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Abstract Accurately measuring water use by the economy is essential for developing reliable

models of water resource availability. Indeed, these models rely on retrospective analyses that provide
insights into shifting human population demands and adaptions to water shortages. However, accurate,
methodologically consistent, empirically authentic, and spatiotemporally comprehensive historical
datasets for water withdrawals are scarce. Herein, we present a reanalysis of annual resolution
(1950-2016) historical data set on irrigation, electric power, and public supply water withdrawal within
the conterminous United States (US) at the county-level, and, for power plants, at the site-level. To
estimate electric power water use, we synthesized a historically comprehensive list of generators and
historic patterns in generation across fuels, prime movers, and cooling technologies. Irrigation water

use estimation required building a crop-demand model that utilized historical information on irrigated
acreage for crops and golf courses, stage-specific crop water demand, and climate information. To
estimate public water supply use, we developed a random forest model constructed from information on
population, infrastructure, climate, and land cover. These estimates generally agree with total county and
state water use information provided by the US Geological Survey (USGS) water use circular and estimates
generated from independent studies for specific years. However, we also observed discrepancies between
our estimates and USGS data that appear to be caused by inconsistencies in the methods used by the
USGS's primary data sources at the state level over decades of data collection, highlighting the importance
of reanalysis to yield spatiotemporally consistent and intercomparable estimates of water use.

1. Introduction

As global population expands, many nations have increasingly experienced water stress due to changes in
climate and increasing water demands (Vorosmarty et al., 2000). Indeed, 49 countries are currently classi-
fied as water stressed (FAO, 2016), and in over 50% of basins worldwide, water use exceeds water availability
at least during a portion of the year, leading to ecological degradation and societal vulnerability (Hoekstra
& Mekonnen, 2012). Unfortunately, past adaptation strategies to avoid water stress, such as water sup-
ply expansion and increasing water use efficiency, are unlikely to ameliorate future water severity issues
compounded by population growth and climate change (Brown et al., 2019). In the future, management,
including more drastic adaptations to water demands, will require accurate water use science, informed by
accurate water use data.

Studies requiring consistent and accurate information on historical water use are limited by the spatio-
temporal resolution and precision of archived water use records (Devineni et al., 2015). Water resource
planning commonly relies on retrospective historical analyses, which provides insights into patterns of
human population growth and societal demands on water resources (e.g. Brown et al., 2019). Specifically,
spatiotemporally variant and historically comprehensive measurements of water use are important for un-
derstanding changes in regional water resource availability and modeling long-term changes in hydrology.
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However, obtaining accurate and methodologically consistent information on water usage is difficult, ow-
ing to unknown and possibly large methodological inconsistencies between measurement methods in dif-
ferent places and times, yielding wide ranges of uncertainty on water use as estimates are updated and
refined (e.g., Averyt et al., 2013; Devineni et al., 2015; Rushforth & Ruddell, 2018). A severe challenge of
compiling water use data over many years and many jurisdictions is the integration of data from disparate
sources and methods (Allen et al., 2018), which may vary in spatiotemporal scale, variable definitions, and
accuracy of source information. The endeavor of harmonizing inconsistent historical data is sometimes
called reanalysis (e.g., Mesinger et al., 2006).

The United States (US) has among the world's highest per capita water footprint supporting consumption
of goods and services (Hoekstra & Mekonnen, 2012). Over 90% of total water withdrawals in the US are
comprised from three economic sectors: thermoelectric generation, irrigation, and public supply (Dieter
et al., 2018). Projected increases in population, decreases in water availability, and increases in water tem-
perature could render these sectors highly vulnerable to climate change (Barnett & Pierce, 2008; Elliott
et al., 2014; Van Vliet et al., 2012). Recent evidence suggests, however, that water withdrawals in the US
has decreased due to advancements in water efficiency and regulation (Dieter et al., 2018; B. H. Harris
et al., 2014; Maupin et al., 2017). From 2005 to 2015, withdrawals for thermoelectric power declined 37.5%
due to decommissioning of coal-fired plants and more-efficient cooling technologies and withdrawals
for public supply decreased 12% despite continued population increases (Dieter et al., 2018; B. H. Harris
et al., 2014; Maupin et al., 2017). Nevertheless, between 2020 and 2060, the U. S. population is expected
to increase over 21% (U. S. census bureau, 2019), and electricity generation is projected to increase 35%,
primarily supported through fossil or nuclear technologies (69% of generation) (AEO, 2019). Within the
agriculture industry, total planted acreage is expected to remain constant by 2028, whereas total crop pro-
duction is expected to increase, on average, 8.4% (USDA, 2019). This suggests that the future agriculture
industry will involve more intensive agriculture practices and eventually increased water demand, unless
irrigation efficiency dramatically improves. Furthermore, increased irrigation water withdrawal is at odds
with suggested adaption strategies to avoid water shortages, which include transfers of irrigation water back
to other sectors (Brown et al., 2019). We need better data to assess these trends and make plans.

The most spatiotemporally comprehensive compilation of primary sources of water use data in the US is
provided by the US Geological Survey (USGS) Water Use Circular Series (WUCS) (USGS, 2019). The WUCS
estimates and reports water usage within eight major sectors and numerous sub-sectors every five years
(USGS, 2019). Limitations of the USGS WUCS include inconsistencies in the sectors and subsectors report-
ed across time and methods used to derive those estimates, variable spatial resolutions of reported estimates
and low temporal resolution of estimates (see Supporting Information 2 for full accounting of variables).
Specifically, the USGS WUCS data set provides quinquennial information at the county level from 1985 to
2015. Prior to 1985, water usage across a limited number of sectors is provided only at the state level. In
many cases, water use estimates for specific sub-sectors (e.g., crop and golf irrigation) or sources of water
(e.g., saline vs. fresh) are reported for only a subset of years. Water use by sector is estimated through numer-
ous published methodologies, which may vary as methods improve (e.g., Dickens et al., 2011; M. A. Harris
& Diehl, 2017); however, the USGS also relies heavily on state-reported aggregate and county-level use by
different entities, who use various methods or definitions in determining water withdrawals (Macknick
et al., 2011; Maupin et al., 2017).

As one example, thermoelectric water use has been reported by two federal agencies, the USGS and the US
Energy Information Administration (EIA). Estimates of thermoelectric water withdrawals between these
agencies are based on different methods have been shown to vary substantially (Peer et al., 2016, 2019; M. A.
Harris & Diehl, 2017). In both cases, water use at the power plant level is only provided for individual years
or only recent years (post-2000) and is estimated for only a subset of power plants (n < 1400 as of 2010).
However, according to the EIA, over 8,000 power plants were operating in the US in 2010, many of which
use water for operations besides thermoelectric cooling (Macknick et al., 2011; R. A. M. Peer et al., 2019).
Comprehensive historical data on water use for electricity production technologies could prove valuable for
modeling, especially evaluating situations of water shortages.

Herein we present annual timescale (1950-2016) and spatially comprehensive estimates of water use for
electric power production, agricultural irrigation, and public supply at the county or site-level (electric
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power plants) within the conterminous US, using a spatiotemporally consistent reanalysis technique. We
focus on these three sectors, as they represent the largest reported water use of the US economy. Although
we rely on the USGS WUCS divisions in sectors (Dieter et al., 2018), we fully recognize that sectoral divi-
sions can be subjective and substantially overlap. For instance, electricity production is only one life cycle
of the US energy system and fuel production and refining, reported under mining and industrial sectors by
the USGS WUCS, represent considerable users of water as well. Borrowing terminology from the climate
sciences, our “reanalysis” was aimed at developing a consistently derived historical record data product
analogous to the USGS WUCS estimates while addressing major data gaps and limitations of those efforts.
Specifically, we use consistent estimation methods to provide 67 years of annual county-level (or finer gran-
ularity) water use estimates by source and subsector to prevent spatial or temporal bias.

To estimate the water use of power generation, we synthesized a historically comprehensive list of gener-
ators and historic patterns in generation across fuels, prime movers, and cooling technologies. To estimate
the water use of irrigation, we compiled historical information on crop and golf acreage and climate in-
formation to use in a crop-demand model that considered crop type and water use per growth stage. To
estimate the water use of public water supply, we developed a random forest model constructed from infor-
mation on population, infrastructure information, climate, and land cover. As a validation exercise, we com-
pare our estimates to those provided by the USGS WUCS and other independent studies for specific years.
Additionally, we seek to determine the cause of any clear discrepancies between this method and the USGS
data. We also provide example applications to showcase the utility of the data set to multi-sector research.

