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However, obtaining accurate and methodologically consistent information on water usage is difficult, ow-

ing to unknown and possibly large methodological inconsistencies between measurement methods in dif-

ferent places and times, yielding wide ranges of uncertainty on water use as estimates are updated and 

refined (e.g., Averyt et al., 2013; Devineni et al., 2015; Rushforth & Ruddell, 2018). A severe challenge of 

compiling water use data over many years and many jurisdictions is the integration of data from disparate 

sources and methods (Allen et al., 2018), which may vary in spatiotemporal scale, variable definitions, and 

accuracy of source information. The endeavor of harmonizing inconsistent historical data is sometimes 

called reanalysis (e.g., Mesinger et al., 2006).

The United States (US) has among the world's highest per capita water footprint supporting consumption 

of goods and services (Hoekstra & Mekonnen, 2012). Over 90% of total water withdrawals in the US are 

comprised from three economic sectors: thermoelectric generation, irrigation, and public supply (Dieter 

et al., 2018). Projected increases in population, decreases in water availability, and increases in water tem-

perature could render these sectors highly vulnerable to climate change (Barnett & Pierce,  2008; Elliott 

et al., 2014; Van Vliet et al., 2012). Recent evidence suggests, however, that water withdrawals in the US 

has decreased due to advancements in water efficiency and regulation (Dieter et  al.,  2018; B. H. Harris 

et al., 2014; Maupin et al., 2017). From 2005 to 2015, withdrawals for thermoelectric power declined 37.5% 

due to decommissioning of coal-fired plants and more-efficient cooling technologies and withdrawals 

for public supply decreased 12% despite continued population increases (Dieter et al., 2018; B. H. Harris 

et al., 2014; Maupin et al., 2017). Nevertheless, between 2020 and 2060, the U. S. population is expected 

to increase over 21% (U. S. census bureau, 2019), and electricity generation is projected to increase 35%, 

primarily supported through fossil or nuclear technologies (69% of generation) (AEO, 2019). Within the 

agriculture industry, total planted acreage is expected to remain constant by 2028, whereas total crop pro-

duction is expected to increase, on average, 8.4% (USDA, 2019). This suggests that the future agriculture 

industry will involve more intensive agriculture practices and eventually increased water demand, unless 

irrigation efficiency dramatically improves. Furthermore, increased irrigation water withdrawal is at odds 

with suggested adaption strategies to avoid water shortages, which include transfers of irrigation water back 

to other sectors (Brown et al., 2019). We need better data to assess these trends and make plans.

The most spatiotemporally comprehensive compilation of primary sources of water use data in the US is 

provided by the US Geological Survey (USGS) Water Use Circular Series (WUCS) (USGS, 2019). The WUCS 

estimates and reports water usage within eight major sectors and numerous sub-sectors every five years 

(USGS, 2019). Limitations of the USGS WUCS include inconsistencies in the sectors and subsectors report-

ed across time and methods used to derive those estimates, variable spatial resolutions of reported estimates 

and low temporal resolution of estimates (see Supporting Information 2 for full accounting of variables). 

Specifically, the USGS WUCS data set provides quinquennial information at the county level from 1985 to 

2015. Prior to 1985, water usage across a limited number of sectors is provided only at the state level. In 

many cases, water use estimates for specific sub-sectors (e.g., crop and golf irrigation) or sources of water 

(e.g., saline vs. fresh) are reported for only a subset of years. Water use by sector is estimated through numer-

ous published methodologies, which may vary as methods improve (e.g., Dickens et al., 2011; M. A. Harris 

& Diehl, 2017); however, the USGS also relies heavily on state-reported aggregate and county-level use by 

different entities, who use various methods or definitions in determining water withdrawals (Macknick 

et al., 2011; Maupin et al., 2017).

As one example, thermoelectric water use has been reported by two federal agencies, the USGS and the US 

Energy Information Administration (EIA). Estimates of thermoelectric water withdrawals between these 

agencies are based on different methods have been shown to vary substantially (Peer et al., 2016, 2019; M. A. 

Harris & Diehl, 2017). In both cases, water use at the power plant level is only provided for individual years 

or only recent years (post-2000) and is estimated for only a subset of power plants (n < 1400 as of 2010). 

However, according to the EIA, over 8,000 power plants were operating in the US in 2010, many of which 

use water for operations besides thermoelectric cooling (Macknick et al., 2011; R. A. M. Peer et al., 2019). 

Comprehensive historical data on water use for electricity production technologies could prove valuable for 

modeling, especially evaluating situations of water shortages.

Herein we present annual timescale (1950–2016) and spatially comprehensive estimates of water use for 

electric power production, agricultural irrigation, and public supply at the county or site-level (electric 
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power plants) within the conterminous US, using a spatiotemporally consistent reanalysis technique. We 

focus on these three sectors, as they represent the largest reported water use of the US economy. Although 

we rely on the USGS WUCS divisions in sectors (Dieter et al., 2018), we fully recognize that sectoral divi-

sions can be subjective and substantially overlap. For instance, electricity production is only one life cycle 

of the US energy system and fuel production and refining, reported under mining and industrial sectors by 

the USGS WUCS, represent considerable users of water as well. Borrowing terminology from the climate 

sciences, our “reanalysis” was aimed at developing a consistently derived historical record data product 

analogous to the USGS WUCS estimates while addressing major data gaps and limitations of those efforts. 

Specifically, we use consistent estimation methods to provide 67 years of annual county-level (or finer gran-

ularity) water use estimates by source and subsector to prevent spatial or temporal bias.

To estimate the water use of power generation, we synthesized a historically comprehensive list of gener-

ators and historic patterns in generation across fuels, prime movers, and cooling technologies. To estimate 

the water use of irrigation, we compiled historical information on crop and golf acreage and climate in-

formation to use in a crop-demand model that considered crop type and water use per growth stage. To 

estimate the water use of public water supply, we developed a random forest model constructed from infor-

mation on population, infrastructure information, climate, and land cover. As a validation exercise, we com-

pare our estimates to those provided by the USGS WUCS and other independent studies for specific years. 

Additionally, we seek to determine the cause of any clear discrepancies between this method and the USGS 

data. We also provide example applications to showcase the utility of the data set to multi-sector research.

2. Methods

2.1. Overview and Scope

For our analysis, we adopted the same definition for “water use” as the USGS WUCS, where withdrawal 

is termed the “total amount of water removed from the water source for a particular use,” and consump-

tion is termed, “the amount of water that is not readily available for another use because it is evaporated, 

transpired, incorporated into products, consumed by livestock or humans, or otherwise removed from the 

immediate water environment” (Dieter et  al.,  2018). Generally, our study focuses on the withdrawal of 

fresh surface and ground water removed from the “immediate water environment” of a river, lake, or aqui-

fer, as these sources of water could be more reliably estimated. These sources dominate uses for irrigation 

and public supply; However, for electrical power generation, we include estimates of both withdrawal and 

consumption and include additional water sources: saline surface, saline groundwater, reclaimed waste 

discharge, and mixed sources, because information on consumption and sources of water were more readily 

available and these water sources constitute a larger fraction of total water use for that sector. This definition 

of water use leaves some ambiguity (Ruddell, 2018), but it is coherent with the USGS's methods, which are 

the primary focus of our reanalysis.

