity
values are included in Extended Data Table 3. For example, assum-
ing a design frequency of P=0.25 per year (a ‘four-year’ shock), a city
with D= 0.2 can expect to experience at least one food shock of 15%
or greater. If the same city increased its food supply chain diversity to
D=0.8,the same 15% shock occurs less often, with frequency P=0.05
(a‘twenty-year’ shock). The curves in Fig. 1b are valid for food supply
chain shock to USA cities and regions at roughly the metropolitan area
scale during the period 2012-2015, but may possibly be valid for other
regions, time periods and supply chain types as well.

In the standard engineering design application®, design codes or
standards will set the maximum tolerable frequency and shock inten-
sity (for example, annual P<0.01and s<5%), and the city would enact
policies and investments to modify Dto bring the expected frequency
andintensity below that level of risk. Insurance and emergency manage-
ment strategies would then be developed to cover the remaining risk.
These IDF curves canbe directly employed by engineers, insurers, poli-
cymakers and planners tomeasure and control the risk of shock to the
food supply chainandto design solutions that reduce the risk of shock.
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Using the IDF curves to create amap of the so-called '100-year’ shock
with a1% annual exceedance probability (frequency Fis P(S>s)=0.01,
duration Dis1year), we find that the expected shock intensity s var-
ies from 22% to 32% in cities and rural regions across the USA (Fig. 2).
The narrow 10% range of variability is due to the relative similarity of
food supply chain structure and diversity across USA communities.
The cities with the highest expected 100-year shock intensities are:
Grand Junction, Colorado; Corpus Christi, Texas; Beaumont, Texas;
and Steamboat Springs, Colorado (Fig.2); and the cities with the lowest
expected intensities are: Florence, South Carolina; Cleveland, Ohio;
Roanoke, Virginia; and Columbus, Ohio. The shock intensities are on
average greater in the western USA (west of the 100th meridian) thanin
the eastern USA (Fig. 2), with an average shock intensity of 26.3 +1.9%
(average +1standard deviation) versus 24.8 +1.5%, respectively. In addi-
tion, some cities show alower shockintensity than their neighbouring
cities. For example, Los Angeles has alower shock intensity compared
toother citiesin the state of California, with ashock intensity 0f23.5%
versus 27.2 +0.9%, respectively. The lower expected shock intensity of
Los Angelesis duetoits unusually diversified (with D=0.69) food supply
chain. Spatial patterns for shocks with other frequencies are similar.

Co-occurrence of food shocks

The model in equation (1) is valid if only one food sector is shocked.
However, food supply shocks to multiple sectors (for example, crops,
live animals) can and do co-occur’, meaning that shocks from differ-
ent sectors can be simultaneously experienced by a city or region.
Shock co-occurrence is due to multiple factors, such as the tendency
of droughts to affect large areas and of industries to collocate and to
formstronginterdependencies®*2. Even though drought and extreme
heat may have a more immediate impact on crop and pasture losses,
those losses can quickly propagate to other food sectors, for example,
by reducing the crop inputs required to produce animal feed and by
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Fig.3|Relationship between the probability of co-occurring shocks and
supply chaindiversity. a, b, Empirical (a) and modelled (b) relationship
between the probability of co-occurring food supply chain shock P’(S>s) and
supply chaindiversity D for different shock intensities s. Food systems are
classified into 6 bins of supply chain diversity (limits 0, 0.395, 0.497,0.585,
0.665,0.755and 0.92) with204,202,204,203,206 and 202 observationsin
eachbin. These 6 bins each have anaverage (withstandard error givenin
parentheses) supply chain diversity of 0.28 (0.007), 0.45 (0.002), 0.54 (0.002),
0.62(0.002),0.71(0.002) and 0.81(0.002), respectively. The probability of
co-occurring food supply chainshocksineachbinis calculated as the number
of cities with shockslarger thanashockintensity sto2 or more food sectors

inducing livestock culling®*2, The contextual details of a cascading
shockare difficult to predict, makingitimportant that the model con-
sider both single and also co-occurring shocks.

In our dataset, shock co-occurrence is widespread, with most cit-
ies in the study period 2012-2015 experiencing at least one shock
co-occurrence of 2 or more food sectors (Extended Data Fig. 2).
Accounting for shock co-occurrence, we find that the probability P’
(§>s) ofan annual food supply shock Sexceeding intensity threshold s
declines withincreasing D (Fig.3a). For example, onaverage 1in4 cities
(thatis, P/(§>s)=0.25), with D of 0.20 experience food supply shocks
of s>10% in more than one food sector simultaneously. Our empirical
results suggest that supply chain diversity canalso boost the resistance
of cities to rarer but more dangerous co-occurring shocks.

