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Abstract

We obtain an asymptotic formula for the average value of the operator product expansion

coefficients of any unitary, compact two dimensional CFT with c > 1. This formula is valid when

one or more of the operators has large dimension or – in the presence of a twist gap – has large

spin. Our formula is universal in the sense that it depends only on the central charge and not

on any other details of the theory. This result unifies all previous asymptotic formulas for CFT2

structure constants, including those derived from crossing symmetry of four point functions,

modular covariance of torus correlation functions, and higher genus modular invariance. We

determine this formula at finite central charge by deriving crossing kernels for higher genus

crossing equations, which give analytic control over the structure constants even in the absence

of exact knowledge of the conformal blocks. The higher genus modular kernels are obtained by

sewing together the elementary kernels for four-point crossing and modular transforms of torus

one-point functions. Our asymptotic formula is related to the DOZZ formula for the structure

constants of Liouville theory, and makes precise the sense in which Liouville theory governs the

universal dynamics of heavy operators in any CFT. The large central charge limit provides a

link with 3D gravity, where the averaging over heavy states corresponds to a coarse-graining

over black hole microstates in holographic theories. Our formula also provides an improved

understanding of the Eigenstate Thermalization Hypothesis (ETH) in CFT2, and suggests that

ETH can be generalized to other kinematic regimes in two dimensional CFTs.
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1 Introduction and discussion

Two dimensional conformal field theories are among the most important and interesting quantum

field theories. They describe important condensed matter and statistical mechanics systems at

criticality and, remarkably, possess an infinite dimensional group of symmetries related to local

conformal transformations [1]. In this paper we will be interested in irrational CFTs with c > 1

and an infinite number of primary states. Although these theories are not exactly solvable, they

are nevertheless under much greater analytic control than their higher dimensional cousins. In

this paper we will describe a particular example of this fact: the dynamics of heavy (i.e. high

dimension) operators is universal in two dimensional CFTs, in the sense that these dynamics are

determined only by the central charge and not by any other details of the theory.

The basic dynamical data that defines a CFT2 is a list of primary operators Oi, along with

• Their scaling dimensions ∆i ≡ hi + h̄i and spins Ji ≡ hi − h̄i, and

• The operator product expansion (OPE) coefficients Cijk.

These data, along with the central charge c, uniquely determine the correlation functions of the

theory in flat space as well as on an arbitrary surface. Ideally one would like to solve the constraints

of unitarity and conformal invariance to determine the possible allowed values of the {hi, h̄i, Cijk},
and hence completely classify two dimensional CFTs. In the absence of such a complete classifica-

tion, however, we will ask a more modest question: which features of this data are universal (i.e.

true in any conformal field theory) and which are theory dependent?

A simple example of a universal feature is the dimension and spin of the identity operator:1

h1 = 0 = h̄1 (1.1)

1We restrict our attention in this paper to unitary, compact CFTs, defined to have a discrete spectrum with

a unique sl(2)-invariant ground state. The same approach will, however, apply more generally with some modest

modifications. We focus on theories with cL = cR = c for simplicity, but the modification of our results to theories

with cL 6= cR is straightforward.
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which is the same in every CFT2. A second and somewhat more subtle universal feature is Cardy’s

formula for the growth of the high energy density of primary states [2]:2

ρ(h, h̄) ≈ exp

{
4π

(√
(c− 1)h

24
+

√
(c− 1) h̄

24

)}
when h, h̄→∞. (1.2)

Equation (1.2) is true in any compact CFT2 with c > 1, and is universal in the sense that it depends

only on the central charge c and not on any other details of the theory. In fact, these two universal

features (1.1) and (1.2) are closely related: they are “dual,” in the sense that they are related by

modular invariance. Cardy’s formula is the statement that the identity operator has dimension

zero, albeit interpreted in a dual channel in the computation of the torus partition function.

Every unitary, compact CFT possesses an additional universal feature: the identity operator

will appear in the fusion of any operator with itself. In terms of the OPE data, this means that

Cii1 = 1 (1.3)

for any operator Oi.3 This leads to the following natural question: what is the corresponding dual

universal feature? In other words, what universal feature do the three point coefficients obey which

plays the same role to equation (1.3) as Cardy’s formula (1.2) does to equation (1.1)?

We will answer this question in this paper. The result is a universal asymptotic formula for the

average value of the OPE coefficients:

Cijk2 ∼ C0(hi, hj , hk)C0(h̄i, h̄j , h̄k) (1.4)

where

C0(hi, hj , hk) ≡
1√
2

Γb(2Q)

Γb(Q)3

∏
±±± Γb

(
Q
2 ± iPi ± iPj ± iPk

)
∏
a∈{i,j,k} Γb(Q+ 2iPa)Γb(Q− 2iPa)

. (1.5)

In this equation
∏
± denotes a product of eight terms with all possible sign permutations. Here

rather than using the central charge c and dimensions h and h̄ to write our formula, we have used

the “Liouville parameters”

c = 1 + 6Q2 = 1 + 6(b+ b−1)2, h = α(Q− α), α =
Q

2
+ iP . (1.6)

Just as with Cardy’s formula, this result is universal in the sense that it is true in any (compact,

unitary) CFT, and the only free parameter appearing in this formula is the central charge c.

In interpreting this formula, a few comments are in order. The first is that equation (1.4) is

an expression for the average OPE coefficient, with the heavy operator weight(s) averaged over all

Virasoro primary operators, which is valid for any finite c > 1. In this sense, our result differs from

2Throughout this paper we use the notation a ∼ b to denote that a
b
→ 1 in the limit of interest. We will also use

the notation a ≈ b to denote that a and b have the same leading scaling in the limit of interest.
3We have chosen a basis of operators such that the two-point function is diagonal and canonically normalized,

〈Oi(0)Oj(1)〉 = δij .
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most of the previous results in the literature. The second is that, although we have only written

one formula, equation (1.4) is secretly three different formulas hiding in one. In particular, this

formula is valid in three different regimes, and is derived using three types of crossing symmetry.

Equation (1.4) holds:

• When two operators are taken to be fixed and the third is taken to be heavy, in which case

it follows from the crossing symmetry of four-point functions with pairwise identical external

operators.

• When one operator is fixed and the other two are heavy, in which case it follows from the

modular covariance of torus two-point functions of identical operators.

• When all of the operators are taken to be heavy, in which case it follows from modular

invariance of the genus two partition function.

In each case, the averaging taken in equation (1.4) should be understood as an average over the

heavy operator(s), but not over the other operators which are held fixed.4 The surprising result is

that we obtain exactly the same formula in each case.

Various authors have previously considered the asymptotic behaviour of three point coefficients

in each of these three separate limits [3–19]. The asymptotic formulas which were obtained generally

relied on detailed computations of the conformal blocks, and – while correct – required assumptions

about the behaviour of the blocks in certain kinematic regimes or the simplification of large central

charge. Our single asymptotic formula (1.5) unifies all of these previous results, and in the darkness

binds them. Moreover, it holds for any finite value of the central charge c > 1, and interpolates

between all of the previously known results in the literature.

Before describing the details of our derivation, in the remainder of the introduction we will

describe the strategy underlying our derivation and comment in more detail on the interpretation

of this result.

1.1 The strategy: bootstrap without the blocks

In order to illustrate our basic strategy, consider the following simple example where one extracts

the asymptotic behaviour of OPE coefficients from crossing symmetry of four point functions.

Consider the four point function of an operator O

〈O(0)O(x)O(1)O(∞)〉 =
∑
Os

|COOOs |2xhs−2hO x̄h̄s−2h̄O

=
∑
Ot

|COOOt |2(1− x)ht−2hO(1− x̄)h̄t−2h̄O
(1.7)

4As we will elaborate on below, “heavy” in this context means that h and h̄ are much larger than both the central

charge and the dimensions of the other operators which are held fixed. For this reason the three different regimes

described above are distinct, and there is a-priori no reason to expect to get the same result in each regime.
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where in first line and second lines we have expanded in a basis of intermediate operators in the

S-channel and T -channel, respectively. In this simple version of the computation the sums run

over all operators in the theory, both primaries and descendants, and we are not organizing the

states into representations of the conformal group. The functions xhs−2hO and (1− x)ht−2hO play

the role of conformal blocks in the S- and T -channel, respectively. This four point function has

a pole at x = 1 coming from the operator 1 in the T -channel, which allows us to determine the

asymptotic behaviour of the S-channel expansion coefficients |COOOs |2 when hs is large. We do so

by expanding the T -channel conformal block of the identity operator into S-channel blocks:

1

(1− x)2hO
=
∞∑
n=0

(−1)n
(
−2hO
n

)
xn =

∞∑
n=0

(
2hO + n− 1

n

)
xn (1.8)

The binomial coefficient
(

2hO+n−1
n

)
appearing in this expression is a simple example of a crossing

kernel: the coefficients which appear when we expand a conformal block in one channel in terms of

conformal blocks in a dual channel.5 Comparing the two channel decompositions of our correlation

function, we see that our crossing kernel must equal the average value of the OPE coefficients at

hs = 2hO + n in the limit where the operator Os is heavy:

|COOOs |2scaling ∼
(

hs − 1

hs − 2hO

)(
h̄s − 1

h̄s − 2h̄O

)
∼ h2hO−1

s

Γ(2hO)

h̄2h̄O−1
s

Γ(2h̄O)
, hs, h̄s →∞ (1.9)

The subscript ‘scaling’ reminds us that, as we did not organize into representations of the conformal

group, the average here is over all heavy operators Os – both primaries and descendants – of

dimensions hs, h̄s. We have also not specified the exact nature of the average which is being taken,

i.e. over how wide a range of operators one must average in order for the result (1.9) to hold. We

will return to this subtlety below.

In order to determine the asymptotic behaviour of primary operator OPE coefficients we must

improve this computation by organizing the sum over intermediate states into a sum over repre-

sentations of the conformal group. This is accomplished by taking Os and Ot above to be primary

operators and replacing the functions xhs−2hO and (1 − x)ht−2hO by the appropriate conformal

blocks. We then expand the identity block for the T -channel in terms of the S-channel blocks for

heavy operators, exactly as in (1.8). The average value of the primary operator OPE coefficients

is then given by the analog of the binomial coefficient appearing in this expansion. As conformal

blocks for Virasoro symmetry are not known analytically one might think that this computation

is impossible. Remarkably, this is not the case, as Ponsot and Teschner obtained explicit (but

complicated) expressions for the crossing kernel of Virasoro blocks for four-point functions [21,22].6

5Note however that this crossing kernel is only supported on a discrete set of intermediate operator weights (namely

hs = 2hO+n for n a non-negative integer); this is similar to the situation for global SL(2,R) conformal blocks, which

can be expanded as a sum over double-twist blocks and their derivatives in the cross channel (see [20] for an explicit

decomposition). This is unlike the case of Virasoro blocks that will be the subject of this paper, as the cross-channel

decomposition of the Virasoro block will typically involve a continuum.
6The higher-dimensional analog of the Virasoro fusion kernel is the 6j symbol for the principal series representations

of the Euclidean global conformal group SO(d + 1, 1) [23], which serves as a crossing kernel for conformal partial

waves.
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However, when we take the operator in the T -channel to be 1 these crossing kernels simplify con-

siderably, and they are essentially given by our expression (1.5).

This computation will be carried out in more detail below, but already several features are

apparent. The first is that, as conformal blocks are purely kinematic objects – i.e. they depend on

central charge and the dimensions of the operators under consideration but not on which theory we

are studying – the crossing kernels are purely kinematic as well. This guarantees that our resulting

asymptotic formula will be universal, in the sense that it depends only on the central charge but

not on any other details of the theory. The second is that, from this point of view, conformal

blocks can be bypassed altogether and one can work directly with crossing kernels. In particular,

as long as one is interested in understanding the constraints that crossing symmetry imposes on

the dynamical data of a CFT (the spectrum and OPE coefficients) the conformal blocks represent

an unnecessary complication. Blocks are only needed if one wishes to extract an observable, such

as a correlation function, from this basic dynamical data.

The above discussion shows that crossing symmetry of four point functions will determine the

asymptotic behaviour of OPE coefficients in the limit where one operator is taken to be heavy

and the others are held fixed. In order to obtain other constraints, we must consider crossing

symmetry and modular invariance for more general observables. The most general observable is an

n-point correlation function of Virasoro primaries on a Riemann surface of genus g, which we will

denote Gg,n({qi}), where the qi are a set of continuous variables which parameterize the moduli

of the Riemann surface as well as the locations of the insertion points of these primary operators.

We then expand this observable as a sum over intermediate operators propagating in a particular

channel, as

Gg,n({qi}) =
∑
{Oj}

C{Oj}F({Pj}|{qi})

≡
∫

[dPj ] ρ({Pj})F({Pj}|{qi}).
(1.10)

Here the {Oj} are the internal operators which contribute to this observable, and the C{Oj} are the

corresponding products of OPE coefficients. We are organizing into conformal families, and the

conformal block F({Pj}|{qi}) encodes the contribution of all descendants of the operators {Oj}. As

the conformal blocks are kinematic, they depend only on the spins and dimensions of the operators

{Oj}, which we are writing in terms of the parameters {Pj} defined by equation (1.6). In order

to keep the notation compact, in this formula {Pj} and {qi} denote both the holomorphic and

anti-holomorphic weights of the internal operators and moduli of the punctured Riemann surface,

and the block F({Pj}|{qi}) includes contributions from both left- and right-moving descendants.

For simplicity we have suppressed the dependence on the external operators. In the last line we

have introduced a “density of OPE coefficients”

ρ({Pj}) =
∑
{Oj}

C{Oj}
∏
j

δ
(
Pj − POj

)
δ
(
P̄j − P̄Oj

)
(1.11)

which is a function only of the Pj .
7

7Strictly speaking ρ is a distribution rather than a function. Moreover, the Pi will be either real or purely
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In (1.10) we have reduced the correlation function to a sum of products of OPE coefficients.

On a higher genus Riemann surface this is an in principle complicated procedure, as one must

decompose the Riemann surface into pairs-of-pants and then sum over internal operators which

propagate through the cuffs of these pairs of pants. This makes the computation of the conformal

blocks quite difficult. The advantage of our approach is that by working directly with crossing

kernels rather than conformal blocks, almost all of the details of this construction are irrelevant.

Thus it is possible to understand the constraints of modular invariance and crossing symmetry

without the need to explicitly construct the Riemann surface.

We now wish to compare this to the expansion of our observable in another channel:

Gg,n({qi}) =
∑
{Ok}

C̃{Ok}F̃({Rk}|{q̃i})

=

∫
[dRk]ρ̃({Rk})F̃({Rk}|{q̃i}).

(1.12)

Here we denote the OPE coefficients, the Virasoro conformal blocks, and the OPE spectral density

in this alternate channel with a tilde. We have also denoted the moduli on which the conformal

blocks depend with a tilde to emphasize that the blocks in different channels typically admit

perturbative expansions in different parameterizations of the moduli. In general the relationship

between the two coordinate systems qj and q̃i on moduli space is quite complicated. Our strategy

of working entirely with crossing kernels ensures, however, that we never need to determine this

relationship explicitly.

Associativity of the operator product expansion implies that our two different operator product

expansions must agree. We then compare these two different expansions by introducing the crossing

kernel K defined by:

F({Pj}|{qi}) =

∫
[dRk]K{Rk}{Pj}F̃({Rk}|{q̃j}). (1.13)

Plugging this into equation (1.10) and comparing with (1.12) gives us the crossing equation.

ρ̃({Rk}) =

∫
[dPj ] K{Rk}{Pj}ρ({Pj}) . (1.14)

In cases where the same OPE data appears in both channels, the solutions to the crossing equation

are the unit eigenvectors of the crossing kernel.

We now wish to extract universal features of the OPE coefficients C{Oj} by considering limits

where the identity operator dominates in one channel. In particular, we would like to consider cases

where the right hand side of the crossing equation (1.14) is dominated by the identity operator (i.e.

dominated by the term with all Oj = 1) when the internal weights Rk are taken to infinity. This

will occur when
K{Rk}{Pj}
K{Rk}{1}

→ 0 as Rk →∞. (1.15)

imaginary depending on dimensions and spins of the operators Oj , and the definition of the integral in (1.10) includes

contributions from all states.
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In this limit the density of OPE coefficients is just given by the corresponding crossing kernel of

the identity operator:

ρ̃({Rk}) ≈ K{Rk}{1} as Rk →∞. (1.16)

This is the generalization of our earlier result (1.9), that the crossing kernel of the identity operator

serves as the universal asymptotic behaviour of the OPE coefficients for heavy states.

We emphasize that, although we have phrased it more abstractly, this is equivalent to the famil-

iar strategy where one studies the crossing equation in a kinematic regime in which the exchange of

the identity operator dominates in one channel. For example, in the case of the four-point function

the limit we are considering is equivalent to the one where the cross ratio x → 1. Similarly, the

application of this strategy to the torus partition function gives Cardy’s formula. A final example is

the lightcone bootstrap [24, 25], where the spectrum and OPE data of CFTd>2 approaches that of

mean field theory at large spin. However these arguments typically require the detailed knowledge

of conformal blocks in certain Lorentzian kinematic regimes, which in the Virasoro case is out of

reach except in the simplest cases. The advantage of our approach is that we only require the

crossing kernel, bypassing the need to compute the conformal blocks explicitly.