All variables from the data products we developed in this study are provided in Table 1. For the three sec-

tors, we include variables depicting the source of water (e.g., fresh, saline) and the temporal and spatial 

resolutions of our analysis. With some exceptions, data are provided at the county resolution at an annual 

timestep from 1950 to 2016. Because irrigation estimates were derived using daily hydrometeorological 

information, we provide daily irrigation water use estimates for individual crops (although we urge caution 

in over-reliance on daily values due to uncertainties in other factors, for example, crop planting dates). Wa-

ter use for electricity production is provided at county, power-plant, and electricity generating unit (EGU) 

resolutions. Power plants may be comprised of multiple EGUs, in which case, water use for all EGUs oper-

ating at a plant were summed. In many cases, the raw data we used in building estimates of water use was 

reported less frequently than an annual basis (e.g., crop land acreages and sources of water). To fill in these 

data gaps, we used linear and spline interpolation methods of the raw datasets.

For irrigation and electric power production, we provide multiple scenarios of varying estimates. For elec-

tric power production, scenarios are based on average, minimum, and maximum water withdrawal and 

consumption coefficients provided by Macknick et al. (2011, 2013) and Averyt et al. (2013). Irrigation sce-

narios varied according to different estimates of irrigated acreage and whether precipitation soil moisture 
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was considered. Because irrigation can vary immensely by crop type, we estimated irrigation separately for 

over 40 crops and for golf courses.

2.2. Electricity Production Water Withdrawal and Consumption

Water use for electricity production in this study only considered the energy technologies reported by 

Macknick et al. (2012) and Averyt et al. (2013), which primarily consisted of off-stream power uses (Ta-

ble 2). These included technologies reliant on thermoelectric cooling but also other technologies that use 

water for operations and maintenance of electricity production (e.g., cleaning solar photovoltaic panels or 

wind turbine blades). We did not elect to include hydropower due to significant uncertainty and challenges 

in deriving those estimates. Similar to other technologies, hydroelectric dams use water to generate electric-

ity, although consumption of water occurs primarily through evaporative losses within reservoirs, not di-

rectly associated with power generation (Mekonnen & Hoekstra, 2012; Grubert et al., 2016). It is possible to 

estimate hydropower water use and consumption into equivalent effects of a municipality or farmer's water 

use on the “immediate water environment” (Ruddell, 2018). However, complexities arise when estimating 

hydropower water use, particularly whether use is calculating only during generation, whether it should 

include all flow passed through a dam or only flow passed across generating units, and how this relates to 

reservoir volumes and evaporative loss (i.e. consumption). Furthermore, hydroelectric power is usually 

only one of many purposes of a dam and reservoir and is commonly a lower-priority of water allocation 

compared with recreation, navigation, flood control, and water supply (Bonnet et al., 2015; Uria-Martinez 

et al., 2018). Finally, reservoir volumes are adaptively managed and reallocated, which depart significantly 

from established reservoir operation rule curves (Doyle & Patterson, 2019). To accurately estimate hydro-
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Sector Categories Time step Spatial resolution Water sources Scenarios

Electric power 
generation

Total withdrawal, total 
consumption, total 
generation, individual 
generation, withdrawal, 
consumption estimates for 
all technologies listed in 
Table 2

Annual County, state, power 
plant

Fresh surface water, fresh 
ground water, saline 
surface water, saline 
groundwater, reclaimed 
discharge, mixed 
sources, other sources

Coefficients reported 
in Macknick 
et al. (2012):

 (1)  Medium,
 (2)  Minimum,
 (3)  Maximum

Irrigation Total irrigation, crop irrigation, 
golf irrigation, individual 
irrigation withdrawal for 
43 crop types in Table 3, 
time-dependent irrigation 
efficiencies

Daily, annual County, state Fresh surface water, fresh 
ground water

 (1)  No climate, low 
acreage,

 (2)  No climate, high 
acreage,

 (3)  Climate-adjusted, 
low acreage,

 (4)  Climate-adjusted, 
high acreage

Public supply Total withdrawal Annual County, state Fresh surface water, fresh 
ground water

One scenario

Table 1 
Overview of Water-Use Related Data Products Provided by the Study for the Three Sectors

Fuels Cooling technologies Prime movers

Biomass, Coal, Geothermal, Hydropower, Pumped 
Storage, Natural Gas, Nuclear, Oil, Solar, Wind

Cooling pond, Dry cooled, Once-through, 
Recirculating, None

Binary cycle, Combined cycle, Combustion 
turbine, Dry stream, Enhanced geothermal 
system, Fuel Cell, Photovoltaic, Trough, Steam, 
None

Note. Fuels, cooling technologies, and prime mover combinations resulted in 35 EGU types. EGU technology combinations and water withdrawal and 
consumption estimates per megawatt hour (MWh) for all each technology are provided in Tables S1 and S2.

Table 2 
Types of Fuels, Cooling Technologies, and Prime Movers Used to Characterize Electric Generating Units (EGU) for Estimating Water Withdrawal and 
Consumption
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power water use (equivalent to other technologies presented in our study), reservoir operations, specifically 

time-variant water volumes used solely for hydropower generation should be proportioned by allocated 

reservoir volumes and associated evaporation rates. Due to the significant challenges in assembling the 

required information for the entire period of record, we did not consider hydropower water use in our study.

To extend the record of county-level electric power water use and water consumption backward to 1950, 

we followed a “coefficient approach” used by Averyt et  al.  (2013) to obtain water withdrawal and con-

sumption at the EGU scale according to a combination of fuel type, cooling system type, and prime mover 

technologies (Table 1, Figure S1). By calculating coefficients on a per-energy production basis for each EGU 

technology, historical water use can then be extrapolated by estimating historical electricity generation. An 

overview of our approach to assign water use per EGU technology is provided as a flow chart in Figure S1. 

We first developed a master list of all power plants and generators in operation at any time as recorded 

in the EIA Form 860 Annual Electric Generator Report (EIA 2019a) or Form 923 Power Plant Operations 

Report (EIA 2019b). The list included 8928 plants and 23697 generators in operation as early as 1891 and 

as late as 2016. Of the list of generators, 18,039 (or 76% of the total) were in operation as of 2016. EIA form 

860 includes information at the generator level including nameplate capacity (MW), capacity factors (%), 

ownership, age, fuel use, status of operation (e.g., operating, retired, out-of-service, installation postponed), 

month and year of initial operation, month and year of retirement, boiler type and efficiency, and cooling 

system types. EIA form 923 provides geospatial locations of power plants and information on monthly and 

annual generation at the generator and power plant level from 2001 to 2017.

