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Supply chain diversity buffers cities against 
food shocks

Michael Gomez1, Alfonso Mejia1 ✉, Benjamin L. Ruddell2 & Richard R. Rushforth2

Food supply shocks are increasing worldwide1,2, particularly the type of shock wherein 

food production or distribution loss in one location propagates through the food 

supply chain to other locations3,4. Analogous to biodiversity buffering ecosystems 

against external shocks5,6, ecological theory suggests that food supply chain diversity 

is crucial for managing the risk of food shock to human populations7,8. Here we show 

that boosting a city’s food supply chain diversity increases the resistance of a city to 

food shocks of mild to moderate severity by up to 15 per cent. We develop an 

intensity–duration–frequency model linking food shock risk to supply chain 

diversity. The empirical–statistical model is based on annual food inflow observations 

from all metropolitan areas in the USA during the years 2012 to 2015, years when most 

of the country experienced moderate to severe droughts. The model explains a city’s 

resistance to food shocks of a given frequency, intensity and duration as a 

monotonically declining function of the city’s food inflow supply chain’s Shannon 

diversity. This model is simple, operationally useful and addresses any kind of hazard. 

Using this method, cities can improve their resistance to food supply shocks with 

policies that increase the food supply chain’s diversity.

Food supply shock is a pressing issue that may be increasing world-

wide1,2. Extreme-weather events, possibly exacerbated by climate 

change9,10, are a main driver of food supply shocks11. The risk of simul-

taneous global breadbasket failure is also probably rising12, posing a 

threat to systemic and catastrophic food production losses13. Geopoliti-

cal crises and policy changes are also responsible for a large proportion 

of shocks to different food systems1. Moreover, threats to public health 

can disrupt food supply chains, as shown by the coronavirus disease 

2019 pandemic in several national economies around the world14. 

Global and national food supply chains increase exposure to shocks 

compared with local food supply chains4,7,15,16, but also add diversity 

and resilience15,17.

Network topological diversity and connectivity are key attributes of 

resilient social−ecological7,18 systems. Food supply chains, along with 

other material inflows such as water and energy, are a close analogy 

to an ecological food web19,20. Resilience to shock has “three R’s”21,22: 

resistance to changing food inflows, robustness to a wide range of 

hazards and recovery or reorganization time after a shock. Therefore, 

from ecological and resilience theory23,24, a food shock resilience model 

should relate the diversity and/or connectivity of the food supply chain 

network to explain a city’s resistance to food shocks. Supply chain 

diversity provides adaptive options for the city to exploit when some 

of its supply chains suffer shock25–27, thus boosting resilience to shock. 

The methods in this paper measure resistance to food supply shock, 

which is a specific subtype of resilience21.

If cities, companies and nations had access to a model estimating 

their ability to buffer food supply chain shocks, this model could be 

used in policy and management to optimize supply chains and control 

the risk of shocks26,28. The ideal model should be simple, quantitative, 

accurate, operationally useful, applicable at the scale of cities (which 

consume and process most food)29, ‘hazard agnostic’ for all causes 

of shocks, and would explain shock risk as a function of factors that 

a city, company or nation can control. We are skilled at modelling 

hazard-specific risk management, but general hazard-agnostic models 

of resilience are better because they can potentially handle unexpected 

extreme events that continue to threaten our human systems. Here, 

we propose a statistical−empirical model meeting these ideal criteria, 

explaining the resistance of USA cities to food supply shocks as a func-

tion of the topological diversity of the city’s food supplier network.

Results

Using annual timescale food inflow supply networks (crops, live ani-

mals, feed and meat) for the cities of the USA, we extracted the annual 

intranational food inflow subgraph of each metropolitan area for the 

period 2012−2015, which is the period with available data30 and when 

food production systems were substantially affected by drought and 

agricultural production shocks on the Great Plains and in the western 

USA31,32. In this model a shock occurs when food inflows drop by more 

than the intensity threshold (ranging from 3% to 15%) for a duration 

of a year, with the drop measured against the average inflows of the 

four-year time period.

Using observations of thousands of food inflows to hundreds of USA 

cities across four years and four types of food, we calculate the prob-

ability (or frequency) of exceeding a given shock intensity for an annual 

duration for each USA city. The resistance of a city to food shocks is the 
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complement to the probability of the shock. We find that resistance 

relates positively to the Shannon diversity of a city’s food inflows. This 

assumes that all cities’ supply chains were exposed to shocks of many 

intensities during the study period. This is a justified assumption in the 

USA for the study period of 2012−2015, because in 2012 the USA Great 

Plains experienced an exceptionally severe drought33 and in 2012−2013 

the western USA experienced a severe drought9, both with widespread 

losses reported in crops and livestock33,34.

The resulting model takes the operationally useful form of an inten-

sity−duration−frequency (IDF) relationship that is widely used for risk 

and hazard engineering and as a basis for design codes and policies of 

risk35. This model provides an all-hazards or ‘hazard agnostic’ approach, 

because—although the empirically observed shocks underlying our 

analysis are mostly due to drought affecting food suppliers—the model 

is valid in principle for all kinds of shocks to the city’s food supply net-

work.

Food shocks and supply chain diversity

For cities in the USA, the probability of an annual food supply shock S 

being greater than a shock intensity s, P(S > s) (see Methods), declines 

as the diversity D of a city’s food inflows supply chain increases (Fig. 1a). 