1.2 The Moore-Seiberg construction of crossing kernels

We now wish to apply this construction to constrain the asymptotics of the squared OPE coefficients

|Cijk|2. To begin, recall that Cijk is the correlation function 〈OiOjOk〉S2 on the sphere, with the

operators inserted at three points. Thus to study |Cijk|2 we must consider observables obtained

by sewing together two copies of the sphere at these insertion points. For example, the four point

function on the sphere is obtained by sewing together these two spheres at a single point – say, the

insertion point of the operators Ok – to give:8

〈Oi(0)Oj(x, x̄)Oj(1)O′i(∞)〉S2 =
∑
Ok

|Cijk|2F(Pk|x)F(P̄k|x̄) (1.17)

where F(Pk|x) is an appropriate holomorphic conformal block. Applying the crossing arguments

of the previous section will then lead to an asymptotic formula for the |Cijk|2 in the limit where

Ok is taken to be heavy but the operators Oi and Oj are held fixed. Similarly, we can sew together

the spheres at a pair of points, the locations of the operators Oj and Ok, to obtain the two point

function on the torus:

〈Oi(v, v̄)Oi(0)〉T 2(τ) =
∑
Oj ,Ok

|Cijk|2F(Pj , Pk|τ, v)F(P̄j , P̄k|τ̄ , v̄) (1.18)

where F(Pj , Pk|τ, v) is now a conformal block for two point functions on the torus. This will lead

to an asymptotic formula for |Cijk|2 in the limit where both Oj and Ok are heavy and Oi is fixed.

Finally, sewing together all three insertion points gives the genus two partition function:

Zg=2(q, q̄) =
∑

Oi,Oj ,Ok

|Cijk|2F(Pi, Pj , Pk|q)F(P̄i, P̄j , P̄k|q̄) (1.19)

8The notation O′(∞) means limz→∞ z2hO z̄2h̄OO(z, z̄).
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−−−→ and −−−→

Figure 1: The elementary crossing transformations: sphere four-point crossing between S and T

channels, and torus one-point crossing between the τ and (−1/τ ) frames.

−−−→ −−−→

Figure 2: Example of a crossing transformation on the torus two-point function.

where q is a collection of genus two modular parameters and F(Pi, Pj , Pk|q) is a holomorphic genus

two conformal block. This will lead to an asymptotic formula which is valid when all of the operators

are taken to be heavy.

The strategy described above is only useful, however, if we can accomplish two things: we first

need to find a dual channel where the identity operator dominates, and we must then compute the

relevant crossing kernels. To accomplish this we will follow the strategy of Moore and Seiberg [26],

who argued that all of the constraints of the associativity of the OPE are completely captured

by crossing symmetry of four point functions on the sphere and modular covariance of one-point

functions on the torus. This is because any crossing transformation for any observable can be con-

structed by composing “elementary” crossing transformations: four point crossing on the sphere

(or fusion), and modular transformations for one-point functions on the torus (along with braiding,

which we will not use in this paper). The crossing kernels for these elementary crossing transforma-

tions were written down explicitly in [21, 22, 27, 28]. Thus, by assembling these together using the

Moore-Seiberg construction, we can obtain explicit formulas for general crossing transformations –

such as those on higher genus Riemann surface – without ever computing a conformal block.

We will write this down very explicitly below, but the general strategy is easy to understand.

The two elementary crossing transformations we use can be represented pictorially as in figure 1.

The first of these is the crossing transformation for four point functions on the sphere, where we have

chosen to represent the four external operators by holes rather than infinitesimal points. The S-

and T -channel decompositions of the four point function then correspond to the two different ways

of constructing this four-holed sphere as two pairs-of-pants glued together shown above. Similarly,

the second picture in figure 1 describes the crossing transformation between two different channels

for a one-point function on the torus.

We can now construct crossing transformations for two point functions on the torus by compos-

ing these elementary transformations, as in figure 2. We recognize the first of these as the modular

S transformation for one point functions on the torus, and the second as the fusion move for four

point functions on the sphere. The result is an expression for this more complicated crossing kernel

9



−−−→ −−−→

Figure 3: Example of a crossing transformation on the g = 2 partition function.

as a product of these two elementary kernels. Indeed, we recognize the channel on the far right

as precisely the one which gives the square of the OPE coefficients in equation (1.18), where Oj
and Ok are the operators which propagate through the two blue circles. Our asymptotic formula

for |Cijk|2 is then obtained by considering the kinematic limit which is dominated by the identity

operator 1 propagating in the channels (marked by yellow circles) on the far left.

We can construct the crossing transformations at genus two in a similar manner, as in figure

3: we have first done two crossing moves for torus one point functions, followed by a four-point

crossing move on the sphere. Again, the channel on the far right gives the square of the OPE

coefficients considered in equation (1.19) where the operators Oi, Oj and Ok propagate through

the three blue circles. The asymptotic formula for |Cijk|2 when these three operators are taken to

be heavy is found by considering the limit where the identity operator 1 dominates in the channel

decomposition depicted on the far left. This formula is given in terms of a genus two crossing kernel

which – by construction – is a product of the elementary crossing kernels which were written down

by Ponsot and Teschner.

The result is an asymptotic formula for the averaged OPE coefficients |Cijk|2 in the three limits

described above, where either one, two or all three operators are taken to be heavy, and only the

heavy operators are averaged over. For example, in the case where the differences between the

heavy operator dimensions and all spins Ji are held fixed in the large-dimension limit, we can state

all of our asymptotic formulas as follows:9

C2
O1O2O ≈ 16−∆e

−2π
√
c−1
12

∆
∆2(∆1+∆2)− c+1

4 , ∆� c, J,∆i, Ji (1.20)

C2
O0O1O2

≈ e−4π
√
c−1
12

∆1∆∆0
1 , ∆1,∆2 � c, Ji,∆0, J0, |∆1 −∆2| (1.21)

C2
O1O2O3

≈
(

27

16

)3∆1

e
−6π

√
c−1
12

∆1∆
5c−11

36
1 , ∆1,∆2,∆3 � c, Ji, |∆i −∆j | (1.22)

In addition to these, there are other distinct asymptotic limits, for example fixing the ratios of ∆i

instead of differences as in (4.12) and (4.20), which are also controlled by (1.4). Remarkably, all of

these formulas (appearing in equations (4.4), (4.12), (4.13), (4.20) and (4.21)) are realized as limits

of the same underlying formula (1.5). This is perhaps the most surprising feature of our result, and

is a consequence of the Moore-Seiberg procedure which constructs all of these different crossing

kernels from the same elementary building blocks.

9Here, our notation with the ≈ symbol means that we have omitted the order one coefficients appearing in these

formulas. These coefficients can be found in equations (4.4), (4.13) and (4.21).
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1.3 Generalizations to other observables

We emphasize that, although we have applied our strategy to the computation of the asymptotics

of the |Cijk|2, this argument works much more generally. Whenever one can find a kinematic limit

where the identity block dominates a CFT observable, there is a corresponding universal formula

for the OPE data in the dual channel – it is just a matter of assembling the appropriate crossing

kernel. In this sense our strategy should be regarded as defining an entire class of CFT asymptotic

formulas which govern the universal dynamics of heavy operators in two dimensional CFTs. It

would clearly be worth exploring these dynamics in more detail.

In addition, while our main focus is on universal asymptotic formulas – namely those which are

constructed only from the propagation of the identity operator in a cross channel – one can also

consider non-universal quantities which are constructed from other light operators propagating in

a cross channel. For example, the leading corrections to the universal formulas described above will

come from the other light operators in the theory, and one can obtain improved (but non-universal)

asymptotic formulas which depend on the data (such as the spectrum and OPE coefficients) of

whatever light operators are present in the theory.

The most interesting example of this type would be one where the contribution from 1 in the

cross channel vanishes, in which case the asymptotic behaviour would be non-universal and depend

on the light data of the theory. The prototypical example is the average value of the Light-Heavy-

Heavy OPE coefficient Ciij , where the state i is heavy and averaged over, while the j is held fixed.

This is determined by considering the modular covariance of one point functions 〈Oj〉T 2(τ) on the

torus in the limit τ → 0 [5]. The contribution from the identity operator propagating in the dual

channel (i.e. taking τ → −1/τ) is just the one-point function of Oj on the plane, which vanishes.

The first non-vanishing contribution will come from the lightest operator χ which has Cjχχ 6= 0.

Previous results have either worked only at large central charge, or have organized into scaling

blocks or global blocks, rather than full conformal blocks (so that the average in Ciij is an average

over quasi-primaries or over all states in the theory, rather than over Virasoro primaries) [5]. We

can now write down the complete answer at finite central charge, where the average is taken only

over primaries; this will be discussed in Section 7.

1.4 Large central charge limit

One important special case is the large central charge limit, which is relevant for holographic theories

with an AdS gravity dual. In this case a generic heavy state is interpreted as a microstate of a

BTZ black hole. The observation that the average OPE coefficients take a universal form then has

a natural physical interpretation, as the emergence of a semi-classical black hole geometry which

arises upon coarse-graining over heavy states. That our formula depends only on the central charge

and the dimensions and spins of the operators reflects the fact that this semi-classical configuration

is purely geometric: the holographically computed OPE coefficient depends on Newton’s constant

and the masses and spins of the objects under consideration, but not on any other details of the
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state. Our formulas can thus be regarded as an extrapolation of the usual gravitational “no hair”

theorems to CFT. Indeed, various limits of our formula have already been shown to reproduce the

classical dynamics of particles in black hole backgrounds [4–7, 10], and appear in closely related

gravitational computations of semiclassical conformal blocks [29, 30]. We note that from the point

of view of classical gravity it is not at all obvious that there should be a single formula that

interpolates between the three different limits we are considering (where either one, two or all three

of the operators are taken to be heavy). Indeed, our formula reflects this: it smoothly interpolates

between these three limits at finite c, but not after taking a c→∞ limit.

Perhaps the most important point to emphasize here is that, as we take c → ∞, the “heavy”

operators appearing in our formula should still be understood to have dimension large compared to

c. This is necessary in order for the identity operator to still dominate in the dual channel. Such a

state, however, will be interpreted as a black hole whose horizon area is very large in AdS units. A

black hole whose size is order one in AdS units would correspond to an operator whose dimension

is order c. It is therefore natural to ask under what circumstances the regime of validity of our

asymptotic formulas could be extended to operators with finite h/c in the large c limit. Generically,

this will only happen if we impose severe restrictions on the “light” data in our theory. For example,

the regime of validity of Cardy’s formula can be extended all the way down to dimensions of order

c only if the density of states of the light spectrum is sufficiently sparse [31]. It would be interesting

to ask whether similar considerations could be applied to our asymptotic formulas. We expect that

the corresponding sparseness constraint will be considerably more subtle, however, and may require

more than just a constraint on the density of OPE coefficients of light operators – see [30, 32] for

discussions of this in the context of higher genus partition functions of symmetric product orbifolds

and holographic CFTs.

1.5 Chaos, integrability and eigenstate thermalization

Our results have an important role to the play in the study of chaos in two dimensional CFTs. To

see this, we first note that while we have written formulas of the form

Cijk2 ∼ C0(hi, hj , hk)C0(h̄i, h̄j , h̄k) (1.23)

we have not yet stated precisely what range of states one must average over. The weakest possible

statement would be that our asymptotic formula is true only in an integrated sense, where rather

than averaging over a small window of states one simply sums over all states below some (large)

cutoff. We expect, however, that a much stronger version is true, where one needs to integrate

only over a small window; results that establish this kind of behaviour go under the general name

of Tauberian theorems (see e.g. [16, 33–37] for recent applications of Tauberian theorems in this

context). In the present case we would require new results for several variables, adapted to the

Virasoro crossing transforms. This is an important avenue for future research, which is not merely

a mathematical subtlety but a question of important physical interest.

In particular, our expectation is that in a generic, chaotic theory one would need to average only
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over very small window in order to obtain the asymptotic result (1.23). In other words, in a chaotic

theory the typical OPE coefficient should be rather close to the average one. In an integrable

theory, however, many OPE coefficients will vanish due to selection rules, so any average result

is obtained only by including many different states in the average. We expect that in a chaotic

theory one would need to average over a window of size not much larger than e−S , where S is the

microcanonical entropy, while in an integrable theory one must average over a window of some fixed

width rather than one that is exponentially small at high energies. It is important to emphasize

that all of our results are derived from crossing and modular constraints which hold in any CFT.

Thus our result (1.23) will be equally true in integrable and chaotic theories. The crucial difference

will be in the way in which this average is realized. Indeed, we would propose that the size of

the window one must average over should be used as a sharp criterion for chaos in conformal field

theory: a chaotic theory is one where one needs to average only over windows of size O(e−S). It

would be interesting to compare this to other proposed characterizations of chaos in quantum field

theory.

Indeed, our asymptotic formulas also play an important role in the Eigenstate Thermalization

Hypothesis (ETH) [38,39], which states that in a chaotic theory the matrix elements of an operator

O should obey

〈i|O|j〉 ≈ fO(∆i)δij + gO(∆i,∆j)Rij (1.24)

for states i and j of fixed energy density in a large volume thermodynamic limit. Here, fO and

gO are smooth functions of energy related to the microcanonical one- and two-point functions, and

Rij is a random variable of zero mean and unit variance; if the one- and two-point functions are

of order one, then fO is of order one and gO of order e−S/2. In a scale-invariant theory, the large

volume thermodynamic limit is equivalent to a large energy limit at fixed volume, which is the

heavy limit we have been studying. When O is a local operator, ETH is a statement about the

statistics of structure constants (see [19, 40–53] for more detailed discussion of ETH in the context

of conformal field theories).

In a two dimensional CFT it is natural to take this to be a statement about primary operator

OPE coefficients; descendant state OPE coefficients are completely determined by Ward identities,

and hence by definition do not provide any information about the chaotic dynamics of the theory.

Indeed, dynamics within a particular Virasoro representation will never thermalize due to the

infinitude of conserved quantities. At infinite central charge this distinction is largely irrelevant, as

the typical high energy state is – if not a primary state itself – then very close to one. For finite c

CFTs, however, these considerations become important and the most sensible definition of ETH is

one where (1.24) is interpreted as a statement about the statistics of primary operators.

In this case our asymptotic formulas for COii and COij2 determine the functions fO and gO:

COii = fO(∆i), |COij |2 = (gO(∆i,∆j))
2 (1.25)

Thus our formulas provide a precise formulation of ETH for CFTs with finite central charge c. It

is important to emphasize that our asymptotic formulas predict the form of the smooth functions
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fO and gO (and provide the consistency check that |COij |2 ∼ e−S), but say nothing about the

statistics of the remainder term Rij . The statement that Rij has zero mean and unit variance,

severely constraining the fluctuations of matrix elements, is an important component of ETH and

one which is invisible using the techniques of this paper. Indeed, all CFTs are crossing invariant, so

no argument based on crossing symmetry alone can distinguish between a chaotic and an integrable

theory. Our arguments establish the universal behaviour of averaged OPE asymptotics, and so are

not sensitive to the fine-grained statistics of individual eigenstates. Some additional input must

be included in order to use crossing arguments to probe this more refined structure of ETH. One

might hope that assuming no additional currents would be sufficient to ensure the theory is chaotic,

but while we make use of this assumption to establish universal formulas that apply at large spin,

it is not clear how to use it to say more about statistics of OPE coefficients relevant for ETH.

An important feature of the ETH formula is that it is expected to govern the statistics of OPE

coefficients in the Heavy-Heavy-Light limit, where the operators i and j are heavy but O is fixed.

On the other hand, our asymptotic formulas for OPE coefficients smoothly interpolate between

this limit and the Light-Light-Heavy and Heavy-Heavy-Heavy regimes. This immediately suggests

that the ETH conjecture (1.24) should be generalized to these regimes as well. It also suggests that

a version of ETH should hold not just at large dimension, but also for operators with large spin

at fixed twist. We expect this extended regime of validity to be a special feature of CFTs (where

there is a state-operator correspondence) rather than general QFTs. One intriguing aspect of

this conjecture is that while the Heavy-Heavy-Light version of ETH has a natural thermodynamic

interpretation – it captures the intuitive notion that in a chaotic theory every state should be

approximately thermal in the thermodynamic limit – the interpretation of equation (1.24) in this

extended regime is much more mysterious.

A second important point is that the behaviour of the two functions fO and gO is quite different

in two dimensional CFTs from their behaviour in higher dimensions. In a higher dimensional theory

the diagonal terms in the OPE coefficients are exponentially larger than the off-diagonal terms: fO

is of order one, while gO ≈ e−
1
2
S(

∆i+∆j
2

) is exponentially suppressed. In a two dimensional CFT this

behaviour is modified, as fO itself is exponentially small. This can be seen by noting that at high

temperature a thermal one point function becomes a one point function on the cylinder S1×R, which

is – by the usual radial quantization map – conformally equivalent to the plane. Hence thermal

one point functions will be exponentially small at high temperature, with exponent determined by

the dimension of the lightest operator which couples to the operator O. Thus we expect that the

off-diagonal terms for a generic primary operator O will be exponentially suppressed relative to the

diagonal terms, but with an exponent that is not e−
1
2
S(

∆i+∆j
2

) but rather is determined by the size

of the gap in the theory. This is a consequence of the strange fact that in CFT2 thermal one point

functions vanish at high temperature, while thermal two point functions do not.

In the extreme case – where the size of the gap in the theory is sufficiently large – the off-diagonal

terms will be the same size as the diagonal terms. We will clarify this statement in section 7 and

show that this will occur when the lightest non-vacuum primary that couples to O has dimension

greater than or equal to c−1
16 (in the case that this lightest operator is a scalar). This fact will
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be a simple consequence of the structure of the corresponding crossing kernels. A theory with a

gap of size O(c) would be interpreted as a theory of pure gravity in AdS3 in the large c limit,

as the spectrum of perturbations around empty AdS would include only boundary gravitons (i.e.

descendants of the identity operator). We therefore come to a remarkable conclusion – a theory

of pure gravity in AdS3 is precisely one where the off-diagonal terms in ETH are not suppressed

relative to the diagonal ones. This provides an intriguing link between black hole dynamics and

quantum chaos. A similar conclusion was recently reached for JT gravity in two dimensions in [54].