2. Methods
2.1. Overview and Scope

For our analysis, we adopted the same definition for “water use” as the USGS WUCS, where withdrawal
is termed the “total amount of water removed from the water source for a particular use,” and consump-
tion is termed, “the amount of water that is not readily available for another use because it is evaporated,
transpired, incorporated into products, consumed by livestock or humans, or otherwise removed from the
immediate water environment” (Dieter et al., 2018). Generally, our study focuses on the withdrawal of
fresh surface and ground water removed from the “immediate water environment” of a river, lake, or aqui-
fer, as these sources of water could be more reliably estimated. These sources dominate uses for irrigation
and public supply; However, for electrical power generation, we include estimates of both withdrawal and
consumption and include additional water sources: saline surface, saline groundwater, reclaimed waste
discharge, and mixed sources, because information on consumption and sources of water were more readily
available and these water sources constitute a larger fraction of total water use for that sector. This definition
of water use leaves some ambiguity (Ruddell, 2018), but it is coherent with the USGS's methods, which are
the primary focus of our reanalysis.

All variables from the data products we developed in this study are provided in Table 1. For the three sec-
tors, we include variables depicting the source of water (e.g., fresh, saline) and the temporal and spatial
resolutions of our analysis. With some exceptions, data are provided at the county resolution at an annual
timestep from 1950 to 2016. Because irrigation estimates were derived using daily hydrometeorological
information, we provide daily irrigation water use estimates for individual crops (although we urge caution
in over-reliance on daily values due to uncertainties in other factors, for example, crop planting dates). Wa-
ter use for electricity production is provided at county, power-plant, and electricity generating unit (EGU)
resolutions. Power plants may be comprised of multiple EGUs, in which case, water use for all EGUs oper-
ating at a plant were summed. In many cases, the raw data we used in building estimates of water use was
reported less frequently than an annual basis (e.g., crop land acreages and sources of water). To fill in these
data gaps, we used linear and spline interpolation methods of the raw datasets.

For irrigation and electric power production, we provide multiple scenarios of varying estimates. For elec-
tric power production, scenarios are based on average, minimum, and maximum water withdrawal and
consumption coefficients provided by Macknick et al. (2011, 2013) and Averyt et al. (2013). Irrigation sce-
narios varied according to different estimates of irrigated acreage and whether precipitation soil moisture
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Table 1

Overview of Water-Use Related Data Products Provided by the Study for the Three Sectors

Sector Categories Time step Spatial resolution ‘Water sources Scenarios
Electric power Total withdrawal, total Annual County, state, power Fresh surface water, fresh Coefficients reported

generation

Irrigation

Public supply

consumption, total
generation, individual

plant

ground water, saline
surface water, saline

in Macknick
et al. (2012):

generation, withdrawal,
consumption estimates for
all technologies listed in

Table 2

Total irrigation, crop irrigation,
golf irrigation, individual
irrigation withdrawal for

43 crop

time-dependent irrigation
efficiencies

Total withdrawal

groundwater, reclaimed
discharge, mixed
sources, other sources

(1) Medium,
(2) Minimum,
(3) Maximum

(1) No climate, low
acreage,

(2) No climate, high
acreage,

(3) Climate-adjusted,
low acreage,

(4) Climate-adjusted,
high acreage

Fresh surface water, fresh
ground water

Daily, annual ~ County, state

types in Table 3,

Fresh surface water, fresh One scenario

ground water

Annual County, state

Table 2

was considered. Because irrigation can vary immensely by crop type, we estimated irrigation separately for
over 40 crops and for golf courses.

2.2. Electricity Production Water Withdrawal and Consumption

Water use for electricity production in this study only considered the energy technologies reported by
Macknick et al. (2012) and Averyt et al. (2013), which primarily consisted of off-stream power uses (Ta-
ble 2). These included technologies reliant on thermoelectric cooling but also other technologies that use
water for operations and maintenance of electricity production (e.g., cleaning solar photovoltaic panels or
wind turbine blades). We did not elect to include hydropower due to significant uncertainty and challenges
in deriving those estimates. Similar to other technologies, hydroelectric dams use water to generate electric-
ity, although consumption of water occurs primarily through evaporative losses within reservoirs, not di-
rectly associated with power generation (Mekonnen & Hoekstra, 2012; Grubert et al., 2016). It is possible to
estimate hydropower water use and consumption into equivalent effects of a municipality or farmer's water
use on the “immediate water environment” (Ruddell, 2018). However, complexities arise when estimating
hydropower water use, particularly whether use is calculating only during generation, whether it should
include all flow passed through a dam or only flow passed across generating units, and how this relates to
reservoir volumes and evaporative loss (i.e. consumption). Furthermore, hydroelectric power is usually
only one of many purposes of a dam and reservoir and is commonly a lower-priority of water allocation
compared with recreation, navigation, flood control, and water supply (Bonnet et al., 2015; Uria-Martinez
et al., 2018). Finally, reservoir volumes are adaptively managed and reallocated, which depart significantly
from established reservoir operation rule curves (Doyle & Patterson, 2019). To accurately estimate hydro-

Types of Fuels, Cooling Technologies, and Prime Movers Used to Characterize Electric Generating Units (EGU) for Estimating Water Withdrawal and

Consumption

Fuels

Cooling technologies Prime movers

Biomass, Coal, Geothermal, Hydropower, Pumped Cooling pond, Dry cooled, Once-through,
Storage, Natural Gas, Nuclear, Oil, Solar, Wind

Binary cycle, Combined cycle, Combustion
turbine, Dry stream, Enhanced geothermal
system, Fuel Cell, Photovoltaic, Trough, Steam,
None

Recirculating, None

Note. Fuels, cooling technologies, and prime mover combinations resulted in 35 EGU types. EGU technology combinations and water withdrawal and
consumption estimates per megawatt hour (MWh) for all each technology are provided in Tables S1 and S2.
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power water use (equivalent to other technologies presented in our study), reservoir operations, specifically
time-variant water volumes used solely for hydropower generation should be proportioned by allocated
reservoir volumes and associated evaporation rates. Due to the significant challenges in assembling the
required information for the entire period of record, we did not consider hydropower water use in our study.

To extend the record of county-level electric power water use and water consumption backward to 1950,
we followed a “coefficient approach” used by Averyt et al. (2013) to obtain water withdrawal and con-
sumption at the EGU scale according to a combination of fuel type, cooling system type, and prime mover
technologies (Table 1, Figure S1). By calculating coefficients on a per-energy production basis for each EGU
technology, historical water use can then be extrapolated by estimating historical electricity generation. An
overview of our approach to assign water use per EGU technology is provided as a flow chart in Figure S1.
We first developed a master list of all power plants and generators in operation at any time as recorded
in the EIA Form 860 Annual Electric Generator Report (EIA 2019a) or Form 923 Power Plant Operations
Report (EIA 2019b). The list included 8928 plants and 23697 generators in operation as early as 1891 and
as late as 2016. Of the list of generators, 18,039 (or 76% of the total) were in operation as of 2016. EIA form
860 includes information at the generator level including nameplate capacity (MW), capacity factors (%),
ownership, age, fuel use, status of operation (e.g., operating, retired, out-of-service, installation postponed),
month and year of initial operation, month and year of retirement, boiler type and efficiency, and cooling
system types. EIA form 923 provides geospatial locations of power plants and information on monthly and
annual generation at the generator and power plant level from 2001 to 2017.

Combinations of fuel type, cooling systems, and prime mover technologies resulted in 35 different EGU ty-
pologies (Tables S1 and S2). Averyt et al.'s database reported water withdrawal and consumption for the ma-
jority of EGUs operating in 2008 using water use estimates per technology provided Macknick et al. (2011;
2012). Based on the EIA generator identifier, we joined Averyt et al's database to our list of EGUs and cal-
culated average, minimum, and maximum water use and water consumption per MWh of energy produced
(based on 2008 generation estimates, as this mirrored Avery et al.'s data) (Tables S1 and S2). A total of 9398
EGUs in our master data set were not found in Averyt et al.'s database. Of these, however, only 1,422 re-
quired water for electricity production and hence, needed an appropriate technology code.