Our measure of supply chain diversity is calculated using the Shannon 

diversity of a city’s supply chain network of intranational trading part-

ners based on a combination of five different indicators (Methods). 

Using data for 284 cities and 4 food sectors, the annual probabilities of 

food supply shocks are calculated by measuring, for each city and food 

sector, the maximum food supply departure from the annual average 

during 2012−2015 (Methods). We utilize a total of 4,884 buyer–supplier 

subgraphs and 1,221 time series to calculate P(S > s) and D.

Our results indicate that with greater supply chain diversity D, cities 

are more likely to avoid or resist shocks of increasing intensity (3%, 5%, 

10% and 15%; Fig. 1a). The shock intensity is quantified as the occurrence 

of a food supply loss greater than a specified percentage threshold s. 

On average, 1 in 4 cities (probability of shock 0.25; Fig. 1a) with D of 

0.20 experience a supply shock greater than 15% in any of their food 

sectors, while for the same threshold, cities with D values of 0.45, 0.54, 

0.63, 0.71 and 0.83 experience food supply shocks 1 out of 6, 8, 14, 17 

and 202 times, respectively (probabilities of 0.18, 0.12, 0.07, 0.06 and 

0.004, respectively; Fig. 1a). The same trend is observed for shock 

intensities greater than 3%, 5% and 10% (Fig. 1a). The relationship in 

Fig. 1a holds when controlling for changes in demand using population 

or food inflows as proxy for demand (Methods). It also holds when the 

analysis is performed using the original food flow data with 69 cities 

rather than the 284 cities in Fig. 1a (Methods). In addition, although 

the five indicators used to calculate diversity have a varied influence 

on the relationship in Fig. 1a, the inclusion of all indicators in the supply 

chain diversity measure increases the Pearson correlation between the 

data in Fig. 1a (Methods).

We use the observed empirical relationship between P(S > s) and D 

to build a statistical IDF model of food supply shocks. Letting 

F D P S s( ) = ln( ( > ))s , the model takes the following form

F D k D D D D( ) = − ( − ) ∝ − , (1)s s s s0, 0,

where ks and D0,s are fitting parameters that depend on the shock inten-

sity s. The parameters are estimated using nonlinear least squares. The 

exponential function in equation (1) provides a good fit to the data 

(R2 ≥ 0.73; Extended Data Table 1) and it has the desirable characteris-

tics of being simple to implement and bounded at P(S > s) ∈[0, 1] and 

D ∈[0, 1].

Many different (social, economic, infrastructural and environmental) 

urban indicators of city functioning have been shown to scale with the 

city size at the metropolitan level36,37, where population is typically used 

to quantify city size. Hence, we evaluate whether D varies in a systematic 
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Fig. 1 | Relationship between the probability of shock and supply chain 

diversity. a, b, Empirical (a) and modelled (b) relationship between  the 

probability of food supply chain shock P(S > s) and supply chain diversity D for 

different shock intensities s. Food systems—each food system consists of the 

supply chain for one of the cities’ four food sectors—are classified into 6 bins of 

supply chain diversity (limits 0, 0.395, 0.497, 0.585, 0.665, 0.755 and 0.92) with 

204, 202, 204, 203, 206 and 202 observations in each bin. These 6 bins each 

have an average (with standard error given in parentheses) supply chain 

diversity of 0.28 (0.007), 0.45 (0.002), 0.54 (0.002), 0.62 (0.002), 0.71 (0.002) 

and 0.81 (0.002), respectively. The probability of food supply chain shock in 

each bin is calculated as the number of food systems with shocks larger than a 

shock intensity s divided by the total number of food systems in the bin 

(Methods). For clarity, panel a shows the probabilities of food supply chain 

shock for s∈ {3, 5, 10, 15} (for other s values see Supplementary Fig. 1). For each s 

value, the empirical value of P(S > s) is fitted against D using a constrained 

exponential function (curves in a). The confidence bounds represent ±1 s.d. of 

the fitted curves (degrees of freedom = 4). The parameter values and 

goodness-of-fit results for these exponential fits are shown in Extended Data 

Table 1. With the exponential fit of the empirical relationship, the curves in 

panel b are obtained by relating the parameters from the exponential fits to the 

shock intensity s using linear regression (Extended Data Fig. 1a, b). The 

parameter values and goodness-of-fit results for these linear fits are shown in 

Extended Data Table 2.
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way with the city size. For all food sectors, D shows a very weak positive 

trend with population (Supplementary Fig. 2). Since larger cities tend 

to have slightly more diverse supply chains (Supplementary Fig. 2), 

they are slightly less likely to experience shocks of increasing intensity.

A general model of food shocks to cities

We use the model parameters fitted using equation (1) to derive and 

extrapolate a family of IDF curves covering a wide range of shock inten-

sities. The model parameters ks and D0,s are each linearly regressed 

against the shock intensity s to obtain parameter values for different 

intensities (Extended Data Fig. 1a, b). The fitted linear regressions show 

good performance (R2 ≥ 0.80; Extended Data Table 2). Using these 

regressed parameter values in equation (1), we obtain the IDF curves in 

Fig. 1b. The probability of shock equations for different shock intensity 

values are included in Extended Data Table 3. For example, assum-

ing a design frequency of P = 0.25 per year (a ‘four-year’ shock), a city 

with D = 0.2 can expect to experience at least one food shock of 15% 

or greater. If the same city increased its food supply chain diversity to 

D = 0.8, the same 15% shock occurs less often, with frequency P = 0.05 

(a ‘twenty-year’ shock). The curves in Fig. 1b are valid for food supply 

chain shock to USA cities and regions at roughly the metropolitan area 

scale during the period 2012−2015, but may possibly be valid for other 

regions, time periods and supply chain types as well.