1.6 Connection to Liouville theory

Our universal OPE coefficient formula (1.5) closely resembles the DOZZ formula for the structure

constants of Liouville theory [55, 56]. However, our universal asymptotic formulas do not apply to

Liouville theory, since it is not compact (the spectrum does not include an sl(2)-invariant ground

state). We here explain the similarity of the formulas by noting that they both follow from Virasoro

representation theory, and contrast their interpretation.

The spectrum of Virasoro primary states of Liouville theory is continuous, consisting of scalars

of dimension h = h̄ = c−1
24 + P 2 for P > 0. Their three-point coefficients are given by the DOZZ

formula CDOZZ(P1, P2, P3), which is related to our formula (1.5) by

C0(P1, P2, P3) ∝ CDOZZ(P1, P2, P3)(∏3
k=1 S0(Pk)ρ0(Pk)

) 1
2

, (1.26)

with a proportionality constant independent of P1,2,3, and S0 is the ‘reflection coefficient’ defining

the normalisation of the vertex operators through the two-point function10

〈VP1(0)VP2(1)〉 = 2πδ(P1 − P2)S0(P1). (1.29)

Since the theory is noncompact, there is in fact no canonical normalisation of operators, and only

the combination (1.26) (up to the P -independent normalisation) is unambiguously determined from

the bootstrap. The denominator can be understood as a change of measure on the space of states,

from the one defined by (1.29) to a natural one proportional to dP ρ0(P ) (see footnote 16).

Given this relation, on might be tempted to interpret our result as describing the precise sense in

which Liouville theory captures the universal dynamics of heavy operators, a point of view that has

been advocated in the context of holographic theories in [57,58]. We should not, however, interpret

10The proportionality constant is

(πµγ(b2)b2−2b2)
Q
2b

2
3
4 π

Γb(2Q)

Γb(Q)
(1.27)

and the reflection coefficient is

S0(P ) = (πµγ(b2)b2−2b2)−2iP/b Γb(2iP )Γb(Q− 2iP )

Γb(Q+ 2iP )Γb(−2iP )
, (1.28)

where µ is the Liouville cosmological constant and γ(x) = Γ(x)
Γ(1−x)

.
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this too literally, since CDOZZ has a very different interpretation to C0. In particular, Liouville

theory has only scalar primary operators, with OPE coefficients CDOZZ, whereas our results give

OPE coefficients for all spins, from a product of two copies of C0 (left- and right-moving). Indeed,

a unitary compact CFT with c > 1 will necessarily contain primary operators with arbitrarily large

spin [59], and Liouville theory falls outside the scope of our asymptotic formula precisely because

it is not compact. Rather, we regard the relation (1.26) as a consequence of the fact that Liouville

dynamics is governed by precisely the same Virasoro representation theory that determines our

asymptotic formula, as we now explain.

Liouville theory is distinguished by having only scalar Virasoro primary states. In this sense, it

is analogous to the A-series or diagonal minimal models which exist for degenerate values of c < 1,

and have a spectrum of scalar primaries (finitely many in that case). The restriction to scalars

is sufficient to uniquely specify the theory, since it determines a unique solution to the bootstrap

(up to normalisation of operators and a decoupled TQFT). Furthermore, this solution is given

explicitly in terms of the identity fusion kernel by a relation precisely of the form (1.26), which is

determined by representation theoretic considerations. We give an argument that can be applied

both to four-point crossing symmetry and to modular covariance of torus one-point functions. This

type of argument for four-point crossing is not new (see [60], for example), but the version for torus

one-point functions is novel, as far as we are aware.11 We sketch the arguments here, giving more

detailed explanations of the relevant identities in section 5.

To outline the argument for uniqueness, we first write the crossing equation (1.14) including

left- and right-moving dependence explicitly as

ρ′(P ′, P̄ ′) =

∫
[dPdP̄ ] KP ′PKP̄ ′P̄ ρ(P, P̄ ) . (1.30)

Here, the densities ρ, ρ′ denotes a spectral density for internal operators in either the four-point

function or the torus one-point function, and K is either a fusion kernel F or a modular S-transform

S, as discussed in sections 3.2 and 3.3 respectively. We can schematically write this as a matrix

equation

ρ′ = KρK†, (1.31)

where the rows and columns of ρ are labelled by P, P̄ respectively, and similarly for ρ′. Now, if

we assume that the spectrum contains only scalars, then ρ and ρ′ are diagonal (nonzero only for

P = P̄ ). In that case, we can choose to use a different normalisation for the conformal blocks,

and hence fusion kernel, that absorbs factors of ρ1/2, (ρ′)−1/2 into the columns and rows of K:

K̂ = (ρ′)−1/2Kρ1/2. With this normalisation, the crossing equation becomes K̂K̂† = 1, so that K̂
is unitary (after restricting to the support of ρ, ρ′). Such a normalisation exists for the fusion

kernel [22], thus determining a scalar solution of crossing. This solution reproduces the DOZZ

formula up to the ambiguities of normalisation. Moreover, the only way that this solution can fail

to be unique is if K̂ is block diagonal in the P basis.12

11We thank S. Ribault for correspondence.
12In fact, the Virasoro fusion kernel is block diagonal, since the degenerate representations form an invariant
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For the final step, we must relate the unitary normalisation of K to the identity fusion kernel.

For four-point crossing, such a relation follows from a special case of the pentagon identity satisfied

by the fusion kernel. The identity representation is picked out by its simple fusion rule, which

implies that the fusion kernel with an external identity operator is trivial. For the torus one-point

function, we have a similar identity relating the modular S-matrix and fusion kernel. We give the

explicit forms of these identities and their derivations in section 5, along with arguments explicitly

verifying them from the closed-form expressions [21, 22, 28] for the Virasoro fusion and modular

kernels.

1.7 Discussion

Before moving on to a derivation of our formula, we discuss a few final interesting features of our

result.

While our asymptotic formula (1.5) might look arbitrary, it is in fact extremely highly con-

strained if we assume analyticity. In fact, equation (1.5) is almost completely determined by its

analytic structure and simple physical considerations. To see this, we note that C0(Pi, Pj , Pk) is a

meromorphic function of its arguments which has

• Zeroes when Pi = iQ2 ±
i
2

(
rb+ sb−1

)
with r, s ∈ Z≥0,

• Poles when Pi = Pj + Pk ± iQ2 + i
(
mb+ nb−1

)
with m,n ∈ Z≥0,

and is invariant under reflections Pi → −Pi and permutations of the (Pi, Pj , Pk). These zeros occur

precisely when Oi has has a null Virasoro descendant at level rs. The poles occur precisely when

the weights of Oi are equal to the weights of a double twist operator built out of Oj and Ok [20].

A meromorphic function is uniquely determined by its poles and zeroes, up to the exponential of a

polynomial. Thus in retrospect, once one postulates the existence of a meromorphic function that

interpolates between the asymptotic regimes, one could have completely determined C0(Pi, Pj , Pk)

up to the exponential of a polynomial in the (Pi, Pj , Pk), simply by demanding the existence of zeros

at null states and poles at double twist operators. One might even argue that this polynomial must

be a constant in order to guarantee the convergence of the operator product expansion (although

this argument is subtle because we are varying the (Pi, Pj , Pk) as complex variables independently).

This suggests that the function C0(Pi, Pj , Pk) can be completely determined by analyticity and

simple physical constraints.

We will now move on to the derivation of our result. We begin in section 2 with a detailed

warm-up exercise, where we describe the derivation of various versions of Cardy’s formula using

the crossing kernel for modular transformations. We then proceed to discuss the Moore-Seiberg

procedure in more detail in section 3.1, before turning to the elementary crossing kernels in sections

3.2 and 3.3. We apply this to compute higher genus crossing kernels and OPE asymptotics in section

4. Large central charge limits, and comparisons to the literature, are discussed in section 6. Section

subspace. If we relax the assumption of unitarity, this leads to a second solution to crossing, namely the ‘generalized

minimal model’ [60].
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7 discusses the computation of the average value of the light-heavy-heavy OPE coefficients using

the modular covariance of torus one-point funcitons. We relegate some details of the elementary

crossing kernels and their asymptotics to the appendices.

2 Cardy’s formula from crossing kernels

To illustrate the main idea of the paper, we first revisit the derivation of the Cardy formula for

primary states (and its large-spin version [20,61–64]) using the modular S-matrix, a strategy which

we will generalize in later sections. We follow the presentation and notation of [64], which contains

some more details and applications. The relationship between the Cardy formula and the modular

S-matrix was first elucidated in [65].

2.1 Natural variables for Virasoro representation theory

As a preliminary, we introduce a parameterization of the CFT data that turns out to be natural

for the representation theory of the Virasoro algebra. The central charge c can be written in terms

of a “background charge” Q or “Liouville coupling” b as

c = 1 + 6Q2 = 1 + 6(b+ b−1)2. (2.1)

We will make the choice that c > 25 corresponds to 0 < b < 1, while 1 < c < 25 corresponds to

b a pure phase in the first quadrant. To label Virasoro representations we use a variable P , or

sometimes the equivalent α = Q
2 − iP , which is related to the more usually seen conformal weight

by

h =
(
Q
2

)2
+ P 2 = α(Q− α), (2.2)

and similarly P̄ or ᾱ in place of h̄. Two things about this parameterisation should be noted. First, it

is redundant, being invariant under the reflection reflections P → −P (or α→ Q−α). Secondly, it

naturally splits unitary values of the weights (h ≥ 0) into two distinct ranges: h ≥ c−1
24 corresponds

to real P (or α ∈ Q
2 + iR), and 0 ≤ h < c−1

24 , which corresponds to imaginary P (or α ∈ (0, Q2 )).

2.2 The partition function and density of primary states

Now consider the torus partition function of a compact13 CFT with c > 1. The partition function

encodes the spectrum of the theory, admitting a decomposition into Virasoro characters:

Z(τ, τ̄) = χ1(τ)χ̄1(τ̄) +
∑
i

χPi(τ)χ̄P̄i(τ̄) (2.3)

13By “compact,” we mean a CFT with a normalizable SL(2,C)-invariant vacuum state and a discrete spectrum of

Virasoro primary operators.
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The sum runs over Virasoro primary states labelled by i, with conformal weights labelled by Pi, P̄i,

and the nondegenerate Virasoro characters χP packaging together all states in a conformal multiplet

are given by

χP (τ) =
qP

2

η(τ)
, (2.4)

where q = e2πiτ . The identity character χ1 is distinguished because the corresponding representa-

tion is degenerate (L−1 annihilates the vacuum state), so

χ1(τ) = χ i
2 (b−1+b)

(τ)− χ i
2 (b−1−b)

(τ) =
q−

Q2

4 (1− q)
η(τ)

. (2.5)

If there are any other conserved currents (operators with h = 0 or h̄ = 0) in the theory, we should

similarly use this degenerate character for either the left- or right-moving half.

We can rewrite the character decomposition of the partition function in terms of a density of

primary states ρ, writing

Z(τ, τ̄) =

∫
dP

2

dP̄

2
ρ(P, P̄ )χP (τ)χ̄P̄ (τ̄), (2.6)

where ρ is a distribution given by a sum of delta-functions δ(P − Pi)δ(P̄ − P̄i) for each primary.

Using the reflection symmetry, we make the choice that ρ is an even distribution, so each primary

contributes four terms related by reflections in P, P̄ , and we introduce the factors of 1
2 in the

integrals to avoid overcounting. It is also convenient to always use nondegenerate characters in

the expansion, so for the identity (and other currents, if present), ρ includes delta-functions with

negative weight at P, P̄ = ± i
2

(
b−1 − b

)
to subtract the null descendants. Finally, we note that ρ is

a somewhat unconventional distribution, since it has support at imaginary values for operators with

h, h̄ < c−1
24 . This is nonetheless rigorously defined if we integrate against analytic test functions,

of which the characters should form a complete set in an appropriate topology (see [64] for more

details).

2.3 The modular S-transform

Locality of a CFT implies invariance of the torus partition function under the modular S-transform,

Z(−1/τ,−1/τ̄) = Z(τ, τ̄), which in turn constrains the allowed CFT spectrum. We will reformulate

this constraint directly on the density of states ρ(P, P̄ ). To do this, first note that the modular

S-transformation τ → −1/τ acts on individual characters as a Fourier (cosine) transform in the

momentum:

χP (−1/τ) =

∫
dP

2
χP ′(τ)SP ′P [1]

SP ′P [1] = 2
√

2 cos(4πPP ′)

(2.7)

The kernel of this integral transform is the ‘modular S kernel’ SP ′P [1], where the [1] label indicates

that the partition function is a trivial example of the torus one-point function of the identity
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operator, with the generalization to nontrivial operators to follow. The notation emulates the

situation in rational CFTs, where there are a finite number representations, so the modular kernel

S[1] becomes a finite-dimensional matrix.

Given a function Z(τ, τ̄) expanded in characters using a density of primary states as in (2.6),

we can take a modular S-transform and use the kernel (2.7) to rewrite the transformed characters:

Z(−1/τ,−1/τ̄) =

∫
dP

2

dP̄

2

dP ′

2

dP̄ ′

2
SP ′P [1]SP̄ ′P̄ [1]ρ(P, P̄ )χP ′(τ)χ̄P̄ ′(τ̄) (2.8)

Exchanging order of integration between the primed and unprimed variables, we can interpret this

as an expansion (2.6) of the modular transformed function with a transformed density of primary

states:

ρ̃(P ′, P̄ ′) =

∫
dP

2

dP̄

2
SP ′P [1]SP̄ ′P̄ [1]ρ(P, P̄ ) (2.9)

Since the partition function uniquely determines the spectrum, this equation expresses the modular

S-transform as a Fourier transform acting on the density of primary states ρ.14 In particular, a

physical spectrum corresponding to a modular invariant theory is invariant under this Fourier

transform:

Modular invariance ⇐⇒ ρ̃(P, P̄ ) = ρ(P, P̄ ) (2.10)

From (2.9), we can think of the modular S-matrix as the contribution of a single operator to

the density of states in the transformed channel. The only exception to this is the degenerate

representations with h = 0 (or h̄ = 0), so we introduce an ‘identity S-matrix’

SP1[1] = SP, i
2

(b−1+b)[1]− SP, i
2

(b−1−b)[1] = 4
√

2 sinh(2πbP ) sinh(2πb−1P ), (2.11)

which encodes the contribution of such a degenerate state. The density of states SP1[1]SP̄1[1] dual

to the vacuum will be of central importance for us.

2.4 Cardy formulas

The density of states ρ(P, P̄ ) is a sum of delta-functions for each primary operator, so for a modular

invariant spectrum, by taking the S-transform we can instead write it as a sum over modular S-

matrices:

ρ(P, P̄ ) = SP1[1]SP̄1[1] +
∑
i

SPPi [1]SP̄ P̄i [1] (2.12)

We have not explicitly included any nontrivial primary currents, which would contribute the identity

S-matrix in P and the nondegenerate S-matrix in P̄ or vice versa. If such currents are present, it is

most natural to organise the states into multiplets of an extended algebra, under which all currents

are descendants of the vacuum, and use the modular S-matrix pertaining to the extended algebra.

14We can strip off the characters since, by assumption, they are complete in the relevant space of test functions.

This just means that a distribution is defined by its integral against all characters, i.e. its corresponding partition

function. The same applies for the more complicated transforms we encounter later.
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Now consider this sum in the limit of large P and/or P̄ . In this limit, the relative importance

of the terms is determined by Pi, P̄i: for a state with 0 < h < c−1
24 , the relevant S-matrix is

exponentially suppressed relative to the vacuum:

SPP ′ [1]

SP1[1]
∼

{
e−4πα′P α′ = Q

2 + iP ′ ∈ (0, Q2 )

2 cos(4πPP ′)e−2πQP P ′ ∈ R
as P →∞ (2.13)

From this, we find (at least naively; we revisit this more carefully at the end of the section) that

the density of states at large P, P̄ asymptotically approaches the vacuum S-matrix:

ρ(P, P̄ ) ∼ ρ0(P )ρ0(P̄ ) as P, P̄ →∞, where ρ0(P ) := SP1[1] ∼
√

2e2πQP (2.14)

This is of course nothing but Cardy’s formula for the asymptotic density of primary states at large

dimension, correct up to corrections exponential in
√
h,
√
h̄ coming from the lightest non-vacuum

primary state.15

With this derivation, it becomes clear that the Cardy formula (2.14) is also valid in a ‘large spin’

regime where we fix h and take h̄→∞ [20, 61–64]. In this limit, the relative suppression (2.13) of

non-vacuum blocks is controlled by ‘barred’ dimension only, so we require the additional assumption

of a ‘twist gap’ (h̄ is bounded away from zero for all non-vacuum operators, so in particular there

are no extra conserved currents). In this limit, for any fixed h > c−1
24 , the density of states grows

with spin ` as e
2π

√
c−1

6
`
, with a prefactor determined by ρ0(P ); for any h < c−1

24 , this prefactor is

formally zero, which means that the density grows more slowly (perhaps still exponentially in
√
`,

but with a smaller coefficient).