To consider the effect of shock co-occurrence onthe IDF curves, we
modify the model in equation (1) as follows:

F{(D)=-ki(D~Dj) 2
where the fitting parameters k;and D ¢ now account for the effect of
co-occurrence on the probabilities of food supply shock to a city. The
parameters are estimated using nonlinear least squares (Extended
DataTable 4). Each of the estimated parametersis related to the shock
intensity susinglinear regression (Extended DataFig.1c,d and Extended
Data Table 5), which are in turn used, together with equation (2), to
create a family of IDF curves that account for co-occurrence effects
(Fig.3b).

For a given intensity, the model expects co-occurrent food sup-
ply shocks to be less frequent than single food supply shocks
(Figs. 1b and 3b). For example, when neglecting co-occurrence, for
an annual-duration shock intensity of 10%, a city withD=0.2 has a
frequency of shock of P=0.45, whereas for co-occurring shocks the
expected frequency decreases to P=0.29.For example, the frequency
with which San Diego (D =0.35), California, expects a single shock of

Supply chain diversity

divided by the total number of cities in the bin (Methods). For eachs, the
empirical value of P/(§>s) is fitted against D using a constrained exponential
function (curvesin panela). The parameter values and goodness-of-fit results
for these exponential fitsare shown in Extended Data Table 4. With the
exponential fit of the empirical relationship, the curvesin panel b are obtained
byrelating the parameters from the exponential fits to the shock intensity s
usinglinear regression (Extended DataFig. 1c, d). The parameter values and
goodness-of-fit results for theselinear fits are shown in Extended Data Table 5.
Panelbshows the curvesfors € {3, 5,10, 15}; for other s values see
Supplementary Fig. 3.

10% intensity is P=0.36, but for two or more co-occurrent shocks,
P=0.22.

Discussion

Analogous to biodiversity buffering ecosystems against external
shocks®¢, our results show that cities with a greater diversity of food
suppliers have alower probability of suffering afood supply shock for
any reason. This method aims at operationalizing ecological theory and
network theory to form a valid engineering operations risk manage-
ment framework for supply chains, grounded in empirical science.
This study is astep towards quantifying, explaining and managing the
risk faced by cities and regions. The all-hazard nature of the method
isimportant, because it promises the ability to build resilience in the
face of the unpredictable events thatincreasingly characterize hazards
inour fast-paced and highly connected world. This method also holds
promise for managing supply chain shock risk and resilience at the
scales of companies, neighbourhoods and nations, as well as for other
kinds of supply chains beyond food.

Approaches aimed at reducing or avoiding food supply shocks have
been extensively explored at the national level***#, and the method
presented in this paper corroborates—partially—prior national-scale
findings, while presenting a simpler answer that applies at finer and
more manageable scales. Food supply shocks are most harmful to vul-
nerable populations within cities, so boosting food supply resilience
in cities—and especially in vulnerable neighbourhoods of cities—is
animportant policy goal. Although food insecurity is on average low
in developed countries, approximately 10-12% in the USA®, it can be
high for marginalized groups in cities and in rural areas; 20-40% in
the USA®. Food insecurity is positively related to food price variability
across American cities*’. Food supply shocks may increase food prices
and price variability*. Therefore, it seems plausible that higher food
supply diversity could reduce food insecurity. Because of the varied
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socioeconomic geography of the USA, our dataset includes cities and
regions with markedly different population, density, wealth, race, cul-
ture and climate characteristics. Therefore, our results may be directly
relevant for awide range of cities, cultures, timeframes and nations.

Pimm et al.”? emphasize the need to test and utilize empirical meas-
uresto operationalize resilience concepts. Our empirical model, linking
supply chain diversity to the probability of shock, contributes to that
operational goal. Cities need a multifaceted and adaptive approach to
manage risk from multiple forms of shocks and to build resilience.Inan
eraof expanding urbanization and connectivity, cities have akey rolein
global sustainability®. Cities will need to actively manage their supply
chainconnectionsto deal with the causes and consequences of shocks to
their criticallifelines, such as food. Using thismethod to guide the policy
objective of diversification of supply chains, cities and communities
canengage indemand-side policies that scientifically manage risk and
build resilienceinto their supply chains. The IDF framing of this method
makes it directly applicable using the design-code framework that is
already broadly employed by policymakers to manage risk by design.

Acity’s food supply chains—like most supply chains—represent the
agglomeration of efforts by many independent companies and logistics
operations that grow, manufacture, ship, distribute, store and retail
food products. It is a complex supply chain with many parts*. Trans-
lating the high-level design framework inherent to our proposed IDF
model into actionable steps and effective regulations for individual
operators remains a challenge for the future. Diversity by design, at the
level of communities, will take coordination, and possibly regulation,
among many parties.