In the standard engineering design application35, design codes or 

standards will set the maximum tolerable frequency and shock inten-

sity (for example, annual P < 0.01 and s < 5%), and the city would enact 

policies and investments to modify D to bring the expected frequency 

and intensity below that level of risk. Insurance and emergency manage-

ment strategies would then be developed to cover the remaining risk. 

These IDF curves can be directly employed by engineers, insurers, poli-

cymakers and planners to measure and control the risk of shock to the 

food supply chain and to design solutions that reduce the risk of shock.

Using the IDF curves to create a map of the so-called ‘100-year’ shock 

with a 1% annual exceedance probability (frequency F is P(S > s) = 0.01, 

duration D is 1 year), we find that the expected shock intensity s var-

ies from 22% to 32% in cities and rural regions across the USA (Fig. 2). 

The narrow 10% range of variability is due to the relative similarity of 

food supply chain structure and diversity across USA communities. 

The cities with the highest expected 100-year shock intensities are: 

Grand Junction, Colorado; Corpus Christi, Texas; Beaumont, Texas; 

and Steamboat Springs, Colorado (Fig. 2); and the cities with the lowest 

expected intensities are: Florence, South Carolina; Cleveland, Ohio; 

Roanoke, Virginia; and Columbus, Ohio. The shock intensities are on 

average greater in the western USA (west of the 100th meridian) than in 

the eastern USA (Fig. 2), with an average shock intensity of 26.3 ± 1.9% 

(average ± 1 standard deviation) versus 24.8 ± 1.5%, respectively. In addi-

tion, some cities show a lower shock intensity than their neighbouring 

cities. For example, Los Angeles has a lower shock intensity compared 

to other cities in the state of California, with a shock intensity of 23.5% 

versus 27.2 ± 0.9%, respectively. The lower expected shock intensity of 

Los Angeles is due to its unusually diversified (with D = 0.69) food supply 

chain. Spatial patterns for shocks with other frequencies are similar.

Co-occurrence of food shocks

The model in equation (1) is valid if only one food sector is shocked. 

However, food supply shocks to multiple sectors (for example, crops, 

live animals) can and do co-occur1, meaning that shocks from differ-

ent sectors can be simultaneously experienced by a city or region. 

Shock co-occurrence is due to multiple factors, such as the tendency 

of droughts to affect large areas and of industries to collocate and to 

form strong interdependencies31,32. Even though drought and extreme 

heat may have a more immediate impact on crop and pasture losses, 

those losses can quickly propagate to other food sectors, for example, 

by reducing the crop inputs required to produce animal feed and by 

S
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Fig. 2 | Map of expected shock intensities of an annual duration food supply chain shock with annual occurrence probability of 1%. The shock intensities are 

represented as a fraction of the average annual inflows. The annual occurrence probability of 1% is also known as a 100-year food supply shock.
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inducing livestock culling31,32. The contextual details of a cascading 

shock are difficult to predict, making it important that the model con-

sider both single and also co-occurring shocks.

In our dataset, shock co-occurrence is widespread, with most cit-

ies in the study period 2012−2015 experiencing at least one shock 

co-occurrence of 2 or more food sectors (Extended Data Fig. 2). 

Accounting for shock co-occurrence, we find that the probability P ′ 

(S > s) of an annual food supply shock S exceeding intensity threshold s 

declines with increasing D (Fig. 3a). For example, on average 1 in 4 cities 

(that is, P′(S > s) = 0.25), with D of 0.20 experience food supply shocks 

of s > 10% in more than one food sector simultaneously. Our empirical 

results suggest that supply chain diversity can also boost the resistance 

of cities to rarer but more dangerous co-occurring shocks.

To consider the effect of shock co-occurrence on the IDF curves, we 

modify the model in equation (1) as follows:

F D k D D′( ) = − ′( − ′ ) (2)s s s0,

where the fitting parameters k′
s and D′0,s now account for the effect of 

co-occurrence on the probabilities of food supply shock to a city. The 

parameters are estimated using nonlinear least squares (Extended 

Data Table 4). Each of the estimated parameters is related to the shock 

intensity s using linear regression (Extended Data Fig. 1c, d and Extended 

Data Table 5), which are in turn used, together with equation (2), to 

create a family of IDF curves that account for co-occurrence effects 

(Fig. 3b).

For a given intensity, the model expects co-occurrent food sup-

ply shocks to be less frequent than single food supply shocks 

(Figs. 1b and 3b). For example, when neglecting co-occurrence, for 

an annual-duration shock intensity of 10%, a city with D = 0.2 has a 

frequency of shock of P = 0.45, whereas for co-occurring shocks the 

expected frequency decreases to P = 0.29. For example, the frequency 

with which San Diego (D = 0.35), California, expects a single shock of 

10% intensity is P = 0.36, but for two or more co-occurrent shocks, 

P = 0.22.