Combinations of fuel type, cooling systems, and prime mover technologies resulted in 35 different EGU ty-

pologies (Tables S1 and S2). Averyt et al.'s database reported water withdrawal and consumption for the ma-

jority of EGUs operating in 2008 using water use estimates per technology provided Macknick et al. (2011; 

2012). Based on the EIA generator identifier, we joined Averyt et al's database to our list of EGUs and cal-

culated average, minimum, and maximum water use and water consumption per MWh of energy produced 

(based on 2008 generation estimates, as this mirrored Avery et al.'s data) (Tables S1 and S2). A total of 9398 

EGUs in our master data set were not found in Averyt et al.'s database. Of these, however, only 1,422 re-

quired water for electricity production and hence, needed an appropriate technology code.

For missing records, we used a similar approach as Averyt et al. (2013) to associate cooling technologies to 

each EGU (Figure S1). As Averyt et al. noted, each plant may include multiple different types of cooling in-

frastructure and boilers, multiple boilers may be associated with each generator, and each cooling structure 

may be associated with multiple boilers; however, EIA provides no explicit linkage between each cooling 

structure and each generator. EIA does, however, provide cooling operation types at the power plant level. 

Of the 1422 generators missing from Averyt et al.'s database that required cooling, 892 had no cooling tech-

nology information reported for their respective plants in the EIA data set. Additionally, 457 generators had 

one cooling technology reported for their respective power plant whereas 73 generators had multiple cool-

ing technologies reported. The 892 EGUs with missing cooling technologies had information on fuel type 

and prime mover, which we summarized into fuel-prime mover combinations (i.e., “New Codes,” Tables S1 

and S2). We calculated water withdrawal and consumption per MWh for these New Codes based on averag-

es across all EGU typologies sharing the same fuel and prime mover type combinations (Tables S1 and S2). 

The 457 generators were assigned the same cooling technology as that listed for the power plant. For the 73 

generators with multiple cooling technologies reported for their respective power plants, we summarized 

the proportion of total intake capacity for a given cooling type at each plant. We then proportionalized the 

generating capacity of each generator based on the total nameplate capacity of each plant. For each individ-

ual record, we assigned cooling technologies to generators by matching the approximate intake proportions 

of cooling types to generating capacity proportions. We also considered whether other generators at the 

same plant had cooling technologies already assigned to them (i.e., not missing data).

After compiling water use per MWh for all EGU typologies, we then applied these rates to annual genera-

tion for each EGU to estimate water withdrawal and consumption for every year since 1950. This required 

developing a temporally comprehensive data set of annual generation, which required compiling values 

from three sources. Source 1: The EIA 923 form provided annual generation at the generator level for a 

subset of generators from 2008 to 2016. Source 2: The EIA 923 form also provided annual generation from 

2001 to 2016 for entire power plants operating within that time frame. Based on the proportion of each 
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generator's nameplate capacity relative to the total nameplate capacity for each respective power plant, we 

proportionalized generation from plants to the generator level. Source 3: In cases where generation infor-

mation was missing, we estimated annual generation by multiplying nameplate capacities with capacity 

factors and constraining those estimates to only years (or partial years) when each generator was operating 

(based on initial month-year and retirement month-year). Capacity factor estimates were obtained from 

Averyt et al. (2013) or, if unavailable, calculated by dividing average net reported generation (2001–2016) 

by the total potential generation assuming plants were operating continuously; these capacity factors were 

applied to each generator. Based on initial operating year and retirement year, we compiled generation 

from 1950 to 2016 prioritizing data from source 1 first, source 2 second, and finally source 3 if the previous 

sources were unavailable.

We applied water use coefficients per technology code to each EGU's annual generation to calculate water 

use for all years. To partition water use for each EGU by the source of water, we first relied on the sources 

reported in EIA's thermoelectric cooling water data for 2014 through 2016 (EIA 2019c). EIA provides 13 

categories of water sources, which for simplicity sake, we reduced into seven sources: fresh surface, fresh 

groundwater, saline surface, saline groundwater, reclaimed discharge, mixed sources, and other. Water 

sources reported in 2014 were assumed constant for all previous years. The EIA data only provided water 

sources for 831 of the >8000 power plants in our data set. To partition water sources for the remaining 

power plants, we relied on USGS water use estimates at the county-level; however, these were only avail-

able for four water sources (fresh surface, fresh groundwater, saline surface, saline groundwater) because 

other sources were intermittently reported. We used a nonlinear moving-average interpolation approach to 

backcast historical water use by source for every 5 years. Using USGS county-level data from 1985 to 2015, 

we developed linear regressions of source-specific water use versus year to estimate source-specific water 

use in 1950. We started the interpolation by deriving 1980 values using the average between 1950 estimates 

(from regression) and empirical values for 1985 and 1990. In turn, 1975 values were estimated by interpo-

lating 1950 estimates with 1980 and 1985 values, and so on until 1955 values were interpolated. This type 

of moving-average estimation weights values more heavily based on known values in empirical data than 

estimated values. Water use by source was then converted into proportional values.

In some cases, our approach yielded water use for electricity production for counties in which the USGS 

reported no usage; hence, there was no ability to backcast or interpolate water sources for these instances. 

To develop estimates for these counties, we used Spatially Constrained Multivariate Clustering in ArcGIS 

(10.3) to develop regionally affiliated clusters of similar water use patterns (Figure S2). Using total propor-

tional water use by source (across all sectors) for 2015, we developed spatial clusters using a Kth nearest 

neighbor approach based on Euclidean distances. We selected 100 clusters for the CONUS and a neighbor-

hood radius of 20 counties (Figure S2). Based on counties where thermoelectric water use by source was 

reported from the USGS, we averaged the proportion of water use by source for each cluster for each year 

(1950–2015). Those proportions were then applied to counties with missing data falling within the same 

cluster. All proportions were multiplied by total electricity production water use values to partition use by 

the four water sources.

The above approach yielded water use by source for every 5 years from 1950 to 2016. To generate annual 

estimates, we used a nonlinear spline interpolation within the impute TS package in the R programming 

environment (Moritz & Bartz-Beielstein, 2017).

2.3. Irrigation Water Withdrawal

Irrigation for crops is the predominant driver of irrigated water practices worldwide. In some US counties, 

however, golf irrigation is the largest use of irrigated water (Ivahnenko,  2009; Maupin et  al.,  2017). In 

addition, in years 2005–2015, the USGS WUCS differentiated irrigation water use into only crop and golf 

sub-sectors. To compare our estimates to that of the USGS required that we differentiate between these 

sub-sectors as well. For our purposes, we term both of these irrigation practices as “Agriculture,” as crop 

irrigation is dedicated to field crops, vegetables, and fruit and nut orchards, whereas the golf irrigated is 

dedicated to turf grass, another cultivated product.
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where P is daily precipitation, Qs is daily surface runoff, and (ΔS) is the daily change in soil moisture. Precip-

itation, surface runoff, and soil moisture were obtained from Livneh et al. (2015) and Livneh et al. (2015), 

respectively, and were summarized by county at the daily time step. This suggests that IWUc is blue water 

consumption (evaporated by crops), whereas IWUc—ETc is green water use (rainfall) by crops.