For missing records, we used a similar approach as Averyt et al. (2013) to associate cooling technologies to
each EGU (Figure S1). As Averyt et al. noted, each plant may include multiple different types of cooling in-
frastructure and boilers, multiple boilers may be associated with each generator, and each cooling structure
may be associated with multiple boilers; however, EIA provides no explicit linkage between each cooling
structure and each generator. EIA does, however, provide cooling operation types at the power plant level.
Of the 1422 generators missing from Averyt et al.'s database that required cooling, 892 had no cooling tech-
nology information reported for their respective plants in the EIA data set. Additionally, 457 generators had
one cooling technology reported for their respective power plant whereas 73 generators had multiple cool-
ing technologies reported. The 892 EGUs with missing cooling technologies had information on fuel type
and prime mover, which we summarized into fuel-prime mover combinations (i.e., “New Codes,” Tables S1
and S2). We calculated water withdrawal and consumption per MWh for these New Codes based on averag-
es across all EGU typologies sharing the same fuel and prime mover type combinations (Tables S1 and S2).
The 457 generators were assigned the same cooling technology as that listed for the power plant. For the 73
generators with multiple cooling technologies reported for their respective power plants, we summarized
the proportion of total intake capacity for a given cooling type at each plant. We then proportionalized the
generating capacity of each generator based on the total nameplate capacity of each plant. For each individ-
ual record, we assigned cooling technologies to generators by matching the approximate intake proportions
of cooling types to generating capacity proportions. We also considered whether other generators at the
same plant had cooling technologies already assigned to them (i.e., not missing data).

After compiling water use per MWh for all EGU typologies, we then applied these rates to annual genera-
tion for each EGU to estimate water withdrawal and consumption for every year since 1950. This required
developing a temporally comprehensive data set of annual generation, which required compiling values
from three sources. Source 1: The EIA 923 form provided annual generation at the generator level for a
subset of generators from 2008 to 2016. Source 2: The EIA 923 form also provided annual generation from
2001 to 2016 for entire power plants operating within that time frame. Based on the proportion of each
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generator's nameplate capacity relative to the total nameplate capacity for each respective power plant, we
proportionalized generation from plants to the generator level. Source 3: In cases where generation infor-
mation was missing, we estimated annual generation by multiplying nameplate capacities with capacity
factors and constraining those estimates to only years (or partial years) when each generator was operating
(based on initial month-year and retirement month-year). Capacity factor estimates were obtained from
Averyt et al. (2013) or, if unavailable, calculated by dividing average net reported generation (2001-2016)
by the total potential generation assuming plants were operating continuously; these capacity factors were
applied to each generator. Based on initial operating year and retirement year, we compiled generation
from 1950 to 2016 prioritizing data from source 1 first, source 2 second, and finally source 3 if the previous
sources were unavailable.

We applied water use coefficients per technology code to each EGU's annual generation to calculate water
use for all years. To partition water use for each EGU by the source of water, we first relied on the sources
reported in EIA's thermoelectric cooling water data for 2014 through 2016 (EIA 2019c). EIA provides 13
categories of water sources, which for simplicity sake, we reduced into seven sources: fresh surface, fresh
groundwater, saline surface, saline groundwater, reclaimed discharge, mixed sources, and other. Water
sources reported in 2014 were assumed constant for all previous years. The EIA data only provided water
sources for 831 of the >8000 power plants in our data set. To partition water sources for the remaining
power plants, we relied on USGS water use estimates at the county-level; however, these were only avail-
able for four water sources (fresh surface, fresh groundwater, saline surface, saline groundwater) because
other sources were intermittently reported. We used a nonlinear moving-average interpolation approach to
backcast historical water use by source for every 5 years. Using USGS county-level data from 1985 to 2015,
we developed linear regressions of source-specific water use versus year to estimate source-specific water
use in 1950. We started the interpolation by deriving 1980 values using the average between 1950 estimates
(from regression) and empirical values for 1985 and 1990. In turn, 1975 values were estimated by interpo-
lating 1950 estimates with 1980 and 1985 values, and so on until 1955 values were interpolated. This type
of moving-average estimation weights values more heavily based on known values in empirical data than
estimated values. Water use by source was then converted into proportional values.

In some cases, our approach yielded water use for electricity production for counties in which the USGS
reported no usage; hence, there was no ability to backcast or interpolate water sources for these instances.
To develop estimates for these counties, we used Spatially Constrained Multivariate Clustering in ArcGIS
(10.3) to develop regionally affiliated clusters of similar water use patterns (Figure S2). Using total propor-
tional water use by source (across all sectors) for 2015, we developed spatial clusters using a Kth nearest
neighbor approach based on Euclidean distances. We selected 100 clusters for the CONUS and a neighbor-
hood radius of 20 counties (Figure S2). Based on counties where thermoelectric water use by source was
reported from the USGS, we averaged the proportion of water use by source for each cluster for each year
(1950-2015). Those proportions were then applied to counties with missing data falling within the same
cluster. All proportions were multiplied by total electricity production water use values to partition use by
the four water sources.

The above approach yielded water use by source for every 5 years from 1950 to 2016. To generate annual
estimates, we used a nonlinear spline interpolation within the impute TS package in the R programming
environment (Moritz & Bartz-Beielstein, 2017).

2.3. Irrigation Water Withdrawal

Irrigation for crops is the predominant driver of irrigated water practices worldwide. In some US counties,
however, golf irrigation is the largest use of irrigated water (Ivahnenko, 2009; Maupin et al., 2017). In
addition, in years 2005-2015, the USGS WUCS differentiated irrigation water use into only crop and golf
sub-sectors. To compare our estimates to that of the USGS required that we differentiate between these
sub-sectors as well. For our purposes, we term both of these irrigation practices as “Agriculture,” as crop
irrigation is dedicated to field crops, vegetables, and fruit and nut orchards, whereas the golf irrigated is
dedicated to turf grass, another cultivated product.

MCMANAMAY ET AL.
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2.3.1. Crop Irrigation

Water use for crop irrigation was estimated using historical agricultural irrigated acreage, crop water de-
mand models, and irrigation loss by crop types. Irrigation withdrawals for a given crop are generally esti-
mated using Equation 1 (Dickens et al., 2011)

W - (AZC)’ )

where W is the irrigation withdrawals in acre-feet for a crop; A is the irrigated acreage of each crop in the
specified state, in acres; C is the irrigation water requirement for each individual crop in feet; and L is the
potential water loss while irrigating in decimal fraction.

The first necessity and challenge lay in obtaining historically comprehensive irrigated acreage estimates
for different crops. Historical total 1and acreage and irrigated land acreage from 1950 to 2017 by agriculture
product at county level was reported at 4- to 5-years increments by the agriculture (Ag) census conducted
by the United States Department of Agriculture (USDA). The compiled census results were obtained from
the Inter-university Consortium for Political and Social Research (ICPSR) (Haines et al., 2016) and the
USDA National Agricultural Statistics Service (NASS) (USDA NASS 2020). Data were available only for the
following years: 1950, 1954, 1959, 1964, 1969, 1972, 1978, 1982, 1987, 1992, 1997, 2002, 2007, 2012, and 2017.
Agriculture products and the naming convention of agriculture products reported by the Ag Census varied
immensely across years and required manually compiling variables across all years available. Considerable
individual attention was required to ensure consistent assemblage of land acreage by crop types across the
years. Counties with missing crop land acreage for individual years, indicated by no values, were imputed
using classification and regression trees method in “mice” package in R (van Buuren & Groothuis-Oud-
shoorn, 2011; van Buuren, 2018). Imputation methods use values where data is available to predict missing
observations. For each variable with missing values for counties, predictive models are developed using all
available observations as a response variable, whereas other variables in the data set, such as total cropland
harvested and crop production estimates for each county, as predictor variables. Following imputation, land
acreage estimates were only available for 15 years of the entire 67-year period of record. To estimate annual
fluctuations in crop land acreage values, we used the same nonlinear spline interpolation reported earlier
(ImputeTS package in R). Examples of land-acreage interpolation results are provided in Figure S3.

Following imputation and interpolation, total land acreage estimates were available for 44 agricultural
products, whereas estimates of irrigated land acreage were available for only 17 crops and 4 major crop
categories (Table 3). Since not all land planted for a given crop is irrigated, total land acreage would overes-
timate irrigated water use. This required that we estimate irrigated acreage for the remaining 27 crops. We
multiplied total land acreage estimates of agricultural products for each county by the proportions of land
irrigated according to the respective major crop categories (cropland, berries, fruit and nut orchards, and
vegetables) (Table 3).

Dickens et al. (2011) suggests that irrigated lands estimated by the Ag census may under-estimate the actual
land irrigated for agriculture. Given the potential for underestimation and uncertainty in our estimates of
irrigated land acreages, we developed two scenarios of low and high irrigated lands. For the “low” scenario,
we used irrigated land acreages directly reported from the Ag census for the 17 crops and then applied irri-
gated acreage proportions to only agriculture products with missing irrigated land coverages. For the “high”
scenario, we applied irrigated land proportions for the major crop categories to all agricultural products and
then selected the maximum irrigated land acreage estimate for each crop.