Foodbusinesses (for example, grocers, restaurants and distributors)
and—to a lesser extent, individuals—can voluntarily contribute to a
resilient food policy by intentionally favouring a diverse supply chain
where possible, and by maintaining slightly larger food inventories in
locales that are known to be at higher risk of food shock (for example,
southernUtah). Local, state, and federal governments and mission agen-
ciescancollect dataonthediversity of their businesses’ suppliers, can
set policy targets to achieve minimum supply chain diversity, and can
createregulations orincentives to achieve those minimums. Inthe USA,
this could be relevant to several government-sponsored programmes
aimed at reducing food insecurity, such as the Supplementary Nutri-
tion Assistance Program® and the National School Lunch Program®*®.

Insurers can price in shock risk where appropriate to incentivize
diversity and resilience, and a niche business sector could emerge to
mitigate that risk by managing supply chains or building buffers. Large
agribusiness canreduce the supply-side risk by diversifyingits supply
chains. Governments can scientifically size and locate food buffers
(stockpiles) to fill the gap between the IDF food security risk metrics
presented in this paper and the desired level of food security—or can
prioritize emergency recovery assets to higher-risk locations. The pre-
ciseand actionable statistics in thismodel form a basis for scientifically
designed food security and risk management systems that fit neatly
within the existing risk management and design paradigm already
used by insurers, engineers, emergency managers and policymakers.
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Methods

Dataset of food flow networks

We derive annual, intranational food flow networks for the USA
using the Freight Analysis Framework version 4 (FAF4) database®.
The derived networks are for different food sectors and include all
metropolitan areas in the USA. The FAF4 database consists of annual
commodity flows during 2012-2015 for 115 geographic areasin the USA
and 43 different sectors. We focus on the following four food sectors
in the FAF4 database: crops, live animals, animal feed and meat. The
115geographicareasin the FAF4 database cover the entire contiguous
USA, including 69 metropolitan statistical areas and 46 remainders
of states (the remainder is the area of a state that is not part of a FAF4
metropolitan area).

To obtain food flows for all metropolitan areas in the USA, we dis-
aggregate the FAF4 database from 115 to 329 areas (Supplementary
Fig. 4), out of which 284 are metropolitan or combined statistical
areas (120 metropolitan and 164 combined statistical areas). The
disaggregation is performed using different socioeconomic and
agricultural-related variables as attractors of supply and demand.
For eachfoodsector, aflow with origin o and destination din the FAF4
database is disaggregated to a metropolitan-level flow with origin o’
and destination d’ using a disaggregation variable a as the best attrac-
tor of supply or demand.

The disaggregationis performed in two stages. In the first stage, the
supply Uofeach FAF4 remainder of stateis disaggregated to includeaall
the metropolitan areas in that remainder of state as follows:

UC
Ca=—2xa,, 3)
ao

where U¢,, (intons per year) is the disaggregated supply for food sec-
tor cinorigin o’ that satisfies demand at the FAF4 destination d, US, (in
tons per year) is the FAF4 food flow for sector cbetween areasoand d,
anda, and a,arethe attractor variables for the new origin o’ and FAF4
origino, respectively. In the second stage, U5, 4is further disaggregated
into demand E using:

Us
= o'd Xday, (4)
aq

where £, (in tons per year) is the demand at destination d’ for
food sector c supplied by origin o’, while a,- and a, are the attractor
variables at the disaggregated destination d’ and FAF4 destination d,
respectively.

The FAF4 database includes food flow data at both the state level (48
states) and metropolitan level (115 areas including 69 metropolitan
areas). Prior to performing the disaggregation, we jointly use the FAF4
state data and the FAF4 metropolitan data to select the best perform-
ing attractor variables. That is, we first use equations (3) and (4) to
disaggregate the FAF4 state-level data to the metropolitan-level for
the metropolitan and remainder-of-state areasin FAF4. By comparing
the performance of our disaggregated flow data against the empirical
FAF4 metropolitan-level data, we select the best attractor variable for
each food sector. The following attractor variables are considered:
population*, employment*$, wages*®, number of establishments*® and
cropland area®. These variables are selected on the basis of previous
analysis and data availability*°.

Toassess the performance of the attractor variables, we use the Pear-
son correlation coefficient between the empirical FAF4 flows and the
disaggregated flows for the metropolitan areas and remainder-of-state
areas in FAF4 (Extended Data Fig. 3). The performance is high with
correlation values greater than 0.87 and an average of 0.95. Using the
best-performing disaggregation variables, we build the food flow net-
works employed in this study. The nodes in the networks represent

metropolitan and remainder-of-state areas, and the weighted links
represent annual food flows during 2012-2015 for crops, live animals,
feed and meat (Supplementary Fig. 5).