We therefore find that the asymptotic spectrum of CFTs is quite generally determined by the

simple formula

ρ0(P ) = SP1[1] = 4
√

2 sinh(2πbP ) sinh(2πb−1P ), (2.15)

which we refer to as the ‘universal density of states’ for c > 1 compact CFTs without extended

current algebras. Our derivation emphasizes that this object comes from the representation theory

of the Virasoro algebra, describing the decomposition of the trivial representation after modular

transformation.16 In the remainder of the paper, we will show that another representation theoretic

object similarly controls the OPE coefficients in a variety of limits.

Now, our argument for the asymptotic formula (2.14) was very imprecise, and indeed the result

is simply false if interpreted literally, so we briefly discuss the sense in which it holds. The equation

(2.12) expressing the density of states as a sum of modular S kernels does not converge in the usual

sense (and uniform convergence would be necessary for our argument to apply immediately), and

since ρ is a sum of delta functions, it does not have smooth asymptotic behaviour. Rather, the

15This is the density in the P, P̄ variables, so a Jacobian is required to convert to density in h, h̄. For an asymptotic

formula in dimension ∆ = h+h̄ only, insensitive to spin, one simply integrates (2.14) over the circle P 2+P̄ 2 = ∆− c−1
12

,

obtaining the Bessel function formulas of, for example, [35, 59].
16In fact, ρ0 has a purely representation theoretic characterization: it is the Plancherel measure on the space of

representations of the Virasoro algebra [22].
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sum converges in the sense of distributions (it should converge when integrated against any test

function), which requires some ‘smearing’, and the the asymptotic formulas should be interpreted

accordingly. The most conservative statement is that the formula applies in an integrated sense:

the total number of states below a given energy or spin is asymptotic to the integral of the Cardy

formula (see [35–37] for a more detailed discussion and rigorous results). In the particular case of

the Cardy formula, a very interesting recent paper [35] has shown that if the averaging window is of

fixed width in the large dimension limit, corrections due to the finite size of the averaging window

only affect the order-one term in the expansion of the logarithm of the density of states at large

dimension. For chaotic theories, we expect the far stronger statement that the asymptotic formula

applies to a microcanonical density of states averaged over a small window (we require only that

the window contains parametrically many states, so its width can shrink as fast as e−S); this is a

consequence of the eigenstate thermalization hypothesis (ETH) [38, 39]. The exact interpretation

of our asymptotic formulas is not the focus of this paper, so we will henceforth leave this aspect

for future study.

3 Crossing equations for general correlation functions

We now extend this formulation of modular invariance as a transform on the density of states, dis-

cussed in section 2, to its most general context as a similar formulation of all consistency conditions

of CFT2.

3.1 The Moore-Seiberg construction

In two dimensional CFTs, the most general correlation function of local operators, comprising n

operators O1, . . . ,On on a surface Σg of arbitrary genus g (which we denote by Gg,n), can be formu-

lated entirely in terms of the basic data of the theory, namely the spectrum and OPE coefficients

of primary operators.17 Note that this is far better than the situation in higher dimensions, where

it is unclear how to determine general correlation functions, even on conformally flat manifolds

such as the torus (S1)d, in terms of data of the theory on Rd. Here, we review the construction

of general correlation functions, and the crossing relations required to consistently formulate the

theory on an arbitrary surface.

The basic strategy is to break the surface into simple constituent pieces, separated by circular

boundaries, and insert a complete set of states along each boundary. First, we insert a circle

surrounding each operator insertion; by the state-operator correspondence, the operator insertion

is equivalent to deleting a disc to produce a boundary, and projecting onto the corresponding state

on that boundary. Label the resulting n boundaries by an index e ∈ E (for ‘external’) and let ke
denote the operator on each boundary, falling in Virasoro representations Pke , P̄ke .

17This excludes correlation functions on surfaces with boundaries and/or nonorientable surfaces, both of which

require additional data.
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We are then left with a genus g surface with n boundaries, which we can decompose into

2g+ n− 2 pairs of pants (that is, topological 3-holed spheres, occasionally called ‘trinions’), which

we label by indices t ∈ T , by cutting along a further 3g+n−3 circles. Along each of these 3g+n−3

‘cuffs’ where the pants are joined to one another, labelled by an index i ∈ I (for ‘internal’), we

insert a complete set of states. Each term in the sum over states is then a product of amplitudes

for each pair of pants, which can be conformally mapped to sphere three-point functions, and thus

is fixed by the structure constants of the corresponding Virasoro primaries.

The contribution of descendants propagating along each cuff is completely fixed by Virasoro

symmetry, proportional to the OPE coefficients of the primaries from which they descend. We

may therefore package together the contribution of all descendants of a particular set of primaries

(labelled by {ki}i∈I) together, into a ‘conformal block’. In other words, this is the sum over states

described above, but restricting the states along each cuff i to some chosen multiplet of the sym-

metry, in the representation Pki , P̄ki . By construction, the blocks are purely kinematic, depending

on the surface Σg
18 and the pair of pants decomposition19, the locations of operator insertions,

the central charge, and the conformal weights Pke , P̄ke and Pki , P̄ki labelling the representations

of the n external and 3g + n − 3 internal operators. Since the conformal algebra factorizes into

holomorphic and antiholomorphic sectors, the blocks also factorize in this way, so we can write

them as a product FF̄ : F = F [Pe](Pi|σ) depends on the n external representations Pe (for e ∈ E),

the 3g+n−3 internal representations Pi (for i ∈ I), and kinematic variables collectively labelled by

σ; we similarly have F̄ = F̄ [P̄e](P̄i|σ̄). For Euclidean correlation functions, the kinematic variables

σ are (once a conformal frame has been specified) 3g − 3 + n complex numbers parameterising

the complex structure moduli of Σg and complex coordinates of the locations xe of operator in-

sertions, and σ̄ are complex conjugates of σ; more generally, σ and σ̄ need not be related in this

way (for example, for Lorentzian kinematics they often become independent and real ‘lightcone’

coordinates).

The dynamical data of the theory appears through the spectrum of operators, and the OPE

coefficients C∂t for each pair of pants t ∈ T , where ∂t denotes a triple of indices ke or ki labelling

the primary operators propagating in the three cuffs bounding t. The result is an expression of the

18The blocks (and the correlation functions) depend on the metric on the surface in two distinct ways. Firstly, there

are finitely many moduli (the 3g + n − 3 complex parameters σ) determining the metric and operator locations up

to equivalence under diffeomorphisms and Weyl transformations g 7→ e2ωg, upon which the correlation function and

blocks depend nontrivially. Secondly, there is the choice of metric within each such conformal class, which changes the

correlation function only by kinematic factors: the conformal anomaly, and local conformal factors for each operator.
19In fact, the decomposition into pairs of pants is not quite sufficient to determine the blocks. A Dehn twist, a

relative rotation by angle 2π around a cuff, introduces phases e2πi(h−c/24) and e−2πi(h̄−c̄/24) in F and F̄ respectively,

so extra topological data is needed to keep track of these relative phases. When we combine blocks into the product

FF̄ with c− c̄ ∈ 24Z (here, we always have c = c̄) and integer spin (h̄−h ∈ Z), this ambiguity cancels. We also require

this extra data to fix an ambiguity in ordering of OPE coefficients, which pick up a sign under odd permutations of

indices if the total spin is odd: Cπ(1)π(2)π(3) = sgn(π)`1+`2+`3C123 for π ∈ S3. Relatedly, note that the condition for

unitarity is C123C321 ≥ 0, so for total odd spin `1 + `2 + `3, C123 is pure imaginary.
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i1

i2

e2

e1

A B

Figure 4: A conformal block decomposition of the torus two-point function G1,2, where the kine-

matic parameters σ consist of a complex structure τ for the torus, and a separation w between

operators. We sum over representations in the internal cuffs; for the yellow cuff i1, this corresponds

to the operators appearing in the OPE of external operators e1, e2, and for the blue cuff i2, an

insertion of a complete set of states in the thermal trace.

G1,2(τ, w, τ̄ , w̄) =
∑
i1

∑
i2

Ce1e2i1Ci1i2i2F [Pe1 , Pe2 ](Pi1 , Pi2 |w, τ)F̄ [P̄e1 , P̄e2 ](P̄i1 , P̄i2 |w̄, τ̄)

The OPE coefficients Ce1e2i1 , Ci1i2i2 are associated with the pairs of pants labelled A,B respectively,

with ∂A = (e1, e2, i1) and ∂B = (i1, i2, i2).

following form for the correlation function:

Gg,n = 〈O1(x1) · · · On(xn)〉Σg

=
∑
ki=1

· · ·
∑

ki=3g+n−3︸ ︷︷ ︸
Primaries on internal cuffs

(∏
t∈T

C∂t

)
F [Pke ](Pki |σ)F̄ [P̄ke ](P̄ki |σ̄)

=

∫ (∏
i∈I

dPi
2

)
ρspec[ke](Pi, P̄i)F [Pke ](Pi|σ)F̄ [P̄ke ](P̄i|σ̄)

ρspec[ke](Pi, P̄i) =
∑
ki,i∈I

(∏
t∈T

C∂t

)∏
i∈I

(
δ(Pi − Pki)δ(P̄i − P̄ki) + (reflections)

)
(3.1)

The last line defines a ‘spectral density’ ρspec analogous to the density of states in (2.6), now with

several internal operators, weighted by OPE coefficients; the ‘reflections’ refers to an additional

three terms with Pki → −Pki and/or P̄ki → −P̄ki so that ρspec is an even function of these

variables. This general case is rather abstract, but we will ultimately be interested in a few simple

instances, for which we write concrete versions of (3.1) in later sections; for now, one illustrative

example is shown in figure 4.

While our quick argument is sufficient to demonstrate that the conformal blocks exist, and

are determined by Virasoro symmetry, it is another matter entirely to actually compute them.

Closed form expressions are known only in very special cases. The most efficient way to compute

them numerically is via recursion relations [66–69], but even these are organised using different

kinematic parameters and conformal frames for different channels, so it remains a challenging task

to formulate crossing symmetry using them. The technical obstacles remain formidable even with
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the simplification of large central charge, where there are still few analytic results, and one must also

confront the possibility of Stokes phenomena that are not well understood [14, 20,45]. Fortunately,

we will see later that for our purposes, it is not required to know anything about the blocks directly!

While we have a systematic procedure for constructing the correlation functions by sewing pairs

of pants, it is far from unique, since there are infinitely many distinct ways to decompose a surface

into pairs of pants. We refer to a choice of decomposition as a “channel”, each channel giving rise to

a corresponding conformal block decomposition of the correlation function. Consistency requires

that the conformal block decompositions (3.1) give the same result for the correlation function,

whichever channel we choose to use. This is a generalized statement of crossing symmetry or

modular invariance, which imposes strong constraints on the data of the CFT.

To formulate this notion of crossing symmetry more directly in terms of the data of the CFT,

we must first consider how to relate the block decompositions in different channels. Following the

work of Moore and Seiberg [26, 70], we can relate any two of the infinite collection of possible

channels by repeated composition of a small number of elementary ‘moves’, which can be described

by purely topological relationships between pair of pants decompositions. We will make use of two

such moves, ‘fusion’ and ‘modular S’ (or just S), illustrated and described in figure 5, along with

an example where the two are composed.20

Now, we may informally think of the set of conformal blocks in any particular channel, labelled

by the set of internal representations {Pi}i∈I , as forming a basis for correlation functions. Given a

second channels, with a new set of internal cuffs I ′, there should be a change of basis matrix to the

new variables {Pi′}i′∈I′ , relating the two corresponding sets of blocks. From this point of view, it

is plausible that the conformal blocks in any two channels can be related by an integral transform,

with some ‘crossing kernel’ K:

F [Pe](Pi|σ) =

∫ (∏
i∈I′

dPi′

2

)
F ′[Pe](Pi′ |σ′)KPi′Pi [Pe] (3.2)

We allow for a change of kinematic variables σ → σ′ because natural variables (e.g. those appropriate

for recursion relations) may be different in each channel. This equation is a generalisation of

the relationship (2.7) between characters in channels related by a modular transform, where the

kernel K[Pe] was given by the modular S-matrix S[1]. Furthermore, if we relate two channels by

a composition of the elementary moves described above and in figure 5, the crossing kernel itself

can be built by composing the kernels for the elementary moves.21 Remarkably, not only do these

20For a complete set of moves, we also require ‘braiding’, which acts on any two joined pairs of pants by adding

a half twist to the separating cycle. The extra topological data required to fix the phases from footnote 19 is also

necessary to uniquely prescribe the fusion/braiding moves among the infinitely many ways to split a sphere with four

boundaries into two pairs of pants. It was only recently proved in [71] that fusion, braiding and S moves form a

complete set of generators to relate any channels. We are grateful to Xi Yin for bringing [71] to our attention.
21For this, it is important that the same kernels apply for the elementary moves when the external operators are

descendants of a given primary (which we sum over when these external legs become internal legs for a more compli-

cated correlation function). This follows because descendant correlators can be obtained by acting with differential

operators which are independent of the channel decomposition.
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F−−−−→

S−−−−→

S−−−−→ F−−−−→

Figure 5: The elementary crossing moves relate different pair-of-pants decompositions of the four-

punctured sphere and the once-punctured torus, or more generally anywhere that these appear as

pieces of any decomposition of a surface. The associated crossing kernels relate Virasoro conformal

blocks in the corresponding channels. The fusion kernel (top) relates sphere four-point Virasoro

blocks in the S- and T-channels, and the modular kernel (middle) relates torus one-point blocks in

modular S-transformed frames. In the final line, we show an example relating two channels in the

torus two-point function G1,2 by composing these moves.
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kernels exist, but for the elementary moves they are known in closed form! This is surprising and

powerful when we consider how little analytic control we have regarding the conformal blocks. We

will introduce these elementary kernels in the following subsections.

If the blocks are to be regarded as basis vectors, then the corresponding components of any

particular correlation function are the OPE coefficients, as encoded in the spectral densities ρspec.

Given a change of basis matrix K, we can therefore relate the spectral densities in two channels by

an integral transform with kernel K, generalising (2.9):22

ρ′spec(Pi′ , P̄i′) =

∫ (∏
i∈I

dPi
2

dP̄i
2

)
KPi′PiKP̄i′ P̄iρspec(Pi, P̄i) (3.3)

This is a direct statement of crossing or modular invariance, which makes no reference to the

correlation function, the kinematics or the conformal blocks. As a corollary to the Moore-Seiberg

construction, invariance under elementary moves implies invariance in complete generality, so four-

point function crossing symmetry and torus one-point modular invariance for all operators suffice to

prove consistency of a theory formulated on any surface. Nonetheless, more complicated correlation

functions encode an infinite set of these constraints in a natural way, so more general crossing

relations are still useful to learn about the theory, as we will see.

The elementary moves do not act freely on the space of channels, so they themselves are also

highly constrained by the relations between moves. For example, we can consider a five-point

function, made up of three pairs of pants, joined with two internal cuffs. Applying fusion moves

alternately on each of the cuffs, we return to the original channel after five moves, and imposing

that this combination of five F’s acts trivially gives us the ‘pentagon identity’ (5.4), explained in

more detail in section 5. Assuming analyticity of the kernels, along with properties of degenerate

representations, such identities suffice to determine the kernels uniquely [21, 22, 27].

The considerations we have described here have been understood and exploited for several

decades, but largely in the context of rational models, for which only finitely many representations

appear, so the kernel K is a finite-dimensional matrix (for a review, see [72, 73]). When applied

to irrational theories, the technicalities are somewhat more subtle, and our aims must be more

modest (we should certainly not hope to classify and solve all theories!), but this point of view

nonetheless seems to be the most powerful way to formulate the constraints of crossing, even for

irrational CFTs.

For the remainder of the section, we move beyond the abstract discussion to discuss more

concretely the kernels for the elementary fusion and S moves, and their salient properties.

22 This requires that the space of blocks is not overcomplete, so there is no nontrivial linear combination of blocks

that gives the zero correlation function. This is extremely plausible; for example, the short distance behaviour of the

correlator should be determined by the minimal dimension on which the spectral density has support.
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3.2 Elementary crossing kernels 1: fusion

The first of our elementary crossing moves arises when we consider the sphere four-point function

G0,4(z, z̄) = 〈O1(0)O2(z, z̄)O3(1)O′4(∞)〉S2 , (3.4)

where z, z̄ denote the conformal cross ratios. By successively taking the OPE between pairs of

operators (corresponding to inserting a complete set of states in radial quantization), this can

be written as sum over products of three-point functions of pairs of the external operators and

intermediate operators:

G0,4(z, z̄) =
∑
Os

C12sC34sF
[
P2 P1

P3 P4

]
(Ps|z)F̄

[
P̄2 P̄1

P̄3 P̄4

]
(P̄s|z̄)

=

∫
dPs
2

dP̄s
2

ρs(Ps, P̄s)F
[
P2 P1

P3 P4

]
(Ps|z)F̄

[
P̄2 P̄1

P̄3 P̄4

]
(P̄s|z̄),

(3.5)

where F
[
P2 P1

P3 P4

]
(P |z) are the S-channel Virasoro blocks. In the second line we have written this

decomposition as an integral against the S-channel ‘spectral density’ ρs (leaving implicit the de-

pendence on external operators), which for a discrete spectrum is a sum of delta-functions weighted

by the OPE coefficients C12sC34s; this is an example of the general decomposition (3.1), analogous

to (2.6) for the partition function.