Crop water requirement (C) is largely dependent upon crop water needs (ET,,, in mm/day) in relation to
background evapotranspiration rates across the country, which was calculated using the following equation:

ET,,, = ET,x K, (2)

rop

where ET, is the reference evapotranspiration, and K is the crop factor. Evapotranspiration was calculated
using temperature and daylight hours using the Blaney-Criddle (1962) equation:

MCMANAMAY ET AL.

7 of 28



) .¥eld

MAJI Water Resources Research 10.1029/2020WR027751
AND SPACE SCIENCE

Table 3

Agriculture Products With Land Acreage Provided by US Department of Agriculture (via ICPSR") Used to Estimate Agriculture Irrigation

Plant type Agriculture products

Crops Alfalfa*, Barley*, Buckwheat*, Corn for grain*, Corn for silage*, Cotton*, Hay* (besides

alfalfa), Irish potatoes*, Oats*, Peanuts*, Rice*, Rye, Sorghum for grain*, Sorghum for
Silage*, Soybeans for beans*, Sugarbeets, Sweet potatoes*, Tobacco*, Wheat*

Fruits and vegetables Cantaloupes, Cucumber, Hot peppers, Lettuce, Snapbeans, Spinach, Sweet peppers,
Tomatoes, Watermelons, Other vegetable category (besides those listed)

Fruit and nut orchards, vineyards, and berries Almonds, Apples, Apricots, Avocados, Blueberries, Cherries, Citrus, Grapes, Olives, Peaches,
Pears, Plums and prunes, Raspberries, Strawberries, Other berries (besides those listed)

Aggregated agriculture lands for estimating irrigated lands Berries*, Cropland harvested*, Fruit and orchard*, Vegetables (all) *

Note. *Indicates Crops With Irrigated Land Estimates, Whereas for all Other Crops, Only Total Land was Available and Irrigated Acreage Required Estimation
*https://www.icpsr.umich.edu/index.html.

ET, = p(0.457>< T +8.128), 3)

where, ET, is the daily reference evapotranspiration (mm day ™). T is the daily temperature (°C) given as
and p is the daily percentage of daytime hours. The Blaney-Criddle (BC) equation is often used because it
only relies on air-temperature and day-light hours datasets, which are widely available. For the same reason,
we elected to use the BC method; however, we note that the BC represents potential ET, not reference ET,
and can be inaccurate relative to Penman-Monteith, which requires significantly more information (Brou-
wer & Heibloem, 1986). Daily ET, was calculated for each county from 1950 to 2016 using T and p values
provided via Daymet gridded data (Thornton et al., 2018).

K . depends on the type of crop, the growth stage of the crop, geography, and the climate. Generally, K,
coefficients are represented as nonlinear, seasonally variant curves that vary based on planting dates, total
length of the growing season and the lengths of the various growth stages, which vary by climate zones
(Figure S4). The total growing period starts from sowing, transplanting, or, in the case of perennial crops,
the bloom date, to the last day of the harvest and depends on the type of crop, and the climate. The duration
of each growth stage for various field crops and their corresponding K, values were obtained from Brouwer
and Heibloem (1986). Planting date and bloom dates for each crop were acquired from the USDA NASS
(USDA 2010). The report provides the begin and end date of planting/blooming and harvesting for each
crop by state. For consistency, we determined the plantation date or bloom date as 15 days prior to the
provided end dates for planting and blooming. Using the total duration of growth stages, we calculated the
number of days in a month associated with the stage of growth for a given crop. Hence, for each crop, K, for
that month was calculated by simply multiplying the crop factor for that growth stage with number of days
in a month that are in that stage of growth (Figure S4). If there are multiple growth stages in a month, then
the arithmetic mean of the K, values were taken. Depending on the crop type, USDA provides the planting
dates and bloom dates only for some states whereas acreage of crops for each year commonly occur in states
without documented planting and bloom dates. To calculate the crop factor for states with missing values,
the same value for crop factors were applied to those states according to average values for crop hardiness
zones. State-specific and/or zone-specific K, values were multiplied by ET, to obtain ET, by county.

ET, provides an estimate of crop water demand; however, this does not take effective precipitation and soil
water availability into account (Hoekstra, 2019), and thus, ET. is an overestimate of irrigation; We then can
use ET, as an upper ceiling of future irrigation, assuming irrigation is halted when soil availability meets
crop water demands. When estimating daily irrigated water use for crops (IWU,), daily soil water availabil-
ity is taken into account using Equation 4:

IWUC :ET(:_(P_QS)_AS’ (4)
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where P is daily precipitation, Q, is daily surface runoff, and (AS) is the daily change in soil moisture. Precip-
itation, surface runoff, and soil moisture were obtained from Livneh et al. (2015) and Livneh et al. (2015),
respectively, and were summarized by county at the daily time step. This suggests that IWU, is blue water
consumption (evaporated by crops), whereas IWU.—ET, is green water use (rainfall) by crops.

Water loss during irrigation (conveyance loss) depends on the efficiency of the type of irrigation system
used. Dickens et al. (2011) provide a range of estimates for L, reported as field irrigation efficiencies among
various methods. We summarized these efficiencies by three major categories presented in Table 3. Coun-
ty-level estimates of acres irrigated by sprinklers, surface flooding, or micro-drip irrigation were available in
1950 (Haines et al., 2016) and from 1985 to 2015 (Maupin et al., 2017). To estimate acreage irrigated by each
of the methods from 1955 to 1980, we used the same nonlinear moving-average interpolation mentioned
previously in the thermoelectric analysis. Because micro-drip technologies were largely unavailable prior
to the 1960s (Taylor et al., 2014), we presumed acreage irrigated via micro-drip prior to 1960 were 0. Using
the range of values in Table 3, we derived time-variant conveyance loss estimates assuming that efficiency
increased via technology updates from minimum values in 1950 to 75th percentile values in 2016. To calcu-
late L for each county for each year, we calculated a weighted average of conveyance efficiency based on the
proportion of acreage in each county irrigated using each of three major categories.

We developed four scenarios irrigation demand or withdrawal w based on the two estimates of irrigat-
ed land acreage described earlier and using estimates of crop water demand and withdrawal, ET, versus
IWU,, respectively. Here, we replace term C in Equation 1 for ET, or IWU,, depending on the scenario. For
each scenario, daily crop water demand or irrigation requirements were aggregated to annual estimates
and summed across all agricultural products. Using a similar approach to the thermoelectric analysis, we
calculated proportions of total irrigation water use into groundwater and surface water factions by relying
on USGS estimates where available (Maupin et al., 2017) and using the combination of regression and
interpolation methods mentioned previously. For each scenario, we then multiplied total crop water use
requirements to these proportions.

2.3.2. Golf Course Irrigation

Estimating golf course irrigation followed a similar approach to crop irrigation, except that there were no
consistent datasets on golf course acreage in the US from 1950 to 2016. To estimate acreage, we obtained the
US Golf Course Database (2019), which provided latitude and longitude locations of golf courses, the num-
ber of holes, and the year built. We reconstructed a historical data set of golf courses by summarizing the
number of holes per county per year. Numbers of golf course holes have been previously used to estimate
golf course size and irrigated acreage with high accuracy (Ivahnenko, 2009). Indeed, our data showed strong
association (+* = 0.88) between number of course holes and golf course acreage reported by the USGS (Fig-
ure S5). Using USGS estimates of irrigated golf course acreage for years 2005, 2010, and 2015, we calculated
acreage-per-hole coefficients for each county or for each state if county estimates were not available. We
then used the coefficients to estimate irrigated golf course acreage per county per year.

We used the same approach for estimating golf irrigation as crop irrigation (Equations 1-4). We assembled
data on the types of turf grass grown in different states or zones, their growing season, and associated kc
values. Similar as above, states or zones with missing values were assigned average values of nearest neigh-
boring zones or states. We presumed all irrigation was achieved via sprinkler systems and only applied
time-variant conveyance loss estimates for sprinklers (coefficients provided in Table 4). In contrast to crop
irrigation, only two scenarios of golf course irrigation were developed using ET, and IWU, as we only had a
single estimate of golf acreage for each year.