The FAF4 metropolitan and remainder-of-state areas we used to
selectthe attractor variables span awide range of populations, crop-
land areas, and number of establishments, since these FAF4 areas
include the largest cities in the USA and a broad range of medium-size
cities. The values of the attractor variables used in the disaggrega-
tion are within the ranges implied by the FAF4 metropolitan data
(Supplementary Fig. 6), indicating that the variables are reliable. The
exception to this is population, which is only used to disaggregate
meat demand. Population, however, has a high disaggregation per-
formance witha correlation coefficient of 0.97 (Extended Data Fig. 3).
In addition, the use of population to disaggregate meat demand is
consistent with previous scaling results for metropolitan areas in
the USA® that have shown that metropolitan-level variables that are
related to resource consumption scale approximately linearly with
population.

Food inflows supply chain diversity
To determine annual supply chain diversity, we extract the annual
food buyer-supplier subgraph of each city and food sector from
the food flow networks™. We refer to each of these subgraphs as
afood system. The food buyer-supplier subgraph of a city i con-
sists of all the supply chain interactions with its trading partners
or neighbours; for a specific food sector. Our measure of supply
chain diversity is based on the notion of functional distance®. We
compute the functional distance d between i and any of its trading
partners;jby combining five different indicators: physical distance,
climate correlation, urban classification, economic specialization
and network modularity. The indicators are described below in the
‘Functional distance indicators’ section of the Methods. We also
performstatistical analyses to evaluate the influence of the attractor
variables on these indicators (Methods). The indicators represent
stable characteristics of cities and therefore tend to remain fairly
constant during our study period.

The functional distance d}; for an indicator r between any pair of

ij
connected nodes (i,j) is calculated as

d;=N7r-rl, (5)

where the normalization constant Nis determined as the maximum
value of|r, — |between any node kin the network and i. In equation (5),
d,;- = Ofor functionally similar nodes and d,;- =1for dissimilar nodes.

For each city’s buyer—supplier subgraph and food sector, any pair of
connected nodes has 5 different functional distance indicators associ-
ated withit. Tocombine these distance indicatorsinto asingle measure,
we calculate the average functional distance indicator(d,-;-)as thearith-
metic average of the 5 functional distance indicators for any pair (i, )
of connected nodes. We use the discrete probability distribution of
food inflows binned by (d,-;) categories, together with Shannon
entropy®, to calculate the supply chain diversity D . of nodeiand sec-
torcatyeart:

K
ch _ _Zk:I Yf,c(k)ln Yltc(k) ] (6)
’ logk

For sector cand year ¢, Y,{C(k) is the proportion of food inflows to
node i within bin k. The kbin is obtained by binning all the <d,-;) values
for nodeiinto a total number of K bins.

D; .is sensitive to the total number of bins K. Thus, for each nodein
our food flow networks, we tested the sensitivity of D; _ to the total
number of bins K. For K=15, D values stabilize (Supplementary Fig.7);
therefore, we used 15 bins when performing all calculations of func-
tional diversity.
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Functional distance indicators

Theaverage functional distance between acity and its trading partners

isbased on the following five indicators:

(1) Physical distance indicator (PDI). The PDIis obtained by calculating
the Euclidean distance from the centroid of each geographic area
to the centroid of all other areas. The geometric centroids of all
geographical areas are calculated using the GIS software ArcMap
(https://desktop.arcgis.com/en/arcmap/).

(2) Climate indicator (CI). To account for different climates in cities
across the USA, the Palmer Drought Severity Index (PDSI) is used**.
The monthly PDSI is obtained from the National Oceanic and At-
mospheric Administration for the years 1895-2015 at the climate
division geographic level. An area-weighted average is performed
to aggregate the PDSI data to the metropolitan level. The Cl is ob-
tained by calculating the monthly correlation between an area and
all other areas.

(3) Urban classification indicator (UCI). To identify the urbanization
level of a geographical area, the Urban-Rural Classification indi-
cator of the National Center for Health Statistics is employed™.
This indicator classifies counties using a scale from1to 6, where a
value of lindicates the county s highly ruraland a value of 6 means
highly urban. The UClis obtained at the metropolitanlevel usingan
area-weighted average of the county-level values.

(4) Network modularity indicator (NMI). This indicator identifies
geographical areas (network nodes) that belong to the same com-
munity. Acommunity is a group of nodes whose strength interac-
tions are stronger than with the rest of the network. To identify the
network’s communities, we aggregate the flows from the four food
sectors (crops, live animals, feed and meat) into a single-layer net-
work. The communities are identified by maximizing the modularity
measure of Newman®** using the greedy optimization algorithm
of Blondel et al.®®*, Network nodes that lie in the same community
areassigned aNMlof1and O otherwise.