For this expression, we have chosen to take the OPE between operators O1 and O2, giving the

S-channel expansion (equivalently, we decompose the four-holed sphere into two pairs of pants, with

cuffs 1, 2, s and s, 3, 4). But the result must be the same if we instead choose to use the T-channel

expansion, taking the OPE of operators O2 and O3. This associativity of the OPE leads to the

crossing equation:∫
dPs
2

dP̄s
2

ρs(Ps, P̄s)F
[
P2 P1

P3 P4

]
(Ps|z)F̄

[
P̄2 P̄1

P̄3 P̄4

]
(P̄s|z̄)

=

∫
dPt
2

dP̄t
2
ρt(Pt, P̄t)F

[
P2 P3

P1 P4

]
(Pt|1− z)F̄

[
P̄2 P̄3

P̄1 P̄4

]
(P̄t|1− z̄)

(3.6)

The T-channel spectral density ρt appearing here is similar to ρs, but weighted by different OPE

coefficients C41tC23t. This is the crossing relation between the two pair of pants decompositions of

the four-holed sphere pictured on the top line of figure 5.

Continuing to follow the philosophy we applied to modular invariance in section 2 and gener-

alised in section 3.1, we will rewrite the crossing equation directly as a transform relating S- and

T-channel spectral densities. To do this, we require an object expressing the decomposition of

the T-channel Virasoro blocks in terms of S-channel blocks. This is the fusion kernel (or crossing

kernel, or 6j symbol), with the defining relation

F
[
P2 P3

P1 P4

]
(Pt|1− z) =

∫
dPs
2

FPsPt
[
P2 P1

P3 P4

]
F
[
P2 P1

P3 P4

]
(Ps|z), (3.7)

which is analogous to the relation (2.7) between the modular S-matrix and characters.
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It is not a priori obvious that such an object should even exist, but it is a remarkable fact that

it does, and an even more remarkable fact that it has been explicitly constructed by Ponsot and

Teschner [21, 22, 27]. A closed form expression is given in (A.2) in appendix A, which contains

the necessary technical results, many of which were derived in [20]. We discuss the most relevant

properties in a moment.

With the fusion kernel F in hand, we can now write the crossing equation as a transform relating

the spectral density in each channel, just as in (2.9):

ρs(Ps, P̄s) =

∫
dPt
2

dP̄t
2

FPsPtFP̄sP̄tρt(Pt, P̄t) (3.8)

Here we have suppressed the notation labelling the external operators, but it should be borne in

mind that the kernel of this transform depends on the external operator dimensions P1,2,3,4.23

Like the modular transform of the vacuum (2.15) was the most important object in section 2,

the fusion transform of the vacuum will play a correspondingly central role for our new asymptotic

formulas. This can only appear in the case that the external operator dimensions are equal in pairs,

P1 = P4 and P2 = P3 (in the T-channel). In that case, the fusion kernel simplifies24 [20], and we

find it convenient to write it as

FPs1
[
P2 P1

P2 P1

]
= ρ0(Ps)C0(P1, P2, Ps), (3.10)

where ρ0(P ) is the density of states appearing as the modular S-transform of the vacuum (2.15).

It turns out that C0 is then symmetric under the exchange of all three of its arguments, and has a

simple explicit expression in terms of the special function Γb:

C0(P1, P2, P3) =
1√
2

Γb(2Q)

Γb(Q)3

∏
±±± Γb

(
Q
2 ± iP1 ± iP2 ± iP3

)
∏3
k=1 Γb(Q+ 2iPk)Γb(Q− 2iPk)

(3.11)

The
∏

in the numerator denotes the product of the eight combinations related by the reflections

Pk → −Pk. The function Γb is a ‘double’ gamma function, which is meromorphic, with no zeros,

and with poles at argument −mb−nb−1 for nonnegative integers m,n (similarly to the usual gamma

function, which has poles at nonpositive integers).

If external operators are sufficiently light (specifically, α1 +α2 ≤ Q
2 or α3 +α4 ≤ Q

2 ), the fusion

kernel has a new subtlety, arising from poles in Ps that cross the real axis. In order to maintain

23There is a similar transform to write the S-channel spectral density in terms of U-channel data (with density

weighted by OPE coefficients C13uCu24) using the braiding kernel. This is a fusion kernel conjugated by phases,

which become signs for integer spins:

ρs(Ps, P̄s) =

∫
dPu

2

dP̄u
2

(−1)`1+`4+`u+`sFPsPu

[
P2 P1

P4 P3

]
FP̄sP̄u

[
P2 P1

P4 P3

]
ρu(Pu, P̄u) (3.9)

The resulting signs for odd spins are much the same as for U-channel inversion in [74], for example.
24Unlike for the modular S-matrix in section 2, the fusion kernel for the identity can be obtained as a continuous

ht → 0 limit of the generic fusion kernel (with external operators identical in pairs). This occurs because the null

states continuously decouple (their OPE coefficients go to zero continuously as ht → 0). See footnote 27 for a more

detailed comparison.

29



analyticity in the parameters, the contour in the decomposition (3.7), which is implicitly taken to

run along the real Ps axis, must be deformed. We can take the deformed contour to run along the

real Ps axis, but must additionally include circles surrounding the poles which have crossed the

axis, contributing residues. This gives rise to a finite sum of S-channel operators with imaginary Ps
(hs <

c−1
24 ) in the decomposition of the T-channel conformal block. See [20] for more details. We

can describe this by including a sum of δ-functions supported at imaginary Ps in the kernel F [64].

The non-vacuum kernels with T-channel dimension ht > 0 will be important for us only to

compare their asymptotic contribution to the S-channel. The key result, established in [20], is

precisely analogous to (2.13) for the modular S-matrix:

FPsPt
FPs1

≈

{
e−2παtPs αt = Q

2 + iPt ∈ (0, Q2 )

e−πQPs cos(2πPtPs) Pt ∈ R
as Ps →∞ (3.12)

This result is accurate up to a factor independent of Ps, see equation (B.3).

3.3 Elementary crossing kernels 2: modular S

The second elementary move is a modular transform applied to one-point functions of Virasoro

primary operators on the torus

G1,1(−τ, τ̄) = 〈O0〉T 2(τ,τ̄), (3.13)

where τ labels the complex structure of the torus, and the conformal weight of the external operator

is h0 =
(
Q
2

)2
+P 2

0 = α0(Q−α0). The translation invariance of the torus means that the correlation

function is independent of the location of the operator.

Generalizing the modular invariance of the torus partition function (which is the special case

where the external operator O0 is the identity), G1,1 transforms covariantly under modular trans-

formations, in particular the S-transform τ → −1/τ :

G1,1(−1/τ,−1/τ̄) = τh0 τ̄ h̄0G1,1(τ, τ̄) (3.14)

The factor τh0 τ̄ h̄0 = |τ |∆e−i`0 arg τ comes from rescaling and rotating the torus so the thermal circle

becomes the spatial circle25. It occurs because the definition of the one-point function implicitly

makes a choice of metric on the torus, namely the flat metric in which the spatial circle has length

2π; after modular transform, the cycle interpreted as the spatial circle changes, and hence the

metric is rescaled. The discussion of subsection 3.1 implicitly assumed that we use the same metric

for every channel, so there were no such factors.

We can write this correlation function in terms of the usual CFT data by inserting a complete

set of states on the spatial circle, and collecting the contributions from each Virasoro representation

25Performing this transform twice corresponds to rotating the torus through an angle π and gives a factor (−1)`0 ,

from which we conclude that G1,1 is zero for operators with odd spin, since any nonzero expectation value would

break this Z2 symmetry.
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into torus conformal blocks F [P0](P |τ) with internal primary weight P :26

G1,1(τ, τ̄) =
∑
O
COOO0F [P0](P |τ)F̄ [P̄0](P̄ |τ̄)

=

∫
dP

2

dP̄

2
ρ[O0](P, P̄ )F [P0](P |τ)F̄ [P̄0](P̄ |τ̄)

(3.15)

In the second line we have defined the thermal spectral density ρ[O0] for the external operator O0,

consisting of δ-functions for each internal operator with coefficient COOO0 , analogously to (2.6) and

(3.5), and another special case of (3.1).

Reprising the same strategy, we will recast modular covariance as invariance of ρO0(P, P̄ ) under

an S-transform, directly generalizing (2.9) for the density of states. To do this, we introduce the

torus one-point kernel, the object which decomposes torus one-point conformal blocks into the

modular-S transformed frame:

τh0F [P0](P |τ) =

∫
dP ′

2
F [P0](P ′| − 1/τ)SP ′P [P0] (3.16)

Given this object, the modular S transformation acts on the spectral density as

ρ̃[O0](P ′, P̄ ′) =

∫
dP

2

dP̄

2
SP ′P [P0]SP̄ ′P̄ [P̄0]ρ[O0](P, P̄ ), (3.17)

and modular covariance of G1,1 is stated as ρ̃[O0] = ρ[O0].

Once again, we are fortunate to have an explicit expression for the modular S-kernel due to

Teschner [28] (see also [75, 76]). We reproduce the precise formula in (A.8) of appendix A, where

we demonstrate various important properties of the kernel, the most salient of which we now state.

Most important for us is that, like the fusion kernel, the modular S-kernel simplifies when the

external operator is the identity, taking h0 → 0 (P0 → iQ2 ). In this limit, we find that

SPP ′ [P0]→ SPP ′ [1] = 2
√

2 cos
(
4πPP ′

)
, (3.18)

recovering the modular S-matrix for non-degenerate torus characters (2.7) from section 2. Note

that the kernel relevant for inversion of the vacuum character, namely

SP1[1] = 4
√

2 sinh(2πbP ) sinh(2πb−1P ) (3.19)

as in equation (2.11), is not recovered by a straightforward α′ → 0 limit of (3.18), because the

degenerate vacuum character is not given simply by the h′ → 0 limit of the non-degenerate char-

acter. This is unlike the fusion kernel, where the identity kernel is obtained by an αt → 0 limit

26Explicitly, F [P0](P |τ) = TrP (e2πiτL0O0), where the trace is taken over the representation of the Virasoro algebra

with weight labelled by P , normalising the expectation value of O0 in the lowest weight state to unity.
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of the generic kernel with external operators identical in pairs: in that case the null descendants

continuously decouple in the ht → 0 limit.27

The second important property for us will be the behaviour of the kernel in the large dimension

limit P →∞, which we normalise by the vacuum S-matrix SP1[1] ≈ e2πQP for comparison:

SPP ′ [P0]

SP1[1]
≈

{
e−4πα′PP h0 α′ = Q

2 + iP ′ ∈ (0, Q2 )

e−2πQP cos(4πPP ′)P h0 P ′ ∈ R
as P →∞ (3.20)

These formulas, derived in appendix B.2, are accurate up to a constant (that is, independent of P )

factor. Crucially, this ratio is exponentially suppressed at large P , as long as h′ > 0. This result

reduces to (2.13) when the external operator is the identity.

4 OPE asymptotics from crossing kernels

Now that we have formulated the consistency conditions as statements about transforms of spectral

densities, it is simple to repeat the arguments of section 2, which led to the Cardy formula, in a

variety of new situations. Specifically, we study crossing for the three correlation functions which

decompose into two pairs of pants, and extract asymptotic formulas for squares of OPE coefficients.

4.1 Sphere four-point function: heavy-light-light

For our first example, we study the constraints of crossing symmetry for the four-point function

of pairwise identical operators. We have already introduced all the required definitions and results

in subsection 3.2; in particular, we have the fusion transformation (3.7) relating S- and T-channel

spectral densities,

ρs(Ps, P̄s) =

∫
dPt
2

dP̄t
2

FPsPtFP̄sP̄tρt(Pt, P̄t), (4.1)

and the result (B.3) that the fusion kernel for operators of positive dimension ht > 0 is exponentially

suppressed compared to the identity at large Ps. This is precisely the same situation we had for

the modular S-matrix when we derived the Cardy formula (2.14), so repeating that argument gives

us an analogous result for the S-channel spectral density:

ρs(Ps, P̄s) ∼ FPs1
[
P2 P1

P2 P1

]
FP̄s1

[
P̄2 P̄1

P̄2 P̄1

]
, Ps, P̄s →∞. (4.2)

This finding is not new, but was one of the main results of [20]. The focus of that paper was

the large spin limit of fixed Ps and P̄s → ∞, but we here emphasise that this also holds for large

27Since
〈h′|L1O0L−1|h′〉
〈h′|L1L−1|h′〉

= 2h′+h0(h0−1)
2h′ 〈h′|O0|h′〉, we can take a vacuum limit in which the null descendant is

decoupled by fixing h′ = − 1
2
h0(h0 − 1) ∼ 1

2
h0 and taking h0 → 0. Indeed, taking a limit α0, α

′ → 0 with α′ ∼ 1
2
α0,

one can explicitly check that SPP ′ [P0] → SP1[1] (for a derivation, see (A.14) and surrounding discussion). In

contrast, for the fusion kernel we can take a more direct limit because the matrix elements
〈h1|O1L−1|ht〉〈ht|L1O2|h2〉

〈ht|L1L−1|ht〉 =
ht
2
〈h1|O1|ht〉〈ht|O2|h2〉 go to zero as ht → 0.
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dimension (both Ps, P̄s →∞), in fact more generally since we need not assume existence of a twist

gap in that case.

In higher dimensional CFTs, the analogous operation of expanding the T-channel identity block

(which is simply the product of two-point functions) into the S-channel defines the spectrum and

OPE coefficients of ‘double trace’ operators of mean field theory (MFT). The identity fusion kernel

can therefore be thought of as a deformation of MFT to include Virasoro symmetry, and the

corresponding spectral data was accordingly dubbed “Virasoro mean field theory” (VMFT) in [20].

The large-spin universality of the identity kernel is the d = 2 analogue of the result for d > 2 that

there exist ‘double-twist’ operators whose dimensions and OPE coefficients approach those of MFT

at large spin [24, 25].

The analogy with double-twist operators in higher dimensions is sharpest for h < c−1
24 . If the

external operators O1,O2 have sufficiently low twist, then there are a finite number of trajectories

that asymptote at large spin to discrete values of h < c−1
24 ; see [20] for details. There is also a

continuum starting at h = c−1
24 described by the smooth VMFT OPE density, which has no known

analog in higher dimensions.

For h > c−1
24 , either fixed in the large spin limit or taken to be large simultaneously with h̄,

the asymptotic spectrum encoded in the fusion kernel is a smooth function of P, P̄ . Just as for

the Cardy formula explained in section 2, (3.5) should then be interpreted as a microcanonical

statement about the asymptotic spectral density integrated over a window of energies. We can

translate the result to a microcanonical average of OPE coefficients, by dividing by the Cardy

formula (2.14) giving the asymptotic density of primary states ρ(Ps, P̄s) ∼ ρ0(Ps)ρ0(P̄s) in the

relevant limits. Writing the identity fusion kernel in the form (3.10) of the universal density ρ0(Ps)

times C0(P1, P2, Ps), we find that C0 gives the microcanonical average of the OPE coefficients:

|C12s|2 ∼ C0(P1, P2, Ps)C0(P̄1, P̄2, P̄s), Ps, P̄s →∞. (4.3)

This result is valid for any two fixed operators O1,O2, averaging over operators Os in either a large

dimension or large spin limit.

The asymptotic form of C0 in this limit was computed in [20]:

C0(P1, P2, Ps) ∼ 2−4P 2
s e−πQPsP

4(h1+h2)− 3Q2+1
2

s
2
Q2−2

6 Γ0(b)6Γb(2Q)

Γb(Q)3Γb(Q+ 2iP1)Γb(Q− 2iP1)Γb(Q+ 2iP2)Γb(Q− 2iP2)
,

(4.4)

where Γ0(b) is a special function that appears in the large-argument asymptotics of Γb; see appendix

A of [20] for more details. The first factor exactly cancels a similar factor in the conformal blocks

(F ≈ (16q)hs [66]), ensuring that the block expansion has the correct domain of convergence. A

formula of this form for the asymptotics of the averaged heavy-light-light structure constants was

first obtained in [9]. In that paper, the authors used the asymptotics of the Virasoro four-point

blocks in the heavy limit hs → ∞ [66], subsequently taking a z → 1 limit to reproduce the OPE

singularity from the T-channel identity operator. Their result matches the leading asymptotics of

our formula (4.4) when written in terms of the conformal weights and central charge (as in equation
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(1.20)); we find new terms appearing at subleading order arising from a subtlety in the order of

hs → ∞ and z → 1 limits. Working directly with the spectral densities allows us to avoid such

difficulties in studying conformal blocks.

4.2 Torus two-point function: heavy-heavy-light

For our second example, we study the two-point function of identical Virasoro primaries on the

torus:

G1,2(τ, τ̄ ;w, w̄) = 〈O0(w, w̄)O0(0, 0)〉T 2(τ,τ̄) (4.5)

There are two qualitatively distinct ways to decompose such a correlation function into conformal

blocks. Firstly, we can take the OPE between the two operators and insert a single complete set

of states around a cycle of the torus, which we call the OPE channel. Secondly, we can insert two

complete sets of states between the operators on each side of the thermal circle, which we call the

necklace channel.

G1,2(τ, τ̄ ;w, w̄) =
∑
O1

∑
O2

|C012|2F (N)[P0](P1, P2|q1, q2)F̄ (N)[P̄0](P̄1, P̄2|q̄1, q̄2)

=

∫
dP1

2

dP̄1

2

dP2

2

dP̄2

2
ρN(P1, P2, P̄1, P̄2)F (N)[P0](P1, P2|q1, q2)F̄ (N)[P̄0](P̄1, P̄2|q̄1, q̄2)

=
∑
O′1

∑
O′2

C002′C2′1′1′F (OPE)[P0](P ′1, P
′
2|q, v)F̄ (OPE)[P̄0](P̄ ′1, P̄

′
2|q̄, v̄)

=

∫
dP ′1
2

dP̄ ′1
2

dP ′2
2

dP̄ ′2
2
ρOPE(P ′1, P

′
2, P̄

′
1, P̄

′
2)F (OPE)[P0](P ′1, P

′
2|q, v)F̄ (OPE)[P̄0](P̄ ′1, P̄

′
2|q̄, v̄)

(4.6)

The second and fourth lines define ‘necklace’ and ‘OPE’ spectral densities ρN, ρOPE. We have

written the blocks using different kinematic variables, since the natural parameters (for recursion

relations, for example [69]) are different in the two channels. In the necklace channel, q1 and q2

encode a Euclidean time evolution, between the two operator insertions, and then round the torus

back to the first operator insertion; in the OPE channel, there is only one such parameter q, along

with a separation v between the operators controlling the OPE. These parameters can be related

to one another, but all our results are derived without explicit reference to any kinematics.

