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Abstract

We show that an extremely generic class of two-dimensional conformal field the-
ories (CFTs) contains a sector described by the Schwarzian theory. This applies to
theories with no additional symmetries and large central charge, but does not require
a holographic dual. Specifically, we use bootstrap methods to show that in the grand
canonical ensemble, at low temperature with a chemical potential sourcing large angu-
lar momentum, the density of states and correlation functions are determined by the
Schwarzian theory, up to parametrically small corrections. In particular, we compute
out-of-time-order correlators in a controlled approximation. For holographic theo-
ries, these results have a gravitational interpretation in terms of large, near-extremal
rotating BTZ black holes, which have a near horizon throat with nearly AdS2 × S1

geometry. The Schwarzian describes strongly coupled gravitational dynamics in the
throat, which can be reduced to Jackiw-Teitelboim (JT) gravity interacting with
a U(1) field associated to transverse rotations, coupled to matter. We match the
physics in the throat to observables at the AdS3 boundary, reproducing the CFT
results.
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1 Introduction

Our understanding of near-extremal black holes has been recently revolutionized by the
improved understanding of a universal dynamics which emerges at low temperature [1, 2,
3, 4, 5, 6]. It has long been known that black holes near extremality develop a long AdS2

throat near the event horizon, which behaves rather differently from the analogous higher-
dimensional AdS regions near black branes [7, 8]. The underlying reason for this is that
the AdS2 region does not completely decouple from the physics far from the black hole
in the low-temperature limit. Instead, there is a single mode which becomes increasingly
important at low temperature, specifying the relationship between the time in AdS2 and the
time far from the black hole. This mode is governed by the Schwarzian theory (described
gravitationally inside the AdS2 throat by Jackiw-Teitelboim gravity [9, 10]), with action

ISchw = −C
∫ β

0

dtE

{
tan
(
π
β
f(tE)

)
, tE

}
, (1.1)

where tE is the asymptotic (Euclidean) time and f(tE) a time measured in the AdS2 region,
with {·, ·} denoting the Schwarzian derivative. The coefficient C, with dimensions of time,
marks the inverse temperature β at which the Schwarzian dynamics becomes strongly
coupled, with quantum fluctuations of f unsuppressed. This is a theory of a pseudo-
Goldstone mode, determined by the nature of the symmetry breaking, which therefore
appears in more general circumstances, not least the SYK model [11, 12, 13, 14, 15, 16].

In this paper, we show that, in extremely generic circumstances, two-dimensional confor-
mal field theories (CFTs) contain a sector described by the Schwarzian theory. This sector
has a gravitational description in terms of a near-horizon AdS2 region of near-extremal
rotating BTZ black holes, but exists even in theories without a local weakly coupled AdS3

dual!
Since our results are very general, we will not make use of details of a particular the-

ory to derive the Schwarzian.1 Rather, we will use conformal bootstrap methods to study
observables in states that enhance the effects of the Schwarzian sector, with very large angu-
lar momentum and low temperature. More specifically, we explicitly construct correlation
functions in an appropriate limit of the grand canonical ensemble for angular momentum,
requiring only a theory with a large central charge c� 1 and no conserved currents besides
those of local conformal symmetry. With these general assumptions, we will show that the
density of states and all correlators are dictated by the Schwarzian theory, with paramet-
rically small corrections. To achieve this, we rigorously demonstrate that the correlators
are dominated by a Virasoro identity block in an appropriate channel, before showing that
the block reduces to the Schwarzian correlator in the appropriate limit. The methods for
the latter calculation are much the same as used in [20] to compute correlation functions of
the Schwarzian at strong coupling from Liouville theory, though the interpretation in this

1The work in this paper is orthogonal to previous constructions of SYK-like models in two dimensions
[17, 18, 19]
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paper is rather different. This result is a striking example of the universality of gravity as
a description of chaotic quantum systems.

The paper is organized as follows. For the remainder of the introduction, we will
summarise our main results. In section 2, we discuss the partition function and spectrum of
BTZ black holes and of CFTs in the limit of interest, which illustrates the main ideas while
avoiding too many technical details. The main results appear in section 3, where we show
how correlation functions of CFTs reduce to those of the Schwarzian. Finally, in section
4 we study near-extremal rotating BTZ black holes, to obtain a detailed gravitational
interpretation of our CFT calculations.

1.1 A near-extremal limit of CFT2

For our main results, we study correlation functions of two-dimensional, compact unitary
CFTs with large central charge c � 1 in the grand canonical ensemble. Instead of us-
ing a temperature and chemical potential for angular momentum J , this ensemble can be
described by independent temperatures TL, TR for left- and right-moving conformal dimen-
sions h, h̄. We study a regime which we call the near-extremal limit, where TL is of order
c−1, and TR is taken to be very large. This ensures that the physics is dominated by states
with very large angular momentum J � c (controlled by the large TR) and low temperature
T of order c−1 (controlled by the small TL). These states are related to CFT operators
with a very large right-moving scaling dimension h̄ ∼ J , and left-moving dimension close
to c−1

24
, with h− c−1

24
of order c−1.

The physics in this regime is exemplified by the simplest correlator, namely a two-point
function of light operators in the grand canonical ensemble. In our near-extremal limit,
we find that the real-time two-point function (using light-cone coordinates z = ϕ − t and
z̄ = ϕ+ t) is given by

G(CFT)(z, z̄; βL, βR) ∼
( c

6

)−2h
[

1

πTR
sinh (πTRz̄)

]−2h̄

G
(Schw)
h (−z), (1.2)

where G
(Schw)
h (−z) is the exact (that is, strong coupling) real-time Schwarzian two point

function at a temperature proportional to TL. This is valid for large time separations t of
order the inverse temperature T−1

L (and for z̄ of order one, but not too large, as described in
section (3.1)). Note that the Schwarzian appears most naturally in real time, not Euclidean
time.2

To show this, we first use the limit of large TR and modular invariance: in a modular S-
dual channel, this becomes very small right-moving temperature, which effectively projects
the sum over intermediate states onto the smallest value of h̄, corresponding to the vacuum
state and its left-moving descendants. This is where the restrictions on our theory are

2There is another regime where the Euclidean time Schwarzian appears, related by a modular transfor-
mation. Taking very low or zero right-moving temperature, and left-moving temperature of order c, the
left-moving block gives a Schwarzian evaluated at Euclidean time z.
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important, namely that it is unitary (so all operators have h, h̄ ≥ 0), compact (having a
unique sl(2)-invariant vacuum state, with h = h̄ = 0), and has a twist gap (so no primary
states besides the vacuum have h̄ = 0). With mild kinematic restrictions on z̄, we conclude
that the correlation function is given in this limit by a single conformal block with the
vacuum state exchanged. This explains why the result (1.2) has factorised dependence on
left- and right-moving variables z, TL and z̄, TR.

Next, we show that the left-moving Virasoro vacuum block in the appropriate limit
becomes the Schwarzian correlation function, with a calculation closely related to [20]. At
low left-moving temperature, the conformal blocks are simplest in a ‘direct’ channel, where
the OPE coefficients can be interpreted as matrix elements of intermediate states in the
thermal trace, but we must compute the vacuum block in a dual channel related by the
modular transformation. To relate these two channels, we use the sequence of modular
S and fusion transformations pictured in figure 2, and the associated kernels can then be
interpreted in terms of the density of states and matrix elements of light operators in the
Schwarzian theory. These Schwarzian data in fact follow from a particular limit of the
universal density of states and OPE coefficients recently discussed in [21].

These considerations extend to higher-point functions and general time-orderings, dis-
cussed in section 3.5, giving formulas analogous to (1.2) in appropriate ranges of kinematics.
In particular, correlation functions of partial waves are always given by the Schwarzian.
This applies to out-of-time order four-point functions (OTOC), implying that the Lya-
punov exponent in this limit saturates the chaos bound of [22]. This is the first calculation
of OTOC in 2d CFT in a fully controlled approximation, thanks to the large TR limit.

In this work, we assume the absence of any conserved current beyond Virasoro. With
knowledge of the appropriate representation theoretic objects (the modular S-matrix and
fusion kernel), our methods could be generalized to extended symmetry algebras (including
supersymmetric CFTs). This would enhance the Schwarzian theory by an extra mode
associated to the additional symmetry. For the case of an extra U(1), this is analogous to
the IR theory that appears in complex SYK [23]. One could also apply the same methods
to study near-extremal states with a large charge associated to this extra symmetry. We
leave such generalizations for future work.

1.2 Near-extremal BTZ black holes

In AdS3/CFT2, our results have a dual interpretation in terms of large, near-extremal
rotating BTZ black holes. In section 4 we will perform the bulk analysis for Einstein
gravity coupled to light matter fields. As stressed in the previous section, our 2d CFT
results are valid even beyond holographic theories. The underlying reason is that, while
the Schwarzian mode is strongly interacting, the other bulk interactions are suppressed by
an additional scale, namely the very large horizon radius. Therefore, even an effective bulk
dual with a cutoff on the AdS scale or larger (for example, from strings with AdS scale
tension) is useful for describing physics at these very long distances. This is very much
in the spirit of previous results recovering AdS long-distance physics from generic CFTs
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[24, 25, 26, 27], but rather more striking because a strongly interacting mode remains.
We discuss the details of this gravitational dual in section 4. We study this from the

perspective of a Kaluza-Klein (KK) reduction of 3d gravity (initially pure gravity, later
adding matter), which leads to an Einstein-Maxwell-dilaton theory. One may initially
wonder whether the KK gauge field has a significant effect on the physics; we deal with it
by working with boundary conditions describing an ensemble with fixed angular momentum
(the charge dual to the KK gauge field), in which case the gauge field can (in the absence
of charged matter) be integrated out to give a local effective action, adding a term to the
dilaton potential. These are rather unconventional boundary conditions from the three-
dimensional point of view, since they allow a parameter of the boundary metric to fluctuate,
but the usual boundary conditions are recovered simply by changing back to the ensemble
with chemical potential for angular momentum. Charged matter (that is, with nonzero
angular momentum, which includes KK modes) does not significantly affect this if the
angular momentum carried is small compared to that of the black hole.

The resulting theory of dilaton gravity (first written down by [28]) is in the class of
Almheiri-Polchinski models [1], and admits a nAdS2 JT gravity regime, which describes
the near-horizon region of rotating BTZ black holes. At low temperature, this gravita-
tional physics becomes strongly coupled, and is described by the Schwarzian theory [4].
The near-horizon region governed by JT gravity has a parametrically large overlap with
a region far from the horizon where gravity is classical, so the physics is well-described
by propagation on a fixed background. Matching these two regimes allows us to recover
correlation functions of the dual CFT from the asymptotic boundary of AdS3.

Importantly, interactions (including those with KK modes) are suppressed in the limit
of a large black hole, even for matter which is originally strongly interacting in AdS3. This
is the reason why the reduction to two-dimensional gravitational physics is useful: the KK
modes become decoupled, independent free fields. Note that this is different from the usual
case of small transverse dimensions in KK reductions, where the higher KK modes can be
ignored because they become very massive.

We work in a second order metric formalism due to the presence of matter, in analogy
to the higher dimensional cases studied recently in [29, 30, 31, 32]. For pure 3d Einstein
gravity, there is a more direct route to the Schwarzian, making use of the Chern-Simons
formulation [33], which describes perturbations around a given geometry. In this case, it is
possible to completely reduce the bulk theory to a set of left- and right-moving boundary
modes [34]. The dynamics of these two modes is described by left- and right-moving
copies of the Alekseev-Shatashvili action [35]. In the near extremal limit, the Alekseev-
Shatashvili theory is known to reduce to the Schwarzian [20, 36, 34]. This boundary
theory was previously proposed as a Goldstone mode of spontaneously broken conformal
invariance for any chaotic 2d CFT [37]. From this perspective, the Schwarzian emerges from
a reparameterization mode of CFT2, with dynamics governed by the conformal anomaly
[38].