Water loss during irrigation (conveyance loss) depends on the efficiency of the type of irrigation system 

used. Dickens et al. (2011) provide a range of estimates for L, reported as field irrigation efficiencies among 

various methods. We summarized these efficiencies by three major categories presented in Table 3. Coun-

ty-level estimates of acres irrigated by sprinklers, surface flooding, or micro-drip irrigation were available in 

1950 (Haines et al., 2016) and from 1985 to 2015 (Maupin et al., 2017). To estimate acreage irrigated by each 

of the methods from 1955 to 1980, we used the same nonlinear moving-average interpolation mentioned 

previously in the thermoelectric analysis. Because micro-drip technologies were largely unavailable prior 

to the 1960s (Taylor et al., 2014), we presumed acreage irrigated via micro-drip prior to 1960 were 0. Using 

the range of values in Table 3, we derived time-variant conveyance loss estimates assuming that efficiency 

increased via technology updates from minimum values in 1950 to 75th percentile values in 2016. To calcu-

late L for each county for each year, we calculated a weighted average of conveyance efficiency based on the 

proportion of acreage in each county irrigated using each of three major categories.

We developed four scenarios irrigation demand or withdrawal w based on the two estimates of irrigat-

ed land acreage described earlier and using estimates of crop water demand and withdrawal, ETc versus 

IWUc, respectively. Here, we replace term C in Equation 1 for ETc or IWUc, depending on the scenario. For 

each scenario, daily crop water demand or irrigation requirements were aggregated to annual estimates 

and summed across all agricultural products. Using a similar approach to the thermoelectric analysis, we 

calculated proportions of total irrigation water use into groundwater and surface water factions by relying 

on USGS estimates where available (Maupin et  al.,  2017) and using the combination of regression and 

interpolation methods mentioned previously. For each scenario, we then multiplied total crop water use 

requirements to these proportions.

2.3.2. Golf Course Irrigation

Estimating golf course irrigation followed a similar approach to crop irrigation, except that there were no 

consistent datasets on golf course acreage in the US from 1950 to 2016. To estimate acreage, we obtained the 

US Golf Course Database (2019), which provided latitude and longitude locations of golf courses, the num-

ber of holes, and the year built. We reconstructed a historical data set of golf courses by summarizing the 

number of holes per county per year. Numbers of golf course holes have been previously used to estimate 

golf course size and irrigated acreage with high accuracy (Ivahnenko, 2009). Indeed, our data showed strong 

association (r2 = 0.88) between number of course holes and golf course acreage reported by the USGS (Fig-

ure S5). Using USGS estimates of irrigated golf course acreage for years 2005, 2010, and 2015, we calculated 

acreage-per-hole coefficients for each county or for each state if county estimates were not available. We 

then used the coefficients to estimate irrigated golf course acreage per county per year.

We used the same approach for estimating golf irrigation as crop irrigation (Equations 1–4). We assembled 

data on the types of turf grass grown in different states or zones, their growing season, and associated kc 

values. Similar as above, states or zones with missing values were assigned average values of nearest neigh-

boring zones or states. We presumed all irrigation was achieved via sprinkler systems and only applied 

time-variant conveyance loss estimates for sprinklers (coefficients provided in Table 4). In contrast to crop 

irrigation, only two scenarios of golf course irrigation were developed using ETc and IWUc as we only had a 

single estimate of golf acreage for each year.

2.4. Public Supply Water Withdrawal

According to Dieter et al. (2018), public supply from municipal sources accounts for 14% of total water use 

in the US. We focused on municipal supplies, rather than domestic self-supply, which accounts for 3.8% 

of total water use. The USGS uses a variety of methods and data for estimating municipal public-supply 

MCMANAMAY ET AL.

10.1029/2020WR027751

9 of 28





Water Resources Research

2.4.2. Other Predictors

Besides population size, public supply water use estimates are likely influenced by the extent of urban de-

velopment in conjunction with other land uses, infrastructure for supply and delivery (such as reservoirs), 

climate and water availability, and patterns related to spatial dependencies (Table S3). To provide a tempo-

rally comprehensive assessment of land cover from 1950 to 2010, we used two derived datasets of historical 

(1936–2005) and contemporary (2005–2016) land cover maps produced at annual time steps by the USGS 

using a land use and land cover (LULC) model (T. Sohl et al., 2016; 2014, respectively). LULC maps were 

generated at 250-m resolution with 14 land cover classes (T. Sohl et al., 2016). Historical LULC maps were 

developed using a suite of historical datasets (e.g., Census of Agriculture) (T. Sohl et al., 2016) whereas 

contemporary LULC maps were based suitability surfaces derived from historical land cover and land use 

change (T. L. Sohl et al., 2014). We used zonal statistics in ArcMap 10.2 to tabulate the area occupied by each 

LC type in each county per year. For public supply, the primary focus was on temporal changes in developed 

land cover; however, other land cover types (barren, forested, and agriculture) provide geographic context of 

how urban areas interact with the landscape across the country.

To account for potential public water supply volumes in reservoirs, we summarized the storage available 

per county per year for different types of reservoirs. Although the Congressionally authorized purpose of 

reservoirs was provided by the US Army Corps of Engineers National Inventory of Dams (NID), there are 

many US reservoirs serving as sources of public water supply that were not originally authorized for that 

purpose. We used the National Anthropogenic Barrier Data set (Ostroff et al., 2013), which provides accu-

rate coordinates of dams, to summarize reservoir storage in each county. Using ownership, purpose, and 

year of construction, we summarized the total NID storage available each year for all reservoirs, federally 

owned reservoirs, state/local/utility owned reservoirs, and reservoirs authorized for water supply.

Demand for public water supply is driven by population size and urban area extent, but also potential 

reductions in demand due to limited water availability due to geographical differences in hydroclimatic re-

gions or temporal variance, such as drought. We compiled 800-m grid monthly precipitation datasets (1950–

2010) from PRISM (Daly et al., 2008) and summarized these values at the county level using zonal statistics 

(ArcMap 10.2). Monthly precipitation was summarized as annual averages and total annuals. Runoff per 

county was derived using the USGS WaterWatch estimates computed for hydrologic unit code (HUC) eight 

watersheds (USGS, 2018). HUC eight boundaries were overlaid with county boundaries and weighted av-

erages (based on area) were used to derive county level runoff estimates. Generally, groundwater use varies 

considerably among aquifers, which are characterized by different lithologies with varying levels of bedrock 

permeability (Maupin & Barber, 2005). Wolock et al. (2004) translated bedrock lithologies into permeability 

classes for small watersheds across the US, with “1” being lowest permeability and “7” being the highest. As 

an indication of propensity for groundwater use, we summarized permeability classes into counties.