We will consider the crossing kernel that decomposes torus two-point blocks for identical op-

erators in the OPE channel (with internal Liouville momenta P ′1, P
′
2) into two-point blocks in the

necklace channel (in the modular S-transformed frame). This sewing procedure is illustrated in

figure 6, from which we see that the required kernel is simply given by the product of the torus

one-point kernel and the sphere four-point kernel:

KP1P2;P ′1P
′
2
[P0] = SP1P ′1

[P ′2]FP2P ′2

[
P0 P1

P0 P1

]
ρN(P1, P2, P̄1, P̄2) =

∫
dP ′1
2

dP̄ ′1
2

dP ′2
2

dP̄ ′2
2

KP1P2;P ′1P
′
2
[P0]KP̄1P̄2;P̄ ′1P̄

′
2
[P̄0]ρOPE(P ′1, P

′
2, P̄

′
1, P̄

′
2)

(4.7)

34



=
∫
dP1

2 SP1P ′1
[P ′2]

=
∫
dP1

2
dP2

2 SP1P ′1
[P ′2]FP2P ′2

[
P0 P0

P1 P1

]
Figure 6: The sequence of Moore-Seiberg moves to express the OPE channel torus two-point block

in terms of necklace channel blocks: a modular S, followed by a fusion move.

In an appropriate limit, the necklace channel data will be dominated by the identity propagating

in both internal cuffs of the OPE channel, described by the identity kernel

KP1P2;11[P0] = SP11[1]FP21

[
P0 P1

P0 P1

]
= ρ0(P1)ρ0(P2)C0(P0, P1, P2).

(4.8)

Once again, the asymptotics of C0 universally governs the asymptotics of OPE coefficients, this

time in a ‘heavy-heavy-light’ limit, where one operator is fixed, and the other two operators are

taken to have large dimensions. Corrections to this identity contribution due to the exchange of

non-vacuum primaries in the OPE channel are exponentially suppressed when we take P1, P2 to be

large, just as we have seen before. The technical result required to show this is

KP1P2;P ′1P
′
2
[P0]

KP1P2;11[P0]
≈ e−2πα′1P1 (4.9)

in the limit P1, P2 → ∞, with either the ratio or difference of P1 and P2 held fixed. This result

is asymmetric in P1 and P2 because the OPE channel does not treat operators symmetrically28; it

guarantees suppression of all non-vacuum blocks because α′2 cannot be nonzero unless α′1 is also

nonzero. See the discussion in appendix B.1.1 for more details.

As in the case of the sphere four-point function, this result means that the necklace channel

spectral density is well approximated by exchange of the vacuum Verma module in the OPE channel

when the internal weights are taken to be heavy:

ρ
(P0,P̄0)
necklace(P1, P̄1;P2, P̄2) ≈ KP1P2;11[P0]KP̄1P̄2;11[P̄0], P1, P2, P̄1, P̄2 →∞ (4.10)

Thus the kernel corresponding to propagation of the identity in the OPE channel (4.9) encodes

an asymptotic formula for OPE coefficients in the heavy-heavy-light regime, averaged over the

28We could make the derivation symmetric in P1, P2 by including an extra fusion move, so that we are relating two

different OPE channels. Starting with the identity block, this extra fusion move is ‘free’ (that is, the necklace identity

block is equal to the OPE identity block), since there are external operators for F in the identity representation.

However, this extra move makes the argument for suppression of non-vacuum operators more technically challenging.
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heavy operators, and for any fixed light operator. Stripping off the density of states of the heavy

operators, we have

|C012|2 ∼ C0(P0, P1, P2)C0(P̄0, P̄1, P̄2), P1, P2, P̄1, P̄2 →∞. (4.11)

As in the case of the sphere four-point function, in the presence of a nonzero twist gap the above

asymptotic formula also holds in the large-spin regime when only P1, P2 or P̄1, P̄2 are taken to be

large.

Now that there are multiple internal weights, there are several distinct ways to take the large-

weight limit. First, we can take the weights to infinity at fixed ratio P2
P1

, assuming without loss of

generality that P1 > P2. We will take this limit by writing Pi = xiP , with xi fixed in the large-P

limit. One finds:

logC0(P0, x1P, x2P )

=
(
−4x2

1 log(2x1)− 4x2
2 log(2x2) + 2(x1 + x2)2 log(x1 + x2) + 2(x1 − x2)2 log(x1 − x2)

)
P 2

− πQ(x1 + x2)P +

(
2Q2

3
+ 4P 2

0 −
1

3

)
logP

+ log
2

1
6

(2Q2−1)(x1x2)
1
6

(Q2+1)(x2
1 − x2

2)
1
6

(Q2+12P 2
0−2)Γ0(b)4Γb(2Q)

Γb(Q)3Γb(Q− 2iP0)Γb(Q+ 2iP0)
+O(P−1).

(4.12)

The other interesting limit takes the difference P1−P2 = 2δ to be fixed, with the average P →∞.

Note that in terms of dimensions h, this means that h1 − h2 is of order
√
h. In this limit one finds

the following asymptotics

logC0(P0, P − δ, P + δ)

=− 2πQP + 2(h0 − 4δ2) log(P )

+ log
2

2Q2−1−96δ2

6 e−
Q2

4
−3P 2

0−12δ2 (
Q2 + 4(P0 − 2δ)2

) 1
24

(Q2+12(P0−2δ)2) (
Q2 + 4(P0 + 2δ)2

) 1
24

(Q2+12(P0+2δ)2)

(16P 4
0 + 8P 2

0 (Q2 − 16δ2) + (Q2 + 16δ2)2)
1
12

+ log
Γ0(b)4Γb(2Q)

Γb(Q)3Γb(Q− 2iP0)Γb(Q+ 2iP0)
+O(P−1).

(4.13)

Several recent papers have studied asymptotics of the averaged off-diagonal heavy-heavy-light struc-

ture constants in CFT2, including [10–12]. The most directly comparable result is equation (2.33)

of [10], which studied these OPE asymptotics by considering the torus two-point function in a par-

ticular kinematic limit, imposing modular covariance, and performing an inverse Laplace transform

to extract the spectral density. While the first line of our result (4.13) reproduces the entropic

suppression e−S/2 expected from the eigenstate thermalization hypothesis, there appears to be a

nontrivial difference between our subleading terms (written in terms of the dimensions and the cen-

tral charge in equation (1.21)) and those of [10]. Again, we would like to emphasize the technical

simplicity of our argument, which does not rely on carefully establishing the behaviour of conformal

blocks in simultaneous large-weight and kinematic limits.
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=
∫
dP1

2
dP2

2 SP1P ′1
[P ′3]SP2P ′2

[P ′3]

=
∫
dP1

2
dP2

2
dP3

2 SP1P ′1
[P ′3]SP2P ′2

[P ′3]FP3P ′3

[
P1 P1

P2 P2

]
Figure 7: The sequence of moves expressing a genus 2 ‘dumbell’ channel block in terms of ‘sunset’

channel blocks.

4.3 Genus-two partition function: heavy-heavy-heavy

The final constraint from crossing we will study arises from modular invariance of the genus two

partition function G2,0. We will relate the conformal block decomposition in two channels, which

we call ‘sunset’ and ‘dumbbell’; these channels and the relation between them are illustrated in

figure 7.

G2,0 =
∑
O1

∑
O2

∑
O3

C2
123F (sunset)(P1, P2, P3)F̄ (sunset)(P̄1, P̄2, P̄3)

=

∫  3∏
j=1

dPj
2

dP̄j
2

 ρsunset(P1, P2, P3, P̄1, P̄2, P̄3)F (sunset)(P1, P2, P3)F̄ (sunset)(P̄1, P̄2, P̄3)

=
∑
O′1

∑
O′2

∑
O′3

C1′1′2′C2′3′3′F (dumbbell)(P ′1, P
′
2, P

′
3)F̄ (dumbbell)(P̄ ′1, P̄

′
2, P̄

′
3)

=

∫  3∏
j=1

dPj
2

dP̄j
2

 ρdumbbell(P1, P2, P3, P̄1, P̄2, P̄3)F (dumbbell)(P1, P2, P3)F̄ (dumbbell)(P̄1, P̄2, P̄3).

(4.14)

We have here suppressed the dependence of G2,0 and the blocks on the moduli, since by now it is

hopefully clear that we have no need of them. This is fortunate, because for g ≥ 2 the description

of the moduli spaces and relations between different channels becomes technically very challenging,

and in particular, we must contend more directly with the factors arising from the conformal

anomaly.

To study the consequences of the genus-two modular crossing equation, we will employ the

crossing kernel that relates dumbbell channel genus-two Virasoro blocks to those in the sunset

channel. From figure 7, we see that, like the crossing kernel for the torus two-point function, this

kernel is simply a product of sphere four-point and torus one-point kernels:

KP1P2P3;P ′1P
′
2P
′
3

= SP1P ′1
[P ′2]SP3P ′3

[P ′2]FP2P ′2

[
P1 P3

P1 P3

]
ρsunset(Pi, P̄i) =

∫ ( 3∏
i=1

dP ′i
2

dP̄ ′i
2

)
KPi;P ′iKP̄i;P̄ ′i ρdumbbell(P

′
i , P̄

′
i )

(4.15)
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Once again, we will find that in appropriate limits, the spectral density in the sunset channel

is dominated by the contribution of the identity in all internal cuffs of the dumbbell channel. The

corresponding spectral density is given by the following identity kernel:

KP1P2P3;111 = SP11[1]SP31[1]FP21

[
P1 P3

P1 P3

]
= ρ0(P1)ρ0(P2)ρ0(P3)C0(P1, P2, P3).

(4.16)

Thus, once again, the asymptotic behaviour of the OPE coefficients, now when all three operators

are heavy, is determined by the asymptotics of the universal object C0(P1, P2, P3). Precisely as in

(4.9), corrections to this asymptotic formula due to the exchange of non-vacuum primaries in the

dumbbell channel are exponentially suppressed by the ratio

KP1P2P3;P ′1P
′
2P
′
3

KP1P2P3;111
≈ e−2π(α′1P1+α′3P3) (4.17)

in the limit where the ratios or differences between the Pi are held fixed. In the original dumbbell

channel, α′2 cannot be nonzero unless both α′1 and α′3 are nonzero, so this is always exponentially

small. More details are contained in appendix B.1.1.

The conclusion is that the sunset channel OPE density is well-approximated by the exchange

of the vacuum Verma module in the dumbbell channel when the internal weights all become heavy:

ρsunset(P1, P̄1;P2, P̄2;P3, P̄3) ≈ KP1P2P3;111KP̄1P̄2P̄3;111, Pi, P̄i →∞ (4.18)

Thus the kernel (4.16) encodes an asymptotic formula for OPE coefficients in the heavy-heavy-heavy

regime, averaged over the weights of all three heavy operators

|C123|2 ∼ C0(P1, P2, P3)C0(P̄1, P̄2, P̄3), Pi, P̄i →∞. (4.19)

As before, in the presence of a nonzero twist gap this formula holds at large spin in which only the

left-moving momenta P1, P2, P3 or the right-moving momenta P̄1, P̄2, P̄3 are taken to be large.

We can now recover asymptotic formulas for the microcanonical average of all heavy OPE

coefficients from the relevant asymptotics of C0. For example, if we fix ratios of Pi, parameterizing

as Pi = xiP with xi > 0 fixed and P →∞, we have

logC0(x1P, x2P, x3P )

=

(
−4

3∑
i=1

x2
i log(2xi) +

∑
ε2,ε3=±

(x1 + ε2x2 + ε3x3)2 log |x1 + ε2x2 + ε3x3|

)
P 2

− πQ(x1 + x2 + x3)P +

(
5Q2 − 1

6

)
logP

+ log
2
Q2

2 (x1x2x3)
1
6

(Q2+1)∏
ε2,ε3=± |x1 + ε2x2 + ε3x3|

1
12

(Q2−2)Γ0(b)2Γb(2Q)

Γb(Q)3
+O(P−1).

(4.20)
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In the case where |Pi − Pj | is fixed in the limit, we instead have

logC0(P + δ1, P + δ2, P − δ1 − δ2)

=3P 2 log
27

16
− 3πQP +

1

6
(5Q2 − 1) log(P )

+ log
2
Q2

2
−8(δ2

1+δ1δ2+δ2
2)3

Q2−2
12 Γ0(b)2Γb(2Q)

Γb(Q)3
+O(P−1).

(4.21)

These limits were studied using genus 2 modular invariance in [14], using conformal block

techniques. This analysis used the same underlying crossing relation, relating the heavy blocks

in the sunset channel to the identity in the OPE channel (or, equivalently, a different necklace

channel, obtained by an additional fusion move; the identity blocks in these two channels are

identical). Results were only obtained for large c, where additional techniques to analyse conformal

blocks are available, only included terms up to order P ∼
√
h in logC0, and did not have a complete

result for the term scaling exponentially in P 2 ∼ h (the first line of (4.21)) valid at general ratios

of operator dimensions. Nonetheless, all our formulas match those in [14], including confirming a

conjectured correction c → c − 1 from finite central charge. Our new method, with far less work,

extends these results to higher orders and finite central charge.

5 On the relation to Liouville theory

In section 1.6, we observed the relation between our universal object C0 and the DOZZ formula for

the structure constants of Liouville theory,

C0(P1, P2, P3) ∝ CDOZZ(P1, P2, P3)(∏3
k=1 S0(Pk)ρ0(Pk)

) 1
2

. (5.1)

We then sketched an argument which explained this relation from a common origin in representation

theory. We here give more details of that argument, explaining why the DOZZ formula must be

constructed from the identity fusion kernel, as the unique solution to crossing built from only scalar

Virasoro primaries.

To this end, we give general arguments for the identities which establish that the identity fusion

kernel provides a solution to crossing with scalar primaries, applicable for any chiral algebra. Many

of the methods are familiar in the context of rational CFTs. Secondly, we explicitly demonstrate

that the relevant identities hold for the Virasoro crossing kernels of [21,22,28], which is a consistency

check that these arguments extend to this non-rational situation.

We perform this analysis for two cases. First, we study four-point crossing, where our arguments

are very similar to those given in [60], for example. Secondly, we give similar arguments for modular

S-invariance of the torus one-point function.
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5.1 Four-point crossing symmetry

Following the general arguments of section 1.6, the four-point crossing equation (3.8) with only

scalar primaries becomes

F−1
PtPs

ρs(Ps) = FPsPt ρt(Pt), (5.2)

where we have inverted one of the fusion kernels to move it to the left hand side. We can write this

relation with explicit dependence on the external operators as follows:

Fts
[

4 1

3 2

]
ρs = Fst

[
2 1

3 4

]
ρt . (5.3)

We have used the fact that the inverse fusion kernel is the same as the fusion kernel with a

permutation of external operators. Here and in the following, for brevity of notation we have

suppressed momentum labels by replacing Pi simply with i; in particular, the external operator

labelled by 1 is not to be confused with the identity representation, denoted by 1. Our aim in

the following is to find an identity of the form (5.3), and hence a solution to crossing. Note that

if we have one solution to this equation, any other solution is related by multiplying ρs, ρt by

the same constant (independent of Ps, Pt, but not the external operators since we cannot fix their

normalisations). The only exception to this occurs when the fusion kernel is block diagonal, in

which case there is an independent solution for each block.

To proceed, we make use of a consistency condition satisfied by fusion kernels, the famous

pentagon identity, which in our notation reads∑
r

Frp
[

1 q

2 3

]
Fsq
[

1 5

r 4

]
Ftr
[

2 s

3 4

]
= Ftq

[
p 5

3 4

]
Fsp
[

1 5

2 t

]
. (5.4)

We have written this with a sum over r, as appropriate for the fusion matrix in rational CFTs.

For the c > 1 Virasoro fusion kernels of [21, 22] with continuous families of representations, the

sum becomes an integral with the appropriate measure. The identity follows from considering two

possible sequences of fusion moves applied to the five-point conformal blocks, sketched in figure 8,

which must act in the same way.

We only require a special case of the identity, taking q = 1, which also sets 5 = 4 and p = 3 so

that the blocks and fusion kernels are well-defined (otherwise, they become infinite signalling the

disallowed fusion). The first fusion move then becomes trivial, giving a δ-function that sets r = 1

Fr3
[

1 1
2 3

]
= δ1r. (5.5)

This relation can be explicitly verified for the Ponsot-Teschner fusion kernel (A.2) by taking the

appropriate limit: the kernel vanishes at generic Pr in the limit, but a delta-function δ(Pr − P1)

is produced by two poles which pinch the contour, with finite residue in the limit. This leaves us

with an identity without an internal sum,

Fs1
[

1 4

1 4

]
Ft1
[

2 s

3 4

]
= Ft1

[
3 4

3 4

]
Fs3
[

1 4

2 t

]
, (5.6)
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Figure 8: The sequence of crossing moves applied to the sphere five-point conformal block leading

to the pentagon identity (5.4) for the fusion kernel.

which one can check from the explicit form of the Ponsot-Teschner fusion kernel (A.2). To see this,

we note that we can rewrite the desired equality (5.6) as

Fs1
[

1 4

1 4

]
Ft1̃

[
2 s

3 4̃

]
= Ft1

[
3 4

3 4

]
Fs3
[

2 t

1 4

]
, (5.7)

where by the tilded entries ĩ, we mean that we replace Pi → −Pi, an operation under which the

fusion kernel is invariant. Written in this form, (5.7) is immediate from the expressions (A.2) after

a shift of the variable in the contour integrals, and using Sb(x) = Sb(Q− x)−1.