While our results bear some resemblance to previous considerations of near-extremal
BTZ such as [39, 40], there are crucial differences. In particular, the small but nonzero
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temperature is necessary; at very low temperatures, the Schwarzian becomes increasingly
strongly coupled, and at exponentially low temperatures, when there is no longer a paramet-
rically large number of available states, nonperturbative corrections from different topolo-
gies become uncontrolled [41].3

2 Invitation: the near-extremal spectrum of BTZ and

CFT2

We begin by studying the partition function of near-extremal rotating BTZ black holes, and
compare to the Schwarzian theory. We then obtain the corresponding spectrum directly
from a very general class of CFTs, using an argument which we will later generalize to
Schwarzian correlation functions. This simple example illustrates the main ideas used for
the more technical calculations in section 3.

2.1 The BTZ partition function

Our starting point is the BTZ black hole in three-dimensional pure Einstein gravity. In Eu-
clidean signature, this is a solution whose asymptotic boundary is a torus parameterized by
angle ϕ and Euclidean time tE, where we periodically identify tE with inverse temperature
β = T−1 and twist angle θ:

ds2 = dt2E + dϕ2, (tE, ϕ) ∼ (tE, ϕ+ 2π) ∼ (tE + β, ϕ+ θ) (2.3)

We have chosen units such that the spatial circle has unit radius, and a corresponding
dimensionless time tE, so β and energy will also be dimensionless. The Euclidean BTZ
black hole is a saddle-point contribution to the dual CFT partition function on this torus;
this is a grand canonical partition function, where θ plays the role of an imaginary chemical
potential for the angular momentum J :

Z(β, θ) = Tr
[
e2πiτ(L0− c

24)−2πiτ̄(L̄0− c
24)
]

= Tr
[
e−βH−iθJ

] (2.4)

τ =
θ + iβ

2π
, τ̄ =

θ − iβ
2π

(2.5)

H = L0 + L̄0 − c
12
, J = L̄0 − L0 (2.6)

The 2π periodicity of θ is equivalent to integer quantization of J .
Now, the Euclidean BTZ black hole is a solid torus, where the Euclidean time circle is

contractible in the bulk. The one-loop partition function of this geometry [43] (which is in

3Aspects of such nonperturbative effects in 3D gravity will be explored in forthcoming work [42].
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fact exact to all loops, up to possible renormalisation of c, see [44] and more recently [34])
can be written as

ZBTZ = χ1(−1/τ )χ1(1/τ̄) (2.7)

where χ is the Virasoro character of the vacuum representation,

χ1(τ) =
(1− q)q− c−1

24

η(τ)
, q = e2πiτ . (2.8)

To explain this result, we first note that the modular transform τ 7→ −1/τ swaps space
and Euclidean time directions, after which we can interpret the BTZ solution as empty
AdS3, periodically identified with a twist. After this reinterpretation, the partition function
counts perturbative excitations of AdS3, which are the boundary gravitons, with dual CFT
interpretation as the Virasoro descendants of the vacuum state. The central charge c
appears as the Casimir energy of the vacuum, which (at tree level) takes the Brown-
Henneaux [45] value c = 3`3

2GN
, where `3 is the AdS length (the subscript distinguishing it

from the two-dimensional AdS length which we will encounter later).

2.2 The near-extremal limit

To recover the Schwarzian theory, we now wish to take an extremal limit, which requires low
temperature (of order c−1), with spin J of order c at least (and, as we will see later, much
larger still for the simplest two-dimensional description). This requires a real chemical
potential for the spin, corresponding to imaginary θ; the corresponding Euclidean solution
is then complex, while the Lorentzian solution (given explicitly in equation (4.97)) is real.
For such a situation, we parameterize the partition function using separate left- and right-
moving temperatures,

τ =
iβL
2π

, τ̄ = − iβR
2π

=⇒ Z = Tr
[
e−βL(L0− c

24)−βR(L̄0− c
24)
]
, (2.9)

so that β = 1
2
(βL + βR), θ = 1

2i
(βR − βL).

To approach extremality, we will take low left-moving temperature, with βL of order
c and c � 1. We will also see that it is simplest to take a very large black hole, which
here means very high right-moving temperature, βR � 1. In particular, for the black hole
to dominate over the vacuum in the grand canonical ensemble, we require βLβR < (2π)2,
which constrains βR to be of order c−1 or smaller.

Near extremal limit (grand canonical): c� 1, βL of order c, βR . c−1 (2.10)

We can now evaluate the BTZ partition function in this limit, simply taking low tempera-
ture for the left-moving character and high temperature for right-moving:

χ1

(
2πi

βL

)
∼ 2π

(
2π

βL

)3/2

exp

[
βL
24

+
c

24

(2π)2

βL

]
(2.11)

χ1

(
2πi

βR

)
∼ exp

[
c

24

(2π)2

βR

]
(2.12)
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For this, we use η(τ) ∼ e
iπ
12
τ as τ → i∞, for the left-movers after the modular transform

η(−1/τ ) =
√
−iτη(τ).

We already see the Schwarzian partition function appearing in the left-moving half, but
to compare it is most convenient to first pass to a different ensemble, where we fix the
temperature and spin:

ZJ(β) =

∫ π

−π

dθ

2π
eiθJZ(β, θ) (2.13)

This is a canonical ensemble in the Hilbert space of spin J states, in which we can take an
equivalent near-extremal limit:

Near extremal limit (canonical): c� 1, β of order c, J � c, (2.14)

where taking the spin to be this large is not strictly necessary for now, but simplifies things
more generally.

Inserting the BTZ partition function, we evaluate the integral taking us to fixed spin by
saddle-point at large J .4 In the near-extremal approximation, this is equivalent to fixing
βL = 2β, and doing an inverse Laplace transform in the right-moving sector, in the variable
βR = β + iθ. We can evaluate this at the saddle point βR = 2π

√
c

24J
, to get

ZJ(β) ∼ π

2
√

2

(
2π

β

)3/2 ( c

6J3

)1/4

exp

[
2π

√
c

6
J − βJ +

β

12
+

c

12

π2

β

]
. (2.15)

We can match this precisely with the Schwarzian partition function:

ZSchw(β̃) =

(
π

β̃

)3/2

eπ
2/β̃ (2.16)

Our notation for Schwarzian correlation functions reflects the fact that they depend on
temperature only through the combination β̃ = β

2C
(and later, time t̃ = t

2C
). We can now

write (2.15) as follows:

ZJ(β) = eS0−βE0ZSchw(β̃ = 1
2C
β) (2.17)

C =
c

24
(2.18)

S0 ∼ 2π

√
c

6
J (2.19)

E0 = J − 1

12
(2.20)

4The BTZ partition function is not periodic in θ, so does not have a quantised spectrum in J . To fix
this, one can sum over the restricted family of ‘SL(2,Z)’ black holes [46] related by the modular transforms
that take θ 7→ θ + 2nπ. Summing over this family is equivalent to extending the range of integration in
(2.13) to all θ ∈ R. This makes no difference in the saddle-point approximation.
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Recall that the Schwarzian coupling C has dimensions of time, and the scale here is set
by the radius of the circle on which we put the CFT. For large c, the characteristic time
of the Schwarzian theory is therefore parametrically long compared to the time it takes to
encircle the spatial circle.

The (temperature independent part of the) prefactor contributes a logarithmic correc-
tion to the entropy S0, which for large spin can be written as S0 → S0− 3

2
log S0. Precisely

this logarithmic corrections was previously studied in references [47, 48]. As stressed in [49]
this correction is important for a precise comparison between microscopic and macroscopic
black hole entropy calculation.

So far we matched the partition function of a near extremal BTZ at fixed angular
momentum with the Schwarzian partition function. We could try to do the same at fixed
chemical potential. In this case, as we will see later, a U(1) gauge mode besides the
Schwarzian is relevant (the boundary conditions corresponding to fixed J will eliminate the
dynamics of the gauge field). Including this mode one could do the match directly in the
grand canonical ensemble. In any case, the difference only arises in one-loop corrections to
the partition function, and for correlation functions the ensembles are equivalent to leading
order at large J .

Finally, it is possible to extend this analysis to the case of a gravity theory with different
left and right moving central charges cL 6= cR. The argument above works out in the same
way, and the partition function will be the same as the Schwarzian theory with coupling
C = cL/24, while the extremal entropy goes as S0 ∼

√
cRJ . This can be reproduced by

considering a three dimensional black hole with an additional gravitational Chern Simons
term in the bulk action [50]. A similar setup, and its relation to the Schwarzian theory,
was recently considered in [51].

2.3 General irrational CFTs

Having recovered the density of states of the Schwarzian theory from near-extremal BTZ,
we will now see that it is simple to recover this result for a very general class of CFTs.
We give a two step argument, presented in a way that will later generalize to correlation
functions. First, we show that the near-extremal partition function reduces to a vacuum
character in a modular transformed expansion. Secondly, we will show that this character
can be rewritten in the original channel in terms of the Schwarzian density of states.

2.3.1 Dominance of the dual vacuum character

For our first step, we use modular invariance of the theory, writing the partition function
as a trace over a Hilbert space quantizing on a Euclidean time circle (rather than spatial
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circle) of the torus:

Z(βL, βR) = Z

(
(2π)2

βL
,
(2π)2

βR

)
= χ1

(
2πi

βL

)
χ1

(
2πi

βR

)
+

∑
primaries

χh

(
2πi

βL

)
χh̄

(
2πi

βR

) (2.21)

In the second line, we have written the trace as a sum over representations of the Virasoro
symmetry, introducing the characters

χh(q) =
qh−

c−1
24

η(τ)
(2.22)

of nondegenerate representations of lowest weight h. To write this, we have assumed that
there are no currents in the theory (that is, operators with h = 0 or h̄ = 0) besides the
identity representation: if there are currents, we should classify representations according to
the extended algebra, and would expect to recover a Schwarzian theory with corresponding
additional symmetries. For simplicity, we assume something slightly stronger, namely that
there is a ‘twist gap’ h̄gap, which is a positive lower bound on h̄ for all non-vacuum primaries.

Given such a theory with large central charge and a (not necessarily large) twist gap,
we can take the near-extremal limit (2.10), and find that the vacuum representation (in
the modular transformed channel) dominates the partition function:

Z(βL, βR)

ZBTZ(βL, βR)
= 1 +O

(
e
− (2π)2

βR
h̄gap

)
(2.23)

The exponential suppression comes from the ratio of non-vacuum and vacuum right-moving

characters, χh̄

(
2πi
βR

)
/χ1

(
2πi
βR

)
. While this is the parametric suppression in βR (guaranteed

for any given theory by uniform convergence of the partition function), it should be borne
in mind that it can be accompanied by a prefactor which is parametrically large in c, so
we need to take βR correspondingly small. We give two examples.

For the contribution of a single primary operator, the ratio of left-moving characters

χh

(
2πi
βL

)
/χ1

(
2πi
βL

)
contributes a factor of βL, which is of order c, arising because the

factor of 1 − q in (2.8) subtracting null states from the vacuum. For a single state to be
suppressed relative to the vacuum, we therefore must take βR � h̄

log c
. A gravitational

explanation for this is that the BTZ extremality bound receives a one-loop correction of

order exp
(
− (2π)2

βR
h̄
)

[27][52], which to be ignored must be much smaller than the typical

energies (of order c−1) that we are interested in. One could perhaps account for such
corrections by absorbing them into a shift of E0.

For pure gravity, the twist gap h̄gap is of order c, but there are exponentially many
states close to the twist gap, so corrections in (2.23) are accompanied by an exponentially
large prefactor. These states are black holes in the modular dual channel we are using
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for our expansion; in the direct channel, they come from thermal AdS. This is simply the
Hawking-Page transition we have already encountered, requiring us to take βR . c−1 for
black holes to dominate the grand canonical ensemble.

We emphasize that, while these two examples may not exhaust all possible corrections
from non-vacuum characters, for any given theory there is always some sufficiently small
βR to guarantee the dominance of the vacuum character. Our conclusions will apply to
any CFT with large c and a twist gap, even if its bulk dual description (if any exists) is
stringy or nonlocal on the AdS scale; we may just have to take the spin of the states we
study to be very large.

2.3.2 Schwarzian spectrum from modular S matrix

We have already shown how to recover the Schwarzian partition function from the modular
transform of the vacuum character, phrased as the BTZ partition function. However, our
method, which required a simple closed form expression for the vacuum character, will
not be available to us for the generalization to correlation functions. We therefore find it
instructive to recover the Schwarzian in a different way.