Patterns in public water use in a given county may also reflect usage in neighboring counties due to complex 

physical or social infrastructures, unobvious municipal boundaries, or water resources that share county 

boundaries. Because these are difficult to map, variables depicting spatial dependencies among counties 

can provide a surrogate of these unobserved factors. Using 2015 USGS county-level water use estimates, we 

derived inverse distance-weighted autocovariates using the spdep package (Spatial Dependence: Weight-

ing Schemes, Statistics and Models) in the R programming environment (Bivand et  al.,  2013; Bivand & 

Piras, 2015). Spatial autocovariates were generated for 2015 public supply groundwater, surface water and 

total water estimates separately. The autocov_dist function was used to predict each of these estimates based 

on coordinates from the centroid of each county and neighborhoods within a 20-county radius.

Random forest models were calibrated using a subset of the USGS public water supply use estimates avail-

able every 5 years at the county level from 1985 to 2015. Random forests were implemented using the ran-

domForest package in R (Liaw & Wiener, 2002) using 500 trees for each training session. Separate models 

were developed to predict total groundwater public supply use, total surface water, and total ground and 

surface water combined. Response variables and a set of predictor variables were log (x+1) transformed pri-

or to analysis. Variable importance of random forest models is provided in Table S4. All county-level USGS 

data were used for training model development, except 2002, which only considered freshwater.
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2.5. Data Overview and Validation

Our analysis provides annual (and daily for irrigation) water use estimates by water source for the three 

sectors at the US county-level and state-level for every year from 1950 to 2016 (Table 1). Multiple scenarios 

are typically included to provide ranges of water use values. Examples of spatial variation for individual 

years for water withdrawal within irrigation and electricity production sectors are provided in Figure 1 and 

for the public water supply sector in Figure 2. Additionally, we provide annual water withdrawal estimates 

for electricity production at the power-plant level (Figure 3, consumption is available but not pictured).

For all three sectors, 67 years of data provides an unprecedented ability to examine long-term regional and 

sub-regional shifts in water use patterns at high spatial resolution (Figure 4). We split the conterminous US 

into nine state-groupings following USGS Interior Regions to examine region-specific behaviors in water 

use over time (Figure 4). Using the entire period of record, we calculated slopes of water use magnitudes 

over time for each county and time-variant spline curves, representing a central tendency in water use 

behavior among all counties within a region (Figure 4). With some exceptions, overall trends indicate that 

water withdrawals have predominantly increased across all sectors over the 67-years period, although ir-

rigation and electricity production has shown more evidence of increases and decreases. While this long-

term examination of public water supply withdrawals is agnostic to recent efficiency upgrades, estimates 

of withdrawal for other sectors take socioeconomic shifts into account. For instance, many counties across 

all regions show evidence of decreases in withdrawals for electricity production in the last decade due to 

the decommissioning of large thermoelectric power plants, primarily coal (Figure 4). Likewise, irrigation 

considers increases in conveyance efficiency along with increasing shifts toward sprinklers and micro-drip 

systems, away from flood irrigation. Irrigation water use was estimated separately for 43 individual crops 

and for golf courses, which provides rich data to examine sub-sector specific spatiotemporal trends and 

isolate predominant shifts in water use among those sub-sectors at the county-level (Figure 5).

2.6. Validation

The USGS provides the most spatially and temporally comprehensive information on water use in the US 

to support a comparison with our results. Water use for each sector and source were compared to USGS 

estimates at both the county and state levels for the periods 1985–2015 and 1950–2015, respectively, when 

available (Table 5, S4–S7). However, data availability for comparison varies depended on sub-sector. For 

instance, separate estimates of crop and golf irrigation by the USGS were only available from 2005 to -2015. 

We observed numerous cases of no water use reported for the USGS, whereas our estimates yielded > 0 

water usage (Figure S6). Therefore, we conducted two separate comparisons of our data to USGS estimates 

for each sector and source (except public supply): one including all data and another excluding zero values. 

All data, except public supply, were log (x+1) transformed prior to analysis and compared using linear 

regression.

We also compared our results to that of recent studies conducted for individual years where data were 

available. For example, Peer et al. (2016) analyzed cooling water for thermoelectric power plants in 2010 

based on operator-reported EIA data; however, M. A. Harris and Diehl (2017) suggested that some reported 

estimates are thermodynamically implausible and developed a separate model for estimating water use at 

thermoelectric power plants operating in 2010. We compared our water use estimates at individual power 

plants to those of USGS-modeled estimates reported in M. A. Harris and Diehl (2017) and Peer et al. (2016) 

for the year 2010. At a national level, E. A. Grubert and Sanders (2018) analyze water use according to water 

source for year 2014 within all life cycles and technologies of the US energy system. To provide a compar-

ison, we isolated Grubert and Sander's water withdrawal and consumption estimates within the “conver-

sion” or “production” stages of the energy life cycle relevant to electricity production, particularly power 

plant cooling or washing solar panels and wind turbine blades. We then compared our total 2014 water 

withdrawal and consumption estimates according to water source with that reported by E. A. Grubert and 

Sanders (2018). Based on the Agriculture Census Farm and Ranch Irrigation Survey, the USDA National 

Agriculture Statistics Service provides irrigation water (in acre feet) applied to farms at the state level for 

2013 (USDA 2020). Additionally, Marston et al. (2018) provides green and blue water footprint estimates of 

many commodities including irrigation for crop production at the county-level for year 2010. We compared 
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our crop irrigation estimates to these data sources at state and county levels, respectively, for the respec-

tively years. Finally, Worland et al. (2018) used a statistical model calibrated from USGS data to estimate of 

public supply water use per household (wh) in counties for the year 2010. The best model from that study 

explained 66% of variation in USGS data. To determine our model's performance for 2010, we compared 

total public water supplies and wh calculated from our estimates to that of the USGS.

Generally, our data show agreement with USGS estimates at both state and county scales, with some excep-

tions (Figure 6, Tables 4, S5–S8). Random forests predicting USGS public water supply use values displayed 
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Figure 1. County-level total water use estimates from this study for irrigation (crop and golf, low acreage, climate 
adjusted scenario) and electric power production (medium coefficient scenario) for selected years. For comparison, 
USGS irrigation and thermoelectric water use estimates are shown for 1990. MGD, million gallons per day; USGS, US 
Geological Survey.
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strong performance (r2 > 0.90). Population and developed land cover were the most important variables for 

all three models (Table S4). Water supply reservoir storage was important in predicting surface water public 

supply whereas aquifer permeability was important in discerning groundwater sources of public supply 

(Table S4). As we expected, spatial autocovariates were also important to differentiating water sources.