Now, by permuting labels in (5.6) (1→ t→ s→ 1), we have

F11

[
t 4

t 4

]
Fst
[

2 1

3 4

]
= Fs1

[
3 4

3 4

]
F13

[
t 4

2 s

]
, (5.8)

where we recognise one term on the left as the fusion kernel of interest in (5.3). By another

permutation of labels, swapping 2↔ 4 and t↔ s in (5.8), we find an identity involving the inverse

fusion kernel of interest,

F11

[
s 2

s 2

]
Fts
[

4 1

3 2

]
= Ft1

[
3 2

3 2

]
F13

[
s 2

4 t

]
. (5.9)

Now, since the fusion kernels are invariant under exchange of rows or columns, the F13 kernels

appearing in the two identities are the same, so we can combine (5.8) and (5.9) to find

Fs1
[

3 4

3 4

]
F11

[
s 2

s 2

]
Fts
[

4 1

3 2

]
= Fst

[
2 1

3 4

]
F11

[
t 4

t 4

]
Ft1
[

3 2

3 2

]
. (5.10)

This is an identity precisely of the form (5.3) and hence a scalar solution to four-point crossing,

with

ρs = k Fs1
[

3 4

3 4

]
F11

[
s 2

s 2

]
, ρt = k F11

[
t 4

t 4

]
Ft1
[

3 2

3 2

]
, (5.11)

where k is independent of Ps, Pt, but otherwise arbitrary. Using the expression (3.10) for the

identity fusion kernel in terms of our universal functions C0 and ρ0, we can write this solution as

ρs(Ps) = k ρ0(Ps)C0(P1, P2, Ps)C0(Ps, P3, P4), ρt = k ρ0(Pt)C0(P1, P4, Pt)C0(Pt, P2, P3) , (5.12)
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where a factor of ρ0(P1) has been absorbed into k. From the relation (1.26) between C0 and

the DOZZ formula, we see that ρs and ρt are precisely the S- and T-channel spectral densities in

Liouville theory, making an appropriate choice of k.

5.2 S-invariance of torus one-point functions

We now make a similar argument to show that Liouville theory provides the unique modular

covariant torus one-point functions for scalars. We begin by writing the equation for one-point

S-invariance (3.17) for scalars in a form analogous to (5.3), using the fact that S is its own inverse:

Sts[O]ρO(s) = Sst[O]ρO(t). (5.13)

Here, the same torus one-point spectral density ρO (where ρO(s) is the density of internal states

ρ(s) times OPE coefficients COss) appears on both sides.

To find a relation of the form (5.13), we require an identity for the modular S-kernel S to play

an analagous role to the pentagon identity in the above. Such an identity arises from consistency of

torus two-point functions, where two different sequences of moves applied to a vacuum block must

be equivalent:

FO1

[
t t

t t

]
Sst[O] = Ss1[1]

∑
u

e2πi(hs+ht−hu−hO/2)Fu1
[
s t

s t

]
FOu

[
t t

s s

]
. (5.14)

This identity is well-known for rational theories [70, 77], but also applies to the Virasoro kernels at

generic central charge [78], with the sum over u replaced by an integral with appropriate measure.

For rational theories, this identity is the key to proofs of the Verlinde formula [70, 77], so these

considerations can be applied to explore analogues of the Verlinde formula for irrational theories [78].

For us, the most important feature of this identity is that the right-hand side is symmetric

under swapping s↔ t, except for the factor of the identity S-matrix Ss1[1]. From this observation,

we find the simple relation

Sst[O]St1[1]FO1

[
t t

t t

]
= Sts[O]Ss1[1]FO1

[
s s

s s

]
. (5.15)

This identity is precisely of the desired form (5.13), with

ρO(P ) ∝ SP1[1]FO1

[
P P

P P

]
= ρ0(PO)ρ0(P )C0(PO, P, P ). (5.16)

Up to a P -independent normalisation constant, this is precisely the torus one-point spectral density

for Liouville theory constructed from the DOZZ formula (1.26).

6 Semiclassical limits

Throughout this paper we have emphasized that our asymptotic formulas apply in any two-

dimensional irrational CFT for any c > 1, providing universal results in a kinematic limit of
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large dimension or spin. However, it is natural to expect our results to be particularly powerful in

holographic theories with a weakly coupled AdS3 dual, and to have a corresponding gravitational

interpretation. The basic reason for this is simple: the corrections to the asymptotic formula come

from the lightest operators in the theory, and existence of a holographic dual requires having few

such operators (a sparse light spectrum) [31,79,80]. For example, in higher dimensions generic the-

ories contain double-twist operators with anomalous dimensions suppressed at large spin [24,25]; in

holographic theories, the ‘t Hooft limit extends this to double-trace operators with anomalous di-

mensions suppressed at large N , now at finite spin. The corresponding gravitational interpretation

involves two-particle states in AdS, which generically are weakly interacting only with very large

orbital angular momentum, when the particles are widely separated, but in holographic theories

also interact weakly at finite separation. An example in d = 2 is the density of states, which for

holographic theories is given by the Cardy formula not just for very heavy operators, but also at

large c for energies of order c [31], interpreted as the Bekenstein-Hawking entropy of BTZ black

holes [81].

With this in mind, in this section we will give gravitational interpretations of our universal OPE

coefficients C0 in various large c limits. We will not attempt here to pin down precisely when these

formulas apply, in terms of constraints on the theory and regime of operator dimensions; see [17]

for recent work in this direction.

Nonetheless, it is simpler to interpret and understand this regime in the gravitational descrip-

tion. Since our formulas come from expanding an identity block in an alternative channel, we

can interpret our formulas as a microcanonical version of ‘vacuum block domination’, giving the

density of states in a regime where a correlation function is well-approximated by only the identity

Virasoro block in the appropriate channel [82–85]. At large c, an identity block is given by the

gravitational action of a particular locally empty AdS solution (which could be a BTZ black hole

or handlebody at higher genus), along with worldlines of particles propagating between external

operator insertions [6, 30, 86–88]:

F1 ≈ e−c Sgrav (6.1)

We therefore expect our formulas to be applicable when the gravitational path integral is dominated

by such a solution, up to loop corrections29. This holds for a kinematic regime of parametrically low

temperature or small cross-ratios, but for holographic theories is expected to extend to a regime of

kinematics which are fixed in the large c limit. The question is how far this regime extends before

encountering a phase transition. The simplest such phase transitions are first-order ‘Hawking-Page’

transitions, where an identity block in different channel dominates. However, note that even for

local, weakly coupled gravitational theories, there need not be any channel in which the vacuum

dominates: for example, there may be a phase in which a scalar field condenses after a second-

order phase transition [30, 32]. Vacuum dominance potentially particularly subtle for correlation

functions in kinematic regimes such as those with operators out of time order [89].

29Note that the identity block itself need not be a larger contribution than any other block. Corrections at one-loop

order change the coefficient of e−c Sgrav , and come from light operator exchanges of the same order as F1.
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We now give our examples of gravitational interpretations of the universal OPE coefficients C0

in various limits. These are all explored in more detail elsewhere, but we present them here together

as consequences of the same formula, emphasising the unifying nature of our results. Furthermore,

the list may well not be exhaustive, since we have not included all possible semiclassical limits, and

our understanding of the connections to gravity is far from complete.

6.1 Spectral density of BTZ black holes

For our first example, we take a large c limit of C0 which probes the physics of BTZ black holes.

We take two operators to be heavy, with dimensions h1, h2 scaling with c, to correspond to black

hole states, but with similar dimensions, h1 − h2 fixed as c → ∞. The third operator, acting as a

probe of the geometry, has h fixed in the limit. In terms of the momentum variables P , we take

P1 = b−1p+ bδ P2 = b−1p− bδ, P3 = i
(
Q
2 − bh

)
, (6.2)

and fix p, δ, h in the b → 0 limit. We can then interpret C0 as governing the matrix elements

〈BH2|O|BH1〉 of the probe operator O of dimension h between black hole states of nearby energies.

This limit of the fusion kernel was studied in [20], with the result

ρ0(b−1p)C0 (P1, P2, P3) ∼ (2p)2h

2πb

Γ(h+ 2iδ)Γ(h− 2iδ)

Γ(2h)
. (6.3)

This is the left-moving half spectral density associated to free matter propagating an a BTZ black

hole background30 [90]. In particular, the poles at imaginary δ are associated with the frequencies

of quasinormal modes governing the approach to equilibrium. This result is sufficient to recover

the ‘heavy-light’ limit of conformal blocks [91, 92]; see [20] for more details.

6.2 Near-extremal BTZ and the Schwarzian theory

Our second example (based on results to appear [93]) is similar to the first, but treats the distinct

case where the black hole of interest is very close to extremality.

Rotating BTZ black holes exist for dimensions above the extremality bound h > c−1
24 , and we

will tune our operators close to this, with h − c−1
24 of order c−1. Our third operator will remain a

light probe. This means we have

P1 = bk1 P2 = bk2, P3 = i
(
Q
2 − bh

)
, (6.4)

where we fix k1, k2, h and take b→ 0.

30Strictly speaking, this holds in a case where we are insensitive to the compactness of the spatial circle, either

large black holes or heavy external operators.
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In this limit, our universal density of states ρ0 and OPE coefficients C0 are given by

ρ0(bk) ∼ 8
√

2πb2k sinh(2πk) (6.5)

C0

(
bk1, bk2, i(

Q
2 − bh)

)
∼ b4h√

2(2πb)3

∏
±± Γ(h± ik1 ± ik2)

Γ(2h)
, (6.6)

where the
∏
± refers to a product of four terms with all possible sign combinations. These expres-

sion may be familiar from the Schwarzian theory, which governs the dynamics of weakly broken

conformal symmetry [94–96]. This theory arises in near-extremal black holes, which have a near-

horizon AdS2 region with dynamics governed by Jackiw-Teitelboim gravity [95, 97]. Specifically, ρ0

is proportional to the density of states for the Schwarzian theory, and C0 to a transition amplitude

appearing in calculations of correlation functions [96, 98, 99].

The appearance of these quantities is a sign that there is a universal sector of large c CFTs

which knows about quantum geometry, where the metric fluctuations are not suppressed. The

connection between the Schwarzian theory, near-extremal BTZ and universality in CFT will be

explored in much greater detail in forthcoming work [93].

6.3 Conical defect action

Finally, we consider a regime where all three operators have dimensions scaling with c. If we take
24h
c > 1 in this limit, as required for asymptotic formulas, C0 should be interpreted as giving a three-

point function of black hole microstates. It is unclear whether there is a direct calculation of this

quantity, giving the semiclassical limit of C0 as an on-shell action. However, perhaps surprisingly,

if we fix 24h
c < 1 and take c → ∞, there is such an interpretation, shown in [4]. Those authors

computed the vacuum fusion kernel in a large central charge limit,

αi = b−1ηi, b→ 0, fixed ηi, i = 1, 2, 3, (6.7)

and equated it to a suitably regularised on-shell action of a geometry corresponding to three heavy

particles running between the asymptotic boundary and a trivalent vertex. The action in this case

is Einstein-Hilbert, plus an action miLi for each particle, where Li is a regularised proper length of

the particle’s worldline and mi ∼ c
3ηi is its mass. Since the particles have masses of order c, they

backreact to form three conical defects in the geometry, meeting at the vertex31.

In our notation, we can express the result of [4] as a limit of C0:

logC0 ∼ b−2
(
− 1

2Sgrav(η1, η2, η3) + iθ(η1, η2, η3)
)
,

−1
2Sgrav = (F (2η1)− F (η2 + η3 − η1) + (1− 2η1) log(1− 2η1) + (2 permutations))

+ F (0)− F (η1 + η2 + η3)− 2(1− η1 − η2 − η3) log(1− η1 − η2 − η3)

θ = π(η1 + η2 + η3 − 1),

(6.8)

31No particle action was included in [4], but they also included no singular contribution to the Einstein Hilbert

action localised on the worldline. These two terms are equal and opposite, so the results are equivalent.
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where F (z) = I(z) + I(1 − z) for I(z) =
∫ z

1
2
dy log Γ(y). The action b−2Sgrav appearing here is

precisely the gravitational action for the conical defect network described above. When left- and

right-moving sectors are combined, for scalars the phase θ cancels.

When conformal blocks are computed at large c as an on-shell gravitational action, this conical

defect action, and hence this limit of C0, appear as the natural normalisation of the blocks [29,30].

While the relation with our universal asymptotic formulas is suggestive, it remains rather mysterious

from that point of view, and deserves to be better understood.

7 Torus one-point functions & the Eigenstate Thermalization Hy-

pothesis

Although the primary focus of our paper is on the asymptotic behaviour of the Cijk
2, similar

techniques can be applied to other observables in two-dimensional conformal field theory. For

example, by studying the modular covariance of the torus one-point function of an operator O0 one

obtains an asymptotic formula for diagonal heavy-heavy-light structure constants COHH , where we

average over the heavy operator H. This was discussed in [5], who found

C0HH ≈ N0C0χχ

(
∆H −

c− 1

12

)∆0/2

exp

[
−π(c− 1)

3

(
1−

√
1− 12∆χ

c− 1

)√
12∆H

c− 1
− 1

]
, (7.1)

in the limit that ∆H → ∞. Here χ is the lightest operator to which O0 couples (i.e. for which

C0χχ 6= 0), and is assumed to be sufficiently light, ∆χ <
c−1
12 . The normalization factor N0 depends

only on c, ∆χ and ∆0. This analysis was performed at the level of the scaling blocks in [5] and

was generalized to include the contribution of global blocks in [6]. When regarded as a formula for

the average value of the primary operators, however, equation (7.1) is true only at leading order in

1/c; the inclusion of Virasoro blocks provides corrections which are only subleading at large c.

We can now write down the finite c version of this formula using the modular S kernel introduced

in section 3.3 for torus one point functions. Following the same logic that led to our other asymptotic

formulas, we conclude that

C0HH ≈ C0χχ

SPHPχ [P0]SP̄H P̄χ [P̄0]

ρ0(PH)ρ0(P̄H)
, PH , P̄H →∞ (7.2)

provided that χ, the lightest operator that couples to O0, is sufficiently light (αχ lies in the discrete

range in the sense of [20]) and that there exists a gap above this lightest operator so that corrections

due to the inversion of the contributions of other operators in the original channel are indeed

suppressed. The large P asymptotics of this formula are straightforward to find by taking the large

PH limit of the modular S kernel, namely

SPHPχ [P0]

ρ0(PH)
≈ e−4παχPHP h0

H . (7.3)
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This reproduces the earlier result (7.1) in the appropriate limit.

We would like to emphasize two important qualitative differences between this formula and

our other asymptotic formulas. The first is that it is not universal in the same sense as our

other formulas, as it explicitly depends on the lightest operator that couples to O0, both through

its conformal weights and OPE coefficient (this is because the vacuum Verma module cannot

propagate as an intermediate state in either channel of the torus one-point function). Second, its

derivation is on even less rigorous footing than our other asymptotic formulas because the structure

constants that appear in the conformal block decomposition of the torus one-point function need

not be positive, and so the spectral densities ρ[O0], ρ̃[O0] do not in general have definite sign and

may oscillate when integrated. This is unlike the product of structure constants that appear in

the necklace channel conformal block decomposition of the torus two-point function of identical

operators or the sunset channel of the genus-two partition function, which are positive in a unitary

CFT. In fact, if the lightest operator that couples to O is sufficiently heavy (in particular, if it

has twist > c−1
12 ), then one cannot even argue that the asymptotics of the structure constants are

universal as corrections due to the propagation of other operators in the original channel are not

parametrically suppressed.

As discussed in section 1.5, the fact that the averaged diagonal heavy-heavy-light OPE coef-

ficients are exponentially suppressed (via e.g. (7.3)) implies a different hierarchy of suppression

between the averaged diagonal and non-diagonal heavy-heavy-light structure constants than would

naively have been expected from the usual statement of the Eigenstate Thermalization Hypothesis,

where fO is order one and gO ≈ e−
1
2
S(∆). Indeed, if the lightest operator that couples to O0

satisfies Re(αχ + ᾱχ) ≥ Q
2 (for scalars, this corresponds to dimension ∆χ ≥ c−1

16 ), then there is no

suppression whatsoever of the averaged off-diagonal structure constants compared to the diagonal,

and indeed the diagonal terms may be even smaller than the off-diagonal in this regime. This may

be seen by comparing equation (7.3) with equation (4.13). This contrast is particularly sharp in

holographic theories with a large gap in the spectrum of primary operators, with only Planckian

degrees of freedom. Indeed the dual of a theory of “pure” quantum gravity in AdS3 is in a sense

one where the averaged diagonal heavy-heavy-light structure constants are smallest.
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A Explicit forms of elementary crossing kernels

In this section we will review the explicit forms of the elementary crossing kernels used in this paper,

with a focus on the analytic structure of the kernels as a function of the intermediate weights.