Discussion

Analogous to biodiversity buffering ecosystems against external 

shocks5,6, our results show that cities with a greater diversity of food 

suppliers have a lower probability of suffering a food supply shock for 

any reason. This method aims at operationalizing ecological theory and 

network theory to form a valid engineering operations risk manage-

ment framework for supply chains, grounded in empirical science. 

This study is a step towards quantifying, explaining and managing the 

risk faced by cities and regions. The all-hazard nature of the method 

is important, because it promises the ability to build resilience in the 

face of the unpredictable events that increasingly characterize hazards 

in our fast-paced and highly connected world. This method also holds 

promise for managing supply chain shock risk and resilience at the 

scales of companies, neighbourhoods and nations, as well as for other 

kinds of supply chains beyond food.

Approaches aimed at reducing or avoiding food supply shocks have 

been extensively explored at the national level15,16,38, and the method 

presented in this paper corroborates—partially—prior national-scale 

findings, while presenting a simpler answer that applies at finer and 

more manageable scales. Food supply shocks are most harmful to vul-

nerable populations within cities, so boosting food supply resilience 

in cities—and especially in vulnerable neighbourhoods of cities—is 

an important policy goal. Although food insecurity is on average low 

in developed countries, approximately 10–12% in the USA39, it can be 

high for marginalized groups in cities and in rural areas; 20–40% in 

the USA39. Food insecurity is positively related to food price variability 

across American cities40. Food supply shocks may increase food prices 

and price variability41. Therefore, it seems plausible that higher food 

supply diversity could reduce food insecurity. Because of the varied 
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Fig. 3 | Relationship between the probability of co-occurring shocks and 

supply chain diversity. a, b, Empirical (a) and modelled (b) relationship 

between the probability of co-occurring food supply chain shock P′(S > s) and 

supply chain diversity D for different shock intensities s. Food systems are 

classified into 6 bins of supply chain diversity (limits 0, 0.395, 0.497, 0.585, 

0.665, 0.755 and 0.92) with 204, 202, 204, 203, 206 and 202 observations in 

each bin. These 6 bins each have an average (with standard error given in 

parentheses) supply chain diversity of 0.28 (0.007), 0.45 (0.002), 0.54 (0.002), 

0.62 (0.002), 0.71 (0.002) and 0.81 (0.002), respectively. The probability of 

co-occurring food supply chain shocks in each bin is calculated as the number 

of cities with shocks larger than a shock intensity s to 2 or more food sectors 

divided by the total number of cities in the bin (Methods). For each s, the 

empirical value of P′(S > s) is fitted against D using a constrained exponential 

function (curves in panel a). The parameter values and goodness-of-fit results 

for these exponential fits are shown in Extended Data Table 4. With the 

exponential fit of the empirical relationship, the curves in panel b are obtained 

by relating the parameters from the exponential fits to the shock intensity s 

using linear regression (Extended Data Fig. 1c, d). The parameter values and 

goodness-of-fit results for these linear fits are shown in Extended Data Table 5. 

Panel b shows the curves for s∈ {3, 5, 10, 15}; for other s values see 

Supplementary Fig. 3.
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socioeconomic geography of the USA, our dataset includes cities and 

regions with markedly different population, density, wealth, race, cul-

ture and climate characteristics. Therefore, our results may be directly 

relevant for a wide range of cities, cultures, timeframes and nations.

Pimm et al.42 emphasize the need to test and utilize empirical meas-

ures to operationalize resilience concepts. Our empirical model, linking 

supply chain diversity to the probability of shock, contributes to that 

operational goal. Cities need a multifaceted and adaptive approach to 

manage risk from multiple forms of shocks and to build resilience. In an 

era of expanding urbanization and connectivity, cities have a key role in 

global sustainability43. Cities will need to actively manage their supply 

chain connections to deal with the causes and consequences of shocks to 

their critical lifelines, such as food. Using this method to guide the policy 

objective of diversification of supply chains, cities and communities 

can engage in demand-side policies that scientifically manage risk and 

build resilience into their supply chains. The IDF framing of this method 

makes it directly applicable using the design-code framework that is 

already broadly employed by policymakers to manage risk by design.

A city’s food supply chains—like most supply chains—represent the 

agglomeration of efforts by many independent companies and logistics 

operations that grow, manufacture, ship, distribute, store and retail 

food products. It is a complex supply chain with many parts44. Trans-

lating the high-level design framework inherent to our proposed IDF 

model into actionable steps and effective regulations for individual 

operators remains a challenge for the future. Diversity by design, at the 

level of communities, will take coordination, and possibly regulation, 

among many parties.

Food businesses (for example, grocers, restaurants and distributors) 

and—to a lesser extent, individuals—can voluntarily contribute to a 

resilient food policy by intentionally favouring a diverse supply chain 

where possible, and by maintaining slightly larger food inventories in 

locales that are known to be at higher risk of food shock (for example, 

southern Utah). Local, state, and federal governments and mission agen-

cies can collect data on the diversity of their businesses’ suppliers, can 

set policy targets to achieve minimum supply chain diversity, and can 

create regulations or incentives to achieve those minimums. In the USA, 

this could be relevant to several government-sponsored programmes 

aimed at reducing food insecurity, such as the Supplementary Nutri-

tion Assistance Program45 and the National School Lunch Program46.