Estimates of irrigation water use were strongly associated with that of USGS total water use estimates 

(r2 > 0.80), whereas our state and county electricity production water use estimates displayed weaker asso-

ciations with USGS data (state, r2 = 0.55; county, r2 = 0.63). Some discrepancies between our estimates and 

USGS WUCS are expected because our approach estimated water use for a wider variety of electricity pro-

duction technologies (solar PV, wind) and our analysis includes a more comprehensive list of power plants 

than the thermoelectric facilities reported by the USGS. Partitioning water use by source (e.g., groundwater, 

surface water) and by sub-sector (e.g., crop, golf irrigation) did not necessarily lead to weaker associations 

between our estimates and USGS data but showed mixed results. In some cases, such as thermoelectric use, 

estimates for fresh and saline surface water usage showed stronger agreement with USGS estimates than 

total usage, whereas partitioning water use estimates into fresh and saline ground water sources showed 

less agreement with USGS data (Tables 5, S6). Excluding zeros from the analysis only marginally improved 

the strength of agreement between our estimates and that of USGS, except for crop and golf irrigation. Fol-

lowing removal of zero values, we observed considerable improvement in r2 values for both crop and golf 

water use estimates, both as totals and partitioned by source (Tables 5, S8).
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Figure 2. County-level total public supply water use estimates from this study for selected years. For comparison, 
USGS public supply water use estimates are shown for 2015. MGD, million gallons per day; USGS, US Geological 
Survey.
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At the power plant level, we observed more agreement between our data and water use estimates provided 

by M. A. Harris and Diehl (2017) and Peer et al. (2016) (Figure 7). Average, minimum, and maximum water 

use estimated for power plants showed relatively strong agreement with Harris and Diehl's modeled esti-

mates (r2 = 0.73, r2 = 0.76, r2 = 0.56, respectively, Figure 7a). Likewise, our water withdrawal and consump-

tion estimates for power plants were strongly related to Peer et al. (2016) (r2 = 0.72, r2 = 0.53, respectively, 

Figure 7b). However, these strong relationships only correspond to power plants represented in both our 

analysis and that of M. A. Harris and Diehl (2017) and Peer et al. (2016). We documented a total of 1,208 and 

5,603 power plants operating in 2010 with water usage requirements that were absent from M. A. Harris and 

Diehl (2017) and Peer et al. (2016) (Table S9). Most of these plants were wind, natural gas, solar, biomass, 
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Figure 3. Estimated water use at power plants for selected years from this study based on the medium coefficient 
scenario. For comparison, data from the USGS (M. A. Harris & Diehl 2017) are provided. MGD, million gallons per day; 
USGS, US Geological Survey.
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and coal, but only represent 2% of the total estimated water usage from the electric power production sector 

(Table S9).

We also observed general agreement between electricity production water use in our study and that of 

national estimates provided by E. A. Grubert and Sanders (2018) (Figures S7–S9). Our nationwide water 

withdrawal and consumption estimates for electricity production mirrored those of Grubert and Sanders 

across all fuels, except water use for wind energy (Figure S7). Likewise, our estimates of withdrawal and 
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Figure 4. Spatiotemporal analytics of sectoral water use patterns within regions of the United States. Maps display average slopes of long-term (1950–2016) 
changes in water use per county (top). Panels display temporal trends of annual sectoral water use estimates within counties from this study (left) and 
quinquennial water use estimates within states and counties from USGS Water Use Circular Series (right). County-level data from the USGS are only available 
post-1985, prior to which only state data is available. USGS, USGS, US Geological Survey.

Figure 5. Example of spatiotemporally rich data provided by the study using irrigation water use estimates for two agricultural crops and for golf courses. 
Maximum value ranges are provided in US county-level maps on left. Color spectra for each map are associated with the color spectra of temporal trends within 
panels on the right. MGD, million gallons per day.
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consumption by water source and fuel type agreed generally with that of Grubert and Sanders, with some 

exceptions (Figures S8–S9). Grubert and Sanders partitioned water source into two nonmutually exclusive 

classifications: (1) freshwater, brackish or saline and (2) groundwater, surface water, or reuse. These are 

analogous, but not directly translatable, into the seven mutually exclusive water source categories we report 

for electricity production (Table 1). Because our analysis does not discriminate brackish and saline, these 

were combined into one category (saline). In addition, for comparison, we presume that all reclaimed dis-

charge (i.e., reuse) reported by Grubert and Sanders was also classified as either brackish or saline in their 

study. Generally, our withdrawal and consumption estimates for all fuel technologies showed agreement 

with Grubert and Sanders, except Solar PV, where our estimates included saline and surface water sourc-

es, whereas Grubert and Sanders reported none (Figures S8–S9). Additionally, for some fuels, our saline 

estimates showed divergence from those of Grubert and Sanders. This could be related to differences in 

how water sources were defined, particularly “mixed” sources reported in our study (unreported in Grubert 

and Sanders). These included combinations of surface and groundwater and/or combinations of fresh and 
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 Water use variable

States Counties

All Remove 0s All Remove 0s

Public supply

Total water withdrawal (WW) 0.91 – 0.96 –

Surface WW 0.84 – 0.93 –

Ground WW 0.94 – 0.96 –

Electricity productionb

Total water withdrawal (WW)b 0.55 0.52 0.63 0.44

Surface fresh WWb 0.68 0.66 0.61 0.53

Ground fresh WWb 0.32 0.31 0.26 0.28

Surface saline WWb 0.61 0.60 0.67 0.67

Ground saline WWb 0.02 0.02 0.16 0.23

Total water consumptionb 0.07 0.21 0.40 0.21

Irrigation

Total water withdrawal (WW) 0.83 0.82 0.84 0.84

Surface fresh WW 0.83 0.82 0.84 0.84

Ground fresh WW 0.84 0.83 0.87 0.86

Total crop WWa 0.14 0.91 0.36 0.80

Surface fresh WWa 0.24 0.91 0.45 0.82

Ground fresh WWa 0.18 0.91 0.38 0.82

Total golf course WWa 0.30 0.67 0.53 0.67

Surface fresh WWa 0.23 0.26 0.48 0.57

Ground fresh WWa 0.22 0.32 0.44 0.56

Note. Comparisons for thermoelectric water use are based on water use estimated using medium coefficients reported 
by Averyt et  al.  (2013) (see Table  1). Comparisons for irrigation are based on water withdrawal from the the low 
acreage, climate-adjusted scenario (IWUc, see Table 1). USGS data are reported every 5 years. With some exceptions, 
comparisons include 13 years of state-level data spanning 1950–2015 and 6 years of county-level data spanning 1985–
2015 for counties. Comparisons were conducted using all data and then after removing 0 values. Data were log(x+1) 
transformed prior to analysis. Results of comparisons between the USGS data and all scenarios from this study are 
provided in supporting information, Tables S4–S7.
aState and county data only available from 2005 to 2015.
bState level data only available from 1960 to 2015.