2.4. Public Supply Water Withdrawal

According to Dieter et al. (2018), public supply from municipal sources accounts for 14% of total water use
in the US. We focused on municipal supplies, rather than domestic self-supply, which accounts for 3.8%
of total water use. The USGS uses a variety of methods and data for estimating municipal public-supply
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Table 4

withdrawals, which include collecting data from individual state wa-

Estimates of Field Irrigation Efficiencies (L) Among Three Major ter regulatory agencies, surveys, or estimating use based on population

Irrigation Methods

served (Kenny et al., 2009). Estimating the population served by public

Irrigation method Average

Min Max  75thpercentile  SUPPLy is not straightforward and requires gathering information from

Spray 0.819
Micro-drip 0.867
Surface flooding 0.729

0.650 0.950 0.900
0.850 0.900 0.875

multiple sources including EPA SDWIS (2014), U.S. Census (1996; 2019),
and public suppliers (Kenny et al., 2009). For the entire time period under
consideration for our analysis, compiling information from these sources

0.650 0.850 0.775 to estimate public supply was impractical, or impossible (due to missing

Note. Data summarized from Dickens et al. [11]. data). In contrast, Worland et al. (2018) used a Bayesian hierarchical re-

gression approach to model municipal water use in counties across the
US and the authors reported relatively good model performance.

Likewise, we adopted a statistical modeling approach to model public water supply. Specifically, we utilized
a random forest statistical modeling approach trained to match USGS observations for public water supply
using a suite of predictor variables. Random forests are a form of ensemble machine learning where many
decision trees (>500) are iteratively constructed and fit to a data set using random subsets of observations
and random subsets of variables available to each tree node (Breiman, 2001). Each tree is fit to the training
data and then predictions are combined from all trees. The unused observations, termed the out-of-bag
sample, are used in cross-validation procedures to estimate error and variable importance (Breiman, 2001;
Cutler et al., 2007). Similar to Worland et al. (2018), we compiled a suite of time-variant predictor variables
at the county-level hypothesized to be important to estimating public water supply use. These included:
county-level population estimates, land use, climate, runoff, dam storage, aquifer permeability, and spatial
autocovariates (Table S3). These variables serve as surrogates of complex mechanisms that we were unable
to model in a mechanistic fashion. For instance, dam storage serves as a surrogate of water supply availabil-
ity and proximity to dense populations, as we cannot characterize water distribution infrastructure for the
entire US. As another example, regions of high aquifer permeability are indicative of groundwater source
reliance and thus, permeability is used as predictor variables for partitioning ground and surface water
sources. One difference in our approach to that of Worland et al. is that we did not account for economic
and behavioral information (e.g., Gini index, voting partisan metrics) that might be important for predict-
ing shifts in water use efficiency over time. However, many of these variables are unavailable for our entire
period of record. Our assessment of land cover, in conjunction with spatial autocovariates, may serve as
surrogates of efficiency since per-capita water use increases with dense urbanization and higher efficiency
tends to follow north-south gradients and urban-rural gradients (Sankarasubramanian et al., 2017).

2.4.1. Population Estimates

Annual county-level population data was tabulated and estimated based on two major data sets: 1) the
National Cancer Institute Surveillance, Epidemiology and End Results (NCI SEER, 2019) Program (1969—
2016) and 2) U.S. Census Bureau Population of States and Counties of the United States (1790-1990), Part
III (U.S. Census, 1996). The NCI SEER data set provides information on intercensal shifts in population due
to major human migrations (e.g., hurricane Katrina) and changes in county boundaries or development of
new counties. Methods for accounting for shifts in county boundaries or identification codes are provided
in Text S1. We estimated intercensal populations using the Das Gupta (1981) method formula:

! 3652 — ¢
P =P +|Pyx | ——— ||,
’ [3652X[3652H {OX( 3652 H

with P, = population estimate at time t, P35, = ten-year from reference year decadal census count, t = time
in days elapsed since reference year decadal census count, and P, = reference year census count.
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2.4.2. Other Predictors

Besides population size, public supply water use estimates are likely influenced by the extent of urban de-
velopment in conjunction with other land uses, infrastructure for supply and delivery (such as reservoirs),
climate and water availability, and patterns related to spatial dependencies (Table S3). To provide a tempo-
rally comprehensive assessment of land cover from 1950 to 2010, we used two derived datasets of historical
(1936-2005) and contemporary (2005-2016) land cover maps produced at annual time steps by the USGS
using a land use and land cover (LULC) model (T. Sohl et al., 2016; 2014, respectively). LULC maps were
generated at 250-m resolution with 14 land cover classes (T. Sohl et al., 2016). Historical LULC maps were
developed using a suite of historical datasets (e.g., Census of Agriculture) (T. Sohl et al., 2016) whereas
contemporary LULC maps were based suitability surfaces derived from historical land cover and land use
change (T. L. Sohl et al., 2014). We used zonal statistics in ArcMap 10.2 to tabulate the area occupied by each
LC type in each county per year. For public supply, the primary focus was on temporal changes in developed
land cover; however, other land cover types (barren, forested, and agriculture) provide geographic context of
how urban areas interact with the landscape across the country.

To account for potential public water supply volumes in reservoirs, we summarized the storage available
per county per year for different types of reservoirs. Although the Congressionally authorized purpose of
reservoirs was provided by the US Army Corps of Engineers National Inventory of Dams (NID), there are
many US reservoirs serving as sources of public water supply that were not originally authorized for that
purpose. We used the National Anthropogenic Barrier Data set (Ostroff et al., 2013), which provides accu-
rate coordinates of dams, to summarize reservoir storage in each county. Using ownership, purpose, and
year of construction, we summarized the total NID storage available each year for all reservoirs, federally
owned reservoirs, state/local/utility owned reservoirs, and reservoirs authorized for water supply.

Demand for public water supply is driven by population size and urban area extent, but also potential
reductions in demand due to limited water availability due to geographical differences in hydroclimatic re-
gions or temporal variance, such as drought. We compiled 800-m grid monthly precipitation datasets (1950
2010) from PRISM (Daly et al., 2008) and summarized these values at the county level using zonal statistics
(ArcMap 10.2). Monthly precipitation was summarized as annual averages and total annuals. Runoff per
county was derived using the USGS WaterWatch estimates computed for hydrologic unit code (HUC) eight
watersheds (USGS, 2018). HUC eight boundaries were overlaid with county boundaries and weighted av-
erages (based on area) were used to derive county level runoff estimates. Generally, groundwater use varies
considerably among aquifers, which are characterized by different lithologies with varying levels of bedrock
permeability (Maupin & Barber, 2005). Wolock et al. (2004) translated bedrock lithologies into permeability
classes for small watersheds across the US, with “1” being lowest permeability and “7” being the highest. As
an indication of propensity for groundwater use, we summarized permeability classes into counties.

Patterns in public water use in a given county may also reflect usage in neighboring counties due to complex
physical or social infrastructures, unobvious municipal boundaries, or water resources that share county
boundaries. Because these are difficult to map, variables depicting spatial dependencies among counties
can provide a surrogate of these unobserved factors. Using 2015 USGS county-level water use estimates, we
derived inverse distance-weighted autocovariates using the spdep package (Spatial Dependence: Weight-
ing Schemes, Statistics and Models) in the R programming environment (Bivand et al., 2013; Bivand &
Piras, 2015). Spatial autocovariates were generated for 2015 public supply groundwater, surface water and
total water estimates separately. The autocov_dist function was used to predict each of these estimates based
on coordinates from the centroid of each county and neighborhoods within a 20-county radius.

Random forest models were calibrated using a subset of the USGS public water supply use estimates avail-
able every 5 years at the county level from 1985 to 2015. Random forests were implemented using the ran-
domPForest package in R (Liaw & Wiener, 2002) using 500 trees for each training session. Separate models
were developed to predict total groundwater public supply use, total surface water, and total ground and
surface water combined. Response variables and a set of predictor variables were log (x+1) transformed pri-
or to analysis. Variable importance of random forest models is provided in Table S4. All county-level USGS
data were used for training model development, except 2002, which only considered freshwater.

MCMANAMAY ET AL.

11 of 28



A7
ra\“1%
ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2020WR027751

2.5. Data Overview and Validation

Our analysis provides annual (and daily for irrigation) water use estimates by water source for the three
sectors at the US county-level and state-level for every year from 1950 to 2016 (Table 1). Multiple scenarios
are typically included to provide ranges of water use values. Examples of spatial variation for individual
years for water withdrawal within irrigation and electricity production sectors are provided in Figure 1 and
for the public water supply sector in Figure 2. Additionally, we provide annual water withdrawal estimates
for electricity production at the power-plant level (Figure 3, consumption is available but not pictured).