A.1 Sphere four-point

We will start by reviewing the explicit form of the fusion kernel, which implements the fusion

transformation relating sphere four-point Virasoro conformal blocks in different OPE channels (see

equation (3.7)). The fusion kernel was worked out in explicit detail by Ponsot and Teschner [21,22].

The expression involves the special functions Γb(x), which is a meromorphic function with no zeros

that one may think of as a generalization of the ordinary gamma function, but with simple poles

at x = −(mb+ nb−1) for m,n ∈ Z≥0, and

Sb(x) =
Γb(x)

Γb(Q− x)
. (A.1)

Many properties of these special functions, including large argument and small b asymptotics, were

summarized in [20] (see in particular appendix A of that paper). The explicit expression for the

kernel involves a contour integral and is given by

FPsPt
[
P2 P1

P3 P4

]
= Pb(Pi;Ps, Pt)Pb(Pi;−Ps,−Pt)

∫
C′

ds

i

4∏
k=1

Sb(s+ Uk)

Sb(s+ Vk)
, (A.2)

where the prefactor Pb is given by

Pb(Pi;Ps, Pt)

=
Γb(

Q
2 + i(Ps + P3 − P4))Γb(

Q
2 + i(Ps − P3 − P4))Γb(

Q
2 + i(Ps + P2 − P1))Γb(

Q
2 + i(Ps + P1 + P2))

Γb(
Q
2 + i(Pt + P1 − P4))Γb(

Q
2 + i(Pt − P1 − P4))Γb(

Q
2 + i(Pt + P2 − P3))Γb(

Q
2 + i(Pt + P2 + P3))

Γb(Q+ 2iPt)

Γb(2iPs)

(A.3)

and the arguments of the special functions in the integrand are

U1 = i(P1 − P4)

U2 = −i(P1 + P4)

U3 = i(P2 + P3)

U4 = i(P2 − P3)

V1 = Q/2 + i(−Ps + P2 − P4)

V2 = Q/2 + i(Ps + P2 − P4)

V3 = Q/2 + iPt

V4 = Q/2− iPt

(A.4)
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The contour C′ runs from −i∞ to i∞, traversing between the towers of poles running to the left

at s = −Ui −mb − nb−1 and to the right at s = Q − Vj + mb + nb−1 in the complex s plane, for

m,n ∈ Z≥0.

Viewed as a function of the internal weight Ps, the kernel (A.2) has eight semi-infinite lines of

poles extending to both the top and bottom of the complex plane

FPsPt
[
P2 P1

P3 P4

]
: simple poles at Ps = ±i

(
Q

2
+ iP0 +mb+ nb−1

)
, for m,n ∈ Z≥0,

where P0 = P1 + P2, P3 + P4 (and six permutations under reflection Pi → −Pi).
(A.5)

Roughly, half of these poles are explicit singularities of special functions in the prefactor (A.3),

while the other half arise from singularities of the contour integral, which occur when poles of the

integrand pinch the contour. In the case particularly relevant for this paper of pairwise identical

operators P4 = P1, P3 = P2, these singularities are enhanced to double poles, although there

is an exception when the T-channel internal weight Pt is degenerate (Pt = ± i
2((m + 1)b + (n +

1)b−1), m, n ∈ Z≥0), in which case the poles remain simple when the external operators have

weights consistent with the fusion rules.

In most cases, the contour of integration over the internal weight Ps in the fusion transformation

(3.7) can be taken to run along the real axis. However, as emphasized in [20,61], when the external

operators are sufficiently light, in particular when

Re(i(P1 + P2)) < −Q
2

or Re(i(P3 + P4)) < −Q
2

(A.6)

then some poles of the fusion kernel (A.5) cross the real Ps axis and the contour must be deformed,

leading to a finite number of discrete residue contributions to the S-channel decomposition of the

T-channel Virasoro block. These correspond to the Virasoro analog of double-twist operators [20].

In the special case of pairwise identical operators with T-channel exchange of the identity, the

contour integral can be computed very explicitly and the fusion kernel takes the following simple

form, which makes the analytic structure manifest

FPs1
[
P2 P1

P2 P1

]
=

Γb(2Q)

Γb(Q)3

Γb(
Q
2 + i(P1 + P2 − Ps))× (7 permutations under reflection P → −P )

Γb(2iPs)Γb(−2iPs)Γb(Q+ 2iP1)Γb(Q− 2iP1)Γb(Q+ 2iP2)Γb(Q− 2iP2)

= ρ0(Ps)C0(P1, P2, Ps).

(A.7)

A.2 Torus one-point

The crossing kernel that implements the modular S transformation on torus one-point Virasoro

blocks (see equation (3.16)) was worked out by Teschner [28]. Similarly to the fusion kernel, its
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explicit form involves a contour integral and is given by

SPP ′ [P0] =
ρ0(P )

Sb(
Q
2 + iP0)

Γb(Q+ 2iP ′)Γb(Q− 2iP ′)Γb(
Q
2 + i(2P − P0))Γb(

Q
2 − i(2P + P0))

Γb(Q+ 2iP )Γb(Q− 2iP )Γb(
Q
2 + i(2P ′ − P0))Γb(

Q
2 − i(2P ′ + P0))∫

C

dξ

i
e−4πP ′ξ Sb(ξ + Q

4 + i(P + 1
2P0))Sb(ξ + Q

4 − i(P −
1
2P0))

Sb(ξ + 3Q
4 + i(P − 1

2P0))Sb(ξ + 3Q
4 − i(P + 1

2P0))

≡Qb(P, P ′, P0)

∫
C

dξ

i
e−4πP ′ξTb(ξ, P, P0).

(A.8)

This integral representation only converges when

1

2
Re(α0) < Re(α′) < Re

(
Q− 1

2
α0

)
. (A.9)

Outside of this range, the kernel is defined via analytic continuation, using the fact that it satisfies

a shift relation that we will make explicit shortly.

The integral contributes the following series of poles in the P plane, one extending to the top

and the other extending to the bottom

integral: poles at P = ± i
2

(
Q

2
+ iP0 +mb+ nb−1

)
, m, n ∈ Z≥0. (A.10)

Together with the prefactor, the full kernel has the following polar structure in the P plane

SPP ′ [P0] : poles at P =
i

2

(
Q

2
− iP0 +mb+ nb−1

)
, m, n ∈ Z≥0, and all possible reflections (in P, P0).

(A.11)

One can think of these poles as arising in the case that the external operator is a (Virasoro) double-

twist of the internal operator. Unlike the case of the fusion kernel, for unitary values of the weights

none of these poles can cross the contour of integration Im(P ) = 0.

Similarly to the case of the fusion kernel, the modular S kernel can be straightforwardly eval-

uated in the case that the external operator is the identity, P0 = iQ2 . In this case, the prefactor

vanishes and so we only need to extract the singularities of the contour integral. By carefully

studying this limit, one finds

SPP ′ [1] = 2
√

2 cos(4πPP ′), (A.12)

precisely reproducing the non-degenerate modular S matrix for the Virasoro characters (2.7). To

study the limit in which the internal operator in the original channel is also the identity one must

be more careful, for the simple reason that the Virasoro vacuum character is not the same as the

h′ → 0 limit of the non-degenerate Virasoro character; in the latter case, there are null states that

do not decouple continuously.

To study this limit more carefully, we note that the modular kernel satisfies the following shift
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relation (see e.g. [75])

2 cosh(2πbP )SPP ′ [P0] =

(
Γ(b(Q+ 2iP ′))Γ(2ibP ′)

Γ(b(Q2 + i(2P ′ − P0)))Γ(b(Q2 + i(2P ′ + P0)))
SP,P ′−i b

2
[P0]

+
Γ(b(Q− 2iP ′))Γ(−2ibP ′)

Γ(b(Q2 − i(2P ′ + P0)))Γ(b(Q2 − i(2P ′ − P0)))
SP,P ′+i b

2
[P0]

)
.

(A.13)

Now consider the limit P ′ → i b
−1

2 of this equality. The first term on the right-hand side will be

singular unless we take P0 to iQ2 at the same time. To facilitate the study of this limit, we write

P ′ = i
2(b−1 − ε), P0 = i

(
Q
2 − ε

)
, and take ε→ 0. Taking the limit, we find

lim
ε→0

SP, i
2

(Q−ε)

[
i(
Q

2
− ε)

]
= 2 cosh(2πbP )S

P,i b
−1

2

[
i
Q

2

]
− 2SP, i

2
(b−1−b)

[
i
Q

2

]
= 4
√

2 sinh(2πbP ) sinh(2πb−1P ),

(A.14)

precisely reproducing the modular S matrix for the inversion of the Virasoro vacuum character

(2.11). Note that one cannot recover this by taking the appropriate limit of (A.8), as α0 = 2α′ is

at the boundary of the regime of convergence of the integral representation.

B Asymptotics of crossing kernels

In this section we will collect results for the asymptotic form of the elementary crossing kernels

when some of the weights are taken to be heavy. These results are important for establishing both

the form of our asymptotic formulas and their validity, via the suppression of corrections due to

the propagation of non-vacuum primaries.

B.1 Fusion kernel

In [20], the asymptotic form of the fusion kernel when the S-channel internal weight Ps was taken to

be heavy with fixed external weights was extensively studied. The main result of that analysis was

the following asymptotic form of the vacuum fusion kernel (A.7) with pairwise identical operators,

which follows directly from the asymptotics of the special function Γb that were established in that

paper

FPs1
[
P2 P1

P2 P1

]
∼2−4P 2

s eπQPsP
4(h1+h2)− 3Q2+1

2
s

× 2
Q2+1

6 Γ0(b)6Γb(2Q)

Γb(Q)3Γb(Q+ 2iP1)Γb(Q− 2iP1)Γb(Q+ 2iP2)Γb(Q− 2iP2)
, Ps →∞

(B.1)

where

log Γ0(b) = −
∫ ∞

0

dt

t

(
e−Qt/2

(1− e−bt)(1− e−b−1t)
− t−2 − Q2 − 2

24
e−t

)
(B.2)
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appears in the large-argument asymptotics of Γb(x).

By carefully studying the asymptotics of the contour integral in the definition of the fusion

kernel, in [20] it was also established that the fusion kernel with non-zero T-channel weight is

exponentially suppressed at large Ps compared to the vacuum kernel

FPsPt
[
P2 P1

P2 P1

]
FPs1

[
P2 P1

P2 P1

] ∼e−2παtPs

(
Γb(Q+ 2iP1)Γb(Q− 2iP1)

Γb(
Q
2 + i(2P1 − Pt))Γb(Q2 − i(2P1 + Pt))

× (P1 → P2)

)

× Γb(Q− 2iPt)Γb(−2iPt)Γb(Q)3

Γb(2Q)Γb(
Q
2 − iPt)4

, Ps →∞.

(B.3)

Thus we learn that corrections to the heavy-light-light asymptotic formula (4.4) due to the exchange

of non-vacuum primaries in the T-channel are exponentially suppressed.

B.1.1 With heavy external operators

In order to establish the validity of the off-diagonal HHL and HHH asymptotic formulas, we need

to ensure that the propagation of non-vacuum primaries is suppressed compared to that of the

vacuum. The only nontrivial step is establishing the suppression of

FP2P ′2

[
P1 P3

P1 P3

]
FP21

[
P1 P3

P1 P3

] (B.4)

when one or both of the external operators P1, P3 are taken to be heavy along with the S-channel

internal weight P2.

Let’s start with the case relevant for the torus two-point kernel. For simplicity and clarity of

presentation, we will explicitly present the case where α1, α2 = Q
2 + iP, P →∞, with α3 ≡ α0 and

α′2 fixed. Focusing on the contour integral involved in the definition of the four-point kernel and

writing the integration variable as s = σP , we have the following asymptotics of the integrand

log

4∏
k=1

Sb(s+ Uk)

Sb(s+ Vk)

∼


2π(α0 + iQσ)P − πi((Q− α0)2 + h′2) +O(P−1), Im(σ) > 2

−2π(α0 − iQσ + iα0σ)P − πi((Q− α0)2 − h0 + h′2) +O(P−1), 0 < Im(σ) < 2

−2π(α0 + iQσ)P + πi((Q− α0)2 + h′2) +O(P−1), Im(σ) < 0

(B.5)

The integrand decays exponentially at σ = ±i∞ and no poles cross the contour so we evaluate the

integral using these leading approximations for the integrand. In this way one finds∫
ds

i

4∏
k=1

Sb(s+ Uk)

Sb(s+ Vk)
∼ (order-one)e−2πα0P , (B.6)
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so that all together we have

FP2P ′2

[
P0 P1

P0 P1

]
∼ (order-one)(P )2h0−h′2 , (B.7)

and corrections due to the propagation of non-vacuum primaries with 0 < α′2 <
Q
2 are encoded by

the ratio
FP2P ′2

[
P0 P1

P0 P1

]
FP21

[
P0 P1

P0 P1

] ∼ (order-one)P−h
′
2 . (B.8)

The analysis is similar for corrections to the HHH asymptotics due to propagation of non-

vacuum primaries in the dumbbell channel. One finds the following for the asymptotics of the

integrand when all three weights α1, α2, α3 = Q
2 + iP are taken to be heavy and we scale the

integration variable with P as before

log

4∏
k=1

Sb(s+ Uk)

Sb(s+ Vk)

∼


3πiP 2 + 2πiQσP − πi

4 (Q2 + 4h′2) +O(P−1), Im(σ) > 2

−πi(1 + 4iσ − σ2)P 2 + πQ(−2 + iσ)P − πi
12(−2 +Q2 + 12h′2) +O(P−1), 1 < Im(σ) < 2

2πσP 2 + πQ(−2 + iσ)P − πih′2 +O(P−1), 0 < Im(σ) < 1

c.c., Im(σ) < 0

.

(B.9)

In this case the dominant contribution turns out to be of the form∫
ds

i

4∏
k=1

Sb(s+ Uk)

Sb(s+ Vk)
∼ (order-one)e−2πQP , (B.10)

leading to

FP2P ′2

[
P1 P3

P1 P3

]
∼ (order-one)

(
27

16

)3P 2

e−πQPP−2h′2+ 5Q2−1
6 . (B.11)

Thus non-vacuum corrections to the HHH asymptotic formula are suppressed via the ratio

FP2P ′2

[
P1 P3

P1 P3

]
FP21

[
P1 P3

P1 P3

] ∼ (order-one)P−2h′2 . (B.12)

B.2 Torus one-point

In order to establish the validity of the heavy-heavy-light and heavy-heavy-heavy universal formulas,

we also need to study the asymptotics of the torus one-point kernel in the limit that the internal

weight in one of the channels becomes heavy, namely the limit P →∞. In this limit, the prefactor
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Qb reduces to the following

logQb(P, P
′, P0) ∼2π(Q− α0)P + h0 log(2P )

+ log
√

2
Γb(Q+ 2iP ′)Γb(Q− 2iP ′)

Sb(
Q
2 + iP0)Γb(

Q
2 + i(2P ′ − P0))Γb(

Q
2 − i(2P ′ + P0))

+O(P−1)

(B.13)

To study the asymptotics of the contour integral, we start by considering scaling the integration

variable with P , ie. ξ = σP . Then the integrand behaves in the following way at large P depending

on the imaginary part of σ

log Tb(σP, P, P0) ∼


2πiσ(Q− α0)P +O(P−1), Im(σ) > 1

−2π(Q− α0)P +O(P−1), −1 < Im(σ) < 1

−2πiσ(Q− α0)P +O(P−1), Im(σ) < −1

. (B.14)

In this limit, there are poles extending to the left and right at Im(σ) = ±1 pinching the contour.

For α′ in the discrete range, we cannot evaluate the integral by deforming the contour and

summing over residues e.g. in the ξ right half-plane since the integrand does not decay exponentially

along the arc at infinity. However, so long as the internal weight α′ obeys the condition (A.9), the

integral along the contour Re(ξ) = 0 converges nicely and the integral in this limit can easily be

computed by using the asymptotics (B.14). When α′ ∈ (0, Q2 ), we have∫
C

dξ

i
e−4πξP ′Tb(ξ, P, P0) ≈

Q
2 − iP0

2π(−2iP ′)(Q2 + i(2P ′ − P0))
e−2πP (Q

2
+i(2P ′−P0)). (B.15)

Comining with the asymptotics of the prefactor, we recover the following asymptotics

SPP ′ [P0] ≈

(
Q
2 − iP0√

2π(−2iP ′)(Q2 + i(2P ′ − P0))

Γb(Q+ 2iP ′)Γb(Q− 2iP ′)

Sb(
Q
2 + iP0)Γb(

Q
2 + i(2P ′ − P0))Γb(

Q
2 − i(2P ′ + P0))

)
× e−4πiPP ′(2P )h0

(B.16)

To compute the kernel when α′ is outside of the regime (A.9), we can make use of the shift

relations (A.13). Note that in the large-P limit, the prefactor on the right-hand side will be

exponentially enhanced. So, if α′ + n
2 Re(b) > 1

2Re(α0) (but α′ + n−1
2 Re(b) < 1

2Re(α0))), then in

this limit we have

SPP ′ [P0] ≈

(
n∏
k=1

f(P ′ − ik b
2
, P0)

)
e2πnbPSP,P ′−in

2
b[P0], (B.17)

where

f(P ′, P0) =
Γ(b(Q2 − i(2P

′ + P0)))Γ(b(Q2 + i(−2P ′ + P0)))

Γ(b(Q− 2iP ′))Γ(−2ibP ′)
. (B.18)

Notice that the exponential part of the prefactor cancels the different exponential asymptotics of

the shifted kernel SP,P ′−in
2
b so that the overall asymptotics are preserved.
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