Insurers can price in shock risk where appropriate to incentivize 

diversity and resilience, and a niche business sector could emerge to 

mitigate that risk by managing supply chains or building buffers. Large 

agribusiness can reduce the supply-side risk by diversifying its supply 

chains. Governments can scientifically size and locate food buffers 

(stockpiles) to fill the gap between the IDF food security risk metrics 

presented in this paper and the desired level of food security—or can 

prioritize emergency recovery assets to higher-risk locations. The pre-

cise and actionable statistics in this model form a basis for scientifically 

designed food security and risk management systems that fit neatly 

within the existing risk management and design paradigm already 

used by insurers, engineers, emergency managers and policymakers.
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Methods

Dataset of food flow networks

We derive annual, intranational food flow networks for the USA 

using the Freight Analysis Framework version 4 (FAF4) database30. 

The derived networks are for different food sectors and include all 

metropolitan areas in the USA. The FAF4 database consists of annual 

commodity flows during 2012−2015 for 115 geographic areas in the USA 

and 43 different sectors. We focus on the following four food sectors 

in the FAF4 database: crops, live animals, animal feed and meat. The 

115 geographic areas in the FAF4 database cover the entire contiguous 

USA, including 69 metropolitan statistical areas and 46 remainders 

of states (the remainder is the area of a state that is not part of a FAF4 

metropolitan area).

To obtain food flows for all metropolitan areas in the USA, we dis-

aggregate the FAF4 database from 115 to 329 areas (Supplementary 

Fig. 4), out of which 284 are metropolitan or combined statistical 

areas (120 metropolitan and 164 combined statistical areas). The 

disaggregation is performed using different socioeconomic and 

agricultural-related variables as attractors of supply and demand. 

For each food sector, a flow with origin o and destination d in the FAF4 

database is disaggregated to a metropolitan-level flow with origin o′ 

and destination d′ using a disaggregation variable a as the best attrac-

tor of supply or demand.

The disaggregation is performed in two stages. In the first stage, the 

supply U of each FAF4 remainder of state is disaggregated to include all 

the metropolitan areas in that remainder of state as follows:

U
U

a
a= × , (3)′o d

c od
c

o
o′

where U ′o d
c  (in tons per year) is the disaggregated supply for food sec-

tor c in origin o′ that satisfies demand at the FAF4 destination d, Uod
c  (in 

tons per year) is the FAF4 food flow for sector c between areas o and d, 

and ao′ and ao are the attractor variables for the new origin o′ and FAF4 

origin o, respectively. In the second stage, U ′o d
c  is further disaggregated 

into demand E using:

E
U

a
a= × , (4)′ ′

′
o d
c o d

c

d
d ′

where E ′ ′o d
c  (in tons per year) is the demand at destination d′ for  

food sector c supplied by origin o′, while ad ′ and ad  are the attractor 

variables at the disaggregated destination d′ and FAF4 destination d, 

respectively.

The FAF4 database includes food flow data at both the state level (48 

states) and metropolitan level (115 areas including 69 metropolitan 

areas). Prior to performing the disaggregation, we jointly use the FAF4 

state data and the FAF4 metropolitan data to select the best perform-

ing attractor variables. That is, we first use equations (3) and (4) to 

disaggregate the FAF4 state-level data to the metropolitan-level for 

the metropolitan and remainder-of-state areas in FAF4. By comparing 

the performance of our disaggregated flow data against the empirical 

FAF4 metropolitan-level data, we select the best attractor variable for 

each food sector. The following attractor variables are considered: 

population47, employment48, wages48, number of establishments48 and 

cropland area49. These variables are selected on the basis of previous 

analysis and data availability50.

To assess the performance of the attractor variables, we use the Pear-

son correlation coefficient between the empirical FAF4 flows and the 

disaggregated flows for the metropolitan areas and remainder-of-state 

areas in FAF4 (Extended Data Fig. 3). The performance is high with 

correlation values greater than 0.87 and an average of 0.95. Using the 

best-performing disaggregation variables, we build the food flow net-

works employed in this study. The nodes in the networks represent 

metropolitan and remainder-of-state areas, and the weighted links 

represent annual food flows during 2012−2015 for crops, live animals, 

feed and meat (Supplementary Fig. 5).

The FAF4 metropolitan and remainder-of-state areas we used to 

select the attractor variables span a wide range of populations, crop-

land areas, and number of establishments, since these FAF4 areas 

include the largest cities in the USA and a broad range of medium-size 

cities. The values of the attractor variables used in the disaggrega-

tion are within the ranges implied by the FAF4 metropolitan data 

(Supplementary Fig. 6), indicating that the variables are reliable. The 

exception to this is population, which is only used to disaggregate 

meat demand. Population, however, has a high disaggregation per-

formance with a correlation coefficient of 0.97 (Extended Data Fig. 3). 

In addition, the use of population to disaggregate meat demand is 

consistent with previous scaling results for metropolitan areas in 

the USA51 that have shown that metropolitan-level variables that are 

related to resource consumption scale approximately linearly with 

population.