(5) Economic specialization indicator (ESI). Each geographical areais
assigned a score based on its dominant economic supply sector.
Supply is quantified using the FAF4 intranational commodity flows.
Areas with adominant meat sector are assigned an ESI of 1, crops
an ESl of 2, fruits and vegetables an ESI of 3, animal feed an ESI of
4, live animals an ESI of 5, milled grains an ESI of 6, and industrial
products anESlof 7.

Probabilities of food supply chain shock

The annual probability of food supply chain shock is calculated as the
probability that food inflows to a city fall below a percentage of the aver-
ageinflows for that city during 2012-2015%. To compute this probability,
we group all nodes from the 4 food flow networks (1,221 observations)
into 6 diversity bins ordered fromlowest to highest functional diversity
D.Thebinsizeis selected to obtain bins with similar number of observa-
tions, approximately 204 observations in each bin. For each city i and
food sector cin abin, we calculate the food supply chain shock Sy as

. _min(lf)
s,-{l 7 }XIOO, ?)

where /f is the time series of total food inflows to node i for sector ¢
during 2012-2015, and min(/{) and (/{) are the minimum and average
values of the time series /{, respectively.

For each diversity bin b, we count the number of observations n, that
meet the criteria §f >s fors€ {3,4,5, ...,15}, with s being the shock
intensity threshold. The probability of a food supply shock S being
greater thansinbin bis calculated as:

Py(S>s)= Ir\l/_Z' (8)

where N, is the total number of observations in bin b. Thus, for each
shockintensity s, we obtain a set of probabilities of food supply chain
shock,

P(§>5s)=P,(S>s) forb=1], ..., 6}. 9)

Furthermore, we adapt equations (8) and (9) to calculate the prob-
ability of afood supply chain shock Sbeing greater thans, P'(S>s), under
co-occurrence conditions. We define co-occurrence as any city that
experiences ashock to 2 or more food sectors during 2012-2015. With
thisdefinition, P’(S>s) is calculated in afashion similar to that described
above. Webinthe network’s nodes into 6 groups from lowest to highest
diversity and determine the percentage of food supply chainshock with
equation (7). Letting nj, be the total number of cities for which Sf > s
holds for 2 or more food sectors, the probability of afood supply chain
shock Sbeing greater than the shock intensity sinbin bis now

1y
Ny’

Py(§>s)= 10)

where Njis the total number of cities in bin . Thus, under co-occurrence
conditions, the new set of probabilities for each shock intensity sis

P (§>5s)=Py(S>s) forb={],..., 6}. (11)

Statistical analyses

We use the disaggregated food flow data to calculate both the prob-
ability of food supply chain shock and supply chain diversity. Therefore,
we perform two complementary analyses to test whether the attractor
variables used in the disaggregation are causing a circularity issue in
the empirical relationship between the probability of food supply chain
shock and supply chain diversity. For the first analysis, we determine
the Pearson correlation between the functional distance indicators
(PDI, CI, UCI,NMI and ESI) and the attractor variables (Supplementary
Fig. 8). We find that the attractor variables are weakly correlated with
the functional distance indicators (Supplementary Table 1). For the
second analysis, we determine the Pearson correlation between the
food supply chain shock intensities and attractor variables for the 4
food sectors (Supplementary Fig. 9). The attractor variables are also
weakly correlated with the food supply chain shock intensities (Sup-
plementary Table 2). Thus, circularity is not unduly influencing the
empirical relationship between the probability of shock and supply
chaindiversity.

We also evaluate whether the empirical relationship between the
probability of food supply chain shock and supply chain diversity is
driven by the disaggregation of the original FAF4 data. For this, we
recalculate the probability of shock and supply chain diversity using
the FAF4 data. For the FAF4 data, the probability of shock also declines
withrising supply chain diversity (Supplementary Fig.10), similar to the
reduction observed using the disaggregated food flow data (Fig. 1a),
suggesting that the latter data are not driving the relationship.

Furthermore, we test whether the relationship between the prob-
ability of food supply chain shock and supply chain diversity holds for
different demand levels. To control for demand, we stratify all the data
into low, medium and high demand levels using population or food
inflows as proxies for demand. For both stratifications, thebounds are
chosenso that each level has approximately the same number of data
points. Using the stratified data, we recalculate the Pearson correlation
between the probability of shock at 3%, 5%, 10% and 15% shock inten-
sities and supply chain diversity for each level of population or food
inflows (Supplementary Table 3). We find that the relationship between
the probability of food supply chain shock and supply chain diversity
holds for these different demand levels (Supplementary Table 3). Using
the same exponential modelin equation (1) tofit the relationship for the



stratified data (Supplementary Fig.11), we determine the exponential
model parameters k;and D, for each demand level (Extended Data
Table 6). These parameters fall within the 95% confidence interval of
the parameters of the exponential model in the main text (Extended
Data Table 1), indicating that the model is robust.