Firstly, we can treat the right-moving sector, which is very simple. We are taking a very
high right-moving temperature, which corresponds to very low temperature in the modular
transformed channel. This simply projects us onto the vacuum, and we are sensitive only
to the Casimir energy:

χ1

(
2πi

βR

)
∼ exp

(
c

24

(2π)2

βR

)
(2.24)

As we saw earlier, when we go to an ensemble of fixed spin this provides the zero temper-
ature entropy S0 and shifts the ground state energy E0.

The interesting part, where the Schwarzian theory lives, is in the left-moving sector.
Since the left-moving temperature is very low, the characters are simple in the ‘direct’
expansion rather than the modular transform; they simply become the Boltzmann weights
of the lowest-weight state, since the low temperature suppresses all descendants:

χh

(
iβL
2π

)
∼ e−βL(h− c

24) (2.25)

We therefore directly get the density of states of the Schwarzian theory if we can decompose

the modular transformed vacuum character χ1

(
2πi
βL

)
into ‘direct’ characters χh

(
iβL
2π

)
(even

though the context is slightly different, this argument is much the same as the one used in
[20] to compute the Schwarzian partition function).

This operation is the definition of the modular S-matrix, which we introduce presently.
For this, we will use alternative parameters for central charge c and operator dimension h:

c = 1 + 6Q2, Q = b−1 + b (2.26)

h =
c− 1

24
+ P 2 or h = α(Q− α), where α = Q

2
+ iP (2.27)

11



These parameters are perhaps most familiar from Coulomb gas or Liouville theory, where
Q is a background charge and b the Liouville coupling, and P is a target space momentum,
but their appearance here is explained by something more universal, namely that they are
the natural parameters for Virasoro representation theory. Note that there is a degeneracy
of these new labels, since h is invariant under the reflection P → −P .

We are interested in theories at large c, and two ranges of operator dimensions will turn
out to be important for us:

Limit b→ 0 =⇒ c→∞ (2.28)

Schwarzian states: k = b−1P fixed =⇒ h− c− 1

24
∼ 6

c
k2 (2.29)

Schwarzian operators: h fixed =⇒ α ∼ bh (2.30)

As indicated, dimensions corresponding to fixed k will turn out to correspond to energies
k2 in the Schwarzian limit, while fixed h (which means imaginary momentum P ∼ iQ

2
) will

correspond to operators we can insert in that limit.
As a side comment, in the analysis of Ponsot and Teschner [53] the parameter P labels

unitary continuous representations of Uq(sl(2)). As we will see below, in the Schwarzian
limit the parameter k = b−1P will become a label of principal unitary series representations
of sl(2) with spin j = 1

2
+ ik, while the dimension of these operators is related to the

Casimir of these representations. We will see below how the Schwarzian limit of Virasoro
is controlled by classical sl(2) quantities 5.

Coming back to our calculation, with the notation introduced above, we can write
the desired decomposition of the modular transformed vacuum block, now labeling the
representations using P instead of h:

χ1 (−1/τ ) =

∫ ∞
−∞

dP

2
χP (τ)SP1 (2.31)

SP1 = 4
√

2 sinh(2πbP ) sinh(2πb−1P ) (2.32)

The factor of 1
2

in the measure here cancels the double counting of momenta P and −P .
For completeness, we note the similar decomposition of a nondegenerate block 6:

χP ′ (−1/τ ) =

∫ ∞
−∞

dP

2
χP (τ)SPP ′ (2.33)

SPP ′ = 2
√

2 cos(4πP ′P ) (2.34)

5This limit is different than finite L ∼ bP with b→ 0 which corresponds to the classical limit of quantized
Teichmuller space in the length basis. In CFT language this is called sometimes the semiclassical limit
with large c and h/c finite.

6This relation is useful to compute the exact path integral of the Schwarzian theory over different
Virasoro coadjoint orbits [54].
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The vacuum result can be recovered from this by subtracting the null states descending
from the h = 1 state (χ1 = χP= i

2
(b−1+b)−χP= i

2
(b−1−b), and similarly for the S-matrix). The

characters are simple enough that these relations can be verified directly, but for the more
complicated cases encountered later we will have access to the analogue of the S-matrix,
but not the analogue of the characters (the conformal blocks).7

We now finally take the near-extremal limit c→∞ with βL of order c. The characters
χP (τ) become Boltzmann weights as discussed earlier, and the integral is dominated by
weights with P of order b, labeled by k:

χ1

(
2πi

βL

)
∼ e

1
24
βL23/2(2πb3)

∫ ∞
0

d(k2) sinh(2πk) e−βLb
2k2

(2.35)

In this integral, we recognize the Schwarzian density of states, going as sinh of the square
root of energy. The prefactors contribute to S0 and E0. Doing the integral explicitly we
can check that

χ1

(
2πi

βL

)
∼ 4π

√
2b3e

1
24
βLZ(Schw)

(
β̃ = b2βL

)
, (2.36)

which obviously matches with the calculation done in the previous section.
From this method, the modular S-matrix SP1 very directly gives us the spectral data of

the Schwarzian theory. As anticipated, this happens to be the Plancherel measure of the
universal cover of classical sl(2) if k is interpreted as the label of the principal series. To
understand this, we recall the close relation between the Schwarzian and sl(2) through a
BF formulation of JT gravity [55][56] (see also [57] for another interpretation of the relation
with sl(2)). Besides the principal series, the discrete series representation of sl(2) will make
an appearance when computing correlators.

We could perform a similar analysis for the right-moving sector, noting in particular
that for large P̄ we recover the ‘Cardy’ density of states S0 = 2π

√
c
6
J from that limit of S1P̄ .

However, this is not simple or natural, because the descendant states are very important at
the high right-moving temperatures of interest. In this example, we cannot read S0 directly
from the modular S-kernel, because it counts only primaries, and is insensitive to the
contamination from descendants, leading to a discrepancy in the logarithmic corrections.
Our logic will always be to ‘project onto the vacuum’ in the right-moving sector, and then
perform the modular transform to find the spectral data of the left-moving sector, where
the Schwarzian resides.

3 CFT correlation functions

In this section, we discuss the correlation functions of CFTs in the near-extremal limit
of the grand canonical ensemble βR → 0 with βL of order c, under the previously intro-

7This is not surprising if we take the perspective that the S-matrix and its analogues are natural
representation theoretic objects. Here, the identity S-matrix SP1 is the Plancherel measure of the quantum
group Uq(sl(2)) closely associated with Virasoro [53].
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duced conditions of a twist gap and large c. Note that we do not require the CFT to
be ‘holographic’, because additional assumptions of a sparse light spectrum or ’t Hooft
factorization are unnecessary (though our results could be strengthened under such as-
sumptions). We obtain Lorentzian correlation functions at time separations t of order c,
including dependence on angular separations ϕ. For comparison to the two-dimensional
dual gravitational physics in the next section, we extract the S-wave correlation functions,
where the operators are averaged over the circle.

We focus mainly on the simplest correlation function of interest, namely the two-point
function of identical operators in the near-extremal limit (2.10) of the grand canonical
ensemble. This will be sufficient to illustrate the main ideas, and we will discuss the
general case in section 3.5. Our method parallels that of section 2.3.2: we first choose a
conformal block decomposition of the correlation function such that the large spin limit
βR → 0 selects only the vacuum block. The right-moving block is then simple to evaluate,
but the left-moving block is more complicated. We follow the methods of [20] to show
that this block contains the Schwarzian correlation function in the appropriate limit, by
reexpressing it in a new channel which makes manifest the matrix elements of the operators
with intermediate states.

For a given primary operator O with conformal weights (h, h̄), we consider its two-point
Wightman function (we will discuss time ordering and extract the retarded correlators
later):

〈O(z, z̄)O(0, 0)〉βL,βR = Tr
[
O(z, z̄)O(0, 0)e−βL(L0− c

24)−βR(L̄0− c
24)
]

(3.37)

For Lorentzian kinematics, the coordinates z, z̄ are lightcone coordinates on the Lorentzian
cylinder

z = ϕ− t, z̄ = ϕ+ t, (3.38)

so in particular are 2π periodic (z, z̄) ∼ (z + 2π, z̄ + 2π). In imaginary time tE = it
they become complex coordinates on the torus, so additionally have the ‘KMS’ periodicity
(z, z̄) ∼ (z + 2πτ, z̄ + 2πτ̄), where τ = iβL

2π
and τ̄ = −iβR

2π
8. The operator ordering

is determined by ordering in Euclidean time, provided in Lorentzian kinematics by an
appropriate iε prescription giving an imaginary part to t.

3.1 Right-moving sector: dominance of a vacuum block

The high right-moving temperature allows us to simplify the correlation function in the
right-moving sector, by decomposing the amplitude with respect to quantization by spatial
translations, instead of time evolution. Translations then suppress any intermediate state
with h̄ > 0. We can phrase this as doing a modular transform to make the right-moving
temperature very low, before writing the thermal trace as a sum over states, as well as
inserting a complete set of intermediate states between the two operator insertions.

8Since we are taking βR very small and βL very large this identification makes z approximately periodic
and is reminiscent of the DLCQ limit [40]. We will not use this perspective in this paper though.

14



This means we are decomposing the correlation function into conformal blocks by in-
serting a complete set of states along a pair of Euclidean time cycles, separating the two
insertions of O. This is a ‘necklace’ channel decomposition of the correlation function,
which we label by Ñ , with the tilde indicating that the intermediate states are inserted
on Euclidean time circles, not spatial circles. Explicitly, we can write the conformal block

expansion in this ‘ ˜Necklace’ channel as follows:

〈O(z, z̄)O(0, 0)〉βL,βR =
∑

primaries
O1,O2

|COO1O2 |2F
(Ñ)
h1,h2

(z, βL)F̄ (Ñ)

h̄1,h̄2
(z̄, βR) (3.39)

F̄ (Ñ)

h̄1,h̄2
(z̄, βR) =

(
2π

βR

)2h̄ ∑
N1,N2

〈h̄2, N2|O|h̄1, N1〉〈h̄1, N1|O|h̄2, N2〉

× exp
[
−z̄ 2π

βR
(h̄1 + |N1| − c

24
)− (2π − z̄) 2π

βR
(h̄2 + |N2| − c

24
)
]

We have written the block decomposition in the ‘barred’ right-moving sector, which is
most relevant for our present considerations; there is a similar expression for the left-
moving blocks. The states |h̄, N〉 are an orthonormal basis of descendants (at level |N |)
of a primary state with weight h̄. In the expression for the conformal block, we implicitly
change the normalization of O to set 〈h̄2|O|h̄1〉 to unity; this absorbs OPE coefficients,
and also gives the prefactor in the block coming from the rescaling of the Euclidean time
circle from length 2π to βR. The exponential factors implement translation (generated by
2π
βR

(L̄0− c
24

), where the factor comes from the same rescaling of lengths), first by z̄ between
the operator insertions, and then by 2π − z̄ to complete the spatial circle.

Now, when we take the βR → ∞ limit, choosing 0 < z̄ < 2π as we always may by the
periodicity (z, z̄) ∼ (z + 2π, z̄ + 2π), it is manifest in this decomposition that intermediate
primaries O1,O2 with large h̄1, h̄2 and right-moving descendants are suppressed. Explicitly,
the descendants drop out of the right-moving blocks, so we have9

F̄ (Ñ)

h̄1,h̄2
(z̄, βR) ∼

(
2π

βR

)2h̄

exp

[
−2π

βR

(
z̄h̄1 + (2π − z̄)h̄2 − 2π c

24

)]
. (3.40)

From this, the dominant contribution comes from intermediate operators that minimize
z̄h̄1 + (2π − z̄)h̄2, under the condition that the OPE coefficient COO1O2 is nonzero. In
particular, this condition means that we cannot choose both O1 and O2 to be the identity.
For sufficiently small z̄, the dominant choice is O1 = O, O2 = 1; this remains true in a

finite (βR-independent) range 0 < z̄ < z̄∗, where z̄∗ is lower bounded by 2π h̄gap

h̄
(or z̄∗ = π

if that is smaller, from O1 = 1, O2 = O). For now, we will fix z̄ in this range; this is
the most important region (in particular, dominating partial waves for any fixed angular
momentum `), since the correlator is exponentially suppressed when |z̄| is not small.