Table 5 
Adjusted r2 Values Examining Agreement Between Water Use Estimates From This Study to Those Reported by the USGS
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saline water used for thermoelectric cooling, which were likely reported as brackish or saline in Grubert 

and Sanders.

Data from our study also aligned well with independent studies on irrigation and public supply. Our crop 

irrigation estimates were strongly associated with values reported by the USDA Agriculture Census at the 

state level (r2 = 0.93, Figure S10) and with values reported by Marston et al. (2018) at the county level (Fig-

ure 8). Comparisons with Marston et al.'s study included crop irrigation estimates for total irrigation (blue) 

water use (r2 = 0.84), irrigation use from groundwater sources (r2 = 0.88), irrigation from surface water 

(r2 = 0.84), and rainfall use by irrigated crops (green) (r2 = 0.76). Because Worland et al. (2018) used USGS 

estimates of public supply in 2010 for their model, we compared our data to that of USGS for the same year. 
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Figure 6. Comparisons of water use estimates (log transformed 106 g d–1) from this study (predicted) versus those 
provided by the USGS. Comparisons include public water supply water use at the (a) county and (b) state levels, 
total irrigation water use (based on low acreage, climate-adjusted scenario) at the (c) county and (d) state levels, and 
electricity production water use (based on medium coefficient estimates) at the (e) county and (f) state levels. USGS, US 
Geological Survey.
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In addition, Worland et al.'s model predictions were not readily availa-

ble. Our total public supply estimates and calculated wh values displayed 

strong associations with USGS 2010 county-level estimates (r2 = 0.97 and 

r2 = 0.87, respectively) (Figure S11).

Differences between our estimates and that of the USGS or other stud-

ies could arise for multiple reasons, the most obvious being slight dif-

ferences in methods and sources of information. For example, related 

to electricity production, M. A. Harris and Diehl  (2017) compare three 

different methods employed by federal agencies for estimating thermo-

electric water usage in the US: (1) a highly detailed model approach 

(USGS) (Diehl et al., 2013), (2) reported estimates by power companies 

(EIA, 2019a; 2019b), and (3) a compilation approach heavily reliant on 

withdrawal coefficients for different fuel-cooling system combinations 

(Maupin et al., 2017). The study found that for over 50% of plants, the 

maximum estimated withdrawal was at least twice the magnitude of the 

minimum estimate. The USGS detailed model approach likely represents 

the most accurate withdrawal estimates, as it ensures estimates are ther-

modynamically plausible. However, this approach requires significant 

effort, including heat-and-water budgets and fuel consumption in rela-

tion to cooling technologies and local climate information (Diehl et al., 

2013). Hence, this level of effort would be impractical for all the years in-

cluded in our analysis 1950–2016. In contrast, our electricity production 

water-use estimates relied on a coefficient-type approach similar to that 

of approach 3 listed above. This compilation approach is most commonly 

used to generate county-level estimates reported by the USGS (M. A. Har-

ris & Diehl, 2017). Interestingly, our estimates showed more agreement 

with modeled estimates at the power plant level than the USGS county 

and state compilations.

Our irrigation estimates differed from that of the USGS most likely be-

cause of differences in sources of information, primarily related to irri-

gated acreage. Estimates of irrigated acreage range widely among differ-

ent sources, such as the USGS National Water Use Information Program 

(NWIP), the USDA Farm and Rach Irrigation Survey, and the USDA 

Census of Agriculture (Dickens et al., 2011). USGS NWIP typically has 

the highest estimates of irrigated agriculture from remote sensing. Our 

irrigation estimates rely on acreage from the Census of Agriculture, as 

these data provided the most temporally comprehensive period available. Regardless of these differences, 

our irrigation water use was strongly associated to USGS (Figure 6c and Table 5), Marston et al. (2018) (Fig-

ure 8), and that of the USDA Farm and Ranch Irrigation Survey (Figure S7).

2.7. Limitations

Users of our data should be aware of several limitations of our approach. An important consideration is that 

our data are constructed for 67 years and intended to be used for long-term analyses at county-to-regional 

scales; therefore, the data are not suitable for single-year analysis or detailed assessments of water use at 

individual sites, such as power plants or individual farms. Partitioning water sources for each sector was 

limited by available information. Although EIA provided water sources for individual power plants, water 

source information was missing for many power plants and required using proportions of water sources 

from county-level data. For irrigation and power plants lacking water source information, we relied on 

backcasting proportions of use by water sources reported by the USGS, which were only available post-1985. 

In the least, our interpolation approach can detect and emulate long-term shifts in use among different wa-

ter sources. Another caveat is that some of the raw data used in our study (e.g., crop acreage, water sources) 
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Figure 7. Comparison of electricity production water use estimates for 
individual power plants between our study and other studies, including 
(a) water withdrawal estimates from our study and M. A. Harris & 
Diehl (2017) and (b) average water withdrawal and consumption estimates 
from our study and Peer et al. (2016).
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were either missing years of information or only available in 4 or 5-year increments. Developing annual 

estimates required that we interpolate between those incremental periods (e.g., Figure S3). Although spline 

interpolation can mimic the natural fluctuations in values, this approach may miss extreme episodic events 

out of the norm.

Electricity production water use estimates were limited by lack of information on generation at the EGU or 

power plant level for the pre-2000 period. Prior to 2000, we assumed capacity factors for a given EGU were 

constant (average of 2000–2016 values); hence, generation (MWh) was primarily based on EGU nameplate 

capacity and the documented month-years of operation within the period of 1950–2000. This coarse ap-

proach will miss periods in which entire EGUs are out of operation due to maintenance or longer curtail-

ment periods. Although recent shifts in capacity factors have been noted for coal, nuclear, and natural gas 

technologies, most of these changes in capacity factors were less than 10% across the entire 2000–2016 pe-

riod (Logan et al., 2017). Additionally, we presume that water use coefficients for EGUs (taken from Averyt 

et al.) have remained constant over time. Of course, this is not an accurate portrayal of increases in water 

use efficiency over time for different fuels, prime movers, and cooling technologies. Hence, our historical 

estimates, at times, may under-estimate actual withdrawal and consumption rates.
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Figure 8. Comparison of 2010 county-level crop irrigation water use estimates between our study and that of Marston et al. (2018). Comparisons include total 
crop irrigation for (a) total blue water (fresh surface and groundwater), (b) blue surface water, (c) blue ground water, and (d) green water use (rainfall use by 
crops).
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Whereas our irrigation and electric power water use relied on mechanistic model approaches, our public 

water supply use relied on a statistical model approach. While the statistical model was highly accurate, it 

embodies a black box approach agnostic to shifts in social behavior and efficiency that influence usage rates 

(Worland et al., 2018). Variables indicative of increasing infrastructure intensity, such as urban land cover 

and urban-rural gradients (represented by autocovariates), should provide surrogacy for efficiency; howev-

er, future efforts should focus toward building more mechanistic representations of public water supply that 

account for human agents.