We perform two different sensitivity analyses to assess the influence
of the five distance indicators on the empirical relationship between
the probability of food supply chain shock and supply chain diversity.
Thefirstanalysis compares single-indicator diversity measures against
the multi-indicator diversity measure calculated using all 5indicators.
Five different single-indicator diversity measures are compared, one
measure for each of the 5 indicators: PDI, CI, UCI, NMI and ESI. For
the second sensitivity analysis, we leave out one indicator at a time
to calculate diversity using the 4 remaining indicators, which results
in another 5 different diversity measures. The diversity measures for
the sensitivity analyses are all calculated following the approachin
the ‘Food inflows supply chain diversity’ section of the Methods. To
perform the sensitivity analyses, we plot the empirical relationship
between the probability of food supply chain shock and each diversity
measure (Supplementary Figs. 12 and 13), and calculate the Pearson
correlation of the data (Extended Data Table 7). The correlation coef-
ficients are used to quantify the influence of the distance indicators on
the relationship between the probability of food supply chain shock
and supply chain diversity (Extended Data Table 7). The probabilities
of food supply chain shockare calculated following the approachin the
‘Probabilities of food supply chain shock’ section of the Methods. We
find that the five indicators have a varied influence on the relationship
between the probability of food supply chain shock and supply chain
diversity (Extended Data Table 7). The inclusion of all 5 indicators,
however, in the supply chain diversity measure increases the Pearson
correlation between the probability of food supply chain shock and
supply chain diversity (Extended Data Table 7).

Data availability

The commodity flows data are from the Freight Analysis Framework
version 4 dataset, prepared by the Federal Highway Administration
ofthe United States Department of Transportation (https://ops.fhwa.
dot.gov/freight/freight_analysis/faf/). The socioeconomic and agri-
cultural data used are all publicly available at https://www.census.
gov/programs-surveys/popest.html (population), https://www.bls.
gov/cew/downloadable-data-files.htm (employment and wages), and
https://www.fsa.usda.gov/news-room/efoia/electronic-reading-room/
frequently-requested-information/crop-acreage-data/index (cropland
area). Additional data used for the functional distance indicators are
available at https://www.ncdc.noaa.gov/temp-and-precip/drought/
historical-palmers/ (Palmer drought severity index) and https://www.
cdc.gov/nchs/data_access/urban_rural.htm (urban-rural classifica-
tion). Calculated metropolitan level food flows and functional diver-
sity are published in the HydroShare data repository at https://doi.

org/10.4211/hs.caebbbb68cce49f2bbf351f28d865794. The base map of
the USAis from the United States Census Bureau TIGER/Line database
(https://www.census.gov/cgi-bin/geo/shapefiles/index.php).

Code availability

Requests for code related to the analyses performed can be directed
to M.G. (michael_gomezs@hotmail.com).
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Extended DataFig. 3 | Performance of food flow disaggregation approach.
Comparisonbetween observed and disaggregated food supply (a-d) and
demand (e-h) flows for crops (a, e), live animals (b, f), feed (c, g), and meat (d, h)
based onthe FAF4 metropolitan and remainder-of-state areas. Different
socioeconomic and agricultural variables (Methods) were tested and those
thatresultedinthe highest values of the Pearson correlation coefficient rwere
usedinthedisaggregation. For the crop sector, disaggregated flows using
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cropland areaasanattractoryielded the highest rbetween observed and
disaggregated flows for both supply and demand. For the live animals and feed
sector, the flows disaggregated by number of establishmentsresultedin the
highest rforboth supply and demand. For the meat sector, the number of
establishments resultedin the highest rvalue for supply and population for
demand.



Extended Data Table 1| Goodness-of-fit results for the exponential regression between the
probability of food supply chain shock and supply chain diversity for shock intensities s