9We can guarantee that the infinite sum of terms is suppressed since the sum converges uniformly for
any range of βR bounded away from zero.
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This behavior has a simple gravitational interpretation, which is easiest to state for
spacelike Wightman functions. The two-point function gives an amplitude for a spacelike
propagation of some particle between the insertion points, going a long distance because
there is a very large black hole in the way. The particle can choose to go either way around
the black hole, corresponding to the choices O1 = O and O2 = 1, or O1 = 1 and O2 = O.
However, the amplitude may be larger for the particle to split into two lighter particles
(dual to O1,O2), each going a different way around the black hole, before rejoining on the
far side.10

For 0 < z̄ < z̄∗, we therefore have dominance of this particular vacuum block, just as the
vacuum character dominated the partition function in equation (2.23). The right-moving
block becomes very simple in the βR → 0 limit, reducing to the exponential we have seen
already if we fix z̄ of order one. In fact, we can do a little better, giving an answer that
works also for small z̄ of order βR or less, when the descendants of O in the intermediate
states are not negligible. The descendants are suppressed in the sum over N2, so the only
relevant state is the vacuum, which is equivalent to replacing the torus with an infinite
cylinder. The block therefore becomes the well-known result for the two-point function at
finite temperature on an infinite line.

We can summarize the results of this section as follows:

〈O(z, z̄)O(0, 0)〉βL,βR ∼ F
(Ñ)
O,1 (z, βL)F̄ (Ñ)

O,1 (z̄, βR) (3.41)

F̄ (Ñ)
O,1 (z̄, βR) ∼ e

(2π)2

βR

c
24

[
βR
π

sinh

(
π

βR
z̄

)]−2h̄

(3.42)

So far, this applies for any theory with a twist gap (with any central charge) in the βR → 0
limit, either scaling z̄ ∝ βR or with fixed 0 < z̄ < z̄∗. Our remaining task is to determine

the left-moving identity block F (Ñ)
O,1 (z, βL) in the limit of interest, taking c → ∞ while

keeping z and βL proportional to c.

3.2 Left-moving sector: the Schwarzian

Much like in the previous section, there is a preferred channel in which the left-moving
blocks simplify, now because we are taking low left-moving temperature βL ∝ c� 1. This
corresponds to performing the usual quantization by time evolution, inserting complete
sets of states in the thermal trace and between operator insertions. Just as in (3.39), we

10The corresponding amplitude with both particles on the same side is not relevant, since it has already
been absorbed as a ‘vacuum polarization’ renormalization of O, by choosing O to be a primary of defi-
nite scaling dimension: since BTZ is locally isometric to AdS3, the only physical corrections come from
configurations that make use of the nontrivial topology of the spacetime.
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can write the blocks in this ‘direct’ necklace channel, which we label by N , as follows11:

F (N)
h1,h2

(z, βL) = e−iπh
∑
N1,N2

〈h2, N2|O|h1, N1〉〈h1, N1|O|h2, N2〉

× exp
[
iz(h1 + |N1| − c

24
)− (βL + iz)(h2 + |N2| − c

24
)
]

Now, for Im z > 0, which corresponds to the time-ordering where the insertion of O(z, z̄)
comes after the insertion of O(0, 0), the descendants are suppressed in the limit of interest.
This is a limit c→∞ with βL ∝ c, but also (as we will see later) where we take

h1,2 =
c− 1

24
+

6

c
k2

1,2, c→∞, k1,2 fixed (3.43)

as in (2.29). The OPE coefficients of descendants are then suppressed by factors of (h1−h2)2

c

and h2

c
[25, 26], and we have

F (N)
h1,h2

(z, βL) ∼ e−iπheiz(h1−h2)−(h2−
c

24)βL (3.44)

∼ e−iπhe
1
24
βLei

6z
c

(k2
1−k2

2)− 6βL
c
k2

2 . (3.45)

However, unlike for the right-movers, no single operator dominates in this necklace
channel N where the blocks are simple. Instead, the correlation function is given by a
vacuum block in the Ñ channel, in which the blocks are more complicated. Our strategy is
to evaluate the Ñ identity block by decomposing it in terms of N channel blocks, which we
can write simply. This conversion between different channels is implemented by fusion and
modular S transformations (and, relevant later for higher-point out of time order correla-
tors, braiding), generalizing the modular S transform we used in section 2.3.2. Fortunately,
these transformations are known in relatively simple, explicit closed forms.

Warm-up: four-point identity block

As a warm-up, we first tackle a slightly simpler problem, finding a ‘Schwarzian limit’ of the
Virasoro four-point identity block. This is a microcanonical version of the calculation we are
interested in, where instead of taking a low temperature limit to take us near extremality,
we fix a primary state |ψ〉 with dimension in the Schwarzian range hψ = c−1

24
+ 6

c
k2
ψ, where

kψ is fixed in the c → ∞ limit. The cylinder kinematics we are using are then related to
the usual four-point cross-ratio x by x = eiz, since in radial quantization, we insert the
operator Oψ creating the state |ψ〉 at the origin and infinity, and O at 1 and x = eiz. We
then wish to compute the identity block in the ‘T-channel’, where we take the OPE of the
two insertions of O. Note that, unlike for the torus two-point function, we do not have
a general argument that this identity block always dominates the four-point correlation

11The phase arises because the z coordinate is rotated by π
2 relative to the time evolution, giving a factor

ei
π
2 h for each operator insertion.
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Figure 1: Diagram of the fusion transformation that was used to compute the left moving vacuum
block in the appropriate limit. The blue lines correspond to the two operator insertions.

function, which would require conditions on the OPE coefficients CψOt. Such a result
would follow from the canonical result under the assumption of a version of the eigenstate
thermalization hypothesis [58], applied to near-extremal large spin states.

To compute the T-channel identity, we will reexpress it in terms of the ‘S-channel’
blocks, where we take the OPE between Oψ(0) and O(x), which are simple:

Ft
[
O O
ψ ψ

]
(1− x) =

∑
N

〈O|L−NOht |O〉〈ψ|L−NOht |ψ〉 (1− x)−2h+ht+|N | (3.46)

Fs
[
O ψ
O ψ

]
(x) =

∑
N

〈ψ|O|hs, N〉〈hs, N |O|ψ〉 x−hψ−h+hs+|N |

∼ x−h+ 6
c
(k2
s−k2

ψ) (3.47)

In the S-channel block, we have taken the appropriate ‘Schwarzian’ limit of operator di-
mensions and kinematics, in which case the descendants drop out for the same reason as
before.

Now, we can evaluate the T-channel blocks if we can decompose them into S-channel
blocks, since these become simple power laws in the limit of interest. Fortunately, there is
an object that does precisely this, namely the fusion kernel F [59], which has the defining
property

Ft
[
O O
ψ ψ

]
(1− x) =

∫ ∞
−∞

dPs
2
Fs
[
O ψ
O ψ

]
(x) FPsPt

[
P Pψ
P Pψ

]
, (3.48)

where we have used the variable P introduced in (2.26) to label operator dimensions h =
c−1
24

+P 2. The fusion kernel F is a kinematic object associated to Virasoro symmetry and it
was computed explicitly in [53]. We will not quote the most general formula since we will
only need certain special cases, but it can be found for example in equations (2.10)-(2.12)
of [26].

Here, we need a special case of the fusion kernel, where the T-channel representation
is the identity, denoted by 1. In this case, the fusion kernel simplifies [60, 26], and can be
written as [21]

FPs1
[
P Pψ
P Pψ

]
= ρ0(Ps)C0(Ps, P, Pψ), (3.49)
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where ρ0 and C0 are universal functions, appearing as densities of states and averaged
OPE coefficients in a very general class of theories and a variety of limits [21]. We saw
ρ0 already in equation (2.32) as the decomposition of the identity character into modular
transformed characters; C0 can be written in closed form in terms of a special ‘deformed
Gamma-function’ Γb:

ρ0(P ) = SP1[1] = 4
√

2 sinh(2πbP ) sinh(2πb−1P ) (3.50)

C0(P1, P2, P3) =
1√
2

Γb(2Q)

Γb(Q)3

∏
±±± Γb

(
Q
2
± iP1 ± iP2 ± iP3

)∏3
k=1 Γb(Q+ 2iPk)Γb(Q− 2iPk)

(3.51)

In the numerator, we take the product over all eight possible combinations of sign choices.
These objects simplify further when we take a ‘Schwarzian limit’ of large c, with either
P = bk corresponding to near-extremal operators, or h fixed. The two relevant limits are
as follows:

ρ0(bk) ∼ 8
√

2πb2k sinh(2πk) (3.52)

C0(bk1, bk2, i(
Q
2
− bh)) ∼ b4h

√
2(2πb)3

∏
±± Γ(h± ik1 ± ik2)

Γ(2h)
(3.53)

This is straightforward to derive using the identities

Γb(nQ+ by)

Γb(nQ)
∼

(√
2πbn−1/2

Γ(n)

)y

(n > 0),
Γb(by)

Γb(Q)
∼ (2πb3)y/2

2πb
Γ(y) (3.54)

valid in the b→ 0 limit with fixed y and integer n.
Those who have studied the Schwarzian theory will immediately find these formulas

somewhat familiar [20, 57, 61].12 First, as we have already seen, ρ0 is proportional to the
density of states of the Schwarzian theory, so we can write integrals over P (if they are
dominated by integrating over P of order b) as∫ ∞

−∞

dP

2
ρ0(P )f(P ) ∼ 4π

√
2b3

∫ ∞
0

dµ(k)f(bk) (3.55)

dµ(k) = 2kdk sinh(2πk), (3.56)

where we have introduced the measure dµ(k) encoding the Schwarzian density of states:

Z(Schw)
(
β̃
)

=

∫
dµ(k)e−β̃k

2

=
(
π
β̃

)3/2
eπ

2/β̃ (3.57)

Secondly, the result for C0 is proportional to matrix elements appearing in Schwarzian
correlation functions.

12In Appendix A we make the connection with Liouville theory and the calculation of [20].
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We can now apply these results to the four-point identity block, using (3.48). First, we
can justify focusing on Ps of order b in the intermediate channel because the fusion kernel
is exponentially suppressed for larger intermediate values. Putting everything together, we
find our result for the T-channel vacuum block:

Ft
[
O O
ψ ψ

]
(1− x) =

∫ ∞
−∞

dPs
2
ρ0(Ps)C0(Ps, P, Pψ)Fs

[
O ψ
O ψ

]
(x) (3.58)

∼ 2b4hx−h

(2π)2

∫ ∞
0

dµ(ks)

∏
±± Γ(h± iks ± ikψ)

Γ(2h)
xb

2(k2
s−k2

ψ)

As a check, we can evaluate this in the limit x→ 1, in which case the integral is dominated
by large ks; we find that Ft ∼ (1 − x)−2h, giving the expected short distance behavior of
the block, with the usual normalization.

Before returning to the torus block, we discuss a limit of our result for the identity
block, taking kψ � 1. In that case, the integral is dominated by ks close to kψ, with
ks − kψ = δ of order one:

Ft
[
O O
ψ ψ

]
(1− x) ∼ x−h

2π
(2b2kψ)2h

∫
dδeπδ

Γ(h+ iδ)Γ(h− iδ)
Γ(2h)

x2b2kψδ

= x−h

(
x−ib

2kψ − xib2kψ
2ib2kψ

)−2h (3.59)

This is the same result found for the vacuum block in the ‘heavy-light’ limit [25, 62], where
c was taken to infinity with hψ/c fixed (but different from 1

24
). In fact, in [26] this result

was derived with precisely the method used here. Our result thus interpolates smoothly to
this different regime.