For all three sectors, 67 years of data provides an unprecedented ability to examine long-term regional and
sub-regional shifts in water use patterns at high spatial resolution (Figure 4). We split the conterminous US
into nine state-groupings following USGS Interior Regions to examine region-specific behaviors in water
use over time (Figure 4). Using the entire period of record, we calculated slopes of water use magnitudes
over time for each county and time-variant spline curves, representing a central tendency in water use
behavior among all counties within a region (Figure 4). With some exceptions, overall trends indicate that
water withdrawals have predominantly increased across all sectors over the 67-years period, although ir-
rigation and electricity production has shown more evidence of increases and decreases. While this long-
term examination of public water supply withdrawals is agnostic to recent efficiency upgrades, estimates
of withdrawal for other sectors take socioeconomic shifts into account. For instance, many counties across
all regions show evidence of decreases in withdrawals for electricity production in the last decade due to
the decommissioning of large thermoelectric power plants, primarily coal (Figure 4). Likewise, irrigation
considers increases in conveyance efficiency along with increasing shifts toward sprinklers and micro-drip
systems, away from flood irrigation. Irrigation water use was estimated separately for 43 individual crops
and for golf courses, which provides rich data to examine sub-sector specific spatiotemporal trends and
isolate predominant shifts in water use among those sub-sectors at the county-level (Figure 5).

2.6. Validation

The USGS provides the most spatially and temporally comprehensive information on water use in the US
to support a comparison with our results. Water use for each sector and source were compared to USGS
estimates at both the county and state levels for the periods 1985-2015 and 1950-2015, respectively, when
available (Table 5, S4-S7). However, data availability for comparison varies depended on sub-sector. For
instance, separate estimates of crop and golf irrigation by the USGS were only available from 2005 to -2015.
We observed numerous cases of no water use reported for the USGS, whereas our estimates yielded > 0
water usage (Figure S6). Therefore, we conducted two separate comparisons of our data to USGS estimates
for each sector and source (except public supply): one including all data and another excluding zero values.
All data, except public supply, were log (x+1) transformed prior to analysis and compared using linear
regression.

We also compared our results to that of recent studies conducted for individual years where data were
available. For example, Peer et al. (2016) analyzed cooling water for thermoelectric power plants in 2010
based on operator-reported EIA data; however, M. A. Harris and Diehl (2017) suggested that some reported
estimates are thermodynamically implausible and developed a separate model for estimating water use at
thermoelectric power plants operating in 2010. We compared our water use estimates at individual power
plants to those of USGS-modeled estimates reported in M. A. Harris and Diehl (2017) and Peer et al. (2016)
for the year 2010. At a national level, E. A. Grubert and Sanders (2018) analyze water use according to water
source for year 2014 within all life cycles and technologies of the US energy system. To provide a compar-
ison, we isolated Grubert and Sander's water withdrawal and consumption estimates within the “conver-
sion” or “production” stages of the energy life cycle relevant to electricity production, particularly power
plant cooling or washing solar panels and wind turbine blades. We then compared our total 2014 water
withdrawal and consumption estimates according to water source with that reported by E. A. Grubert and
Sanders (2018). Based on the Agriculture Census Farm and Ranch Irrigation Survey, the USDA National
Agriculture Statistics Service provides irrigation water (in acre feet) applied to farms at the state level for
2013 (USDA 2020). Additionally, Marston et al. (2018) provides green and blue water footprint estimates of
many commodities including irrigation for crop production at the county-level for year 2010. We compared
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Figure 1. County-level total water use estimates from this study for irrigation (crop and golf, low acreage, climate
adjusted scenario) and electric power production (medium coefficient scenario) for selected years. For comparison,
USGS irrigation and thermoelectric water use estimates are shown for 1990. MGD, million gallons per day; USGS, US
Geological Survey.

our crop irrigation estimates to these data sources at state and county levels, respectively, for the respec-
tively years. Finally, Worland et al. (2018) used a statistical model calibrated from USGS data to estimate of
public supply water use per household (wh) in counties for the year 2010. The best model from that study
explained 66% of variation in USGS data. To determine our model's performance for 2010, we compared
total public water supplies and wh calculated from our estimates to that of the USGS.

Generally, our data show agreement with USGS estimates at both state and county scales, with some excep-
tions (Figure 6, Tables 4, S5-S8). Random forests predicting USGS public water supply use values displayed
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Figure 2. County-level total public supply water use estimates from this study for selected years. For comparison,
USGS public supply water use estimates are shown for 2015. MGD, million gallons per day; USGS, US Geological
Survey.

strong performance (* > 0.90). Population and developed land cover were the most important variables for
all three models (Table S4). Water supply reservoir storage was important in predicting surface water public
supply whereas aquifer permeability was important in discerning groundwater sources of public supply
(Table S4). As we expected, spatial autocovariates were also important to differentiating water sources.

Estimates of irrigation water use were strongly associated with that of USGS total water use estimates
(> 0.80), whereas our state and county electricity production water use estimates displayed weaker asso-
ciations with USGS data (state, r* = 0.55; county, ¥ = 0.63). Some discrepancies between our estimates and
USGS WUCS are expected because our approach estimated water use for a wider variety of electricity pro-
duction technologies (solar PV, wind) and our analysis includes a more comprehensive list of power plants
than the thermoelectric facilities reported by the USGS. Partitioning water use by source (e.g., groundwater,
surface water) and by sub-sector (e.g., crop, golf irrigation) did not necessarily lead to weaker associations
between our estimates and USGS data but showed mixed results. In some cases, such as thermoelectric use,
estimates for fresh and saline surface water usage showed stronger agreement with USGS estimates than
total usage, whereas partitioning water use estimates into fresh and saline ground water sources showed
less agreement with USGS data (Tables 5, S6). Excluding zeros from the analysis only marginally improved
the strength of agreement between our estimates and that of USGS, except for crop and golf irrigation. Fol-
lowing removal of zero values, we observed considerable improvement in #* values for both crop and golf
water use estimates, both as totals and partitioned by source (Tables 5, S8).
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Figure 3. Estimated water use at power plants for selected years from this study based on the medium coefficient
scenario. For comparison, data from the USGS (M. A. Harris & Diehl 2017) are provided. MGD, million gallons per day;
USGS, US Geological Survey.

At the power plant level, we observed more agreement between our data and water use estimates provided
by M. A. Harris and Diehl (2017) and Peer et al. (2016) (Figure 7). Average, minimum, and maximum water
use estimated for power plants showed relatively strong agreement with Harris and Diehl's modeled esti-
mates (¥ = 0.73, r* = 0.76, I* = 0.56, respectively, Figure 7a). Likewise, our water withdrawal and consump-
tion estimates for power plants were strongly related to Peer et al. (2016) (* = 0.72, ¥* = 0.53, respectively,
Figure 7b). However, these strong relationships only correspond to power plants represented in both our
analysis and that of M. A. Harris and Diehl (2017) and Peer et al. (2016). We documented a total of 1,208 and
5,603 power plants operating in 2010 with water usage requirements that were absent from M. A. Harris and
Diehl (2017) and Peer et al. (2016) (Table S9). Most of these plants were wind, natural gas, solar, biomass,
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Figure 5. Example of spatiotemporally rich data provided by the study using irrigation water use estimates for two agricultural crops and for golf courses.
Maximum value ranges are provided in US county-level maps on left. Color spectra for each map are associated with the color spectra of temporal trends within
panels on the right. MGD, million gallons per day.

and coal, but only represent 2% of the total estimated water usage from the electric power production sector
(Table S9).