ranging from 3 to 15%
s ks Dos R? Adjusted Rz RMSE SSE
3% -0.6994 0 0.7295 0.7295 0.08018  0.03214
(-0.9242,-0.4746) __(fixed at bound)
4% i 000 0.8432 0.8432 0.06499  0.02112
(-1.17, -0.7649) (fixed at bound)
5% -1.237 01135 0.8691 0.8691 0.05944  0.01413
(-1.916, -0.559) (-0.2164, 0.4434)
6% e e 0.8283 0.7854 0.07468  0.02231
(-2.538,-0.5262)  (-0.2669, 0.4826)
7% -5 0.1584 0.831 0.7887 0.06863  0.01884
(-2.599,-0.5456)  (-0.2425, 0.5612)
8% 1447 0.2699 0.7741 0.7176  0.07027  0.01975
(-2.585,-0.3087)  (-0.3055, 0.8453)
9% -1t 0.2900 0.8141 0.7677 0.05974  0.01428
(-2.498, -0.456) (-0.2268, 0.8087)
10% 1623 0.3021 0.8798 0.8497  0.04433  0.007861
(-2.487,-0.7595)  (-0.09523, 0.6994)
1% 1658 00180 0.9329 0.9162 0.03037  0.00369
(-2.427,-1.085)  (0.02878, 0.5991)
12% -1.801 0.35 0.9032 0.8791 0.03904  0.006096
(-2.755,-0.847) _ (-0.06165, 0.7616)
13% =168 08082 0.9153 0.8941 0.03227  0.004166
(-3.141,-1.197) _ (-0.01076, 0.6171)
14% 2411 0.3187 0.9103 0.8878 0.03023  0.003655
(-3.558,-1.263)  (-0.01263, 0.6501)
15% =568 05008 0.8909 0.8636 0.03274  0.004287

(-4.132,-1.203)

(-0.06109, 0.6628)

The regression has the form Pg= eksl0+Do,s) and is bounded at P(S > s)€[0, 1]and D € [0, 1]. The parameters ks and Dy, are shown with the 95%

confidence intervals in parentheses (degrees of freedom = 4). RMSE, root-mean-square error; SSE, sum of squared errors.
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Extended Data Table 2 | Goodness-of-fit results for the
linear regression between the parameters k, and D, , and the

supply chain shock intensity s

Regression Parameters Ks Do s
Intercept -0.451 -0.008
Slope -13.249 2.595
p-value <0.001 <0.001
R? 0.900 0.800
95% confidence interval -16.19, -10.31 1.74, 3.46




Extended Data Table 3 | Probability of shock equations for
different shock intensities s

s [%] Equation P(D =0) P(D=1)
1% P = g 0000 0.990 0.552
2% P = gt 1e000 0.969 0.474
3% P = g0e0000 0.942 0.403
4% P = e 0e00n00 0.910 0.341
5% P =g a0z 0.873 0.287
6% P = 71200010149 0.832 0.239
7% P = g a1 0.787 0.198
8% P = g7tonien:n 0.740 0.163
9% P = g7108(0020) 0.690 0.133
10% P = g o0 0.640 0.108
1% P = g7t%0%e02m 0.589 0.087
12% P = g 2010303 0.538 0.070
13% P = g2 173010329 0.489 0.056
14% P = @72300103%9) 0.441 0.044
15% P = g 240030 0.395 0.034
16% P = g72erH0u04n 0.351 0.027
17% P = 2703010439 0.310 0.021
18% P = 7280010459 0.272 0.016
19% P = g72%0%010459) 0.237 0.012

20% P = g 21ouprosm 0.205 0.009

21% P = @205 0.176 0.007

22% P = g723%6(020%69) 0.150 0.005

23% P =g =048 0.127 0.004

24% P = gou0u0819) 0.107 0.003

25% P = g 7ou0iosan 0.090 0.002

26% P = g wem0sn 0.074 0.002

27% P = g 0(b008) 0.061 0.001

28% P =g ouomons 0.050 0.001

29% P = gTt2uomonn 0.041 0.001

30% P = g 2000 rh 0.033 0.000

The minimum, P(D = 1), and maximum, P(D = 0), probability values are also shown.
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Extended Data Table 4 | Goodness of fit results for the exponential regression
between the probability of co-occurring food supply chain shocks and supply
chain diversity

s K. D;, R2  Adjusted R RMSE  SSE
-1.2362 0.5100
3% 0.7500 0.6875 0.0356  0.0051
(-1.899,-0.5731)  (-0.01714, 1.037)
-1.2571 0.5200
4% 0.8915 0.8644 0.0261 0.0027
(-1.759, -0.7554)  (0.1246, 0.9154)
-1.3090 0.5300
5% 0.9538 0.9423 0.0179  0.0013
(-1.676,-0.9424)  (0.2511, 0.8089)
-1.3608 0.5300
6% 0.9710 0.9710 0.0143  0.0010
(-1422,-1.299)  (0.2778, 0.7822)
-1.3869 0.5400
7% 0.9648 0.9468 0.0161  0.0013
(-1458,-1.315)  (0.2484, 0.8316)
14113 0.5500 0.9631
8% 0.9631 0.0161 0.0013
(-1485,-1.338)  (0.2498, 0.8502)
-1.4407 0.5500 0.9710
9% 0.9637 0.0157  0.0010
(-1.82,-1.061)  (0.2857, 0.8143)
15643 0.5500 0.8882
10% 0.8602 0.0322  0.0042
(-2.448,-0.6806)  (-0.01055, 1.111)
-1.5862 0.5600 0.8335
1% 0.7918 0.0413  0.0068
(-2.763,-0.4002)  (-0.1821, 1.302)
-1.6975 0.5700 0.8523
12% 0.8153 0.0397  0.0063
(-2.989,-0.4064)  (-0.1906, 1.331)
-1.8357 0.5800 0.8251
13% 0.7813 0.0414  0.0068
(-3423,-0.2483)  (-0.2827, 1.443)
20114 0.5900 0.8412
14% 0.8015 0.0359  0.0052
(-3.71,-0.3126)  (-0.2481, 1.428)
21022 0.6000 0.8071
15% 0.8071 0.0367  0.0067