As anticipated, the T-channel vacuum block found in equation (3.58) is equal to the
microcanonical two-point function of the Schwarzian theory between energy eigenstates
labeled by kψ [63]. Equation (3.59) can be understood as a statement of equivalence of
canonical and microcanonical ensembles in the thermodynamic limit of the Schwarzian
theory, since

Ft
[
O O
ψ ψ

]
(1− x) ∝

(
x−ib

2kψ − xib2kψ
2b2kψ

)−2h

=

[
βψ
π

sinh

(
π

βψ
z

)]−2h

(3.60)

is the thermal correlator with temperature βψ = π
b2kψ

(the proportionality factor arising

from the conformal map between the plane and the cylinder).
Note that (3.60) has a thermal KMS periodicity, which in particular leads to a singu-

larity at z = iβψ as a thermal image of the short-distance singularity. This was dubbed a
‘forbidden singularity’ in [64], since it cannot appear in the exact four-point block or corre-
lation function. As noted in [26], it is associated with a divergence of the integral in (3.59)
as δ → −∞, but this is an artifact of the approximation we are making in the integrand,
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Step 1: 1O = 1
1

Step 2: 1
1 S

P2
1

Step 3:
F

P2
1

P2P1

Figure 2: Diagram of the fusion and modular transformation that was used to compute the
left moving vacuum torus block in the appropriate limit. In the top diagrams, the circle is a
spatial circle, and in the bottom diagrams it is a Euclidean time circle; these are swapped by the
S-transform in step 2.

which is valid only for e−βψ < |x| < 1 (with kψ log x fixed in the limit kψ →∞). The exact
Schwarzian integral (3.58) does not have such a divergence, so provides a regularization
which resolves the forbidden singularity.

Returning to the torus

We now return to our discussion of the torus two-point function, for which we would like
to compute the identity block in the Ñ channel in (3.41). The blocks are simple in the N

channel (3.45), so we would like to decompose the Ñ identity block in terms of N blocks,
with an expression analogous to (3.48) which expanded a T-channel block in terms of S-
channel blocks for the four-point function. The idea is much the same, but we must go
through some intermediate steps, following the Moore-Seiberg construction [59], recently
reviewed in the current context of irrational theories in [21], to which we refer the reader
for details. The sequence of moves we use is illustrated in figure 2.

First, we note that the Ñ identity block is in fact equal to an identity block in a different

channel, denoted ÕPE. For the block decomposition in this channel, we take the OPE
between the two insertions of O, and insert a single complete set of states propagating in
the spatial circle. In general, this is related to the Ñ decomposition (3.39) by a fusion
move, with external operators O,O,O2,O2 and internal operator O1 (using the labeling
following (3.39)). However, for the vacuum block, we have O2 = 1, so this move is trivial:

21



in the fusion of 1 with itself, only 1 appears, so the Ñ vacuum block equals the ÕPE
vacuum block. For the next step, we want to replace the complete set of intermediate

states propagating in the spatial circle (the ÕPE channel) with states propagating in the
Euclidean time circle (the OPE channel). This is a modular S-transform, with kernel
S. In general, this would be the S-transform appropriate for a torus one-point function,
where the external operator is determined by the representation appearing in the OPE.
For us, this representation is the identity, so the modular S kernel is the same one we used
for the partition function, given in (2.32) and (3.50). Our final move takes us from the
OPE channel to the necklace N channel, and is the same fusion move we just used for the
four-point function; the only difference is that the external operator Oψ is now whichever
intermediate operator appears in the thermal sum over states, labeled here by P2.

In equations, the moves we have just described are as follows:

F (Ñ)
h,1 = F (ÕPE)

1,1 (3.61)

=

∫
dP2

2
S1P2F

(OPE)
1,P2

(3.62)

=

∫
dP1

2

dP2

2
F1P1

[
P P2
P P2

]
S1P2F

(N)
P1,P2

(3.63)

=

∫
dP1

2

dP2

2
ρ0(P1)ρ0(P2)C0(P1, P2, P )F (N)

P1,P2
(3.64)

We have written the final expression in terms of our universal functions (3.50), (3.51).
This expression holds in complete generality, but we can now take a limit to extract an

explicit expression for F (Ñ)
h,1 . For this, we simply substitute (3.45) for F (N)

P1,P2
, along with

(3.52) and (3.53) for the Schwarzian limits of ρ0 and C0 to obtain our final result for the
left-moving part of the correlation function:

F (Ñ)
h,1 ∼ e−iπhb4hχ1

(
2πi

βL

)
G

(Schw)
h

(
t̃E = −ib2z, β̃ = b2βL

)
(3.65)

G
(Schw)
h

(
t̃E, β̃

)
=

1

2π2Z(Schw)(β̃)

∫
dµ(k1)dµ(k2)

∏
±± Γ(h± ik1 ± ik2)

Γ(2h)
e−t̃E(k2

1−k2
2)−β̃k2

2

(3.66)

We have here extracted a normalizing factor of the vacuum character

χ1

(
2πi

βL

)
∼ 4π

√
2b3e

1
24
βLZ(Schw)

(
β̃ = b2βL

)
, (3.67)

where Z(Schw) is the Schwarzian partition function given in (3.57).

G
(Schw)
h is the result in [20] for the Schwarzian thermal two-point function, expressed

in Euclidean time t̃E, with Re t̃E > 0 13. It is normalized to give a pure power law in the

13The prefactor e−iπhb4h appears naturally in the Schwarzian when we rescale time and analytically
continue to Lorentzian signature, since the operators transform nontrivially under scaling, but we find it
more convenient for the discussion below to separate it.
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limit of small t̃E, namely G
(Schw)
h ∼ t̃−2h

E . Writing this in terms of z and combining with

the factor e−iπhb4h, the block F (Ñ)
h,1 has the usual short-distance behavior z−2h. This result

is valid for 0 < Im z < βL, and the result for real z (with the current operator ordering) is
obtained in the limit Im z → 0+.14

Just as in (3.59), we can evaluate the canonical two-point function G(Schw) in a semi-
classical limit, which here means β̃, t̃E � 1. The calculation is much the same as led to
(3.59), with the integral dominated by the region where both k1 and k2 are close to the
value π/β̃ corresponding to the thermodynamic energy, and k1 − k2 is of order one 15

G
(Schw)
h

(
t̃E, β̃

)
∼
(
β̃
π

sin
(
π
β̃
t̃E

))−2h

(3.68)

Finally, a nice aspect of the expression (3.65) (and similarly (3.58)) is that it interpolates
between the semiclassical behavior of equation (3.68) and the late time behavior. At late
times the approximation leading to (3.68) fails signaling that in this regime strong coupling
Schwarzian effects are important. This happens in our context for times t̃E � c. Expression
(3.65) gives the asymptotics

G
(Schw)
h (t̃E, β̃) ∼ t̃−3

E , t̃E � c (3.69)

where we omitted a time independent prefactor that depends on c, β̃ and h. In the β̃ →∞
limit this power changes to G

(Schw)
h ∼ t̃

−3/2
E . In the context of the Schwarzian theory this

was observed in [66, 20]. In the context of 2d CFT this behavior of conformal blocks was
observed numerically in [67] and analytically [26]. The advantage of (3.65) is then that it
interpolates between different regimes.

3.3 Time ordering and retarded two-point function

Including both left- and right-moving pieces, we have our result for the normalized grand-
canonical two-point function in the near-extremal limit:

〈O(z, z̄)O(0, 0)〉βL,βR
ZβL,βR

∼ e−iπhb4h

[
βR
π

sinh

(
π

βR
z̄

)]−2h̄

G
(Schw)
h

(
−ib2z, b2βL

)
(3.70)

Note that the ordering is important here, with the insertion of O(z, z̄) coming after that of
O(0, 0), and furthermore that this is valid for 0 < z̄ < z̄∗ ≤ π. The time-ordering appeared
in our derivation through the choice of necklace channel N , since the simplification (3.45)
of the blocks occurs only with the given time ordering. Here, the other ordering differs only

14In fact, if we take real z, by expanding C0 to higher orders we find that the integral over k1 is rendered
convergent by an ‘iε’ appearing automatically with the correct sign: the relevant correction to log C0 is
proportional to (b2 log b) k2

1.

15When taking this limit we assumed that h is order one. One can also consider a semiclassical limit
with large h ∼ c which is more complicated [65] but encodes some simple bulk backreaction effects.
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by a phase from swapping the operator insertions in the left-moving block16 (though we
will see that things get slightly trickier for out of time order correlators with more operator
insertions):

〈O(0, 0)O(z, z̄)〉βL,βR
ZβL,βR

∼ e+iπhb4h

[
βR
π

sinh

(
π

βR
z̄

)]−2h̄

G
(Schw)
h

(
+ib2z, b2βL

)
(3.71)

It will be useful to consider also the retarded correlator

GR(z, z̄) = −i〈[O(z, z̄),O(0, 0)]〉 Θ
(
t = 1

2
(z̄ − z)

)
, (3.72)

which for 0 < z̄ < z̄∗ and z = −b−2t̃ < 0 is given by

GR(z, z̄) ∼ b4h

[
βR
π

sinh

(
π

βR
z̄

)]−2h̄

2 Im
[
e−iπhG

(Schw)
h

(
−ib2z, b2βL

)]
. (3.73)

Note in particular that with this definition of G
(Schw)
h , the retarded correlator is not simply

proportional to the retarded correlator in the Schwarzian theory, due to the additional phase
in our choice of normalization. On the opposite side of the lightcone, with −z̄∗ < z̄ < 0
and again z = −b−2t̃ < 0, we have

GR(z, z̄) ∼ b4h

[
βR
π

sinh

(
− π

βR
z̄

)]−2h̄

2 Im
[
e+iπhG

(Schw)
h

(
−ib2z, b2βL

)]
. (3.74)

In the semiclassical limit of the Schwarzian (3.68), the phase is precisely e−iπh, so this piece
vanishes to to leading order in that limit. Away from the lightcone, when |z̄| � βR, the
correlation functions are exponentially suppressed.

We should note that the full correlator also contains lightcone singularities when z is
an integer multiple of 2π, and our result is not strictly valid parametrically close to these
lightcones. However, the strength of the singularity decays exponentially in time, and
their contribution becomes negligible in the Schwarzian limit after smearing the operators
by any fixed amount17. In the conformal block expansion, the singularities arise from an
infinite sum over double-twist exchanges; our argument for dominance of the vacuum block
applies in any compact region bounded away from lightcone singularities, where the sum
over blocks converges uniformly.

16Alternatively, we could take the original result and set (z, z̄) → (−z,−z̄), so the right-moving block
produces a phase e2πih̄. This is equivalent for integer spin, h̄− h ∈ Z.

17We can smear either by slightly displacing the insertions in Euclidean time, or for retarded correlators
by integrating against a more general smooth function, for example by taking partial waves as in the next
section.
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3.4 Partial waves

For direct comparison with a gravitational two-dimensional nAdS2 dual, we should consider
the partial waves, which are correlation functions of the Fourier modes of operators:

O`(t) =

∫ 2π

0

dϕ

2π
ei`ϕO(z = ϕ− t, z̄ = ϕ+ t) (3.75)

For this, we cannot consider time-ordered correlators, because the lightcone singularity
at z̄ = 0 is not integrable (at least, for h > 1

2
). However, the retarded correlator does not

suffer from the same problem, when we interpret the singularity as a distribution. The
expectation value of the commutator can be thought of as a discontinuity across a branch
cut in the Euclidean time plane, and we can define the partial waves by deforming the
integral to a contour passing below the cut, around the branch point, and back above it,
while avoiding the singularity at the branch point itself. In practice, since this prescription
for the integral is analytic, we can simply perform the integral for h < 1

2
when it converges,

and analytically continue to general h.
Since the typical scale on which the correlator varies in the z direction is of order c, the

integral over ϕ at fixed t can, to good approximation, be replaced by an integral over z̄ at
fixed z = −t:

G`(t) =

∫ π

−π

dϕ

2π
ei`ϕGR(z = ϕ− t, z̄ = ϕ+ t) (3.76)

∼ e−i`t
∫ π

−π

dz̄

2π
ei`z̄GR(z = −2t, z̄) (3.77)

The dominant contribution comes from close to the lightcone, with z̄ of order βR, both
from z̄ > 0 (3.73) and z̄ < 0 (3.74):

G`(t) ∼ e−i`tN` 2 Im
[
G

(Schw)
h

(
2ib2t, b2βL

)]
(3.78)

N` =

(
2π

βR

)2h̄−1 Γ
(
h̄+ `βR

2πi

)
Γ
(
h̄− `βR

2πi

)
Γ(2h̄)

sin
(
πh̄+ 1

2
i`βR

)
sin
(
πh̄
)

∼
(

2π

βR

)2h̄−1 Γ
(
h̄
)2

Γ(2h̄)

(3.79)

We see that each individual partial wave is proportional to the retarded correlator of the
Schwarzian. The approximation to N` in the second line is valid when `βR � 1; it is spin
independent because such modes cannot resolve the details of the angular dependence,
effectively seeing a delta-function on the lightcone.