We also observed general agreement between electricity production water use in our study and that of
national estimates provided by E. A. Grubert and Sanders (2018) (Figures S7-S9). Our nationwide water
withdrawal and consumption estimates for electricity production mirrored those of Grubert and Sanders
across all fuels, except water use for wind energy (Figure S7). Likewise, our estimates of withdrawal and

Figure 4. Spatiotemporal analytics of sectoral water use patterns within regions of the United States. Maps display average slopes of long-term (1950-2016)
changes in water use per county (top). Panels display temporal trends of annual sectoral water use estimates within counties from this study (left) and
quinquennial water use estimates within states and counties from USGS Water Use Circular Series (right). County-level data from the USGS are only available
post-1985, prior to which only state data is available. USGS, USGS, US Geological Survey.
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Adjusted 1 Values Examining Agreement Between Water Use Estimates From This Study to Those Reported by the USGS
States Counties
Water use variable All Remove 0s All Remove 0s
Public supply
Total water withdrawal (WW) 0.91 - 0.96 -
Surface WW 0.84 - 0.93 -
Ground WW 0.94 = 0.96 =
Electricity production”
Total water withdrawal (WW)° 0.55 0.52 0.63 0.44
Surface fresh WW® 0.68 0.66 0.61 0.53
Ground fresh WW" 0.32 0.31 0.26 0.28
Surface saline WW" 0.61 0.60 0.67 0.67
Ground saline Ww" 0.02 0.02 0.16 0.23
Total water consumptionb 0.07 0.21 0.40 0.21
Irrigation
Total water withdrawal (WW) 0.83 0.82 0.84 0.84
Surface fresh WW 0.83 0.82 0.84 0.84
Ground fresh WW 0.84 0.83 0.87 0.86
Total crop WW* 0.14 0.91 0.36 0.80
Surface fresh WW* 0.24 0.91 0.45 0.82
Ground fresh WW* 0.18 0.91 0.38 0.82
Total golf course WW* 0.30 0.67 0.53 0.67
Surface fresh WW* 0.23 0.26 0.48 0.57
Ground fresh WW* 0.22 0.32 0.44 0.56

Note. Comparisons for thermoelectric water use are based on water use estimated using medium coefficients reported
by Averyt et al. (2013) (see Table 1). Comparisons for irrigation are based on water withdrawal from the the low
acreage, climate-adjusted scenario IWUc, see Table 1). USGS data are reported every 5 years. With some exceptions,
comparisons include 13 years of state-level data spanning 1950-2015 and 6 years of county-level data spanning 1985-
2015 for counties. Comparisons were conducted using all data and then after removing 0 values. Data were log(x+1)
transformed prior to analysis. Results of comparisons between the USGS data and all scenarios from this study are
provided in supporting information, Tables S4-S7.

“State and county data only available from 2005 to 2015.

"State level data only available from 1960 to 2015.

consumption by water source and fuel type agreed generally with that of Grubert and Sanders, with some
exceptions (Figures S8-S9). Grubert and Sanders partitioned water source into two nonmutually exclusive
classifications: (1) freshwater, brackish or saline and (2) groundwater, surface water, or reuse. These are
analogous, but not directly translatable, into the seven mutually exclusive water source categories we report
for electricity production (Table 1). Because our analysis does not discriminate brackish and saline, these
were combined into one category (saline). In addition, for comparison, we presume that all reclaimed dis-
charge (i.e., reuse) reported by Grubert and Sanders was also classified as either brackish or saline in their
study. Generally, our withdrawal and consumption estimates for all fuel technologies showed agreement
with Grubert and Sanders, except Solar PV, where our estimates included saline and surface water sourc-
es, whereas Grubert and Sanders reported none (Figures S8-S9). Additionally, for some fuels, our saline
estimates showed divergence from those of Grubert and Sanders. This could be related to differences in
how water sources were defined, particularly “mixed” sources reported in our study (unreported in Grubert
and Sanders). These included combinations of surface and groundwater and/or combinations of fresh and
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Predicted log values

Figure 6. Comparisons of water use estimates (log transformed 10° g d™*) from this study (predicted) versus those
provided by the USGS. Comparisons include public water supply water use at the (a) county and (b) state levels,

total irrigation water use (based on low acreage, climate-adjusted scenario) at the (c) county and (d) state levels, and
electricity production water use (based on medium coefficient estimates) at the (e) county and (f) state levels. USGS, US
Geological Survey.

saline water used for thermoelectric cooling, which were likely reported as brackish or saline in Grubert
and Sanders.

Data from our study also aligned well with independent studies on irrigation and public supply. Our crop
irrigation estimates were strongly associated with values reported by the USDA Agriculture Census at the
state level (* = 0.93, Figure S10) and with values reported by Marston et al. (2018) at the county level (Fig-
ure 8). Comparisons with Marston et al.'s study included crop irrigation estimates for total irrigation (blue)
water use (©* = 0.84), irrigation use from groundwater sources (+* = 0.88), irrigation from surface water
(* = 0.84), and rainfall use by irrigated crops (green) (+* = 0.76). Because Worland et al. (2018) used USGS
estimates of public supply in 2010 for their model, we compared our data to that of USGS for the same year.
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Figure 7. Comparison of electricity production water use estimates for
individual power plants between our study and other studies, including
(a) water withdrawal estimates from our study and M. A. Harris &

Diehl (2017) and (b) average water withdrawal and consumption estimates
from our study and Peer et al. (2016).

In addition, Worland et al.'s model predictions were not readily availa-
ble. Our total public supply estimates and calculated wh values displayed
strong associations with USGS 2010 county-level estimates (+* = 0.97 and
1 = 0.87, respectively) (Figure S11).

Differences between our estimates and that of the USGS or other stud-
ies could arise for multiple reasons, the most obvious being slight dif-
ferences in methods and sources of information. For example, related
to electricity production, M. A. Harris and Diehl (2017) compare three
different methods employed by federal agencies for estimating thermo-
electric water usage in the US: (1) a highly detailed model approach
(USGS) (Diehl et al., 2013), (2) reported estimates by power companies
(EIA, 2019a; 2019b), and (3) a compilation approach heavily reliant on
withdrawal coefficients for different fuel-cooling system combinations
(Maupin et al., 2017). The study found that for over 50% of plants, the
maximum estimated withdrawal was at least twice the magnitude of the
minimum estimate. The USGS detailed model approach likely represents
the most accurate withdrawal estimates, as it ensures estimates are ther-
modynamically plausible. However, this approach requires significant
effort, including heat-and-water budgets and fuel consumption in rela-
tion to cooling technologies and local climate information (Diehl et al.,
2013). Hence, this level of effort would be impractical for all the years in-
cluded in our analysis 1950-2016. In contrast, our electricity production
water-use estimates relied on a coefficient-type approach similar to that
of approach 3 listed above. This compilation approach is most commonly
used to generate county-level estimates reported by the USGS (M. A. Har-
ris & Diehl, 2017). Interestingly, our estimates showed more agreement
with modeled estimates at the power plant level than the USGS county
and state compilations.

Our irrigation estimates differed from that of the USGS most likely be-
cause of differences in sources of information, primarily related to irri-
gated acreage. Estimates of irrigated acreage range widely among differ-
ent sources, such as the USGS National Water Use Information Program
(NWIP), the USDA Farm and Rach Irrigation Survey, and the USDA
Census of Agriculture (Dickens et al., 2011). USGS NWIP typically has
the highest estimates of irrigated agriculture from remote sensing. Our
irrigation estimates rely on acreage from the Census of Agriculture, as

these data provided the most temporally comprehensive period available. Regardless of these differences,
our irrigation water use was strongly associated to USGS (Figure 6¢ and Table 5), Marston et al. (2018) (Fig-
ure 8), and that of the USDA Farm and Ranch Irrigation Survey (Figure S7).

2.7. Limitations

Users of our data should be aware of several limitations of our approach. An important consideration is that
our data are constructed for 67 years and intended to be used for long-term analyses at county-to-regional
scales; therefore, the data are not suitable for single-year analysis or detailed assessments of water use at
individual sites, such as power plants or individual farms. Partitioning water sources for each sector was
limited by available information. Although EIA provided water sources for individual power plants, water
source information was missing for many power plants and required using proportions of water sources
from county-level data. For irrigation and power plants lacking water source information, we relied on
backcasting proportions of use by water sources reported by the USGS, which were only available post-1985.
In the least, our interpolation approach can detect and emulate long-term shifts in use among different wa-
ter sources. Another caveat is that some of the raw data used in our study (e.g., crop acreage, water sources)
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Figure 8. Comparison of 2010 county-level crop irrigation water use estimates between our study and that of Marston et al. (2018). Comparisons include total
crop irrigation for (a) total blue water (fresh surface and groundwater), (b) blue surface water, (c) blue ground water, and (d) green water use (rainfall use by

crops).

were either missing years of information or only available in 4 or 5-year increments. Developing annual
estimates required that we interpolate between those incremental periods (e.g., Figure S3). Although spline
interpolation can mimic the natural fluctuations in values, this approach may miss extreme episodic events
out of the norm.

Electricity production water use estimates were limited by lack of information on generation at the EGU or
power plant level for the pre-2000 period. Prior to 2000, we assumed capacity factors for a given EGU were
constant (average of 2000-2016 values); hence, generation (MWh) was primarily based on EGU nameplate
capacity and the documented month-years of operation within the period of 1950-2000. This coarse ap-
proach will miss periods in which entire EGUs are out of operation due to maintenance or longer curtail-
ment periods. Although recent shifts in capacity factors have been noted for coal, nuclear, and natural gas
technologies, most of these changes in capacity factors were less than 10% across the entire 2000-2016 pe-
riod (Logan et al., 2017). Additionally, we presume that water use coefficients for EGUs (taken from Averyt
et al.) have remained constant over time. Of course, this is not an accurate portrayal of increases in water
use efficiency over time for different fuels, prime movers, and cooling technologies. Hence, our historical
estimates, at times, may under-estimate actual withdrawal and consumption rates.