Food inflows supply chain diversity

To determine annual supply chain diversity, we extract the annual 

food buyer–supplier subgraph of each city and food sector from 

the food flow networks19. We refer to each of these subgraphs as 

a food system. The food buyer–supplier subgraph of a city i con-

sists of all the supply chain interactions with its trading partners 

or neighbours j for a specific food sector. Our measure of supply 

chain diversity is based on the notion of functional distance52. We 

compute the functional distance d between i and any of its trading 

partners j by combining five different indicators: physical distance, 

climate correlation, urban classification, economic specialization 

and network modularity. The indicators are described below in the 

‘Functional distance indicators’ section of the Methods. We also 

perform statistical analyses to evaluate the influence of the attractor 

variables on these indicators (Methods). The indicators represent 

stable characteristics of cities and therefore tend to remain fairly 

constant during our study period.

The functional distance dij
r

 for an indicator r between any pair of 

connected nodes (i,j) is calculated as

d N r r= − , (5)ij
r

k i
−1

where the normalization constant N is determined as the maximum 

value of r r−k i  between any node k in the network and i. In equation (5), 

d = 0ij
r

 for functionally similar nodes and d = 1ij
r

 for dissimilar nodes.

For each city’s buyer−supplier subgraph and food sector, any pair of 

connected nodes has 5 different functional distance indicators associ-

ated with it. To combine these distance indicators into a single measure, 

we calculate the average functional distance indicator d⟨ ⟩ij
r

 as the arith-

metic average of the 5 functional distance indicators for any pair (i, j) 

of connected nodes. We use the discrete probability distribution of 

food inflows binned by d⟨ ⟩ij
r

 categories, together with Shannon 

entropy53, to calculate the supply chain diversity Di c
t
,  of node i and sec-

tor c at year t:

D
Y k Y k

K
=

−∑ ( )ln ( )

log
. (6)

i c
t k

K
i c
t

i c
t

,
=1 , ,

For sector c and year t, Y k( )i c
t
,  is the proportion of food inflows to 

node i within bin k. The k bin is obtained by binning all the d⟨ ⟩ij
r

 values 

for node i into a total number of K bins.

Di c
t
,  is sensitive to the total number of bins K. Thus, for each node in 

our food flow networks, we tested the sensitivity of Di c
t
,  to the total 

number of bins K. For K = 15, D values stabilize (Supplementary Fig. 7); 

therefore, we used 15 bins when performing all calculations of func-

tional diversity.
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Functional distance indicators

The average functional distance between a city and its trading partners 

is based on the following five indicators:

(1)  Physical distance indicator (PDI). The PDI is obtained by calculating 

the Euclidean distance from the centroid of each geographic area 

to the centroid of all other areas. The geometric centroids of all 

geographical areas are calculated using the GIS software ArcMap 

(https://desktop.arcgis.com/en/arcmap/).

(2)  Climate indicator (CI). To account for different climates in cities 

across the USA, the Palmer Drought Severity Index (PDSI) is used54. 

The monthly PDSI is obtained from the National Oceanic and At-

mospheric Administration for the years 1895−2015 at the climate 

division geographic level. An area-weighted average is performed 

to aggregate the PDSI data to the metropolitan level. The CI is ob-

tained by calculating the monthly correlation between an area and 

all other areas.

(3)  Urban classification indicator (UCI). To identify the urbanization 

level of a geographical area, the Urban-Rural Classification indi-

cator of the National Center for Health Statistics is employed55. 

This indicator classifies counties using a scale from 1 to 6, where a 

value of 1 indicates the county is highly rural and a value of 6 means 

highly urban. The UCI is obtained at the metropolitan level using an 

area-weighted average of the county-level values.

(4)  Network modularity indicator (NMI). This indicator identifies 

geographical areas (network nodes) that belong to the same com-

munity. A community is a group of nodes whose strength interac-

tions are stronger than with the rest of the network. To identify the 

network’s communities, we aggregate the flows from the four food 

sectors (crops, live animals, feed and meat) into a single-layer net-

work. The communities are identified by maximizing the modularity 

measure of Newman56,57 using the greedy optimization algorithm 

of Blondel et al.58,59. Network nodes that lie in the same community 

are assigned a NMI of 1 and 0 otherwise.

(5)  Economic specialization indicator (ESI). Each geographical area is 

assigned a score based on its dominant economic supply sector. 

Supply is quantified using the FAF4 intranational commodity flows30. 

Areas with a dominant meat sector are assigned an ESI of 1, crops 

an ESI of 2, fruits and vegetables an ESI of 3, animal feed an ESI of 

4, live animals an ESI of 5, milled grains an ESI of 6, and industrial 

products an ESI of 7.

Probabilities of food supply chain shock

The annual probability of food supply chain shock is calculated as the 

probability that food inflows to a city fall below a percentage of the aver-

age inflows for that city during 2012−20158. To compute this probability, 

we group all nodes from the 4 food flow networks (1,221 observations) 

into 6 diversity bins ordered from lowest to highest functional diversity 

D. The bin size is selected to obtain bins with similar number of observa-

tions, approximately 204 observations in each bin. For each city i and 

food sector c in a bin, we calculate the food supply chain shock Si
c as

S
I

I
= 1 −

min( )

⟨ ⟩
× 100, (7)i

c i
c

i
c











where Ii
c is the time series of total food inflows to node i for sector c 

during 2012−2015, and Imin( )i
c  and I⟨ ⟩i

c  are the minimum and average 

values of the time series Ii
c, respectively.