To quantify the error we introduced in our approximation of the integral, we can Taylor
expand the correlation function:

GR(z = ϕ− t, z̄ = ϕ+ t) = GR(z̄ − 2t, z̄)

= GR(−2t, z̄)− 1
2
z̄∂tGR(−2t, z̄) + · · ·

(3.80)
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The factor of z̄ results in an additional factor of βR after integrating, while the time
derivative results in a factor of c−1. The neglected corrections are therefore suppressed by
a relative factor of βR/c. We will later see that this is characteristic of interactions with
graviton Kaluza-Klein modes.

3.5 Higher-point functions and OTOC

We now discuss some salient points for the generalization of the above results to higher point
functions. This is fairly straightforward, but introduces some new ingredients: specifically,
the choice of operator ordering becomes more important, and there are new kinematic
regimes where an identity block need not dominate. To illustrate these new ideas, we
discuss the computation of the four point function of pairwise identical operators.

In the canonical ensemble we want to compute

〈OA(z1, z̄1)OA(z2, z̄2)OB(z3, z̄3)OB(z4, z̄4)〉βL,βR (3.81)

for operators with dimensions (hA, h̄A) and (hB, h̄B) (considering other time orderings
later). As before, we use lightcone coordinates for the locations of the operators, zi = ϕi−ti
and z̄i = ϕi + ti for i = 1, . . . 4. We will take all times to be large of order t ∼ c and choose
the angles such that 0 < z̄ < 2π for all insertions.

As in section 3.1, we must first identify the relevant blocks in the βR → 0 limit by
considering the right moving sector. Once again, we insert complete sets of states at circles
of constant angle between every operator insertion, generalizing the dual necklace (Ñ)
channel in equation (3.39), here with four sets of states. We consider first a configuration
with 0 < z̄1 < z̄2 . . . < z̄4 < 2π where all z̄i and z̄ij ≡ z̄i− z̄j are fixed as we take the βR → 0
limit. Descendants then drop out and the right moving dual necklace block is proportional
to

F̄ (Ñ)

h̄1,...,h̄4
∝ exp

[
−2π

βR

(
z̄21h̄1 + z̄32h̄2 + z̄43h̄3 + (2π − z̄41)h̄4

)]
. (3.82)

As in section 3.1, we find the dominant block by minimizing the kinematic combination in
the exponent over values of h̄i allowed by the fusion rules.

Since the right-moving block is exponentially suppressed for fixed z̄ij, these configura-
tions will not in fact be relevant for correlation functions of partial waves. Instead, we
must consider kinematic regimes where some z̄ij scale proportionally to βR, which we can
split into three cases:

Case 1: Identical operators OA and OB are close together in pairs, but the separation
between pairs is of order one. Concretely, we could have z̄12, z̄43 each of order βR,
with z̄32 order one.

Case 2: Each OA is close to one of the OB and the pairs are order one separated. For
example, we take z̄32, 2π − z̄41 small, with z̄21, z̄43 order one.

Case 3: All operators are close to each other with all z̄ij small.
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Case 1: There is a unique choice of intermediate operators so the block is not expo-
nentially suppressed in βR, with the identity propagating when the z̄ separation is order
one. Namely, we must take O1 = OA, O2 = 1, O3 = OB and O4 = 1. As in section 3.1
we can write a formula for the right-moving blocks which is valid when z̄12, z̄43 ∼ βR, by
including descendants of O1 = OA and O3 = OB:

F̄ (Ñ)
OA,1,OB ,1(z̄ij, βR) ∼ e

(2π)2

βR

c
24

[
βR
π

sinh

(
π

βR
z̄12

)]−2h̄A
[
βR
π

sinh

(
π

βR
z̄34

)]−2h̄B

(3.83)

This is just the product of separate vacuum two-point functions on an infinite line, along
with a term encoding the Casimir energy of the vacuum. The four point function is then
given by the Ñ identity blocks

〈OAOAOBOB〉βL,βR ∼ F
(Ñ)
OA,1,OB ,1(zij, βL)F̄ (Ñ)

OA,1,OB ,1(z̄ij, βR) (3.84)

up to exponentially small corrections
Case 2: The blocks are exponentially suppressed unless the identity appears in the

intermediate channels with finite z̄ separation, namely O1 = 1 and O3 = 1. But the fusion
rules for the identity would then simultaneously demand that O2 = OA and O2 = OB
(and similarly for O4), which cannot both be satisfied in the same block. The leading

contribution is therefore suppressed by either e
− 2π
βR

z̄21h̄gap or e
− 2π
βR

z̄43h̄gap , and this region
does not contribute to partial waves.

Case 3: When all operators are separated by z̄ij of order βR, there is no suppression
in the βR → 0 limit as long as O4 = 1. This means we have O1 = OA and O3 = OB (for
the given the ordering of operators in z̄), but we must include all intermediate operators
in the sum over O2. At this point, we could make an additional assumption that we have
a holographic 2d CFT, where ’t Hooft factorization applies, which suppresses non-vacuum
channels by small OPE coefficients of order c−1. Nonetheless, as we will see in more detail
later, in partial waves the contribution from case 3 is parametrically small regardless of
such factorization, since it involves a small kinematic regime in the integral over angles.

The conclusion is that Case 1 will give the dominant contribution to the correlators of
partial waves, through the identity block (3.84), with right-moving piece given by (3.83).
We next need to compute the left moving torus block by transforming back to the direct
necklace channel, as in section 3.2. The only difference is that now the fusion transfor-
mation has to be applied twice, one to each pair OAOA and OBOB. Instead of spelling
out the details, we show the relevant fusion transformation in figure 3 for the case of the
microcanonical ensemble calculation. The torus block is obtained similarly, with an addi-
tional integral over the state |ψ〉, weighted by a Boltzmann factor and Schwarzian density
of states. Taking the appropriate limits and using the expression (3.49) we obtain

F (Ñ)
h,1 ∼ e−iπhA−iπhBb4hA+4hBχ1

(
2πi

βL

)
G

(Schw)
hA,hB

(
t̃i = −ib2zi, β̃ = b2βL

)
(3.85)

27



OA

OA

OB

OB

ψ

ψ

ψ

1

1

=
∫

dPs
2

dP ′s
2

FPs1
[
PA Pψ
PA Pψ

]
FP ′s1

[
PB Pψ
PB Pψ

]
ψ

ψs

ψ′s

ψ

ψ

OA

OA

OB

OB

Figure 3: Diagram of the fusion transformation that was used to compute the four-point left
moving vacuum block in the appropriate limit. The blue (red) line corresponds to the external
OA (OB) insertion.

where anticipating its interpretation we defined the function appearing in the right hand
side as

G
(Schw)
hA,hB

=
1

2π2Z(Schw)(β̃)

∫
dµ(k1)dµ(k2)dµ(k3)e−t̃21k2

1−t̃43k2
2−(β̃−t̃21−t̃43)k2

3

×
∏
±± Γ(hA ± ik1 ± ik3)

Γ(2h)

∏
±± Γ(hB ± ik2 ± ik3)

Γ(2h)
(3.86)

with t̃21 ≡ −ib2(z2 − z1) and t̃43 ≡ −ib2(z4 − z3). Comparing with the notation in figure
3 we defined Ps = bk1, P ′s = bk2 and Pψ = bk3. This function that appears in the torus
block is exactly the same as the Schwarzian time ordered four point function, analogously
to the previous result (3.65). Putting all together we obtain the full four point function in
the near extremal CFT limit as

〈OAOAOBOB〉βL,βR
ZβL,βR

∼ e−iπhA−iπhBb4hA+4hBG
(Schw)
hA,hB

(
t̃i = −ib2zi, β̃ = b2βL

)
×
[
βR
π

sinh

(
π

βR
z̄12

)]−2h̄A
[
βR
π

sinh

(
π

βR
z̄34

)]−2h̄B

(3.87)

for a choice of z̄1,2,3,4 that falls under Case 1 above. Note that the choice of operator
ordering is important, as we will discuss more in a moment.

From the diagrammatic rules defined in [20] to compute Schwarzian correlators, and the
fact that the fusion transformation of the block is always done in pairs, it is clear that this
connection between Virasoro blocks and the Schwarzian theory will generalize to higher
point correlators.

To summarize, the important configurations have identical operators in pairs, separated
in z̄ by order βR (Case 1), but with finite separation between each pair. In such a case,
the correlator is dominated by an appropriate identity block, which gives the Schwarzian
correlator in the left-moving sector, times a product of cylinder two-point functions in the
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right-moving sector. The vacuum dominance can fail when we do not have nearby pairs
of identical operators (such as Case 2), when the correlator is in any case exponentially
suppressed. It can also fail when two or more pairs of identical operators come within a z̄
separation of order βR (Case 3), unless we make the additional assumption of factorization.

Partial waves

As anticipated above, the situation improves when we integrate over angles (which is equiva-
lent to leading order in βR to integrating over z̄). When computing partial waves correlators
as in section 3.4 we can fix the position of one insertion (z̄1 = 0 for example) and integrate
over the remaining coordinates. In Case 1 the dominant contribution comes from fixing
two other coordinates, z̄21 and z̄43 to accuracy βR. In Case 3 the dominant contribution
comes from all coordinates being of order βR. Therefore the angular integral will produce,
schematically, factors of∫

Case 1

4∏
i=1

dz̄i(. . .) ∼ β2
R(. . .), vs.

∫
Case 3

4∏
i=1

dz̄i(. . .) ∼ β3
R(. . .), (3.88)

where the additional factor of βR simply comes from the small region of z̄32 for which
vacuum dominance fails. This implies that any non vacuum block, that due to the βR → 0
limit can only contribute for configurations of type 3, will come with an extra factor of βR.
Therefore we conclude that the partial wave correlators are dominated only by the vacuum
blocks that produce the Schwarzian answer, namely

〈O`AA (t1)O`AA (t2)O`BB (t3)O`BB (t4)〉βL,βR ∝ N`AN`B G
(Schw)
hA,hB

(
2ib2ti, b

2βL
)
, (3.89)

where we have taken a ‘retarded’ combination of time-orderings for each pair of operators
to make sense of the partial wave integral. The prefactors N` are given by (3.78) for each
pair of operators.

There are several types of corrections to our formula (3.89). The first are corrections
to the vacuum block itself, arising from the angular integral as explained around equation
(3.80), and (new for higher-point functions) also from ignoring right-moving descendants
of the vacuum, most relevant for ‘Case 3’ configurations, where four operators have z̄
separation of order βR. Both sources of error result in corrections of order βR/c, and
admit a bulk interpretation as exchanges of graviton KK modes. In addition, we have
corrections from non-vacuum blocks, most importantly from ‘Case 3’ configurations, which
are of order βR times the relevant OPE coefficients. In a gravitational description, these
arise from interactions (including, but not limited to, interactions with matter KK modes),
as will be explained in section 4.3.2. In a truly holographic theory with a weakly interacting
bulk dual, the OPE coefficients multiplying the non-vacuum blocks are small, giving an
additional suppression.

29



Out-of-time-order correlators (OTOC)

For the arguments above, it was important that we were considering a time-ordered four-
point function. The simplification of left-moving ‘direct’ necklace channel blocks generaliz-
ing (3.45) is only valid when the order of operators in the choice of channel corresponds to
the correct time ordering. On the other hand, the dominance and simplification of the vac-

uum block in the right-moving sector relies on choosing the ˜Necklace channel corresponding
to ‘spatial’ ordering, meaning that we place operators in order of z̄ (though this is not so
important for the nearby pairs of identical operators, since we have included the relevant
intermediate descendants to give the sinh in (3.83), for example). We already saw a version
of this in the difference between (3.70) and (3.71), though the effect of this was simple to
account for since we needed only exchange the order of nearby identical operators.