MCMANAMAY ET AL.

21 of 28



A7
ra\“1%
ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2020WR027751

60 1 3 -
04005, Coconino, AZ 22027, Claiborne, LA
sf0tes, 5O ; 2.5 1 ;
19135 . 3 |
L 40 1 ~— Irrigation 2 1 i
06029 04005 47001 © ; 9 ) :
Q0,4 | ——Electric Power 15 | :
' 48155 ° S - Public Supply ’ ‘
Y 22027 # — ' !
s 13121 20 1 ‘ 11 ;
0 1,000 N 10 A ? 0.5 :
——km A W :
0 —————— 0 ———— T
- 3 -
4000 06029, Kern, CA 200 13121, Fulton, GA 19135, Monroe, IA
il i 160 | 25 ;
3000 ; :
2500 1 ; 120 - ; 2 3
2000 1 3 : J
1500 4 ‘ 80 1 : 1.5 - ;
1000 i - .
200 A ! | 3
; 10 A : 0.5 1 ;
100 - ; ; : 4
© 0 : — 0 ——— 0 I- —— 11— ¢
)
o 1650 - - 8.5 -
S 33015, Rockingham, NH 850 47001, Anderson, TN SB35, Foqre, T
1258 ; 650 - : 6.5 - 3
8501 3 450 i 45 1
450 ] i |
! 250 - 3 2.5 1 3
50 - : '
_ ! 50 - ' 0.5 - !
» | 20 | |
20 i : 0.2 1 '
10 j 101 | 3 5
— g
1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010

Figure 9. Example of the utility of this study's water use data in examining spatially and temporally rich patterns in water use among sectors for specific
counties. The dashed line for year 1985 indicates the earliest date at which USGS data are available at the county level. Breaks in y-axis are used in some panels
order to examine patterns amongst all sectors, which vary significantly in magnitude. USGS, US Geological Survey.

Whereas our irrigation and electric power water use relied on mechanistic model approaches, our public
water supply use relied on a statistical model approach. While the statistical model was highly accurate, it
embodies a black box approach agnostic to shifts in social behavior and efficiency that influence usage rates
(Worland et al., 2018). Variables indicative of increasing infrastructure intensity, such as urban land cover
and urban-rural gradients (represented by autocovariates), should provide surrogacy for efficiency; howev-
er, future efforts should focus toward building more mechanistic representations of public water supply that
account for human agents.

2.8. Example Applications of the Data

We explored the data in a few ways to give potential users an idea of the versatility of the spatially rich,
long-term product. Specifically, we highlight the advantages of our data in revealing patterns that would
otherwise be un-noticeable through the USGS WUCS or data from single-year periods. We suggest our data
are advantageous in that it: (1) extends further back in time at the county-level than USGS WUCS records,
(2) is able to discern annual events invisible to quinquennial surveys, and (3) provides a new data product to
support exploratory analytics for use in multi-sector dynamics research. In part, the benefits of such spatio-
temporally rich data can be clearly seen in Figure 4. For a given sector or sub-sector, our data offers roughly
10X the volume of data available from the USGS Water Circular series.
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Figure 10. Utility of this study's water use data in providing high resolution temporal information, such as examining
16 years of water use during periods of drought. Drought intensity maps and spatial coverage data were obtained

from The National Drought Mitigation Center (NDMC 2020). Data from our study provide more temporal granularity
(annual) than that of USGS and display distinct patterns indicative of situations where water stress estimated from our
results will be very different from that estimated from USGS data. USGS, US Geological Survey.
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behaviors falling into each cluster are provided.
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As one example application, we selected counties that differed widely in their multisector water use behav-
ior (Figure 9). We explored annual trends in county-level water withdrawals pre- and post-1985 as an indi-
cation of the rich information that our analysis adds to the prevailing sectoral water use data available only
post-1985 from the USGS WUCS (Figure 9). The immediate observation of our data set is the high degree
of inter-annual fluctuations, supporting the need for high temporal resolution of water use datasets. These
trends provide a deeper perspective of shifting patterns in water use, or even tradeoffs in water use among
sectors over time. Additionally, differential water use varies greatly among different counties, especially
prior to 1985. For example, public water supply use continues to increase with expansive urbanization and
population increases in Fulton County, GA (Atlanta), whereas public water supply use has consistently
decreased in Monroe County, IA where population has declined since early 1900s due to reductions in coal
mining operations. Comparison of pre- and post-1985 periods indicated that pre-1985 time periods, at times,
displayed very different trends than the last 30 years. For instance, in Coconino County, AZ, electric power
production water use was virtually nonexistent prior to 1976, before Navajo Coal-fired Generating plant
became operational. Likewise, irrigation appears relatively stable post-1985 in Kern County, CA; however,
irrigation peaked in the mid-1970s, before which it had been steadily increasing.

As another application of our data set, we explored how our data could be used in studies examining the
compounded effects of widespread climatic stress, such as drought, on water use required for sustaining so-
cioeconomic demands. Droughts in California have placed stress on agricultural communities to maintain
levels of production resulting in compounded stresses on limited water availabilities (Marston & Konar,
2017). We obtained monthly drought intensity records for California from 2000 to 2016 from the NDMC
(2010) and compared these patterns to sectoral water withdrawals reported by the USGS WUCS and our
annual estimates for a few selected counties (Figure 10). Generally, relative magnitudes and long-term di-
rectionality (increasing/decreasing) for sector water withdrawals among counties showed consistencies
with that of the USGS WUCS. However, our irrigation estimates for Kern County (06029, Central valley)
and Imperial County (06025, Southeastern extreme) were very different from estimates reported by the
USGS WUCS (Figure 10). Despite significant drought from 2012 to 2014, Marston and Konar (2017) report
3% increases in irrigation in California’s Central Valley due to increased crop water requirements from
higher temperatures. In agreement with their study, our data show short-term increases in irrigated water
use across those years, at least for Kern county, and a delayed increase in Imperial county (Figure 10). Our
irrigation estimates suggest water use in the face of shortages were more severe in drought situations than
the USGS WUCS estimates indicate. Furthermore, our estimates tend to align well with irrigation magni-
tudes reported by California Department of Food and Agriculture (CDFA 2019). Interestingly, the opposite
is true for electricity production, where our numbers suggest lower withdrawals than that reported by the
USGS. However, our electricity production water use estimates are based on actual generation, which was
directly obtained from EIA during this period. Many instances of reduced regional electricity production in
response to drought have been documented (Harto et al., 2012), and our data provide the temporal resolu-
tion needed to explore these relationships.

As a final example, we use exploratory analytics to examine divergent long-term patterns in irrigation water
withdrawal (i.e. behaviors) from 1950 to 2016 in counties across the CONUS. To examine similarities and
differences in behaviors we employed Dynamic Time Warping (DTW), which finds optimal alignment be-
tween two time series through similarity measurements between chronological points in datasets (Kruskal
& Liberman, 1983). Time series data may display similarities in chronological trends, but small differenc-
es in shifts along the temporal axis will result in misalignment and low similarity in conventional dis-
tance measurements (e.g., Euclidean distance). DTW overcomes this challenge by developing a “warping”
path along the temporal axis, from which distance measures are minimized to align chronological patterns
among different entities (Berndt & Clifford, 1994). We applied DTW to total irrigation water usage using
the WSTAMP package in R (Piburn et al., 2017), which calculates a distance matrix based on dissimilarities
in time-series data. We standardized water use data for each county from 0 to 1 so that trends would be
purely based on behavior and agnostic to magnitudes. We then used hierarchical agglomerative clustering
(Ward, 1963) to group counties based on minimal distances.

Clusters were highly divergent in their behavior regarding irrigation water use (Figure 11). For instance, ir-
rigation water use increased dramatically during the entire period for members of cluster 1, whereas irriga-
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tion did not increase substantially until post-1990 and post-2000 in members of clusters 5 and 8, respectively
(Figure 11). Other clusters displayed a plateauing with time (e.g., Clusters 2 and 6), whereas others showing
erratic behavior pre-1980 (e.g., Clusters 4 and 7). While some clusters displayed geographical affiliation
(e.g., Clusters 2 and 4), others were spread across the entire CONUS (e.g., Clusters 1, 5, and 6) (Figure 11).
This information and type of analysis can be useful for examining groups of entities displaying similarities
in long-term tradeoffs among water usage sectors or human adaptation strategies to water shortages.
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