(-2.467, -1.738)

(-0.4348, 1.635)

The regression has the form P, = ekdD*Dbd) hounded at P{(S>s) € [0,1]and D€[O, 1]. The parameters and Dy, ¢ are shown with

the 95% confidence intervals in parentheses (degrees of freedom = 4).



Extended Data Table 5 | Goodness-of-fit results for the linear
regression between the parameters k; and D, ; and the
supply chain shock intensity s

Regression Parameters k. Dy,

Intercept -0.929 0.490
Slope -6.943 0.687
p-value <0.001 <0.001
R2 0.915 0.972

95% confidence Interval -8.34,-5.54 0.61,0.76
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Extended Data Table 6 | Exponential fit parameters k; and D, ; for the
relationship between the probability of food supply chain shock and
supply chain diversity at different demand levels and shock intensities

Shock intensity s Low Mid High
ks Dos ks Dos ks Do s
Population
3% -0.81 0 -0.75 0 -058 0
5% 15 0.02 -1.26 017  -13 0
10% -2.19 0.08 -1.35 0.52 -157 0.3
15% -3.03 0.19 -2.62 0.35 -2.11 0.49
Food inflows
3% -0.75 0 -072 0 -065 0
5% -1.63 0.03 -1.43 0 -1.13 0.14
10% -1.92 0.18 -2.59 0.02 -0.98 0.82
15% -2.76 0.18 -2.95 031 -1.72 0.8

We stratify all data into low, medium and high demand levels using population or food inflows as proxy for
demand. For each demand stratum, we recalculate the probability of food supply chain shock for different
shock intensities: 3%, 5%, 10% and 15%.



Extended Data Table 7 | Sensitivity of the supply chain diversity results to different configurations of the basket of indicators

s=3% s=5% s=10% s=15%
r p-value [ r p-value [ r p-value [ r p-value [

Average of indicators

d -0.900 0.014 - -0.969 0.001 - -0.982 <0.001 - -0.992 <0.001 -
Single indicator

Cl -0.847 0.034 -0.05 -0.941 0.005 -0.03 -0.968 0.002 -0.01 -0.994 <0.001 0.00

PDI -0.905 0.013 0.00 -0.871 0.024 -0.10 -0.858 0.029 -0.12 -0.933 0.007 -0.06

ucl -0.317 0.540 -0.58 -0.877 0.022 -0.09 -0.740 0.092 -0.24 -0.730 0.100 -0.26

ESI -0.112 0.833 -0.79 0.105 0.843 -1.07 0.257 0.623 -1.24 -0.101 0.848 -0.89

NMI -0.796 0.058 -0.10 -0.869 0.025 -0.10 -0.846 0.034 -0.14 -0.788 0.063  -0.20
One indicator removed

without CI -0.930 0.007 0.03 -0.964 0.002 0.00 -0.954 0.003 -0.03 -0.969 0.001 -0.02

without PDI -0.835 0.038 -0.06 -0.948 0.004 -0.02 -0977 <0.001 0.00 -0.996 <0.001 0.00

without UCI -0.887 0.018 -0.01 -0.908 0.012 -0.06 -0.881 0.020 -0.10 -0.957 0.003 -0.03

without ESI -0.887 0.018 -0.01 -0.948 0.004 -0.02 -0.985 <0.001 0.00 -0.972 0.001 -0.02

without NMI -0.851 0.032 -0.05 -0.951 0.004 -0.02 -0.972 0.001  -0.01 -0.994 <0.001 0.00

The 5 indicators are: climate indicator (Cl), physical distance indicator (PDI), urban classification indicator (UCI), economic specialization indicator (ESI), and network modularity indicator (NMI).
We performed two complementary sensitivity analyses to evaluate how supply chain diversity relates to the probability of food supply chain shock for different configurations of the basket of
indicators (Methods). For each configuration of the basket, the Pearson correlation coefficient r for the relationship between the probability of food supply chain shock and diversity was calcu-
lated. The difference between correlation values is denoted by 8.
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