For each diversity bin b, we count the number of observations nb that 

meet the criteria S s>i
c  for s∈ {3, 4, 5, …, 15} , with s being the shock 

intensity threshold. The probability of a food supply shock S being 

greater than s in bin b is calculated as:

P S s
n

N
( > ) = , (8)b

b

b

where Nb is the total number of observations in bin b. Thus, for each 

shock intensity s, we obtain a set of probabilities of food supply chain 

shock,

P S s P S s b( > ) = ( > ) for = {1, …, 6}. (9)b

Furthermore, we adapt equations (8) and (9) to calculate the prob-

ability of a food supply chain shock S being greater than s, P′(S > s), under 

co-occurrence conditions. We define co-occurrence as any city that 

experiences a shock to 2 or more food sectors during 2012−2015. With 

this definition, P′(S > s) is calculated in a fashion similar to that described 

above. We bin the network’s nodes into 6 groups from lowest to highest 

diversity and determine the percentage of food supply chain shock with 

equation (7). Letting n′b be the total number of cities for which S s>i
c  

holds for 2 or more food sectors, the probability of a food supply chain 

shock S being greater than the shock intensity s in bin b is now

P S s
n

N
′ ( > ) =

′

′
, (10)b

b

b

where N′b is the total number of cities in bin b. Thus, under co-occurrence 

conditions, the new set of probabilities for each shock intensity s is

P S s P S s b′( > ) = ′ ( > ) for = {1, …, 6}. (11)b

Statistical analyses

We use the disaggregated food flow data to calculate both the prob-

ability of food supply chain shock and supply chain diversity. Therefore, 

we perform two complementary analyses to test whether the attractor 

variables used in the disaggregation are causing a circularity issue in 

the empirical relationship between the probability of food supply chain 

shock and supply chain diversity. For the first analysis, we determine 

the Pearson correlation between the functional distance indicators 

(PDI, CI, UCI, NMI and ESI) and the attractor variables (Supplementary 

Fig. 8). We find that the attractor variables are weakly correlated with 

the functional distance indicators (Supplementary Table 1). For the 

second analysis, we determine the Pearson correlation between the 

food supply chain shock intensities and attractor variables for the 4 

food sectors (Supplementary Fig. 9). The attractor variables are also 

weakly correlated with the food supply chain shock intensities (Sup-

plementary Table 2). Thus, circularity is not unduly influencing the 

empirical relationship between the probability of shock and supply 

chain diversity.

We also evaluate whether the empirical relationship between the 

probability of food supply chain shock and supply chain diversity is 

driven by the disaggregation of the original FAF4 data. For this, we 

recalculate the probability of shock and supply chain diversity using 

the FAF4 data. For the FAF4 data, the probability of shock also declines 

with rising supply chain diversity (Supplementary Fig. 10), similar to the 

reduction observed using the disaggregated food flow data (Fig. 1a), 

suggesting that the latter data are not driving the relationship.

Furthermore, we test whether the relationship between the prob-

ability of food supply chain shock and supply chain diversity holds for 

different demand levels. To control for demand, we stratify all the data 

into low, medium and high demand levels using population or food 

inflows as proxies for demand. For both stratifications, the bounds are 

chosen so that each level has approximately the same number of data 

points. Using the stratified data, we recalculate the Pearson correlation 

between the probability of shock at 3%, 5%, 10% and 15% shock inten-

sities and supply chain diversity for each level of population or food 

inflows (Supplementary Table 3). We find that the relationship between 

the probability of food supply chain shock and supply chain diversity 

holds for these different demand levels (Supplementary Table 3). Using 

the same exponential model in equation (1) to fit the relationship for the 



stratified data (Supplementary Fig. 11), we determine the exponential 

model parameters ks and D0,s for each demand level (Extended Data 

Table 6). These parameters fall within the 95% confidence interval of 

the parameters of the exponential model in the main text (Extended 

Data Table 1), indicating that the model is robust.

We perform two different sensitivity analyses to assess the influence 

of the five distance indicators on the empirical relationship between 

the probability of food supply chain shock and supply chain diversity. 

The first analysis compares single-indicator diversity measures against 

the multi-indicator diversity measure calculated using all 5 indicators. 

Five different single-indicator diversity measures are compared, one 

measure for each of the 5 indicators: PDI, CI, UCI, NMI and ESI. For 

the second sensitivity analysis, we leave out one indicator at a time 

to calculate diversity using the 4 remaining indicators, which results 

in another 5 different diversity measures. The diversity measures for 

the sensitivity analyses are all calculated following the approach in 

the ‘Food inflows supply chain diversity’ section of the Methods. To 

perform the sensitivity analyses, we plot the empirical relationship 

between the probability of food supply chain shock and each diversity 

measure (Supplementary Figs. 12 and 13), and calculate the Pearson 

correlation of the data (Extended Data Table 7). The correlation coef-

ficients are used to quantify the influence of the distance indicators on 

the relationship between the probability of food supply chain shock 

and supply chain diversity (Extended Data Table 7). The probabilities 

of food supply chain shock are calculated following the approach in the 

‘Probabilities of food supply chain shock’ section of the Methods. We 

find that the five indicators have a varied influence on the relationship 

between the probability of food supply chain shock and supply chain 

diversity (Extended Data Table 7). The inclusion of all 5 indicators, 

however, in the supply chain diversity measure increases the Pearson 

correlation between the probability of food supply chain shock and 

supply chain diversity (Extended Data Table 7).