For the time-ordered four-point function in the configurations such as those (Case 1)
which dominate the partial wave correlators, we can always arrange for the ordering in
time to match the ordering in z̄ (up to exchanging the pairs of nearby identical operators).
However, this is no longer true for out-of time ordered (OTOC) orderings such as

〈OA(z1, z̄1)OB(z3, z̄3)OA(z2, z̄2)OB(z4, z̄4)〉βL,βR , (3.90)

when pairs of identical operators do not appear consecutively. We need to add an additional
‘braiding’ move to exchange operator order before inserting the simplified necklace block.

The argument in the right moving sector is unchanged for the OTOC, so we need only

consider the left-moving vacuum block F (Ñ)
OA,1,OB ,1(z, βL), where the Ñ channel arranges the

operators in z̄ ordering: AABB. First, we apply the same sequence of moves as before to
rewrite the Ñ block as a direct necklace channel block. However, this block inherits the
AABB ordering, but the necklace block only simplifies if the channel matches the ABAB
time ordering. The change of order of two of the operators is achieved using the ‘R-matrix’
as shown in figure 4. After braiding, the new necklace channel block with ABAB ordering
becomes a scaling block, and we have new z dependence coming from integrating over the
internal index in the R-matrix. This is a building block that we can now use for any higher
point OTOC, constructing any time ordering with repeated applications. The R-matrix is
simply related to the fusion matrix and therefore we can use again the formula derived by
Ponsot and Teschner [53].

The limit of the R-matrix required in the Schwarzian limit was computed in Appendix
B of [20]. In the notation of figure 4 we take all intermediate states to be near extremal
Pψ = bk, Pψ′ = bk′, Ps/u = bks/u and the external operators hA and hB to be light. Then
the R-matrix becomes

RPsPu
[
PB Pψ′
PA Pψ

]
=
ρ0(bku)

2πb3

∣∣∣∣Γ(hA + ik ± iku)Γ(hB + ik′ ± iku)
Γ(hA + ik′ ± iks)Γ(hB + ik ± iks)

∣∣∣∣ { hA k′ ks
hB k ku

}
(3.91)

where we defined{
hA k′ ks
hB k ku

}
= W(ks, ku;hA + ik, hA − ik, hB − ik′, hB + ik′)

×
√

Γ(hA ± ik′ ± iks)Γ(hB ± ik ± iks)Γ(hB ± ik′ ± iku)Γ(hA ± ik ± iku).
(3.92)
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PA Pψ
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ψ

ψ′

OA

OA

OB

OB

Figure 4: Diagram of the braiding transformation that is need to compute out-of-time-ordered
correlators.

This object that we obtain as a limit of the Ponsot-Teschner general formula is the 6j-
symbol of the classical sl(2) computed by Groenevelt [68]. W(α, β; a, b, c, d) is the Wilson
function also defined by Groenevelt 18. The prefactor of (2πb3)−1 combines with the factor
of b2 in (3.52) and the factor of b in the measure dPu = bdku to ensure that the braiding
does not change the factors of b, so the OTOC is of the same order as the TOC.

When this transformation is applied to the left moving block, the final answer is propor-

tional to a function GOTOC
hA,hB

(
t̃i = −ib2zi, β̃ = b2βL

)
that reproduces again the Schwarzian

OTOC. We will not write it down here but the final expression can be found in equation
(1.28) of [20].19

The full OTOC at fixed angles (with a configuration such as Case 1 where the identity
block dominates, and spatial ordering is AABB) including left- and right-moving blocks is
given by

〈OAOBOAOB〉βL,βR
ZβL,βR

∝ GOTOC
hA,hB

(
t̃i = −ib2zi, β̃ = b2βL

)
F̄ (Ñ)
OA,1,OB ,1(z̄i). (3.94)

We can use this formula to obtain correlators of partial waves by integrating over angles
and the result is that the OTOC for the CFT is proportional to the Schwarzian OTOC,
similarly to all previous cases. We can also use this for the OTOC without integrating over
angles, where the two insertions of OA are at the same spacetime location (up to small
shifts to regulate), and likewise the two insertions of OB.

18The definition we are using is

W(α, β; a, b, c, d) ≡
Γ(d− a) 4F3

[
a+ iβ a− iβ ã+ iα ã− iα
a+ b a+ c 1 + a− d ; 1

]
Γ(a+ b)Γ(a+ c)Γ(d± iβ)Γ(d̃± iα)

+ (a↔ d), (3.93)

where d̃ = (b+ c+ d− a)/2 and ã = (a+ b+ c− d)/2.

19The appearance of the 6j-symbol in Schwarzian OTOC found in [20] was reproduced using the BF
formalism in [55, 56] and using the boundary particle approach in [69]. Moreover, it was verified in [63]
that the semiclassical limit of this kernel gives the Dray-’t Hooft shockwave S-matrix, reproducing the
semiclassical calculation of the OTOC of [4].
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We would like to stress that this is the first derivation of OTOC in 2d CFT where the
vacuum dominance approximation is justified, thanks to the small parameter βR. This is in
contrast to [70], for example, for which there is no clear justification for vacuum dominance
[71]. This shows in particular that the gravitational S-matrix of 3d gravity coupled to
matter is exactly given in the near extremal limit by the 6j-symbol of sl(2). This can
be thought of as a controlled derivation, in a certain limit, of the universal gravitational
scattering proposed in [72].

As a final application we can compute the semiclassical limit of the (out-of-time-ordered)
left moving Virasoro block using the braiding matrix (3.91). The block is proportional to
the Schwarzian correlator and the semiclassical limit of the exact OTOC was derived in
[63] giving

FOTOCOA,1,OB ,1(z, βL)

FTOOA,1,OB ,1(z, βL)
∼ η−2hAU(2hA, 1 + 2hA − 2hB, η

−1), (3.95)

η ≡ iβ̃

2π

e
−iπ

β̃
(t̃3+t̃4−t̃1−t̃2)

sin πt̃12

β̃
sin πt̃34

β̃

(3.96)

with t̃ = −ib2t and β̃ = b2β and U(a, b, c) being the confluent hypergeometric function.
The semiclassical limit corresponds to late times with η small (but larger than other small
parameters). The analog for the time ordered four point block gives simply a product of
(3.68) two point functions. This matches with the semiclassical calculation done in [4] and
our derivation of this expression from a conformal block explains the origin of equation
(4.14) and (4.17) of [73]. When this formula is expanded at small η it gives the maximal
λL = 2π

β
Lyapunov exponent saturating the chaos bound of [22] 20.

Finally, since we have control over the OTOC calculation (thanks to the βR → 0 limit),
we could also attempt to compute the quantum Lyapunov spectrum [75] which is given
by OTOC between four arbitrary operators. This is related to inelastic scattering in the
bulk and an analogous chaos bound applies [76]. We can compute OTOC between different
operators in the near extremal limit, which picks the intermediate channel with lower twist.
The bound implies their spin s has to satisfy s ≤ 2 and also puts a bound on their OPE
coefficients, but we leave a detailed analysis for future work.

4 Near extremal rotating BTZ black holes

4.1 The BTZ black hole and its AdS2 throat

We begin our analysis of the dual gravitational physics with a look at the classical BTZ
black hole and its thermodynamics. This is a solution to Einstein gravity in three dimen-
sions with negative cosmological constant Λ = −`−2

3 (the subscript on `3 distinguishing it

20The fixed angle OTOC grows with time exponentially with rate λL = 2π/βL ≈ π/β while the s-wave
correlator grows with rate λL = 2π/β. This is consistent with the bounds derived in [74] (see section 5).
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from the two-dimensional AdS length encountered later), with metric

ds2 = −f(r)dt2 + `2
3

dr2

f(r)
+ r2

(
dϕ− r−r+

r2
dt
)2

, (4.97)

f(r) =
(r2 − r2

+)(r2 − r2
−)

r2
. (4.98)

We are using a dimensionless time coordinate t such that the asymptotic metric is propor-
tional to −dt2 +dϕ2, and f has dimensions of length squared. The inner and outer horizons
at r = r±, with 0 < r− < r+ (for J > 0), are related to the energy and angular momentum
of the black hole by

M =
r2

+ + r2
−

8GN`3

, J =
r+r−

4GN`3

. (4.99)

The mass here is the dimensionless energy conjugate to the time t, with zero energy defined
such that empty AdS3 has M = − `3

8GN
, corresponding to the Casimir energy of the dual.

Using the Brown-Henneaux relation c = 3`3
2GN

for the central charge of the dual CFT
in the classical limit, and including one-loop corrections to the energy from the Casimir
energy of gravitons [27], the horizons can be related very simply to the CFT parameters
introduced in (2.26) and (2.27):

P = Q
r+ − r−

2`3

, P̄ = Q
r+ + r−

2`3

(4.100)

Applying the standard gravitational thermodynamics, we find the classical black hole
temperature (from surface gravity), angular potential (from horizon angular velocity) and
entropy (from the area):

T = β−1 =
r2

+ − r2
−

2π`3r+

, Ω =
r−
r+

, S =
2πr+

4GN

(4.101)

The angular potential is the chemical potential for angular momentum, related to the
parameter θ used in section 2 by θ = iβΩ. Writing this in terms of left- and right-moving
temperatures βL = (1 + Ω)β, βR = (1− Ω)β, we have

βL =
2π`3

r+ − r−
, βR =

2π`3

r+ + r−
. (4.102)

The BTZ solution we have given is smooth outside an event horizon as long as r± are
real, which imposes the extremality bound M ≥ |J |. We are interested in near-extremal
black holes, close to saturating this bound, so the difference between r+ and r− goes to
zero. This is a low temperature limit, in which the thermodynamic quantities approach
the following:

M − J ∼ π2`3

8GN

T 2, S ∼ π

√
J`3

GN

+
`3π

2

4GN

T (4.103)
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This can be compared with the thermodynamics of the Schwarzian theory, for which the
energy and entropy are given by

E − E0 = 2π2CT 2, S = S0 + 4π2CT. (4.104)

Defining the central charge using the Brown-Henneaux relation c = 3`3
2GN

, we recover the

values C = c
24

, E0 = J and S0 = 2π
√

c
6
J found in (2.15) of section 2.

If we simply take a near-extremal limit of (4.97), fixing r+ and taking r− → r+ with
fixed r, we find the extremal BTZ metric:

ds2 ∼ −
(r2 − r2

+)2

r2
dt2 + `2

3

r2

(r2 − r2
+)2

dr2 + r2
(
dϕ− r2

+

r2 dt
)2

(4.105)

However, in this limit we obscure the most physically important and interesting region of
the spacetime. We expect a large class of black holes in a near-extremal limit to develop a
near-horizon AdS2 throat region [29, 30, 31, 32], and this is no exception. To zoom in on
this throat, we must scale the radius with the temperature, introducing a new coordinate
ρ via

r = 1
2
(r+ + r−) + 1

2
(r+ − r−)ρ, T ∼ r+ − r−

π`3

→ 0, (4.106)

and fix ρ as we go to low temperature. We then find the geometry

ds2 ∼ `2
3

4

[
−(ρ2 − 1)(2πT )2dt2 +

dρ2

(ρ2 − 1)

]
+ r2

+

(
dϕ− dt+ `3

r+
ρ πT dt

)2

, (4.107)

which is a fibration of a circle over AdS2 of radius `2 = 1
2
`3, as found in [28]. This itself

is a solution of pure 3d gravity, sometimes called the ‘self-dual orbifold’ [77, 40], and is
the BTZ analog of the near horizon extremal Kerr geometry [78]. The metric has an
enhanced isometry group SL(2,R)× U(1). In this near-horizon region, the effects of finite
temperature are still visible, and for temperatures of order c−1 quantum effects become of
leading importance, as we now briefly review.

If we ignore corrections to the AdS2 throat geometry, an infinite-dimensional symmetry
emerges, of diffeomorphisms relating the boundary of AdS2 to the physical time, which is
spontaneously broken to SL(2,R) by the choice of AdS2 vacuum. We therefore expect the
low-energy physics to be described by a Goldstone mode parameterizing Diff(S1)/SL(2,R).