2.8. Example Applications of the Data

We explored the data in a few ways to give potential users an idea of the versatility of the spatially rich, 

long-term product. Specifically, we highlight the advantages of our data in revealing patterns that would 

otherwise be un-noticeable through the USGS WUCS or data from single-year periods. We suggest our data 

are advantageous in that it: (1) extends further back in time at the county-level than USGS WUCS records, 

(2) is able to discern annual events invisible to quinquennial surveys, and (3) provides a new data product to 

support exploratory analytics for use in multi-sector dynamics research. In part, the benefits of such spatio-

temporally rich data can be clearly seen in Figure 4. For a given sector or sub-sector, our data offers roughly 

10X the volume of data available from the USGS Water Circular series.
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Figure 9. Example of the utility of this study's water use data in examining spatially and temporally rich patterns in water use among sectors for specific 
counties. The dashed line for year 1985 indicates the earliest date at which USGS data are available at the county level. Breaks in y-axis are used in some panels 
order to examine patterns amongst all sectors, which vary significantly in magnitude. USGS, US Geological Survey.
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Figure 10. Utility of this study's water use data in providing high resolution temporal information, such as examining 
16 years of water use during periods of drought. Drought intensity maps and spatial coverage data were obtained 
from The National Drought Mitigation Center (NDMC 2020). Data from our study provide more temporal granularity 
(annual) than that of USGS and display distinct patterns indicative of situations where water stress estimated from our 
results will be very different from that estimated from USGS data. USGS, US Geological Survey.
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Figure 11. Example of the utility of this study's data set in examining nationwide patterns in irrigation water use. Dynamic time warping was applied to total 
irrigation water use to generate a distance matrix based on similarities in the chronology of temporal behaviors. The matrix was used in a clustering algorithm 
resulting in (a) clusters or groups of counties sharing similar water use behavior. (b) Mean behavior tendencies (bold lines) and heat maps of individual county 
behaviors falling into each cluster are provided.



Water Resources Research

As one example application, we selected counties that differed widely in their multisector water use behav-

ior (Figure 9). We explored annual trends in county-level water withdrawals pre- and post-1985 as an indi-

cation of the rich information that our analysis adds to the prevailing sectoral water use data available only 

post-1985 from the USGS WUCS (Figure 9). The immediate observation of our data set is the high degree 

of inter-annual fluctuations, supporting the need for high temporal resolution of water use datasets. These 

trends provide a deeper perspective of shifting patterns in water use, or even tradeoffs in water use among 

sectors over time. Additionally, differential water use varies greatly among different counties, especially 

prior to 1985. For example, public water supply use continues to increase with expansive urbanization and 

population increases in Fulton County, GA (Atlanta), whereas public water supply use has consistently 

decreased in Monroe County, IA where population has declined since early 1900s due to reductions in coal 

mining operations. Comparison of pre- and post-1985 periods indicated that pre-1985 time periods, at times, 

displayed very different trends than the last 30 years. For instance, in Coconino County, AZ, electric power 

production water use was virtually nonexistent prior to 1976, before Navajo Coal-fired Generating plant 

became operational. Likewise, irrigation appears relatively stable post-1985 in Kern County, CA; however, 

irrigation peaked in the mid-1970s, before which it had been steadily increasing.

As another application of our data set, we explored how our data could be used in studies examining the 

compounded effects of widespread climatic stress, such as drought, on water use required for sustaining so-

cioeconomic demands. Droughts in California have placed stress on agricultural communities to maintain 

levels of production resulting in compounded stresses on limited water availabilities (Marston & Konar, 

2017). We obtained monthly drought intensity records for California from 2000 to 2016 from the NDMC 

(2010) and compared these patterns to sectoral water withdrawals reported by the USGS WUCS and our 

annual estimates for a few selected counties (Figure 10). Generally, relative magnitudes and long-term di-

rectionality (increasing/decreasing) for sector water withdrawals among counties showed consistencies 

with that of the USGS WUCS. However, our irrigation estimates for Kern County (06029, Central valley) 

and Imperial County (06025, Southeastern extreme) were very different from estimates reported by the 

USGS WUCS (Figure 10). Despite significant drought from 2012 to 2014, Marston and Konar (2017) report 

3% increases in irrigation in California's Central Valley due to increased crop water requirements from 

higher temperatures. In agreement with their study, our data show short-term increases in irrigated water 

use across those years, at least for Kern county, and a delayed increase in Imperial county (Figure 10). Our 

irrigation estimates suggest water use in the face of shortages were more severe in drought situations than 

the USGS WUCS estimates indicate. Furthermore, our estimates tend to align well with irrigation magni-

tudes reported by California Department of Food and Agriculture (CDFA 2019). Interestingly, the opposite 

is true for electricity production, where our numbers suggest lower withdrawals than that reported by the 

USGS. However, our electricity production water use estimates are based on actual generation, which was 

directly obtained from EIA during this period. Many instances of reduced regional electricity production in 

response to drought have been documented (Harto et al., 2012), and our data provide the temporal resolu-

tion needed to explore these relationships.

As a final example, we use exploratory analytics to examine divergent long-term patterns in irrigation water 

withdrawal (i.e. behaviors) from 1950 to 2016 in counties across the CONUS. To examine similarities and 

differences in behaviors we employed Dynamic Time Warping (DTW), which finds optimal alignment be-

tween two time series through similarity measurements between chronological points in datasets (Kruskal 

& Liberman, 1983). Time series data may display similarities in chronological trends, but small differenc-

es in shifts along the temporal axis will result in misalignment and low similarity in conventional dis-

tance measurements (e.g., Euclidean distance). DTW overcomes this challenge by developing a “warping” 

path along the temporal axis, from which distance measures are minimized to align chronological patterns 

among different entities (Berndt & Clifford, 1994). We applied DTW to total irrigation water usage using 

the WSTAMP package in R (Piburn et al., 2017), which calculates a distance matrix based on dissimilarities 

in time-series data. We standardized water use data for each county from 0 to 1 so that trends would be 

purely based on behavior and agnostic to magnitudes. We then used hierarchical agglomerative clustering 

(Ward, 1963) to group counties based on minimal distances.

Clusters were highly divergent in their behavior regarding irrigation water use (Figure 11). For instance, ir-

rigation water use increased dramatically during the entire period for members of cluster 1, whereas irriga-
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tion did not increase substantially until post-1990 and post-2000 in members of clusters 5 and 8, respectively 

(Figure 11). Other clusters displayed a plateauing with time (e.g., Clusters 2 and 6), whereas others showing 

erratic behavior pre-1980 (e.g., Clusters 4 and 7). While some clusters displayed geographical affiliation 

(e.g., Clusters 2 and 4), others were spread across the entire CONUS (e.g., Clusters 1, 5, and 6) (Figure 11). 

This information and type of analysis can be useful for examining groups of entities displaying similarities 

in long-term tradeoffs among water usage sectors or human adaptation strategies to water shortages.
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