Data availability

The commodity flows data are from the Freight Analysis Framework 

version 4 dataset, prepared by the Federal Highway Administration 

of the United States Department of Transportation (https://ops.fhwa.

dot.gov/freight/freight_analysis/faf/). The socioeconomic and agri-

cultural data used are all publicly available at https://www.census.

gov/programs-surveys/popest.html (population), https://www.bls.

gov/cew/downloadable-data-files.htm (employment and wages), and 

https://www.fsa.usda.gov/news-room/efoia/electronic-reading-room/

frequently-requested-information/crop-acreage-data/index (cropland 

area). Additional data used for the functional distance indicators are 

available at https://www.ncdc.noaa.gov/temp-and-precip/drought/

historical-palmers/ (Palmer drought severity index) and https://www.

cdc.gov/nchs/data_access/urban_rural.htm (urban−rural classifica-

tion). Calculated metropolitan level food flows and functional diver-

sity are published in the HydroShare data repository at https://doi.

org/10.4211/hs.caebbbb68cce49f2bbf351f28d865794. The base map of 

the USA is from the United States Census Bureau TIGER/Line database 

(https://www.census.gov/cgi-bin/geo/shapefiles/index.php).

Code availability

Requests for code related to the analyses performed can be directed 

to M.G. (michael_gomezs@hotmail.com).
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Extended Data Fig. 1 | Shock intensity versus exponential regression 

parameters. Relationship between the supply chain shock intensity s and the 

exponential regression parameters ks and  D s0,  for single (a, b) and  k′
s and  DD′ ss0,  

for co-occurring shocks (c, d). The lines are linear regression fits. The 

goodness-of-fit results for single and co-occurring shocks are summarized in 

Extended Data Tables 1 and 4, respectively.



Extended Data Fig. 2 | Level of co-occurrence of food supply chain shocks 

across the USA. For a given shock intensity (3%, 5%, 10% and 15%), the 

co-occurrence level is measured as the number of food supply chain shocks 

from different food sectors to a geographic location during 2012–2015, out of a 

possible maximum of 4 shocks. The maps show the level of co-occurrence for 

different shock intensities. The overall co-occurrence level across the USA 

tends to decline as the threshold increases, meaning that co-occurrence 

becomes less likely for higher shock intensities.
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Extended Data Fig. 3 | Performance of food flow disaggregation approach. 

Comparison between observed and disaggregated food supply (a–d) and 

demand (e–h) flows for crops (a, e), live animals (b, f), feed (c, g), and meat (d, h) 

based on the FAF4 metropolitan and remainder-of-state areas. Different 

socioeconomic and agricultural variables (Methods) were tested and those 

that resulted in the highest values of the Pearson correlation coefficient r were 

used in the disaggregation. For the crop sector, disaggregated flows using 

cropland area as an attractor yielded the highest r between observed and 

disaggregated flows for both supply and demand. For the live animals and feed 

sector, the flows disaggregated by number of establishments resulted in the 

highest r for both supply and demand. For the meat sector, the number of 

establishments resulted in the highest r value for supply and population for 

demand.



Extended Data Table 1 | Goodness-of-fit results for the exponential regression between the  
probability of food supply chain shock and supply chain diversity for shock intensities s  
ranging from 3 to 15%

The regression has the form P es
ks D D s( 0, )= +  and is bounded at P(S > s) [0, 1]∈  and ∈D [0, 1]. The parameters ks and D0,s are shown with the 95%  

confidence intervals in parentheses (degrees of freedom = 4). RMSE, root-mean-square error; SSE, sum of squared errors.
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Extended Data Table 2 | Goodness-of-fit results for the 
linear regression between the parameters ks and D0,s and the 
supply chain shock intensity s



Extended Data Table 3 | Probability of shock equations for 
different shock intensities s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The minimum, P(D = 1), and maximum, P(D = 0), probability values are also shown.
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Extended Data Table 4 | Goodness of fit results for the exponential regression  
between the probability of co-occurring food supply chain shocks and supply  
chain diversity

The regression has the form P ek D D( )
s

s s0,′ =
′ ′+  bounded at ′ > ∈P S s( ) [0, 1]s  and D [0, 1]∈ . The parameters  and DD ss0,′  are shown with  

the 95% confidence intervals in parentheses (degrees of freedom = 4).



Extended Data Table 5 | Goodness-of-fit results for the linear 
regression between the parameters kk ′ss and DD′ ss0,  and the 
supply chain shock intensity s
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Extended Data Table 6 | Exponential fit parameters ks and D0,s for the  
relationship between the probability of food supply chain shock and  
supply chain diversity at different demand levels and shock intensities

We stratify all data into low, medium and high demand levels using population or food inflows as proxy for  

demand. For each demand stratum, we recalculate the probability of food supply chain shock for different  

shock intensities: 3%, 5%, 10% and 15%.



Extended Data Table 7 | Sensitivity of the supply chain diversity results to different configurations of the basket of indicators

The 5 indicators are: climate indicator (CI), physical distance indicator (PDI), urban classification indicator (UCI), economic specialization indicator (ESI), and network modularity indicator (NMI). 

We performed two complementary sensitivity analyses to evaluate how supply chain diversity relates to the probability of food supply chain shock for different configurations of the basket of 

indicators (Methods). For each configuration of the basket, the Pearson correlation coefficient r for the relationship between the probability of food supply chain shock and diversity was calcu-

lated. The difference between correlation values is denoted by δ.
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