The simplest option would be for the theory of the Goldstone mode to preserve the
SL(2,R) and Diff(S1)/SL(2,R) symmetries, but no such theory exists. It was shown in [79]
it is not possible to have a quantum mechanical system with an exact SL(2,R) symmetry.
Accordingly, in [8] it is shown that gravity in AdS2 cannot support finite energy excitations
(see also [1]). We are therefore forced to include the leading order explicit breaking of
this symmetry; the resulting theory of the pseudo-Goldstone is precisely the Schwarzian
theory [4]. For low temperatures T ∼ c−1 (the ‘gap temperature’ of [7] at which the
thermodynamic description of near extremal black holes was thought to break down), this
mode becomes strongly coupled, so quantum effects are of leading importance.
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(A) nAdS2 × S1

(B) ext. BTZ

∂3

∂2

Figure 5: The near extremal BTZ geometry at fixed time, from the horizon (leftmost circle) to the
asymptotically AdS3 boundary (rightmost circle ∂3). In region (A) the geometry is approximately
nearly AdS2 × S1 (described by JT gravity), and in (B) the geometry is approximately extremal
BTZ and the physics is classical. In the overlap between (A) and (B), we introduce the boundary
∂2 (the blue line) where the Schwarzian mode lives.

This Schwarzian theory will give a good description of the physics in the region where
corrections to the AdS2 fibration (4.107) are small. This is true as long as r − r+ � r+,
corresponding to ρ� r+

`3T
, which is the region (A) illustrated in figure 5. In another region,

labeled by (B) in figure 5, quantum fluctuations are suppressed, and we can accurately
describe the physics classically, on a fixed background, which is approximately extremal
BTZ. This is the region ρ � 1, corresponding to r − r+ � `3T . The two regions (A),
where JT gravity is useful, and (B), where the geometry is classical, have a parametrically
large region of overlap. Somewhere in this region, we can place an artificial boundary ∂2

of the AdS2 region. The physics inside this boundary will be described by JT gravity,
which induces a Schwarzian theory living on ∂2. This will be matched to the asymptotic
boundary ∂3 of AdS3, where the dual CFT lives, by the classical physics between ∂2 and
∂3.

4.2 A two-dimensional theory

To describe the dynamics in the AdS2 throat described above, we first analyze the two-
dimensional theory arising on dimensional reduction of three-dimensional gravity.

35



4.2.1 Dimensional reduction

Our ‘parent’ theory is simply three-dimensional Einstein-Hilbert gravity, with action (here
in Euclidean signature)

IEH = − 1

16πGN

[∫
M

d3x
√
g3

(
R3 + 2

`23

)
+ 2

∫
∂M

d2x
√
γ
(
κ3 − 1

`3

)]
, (4.108)

where the metric g3, scalar curvature R3 and boundary extrinsic curvature κ3 carry sub-
scripts to distinguish them from the two-dimensional quantities introduced presently. The
boundary conditions are those standard in AdS/CFT, and we have included the Gibbons-
Hawking term and counterterm (γ is the induced metric on ∂M) to render the action
finite.

We will study configurations of this theory with a U(1) symmetry, with Killing field
∂ϕ. We use coordinates xa and ϕ, where a runs over two indices (which will be identified
with the time and radial coordinates in the BTZ configuration), and the coordinate ϕ in
the symmetry direction is periodically identified as ϕ ∼ ϕ + 2π. With this restriction, a
general metric can be written in Kaluza-Klein form

g3 = g2 + Φ2(dϕ+ A)2, (4.109)

where the two-dimensional metric g2, gauge field one-form A and scalar dilaton Φ are
independent of ϕ, depending only on the two-dimensional coordinates xa.

With this ansatz, the three-dimensional quantities are written in terms of two-dimensional
fields (�2 is the Laplacian corresponding to g2) as

R3 = R2 − 1
4
Φ2FabF

ab − 2Φ−1�2Φ
√
g3 = Φ

√
g2

d2x
√
γ = ΦdtEdϕ

κ3 = κ2 + Φ−1∂nΦ.

(4.110)

For the boundary terms, we also assume that the location of the cutoff ∂M is independent of
ϕ. The equation for the measure on the boundary d2x

√
γ is then simply a definition of the

proper time coordinate tE parameterizing the boundary of the two-dimensional manifold.
∂n denotes the unit normal derivative at the boundary.

Inserting this in the three-dimensional action and integrating over ϕ, we find the two-
dimensional Einstein-Maxwell-dilaton action:

IEH = − 2π

16πG3

[∫
d2x
√
g2Φ
(
R2 − 1

4
Φ2FabF

ab + 2
`23

)
+ 2

∫
∂

dsΦ(κ2 − 1
`3

)

]
(4.111)

Here, F = dA is the field strength of the Kaluza-Klein gauge field, and all indices are
contracted with g2. Note in particular that a total derivative term �2Φ exactly cancels
with the extra term in the Gibbons-Hawking boundary action. The three-dimensional dif-
feomorphisms become two-dimensional diffeomorphisms, as well as gauge transformations
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arising from xa-dependent translations in the ϕ direction, so that A is a compact U(1)
gauge field.

It remains only to discuss the boundary conditions of the reduced theory. The three-
dimensional boundary conditions are that the induced metric γ is proportional (with holo-
graphic renormalisation parameter ε) to a chosen metric on which the CFT dual lives; we
may always choose a flat metric ds2 = dtEdϕ, so the boundary condition is γ = ε−2dtEdϕ.
Reducing to two dimensions, this implies that the dilaton is just the holographic renormal-
ization constant, Φ = ε−1. We can think of this condition as defining the location of the
cutoff surface, from which we subsequently determine tE. The metric boundary condition
then gives the period of tE in terms of the inverse temperature β; the proper length of the
boundary is L∂ = ε−1β.

The gauge field is a little more subtle. At first sight, it looks like we should impose A = 0
on the boundary, but in fact we can only do this locally. The boundary value of A acts as a
background gauge field for the one-dimensional dual quantum mechanics, which by gauge
transformations we can always set to be trivial locally; however, this is not true globally
when the boundary is a circle, since our gauge transformation must be single-valued around
the circle. This leaves a single piece of gauge invariant data, the holonomy θ =

∫
A. This is

an angle, defined up to shifts by 2π, since we can take gauge transformations that wind an
integer number of times around U(1) as we go round the circle. Tracing the holonomy back
to its higher-dimensional origin, we find that it is precisely the twist angle we encountered
in section 2, from the periodicity condition (tE, ϕ) ∼ (tE, ϕ + 2π) ∼ (tE + β, ϕ + θ).
In summary, the reduction of the standard AdS/CFT boundary conditions becomes the
‘Dirichlet boundary conditions’,

Dirichlet BC: Φ|∂ = ε−1, L∂ = ε−1β,

∫
∂

A = θ , (4.112)

imposed on the asymptotically AdS3 boundary.

4.2.2 Integrating out the gauge field

We can simplify this theory still further, due to the simplicity of gauge fields in two dimen-
sions, in particular the absence of a propagating photon. Since our gauge field is abelian,
its action is quadratic, so we could simply integrate it out; however, we will nonetheless
find it convenient to first rewrite the Maxwell action in a first-order BF formalism21, often
used for the solution of nonabelian gauge theories in two dimensions [82, 83].

IMaxwell =
1

32G3

∫
d2x
√
g2Φ3FabF

ab →
∫ [

iJF + 1
2
µJ 2

]
(4.113)

µ = 8G3d
2x
√
g2Φ−3 (4.114)

21This approach becomes extremely useful for near extremal black holes in higher dimensions with non-
abelian gauge fields [80][81].
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We have here introduced the auxiliary scalar field J , and the Maxwell theory now mani-
festly depends on the metric and dilaton only through the measure two-form µ. Integrating
out the auxiliary field, we find that it is related to the field strength by

F = iJ µ, (4.115)

and using this to substitute for J we return to the original second-order Maxwell action.
Note that for real Euclidean geometries, A is real and J is imaginary, but this is reversed
for solutions with a continuation to real Lorentzian geometries.

Now, we may instead integrate out the gauge field. We find that it imposes the con-
straint that J is a constant, which by examining the expansion of the gauge field near the
boundary we can identify as the charge in the dual CFT. The three-dimensional origin of
this charge is the ADM angular momentum J . The first term in the action then is a total
derivative, which becomes the holonomy on the boundary via

∫
F = θ, so we find

J = J, IMaxwell = iJθ + 1
2
J2

∫
µ. (4.116)

The last step is to sum over spins J , which are forced to be integers by the periodicity of
θ. The result is a partition function of the Maxwell piece:

ZMaxwell =
∞∑

J=−∞

e−iJθ−
1
2
J2

∫
µ (4.117)

As an alternative way to see this result, we can quantize the theory ‘radially’, and fix a
static gauge; we find that the theory becomes the quantum mechanics of a free particle
propagating on a circle parameterized by the holonomy θ, and J labels the momentum
modes, which are eigenstates of the radial Hamiltonian with energy proportional to J2.
We then compute ZMaxwell by preparing the ground state with J = 0 at the origin, evolving
for Euclidean time proportional to

∫
µ, and evaluating the wavefunction at fixed θ. See

[84, 36] for more details, and the nonabelian generalization of a particle propagating on a
group manifold.22

From this result, we see that each term in the sum over J has the very nice property that
it contributes a local effective action for the dilaton and metric. Since the sum over terms
does not retain this property, it is most natural to perform the path integral not with fixed
holonomy ‘Dirichlet’ boundary conditions, but with fixed angular momentum ‘Neumann’
boundary conditions. This is just the change of ensemble in the partition function we saw
already in section 2, where we pick out a Fourier mode of θ by an integral

∫
dθeiJθZMaxwell.

22By Poisson resummation, we can also express the result (4.117) as a sum over winding numbers for the
particle propagating on a circle, in which different terms are related by θ → θ + 2nπ. Different values of
the index n correspond to different three-dimensional topologies, which are the same set of SL(2,Z) black
holes mentioned in footnote 4.

38



From the bulk point of view, we can describe this by adding a local boundary counterterm
to the action,

I −→ I + iJ

∫
∂

θ (4.118)

and using fixed J boundary conditions; this counterterm is precisely what is required to
make the variational problem with the new boundary conditions well-defined. Integrating
out the Maxwell field then gives a local effective action, giving rise to an Einstein-dilaton
theory:

IJ = − 2π

16πGN

[∫
d2x
√
g2 (ΦR2 − U(Φ)) + 2

∫
∂

dsΦ(κ2 − 1
`3

)

]
(4.119)

U(Φ) = 1
2
(8GNJ)2Φ−3 − 2

`23
Φ (4.120)

For calculations at fixed holonomy, corresponding to the grand canonical ensemble
with fixed chemical potential, we can now simply compute at fixed spin J with this local
effective action, before summing over J . Here we assumed the absence of matter charged
under the gauge field, which are inevitably present from Kaluza-Klein modes breaking the
U(1) symmetry. In the presence of such fields, the gauge field can play a more nontrivial
role.

The action in equation (4.119) was originally derived by Achucarro and Ortiz [28], but
we hope that our presentation clarifies the role of the U(1) gauge field and its boundary
condition 23.

4.2.3 The near-extremal limit and the Schwarzian theory

The description we have given so far did not require a near-extremal limit. Our next step
is to take such a limit, and extract the dynamics of the near-AdS2 region from the action
given in (4.119), which is in the class of models studied by [1].

We first look for solutions where the metric g2 is exactly AdS2. This requires Φ to be a
constant Φ = Φ0 at a zero of the potential U(Φ0) = 0, and the AdS2 radius `2 is determined
by U ′(Φ0):

U(Φ0) = 0 =⇒ Φ0 =
√

4GN`3J (4.121)

U ′(Φ0) = − 2

`2
2

=⇒ `2 = 1
2
`3 (4.122)

Reinstating the gauge field using

F = 8iJGNΦ−3d2x
√
g2 =

i√
`3

3JGN

volAdS2 , (4.123)

23See also [29] and [85] for a different approach and [86] for a recent more thorough analysis of JT gravity
coupled to 2d Yang Mills theory.
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where volAdS2 is the volume form (area element) of AdS2, and Wick rotating to Lorentzian
signature, we find that this is precisely the ‘self-dual orbifold’ geometry (4.107) we found
in the near-horizon of near-extremal rotating BTZ.

To incorporate the leading order fluctuations away from AdS2, we expand the dilaton
around its extremal value, writing

Φ = Φ0 + 4GNφ, (4.124)

and find the terms in the action linear in φ:

IJ = −S0χ+ IJT[g2, φ] + · · · (4.125)

χ =
1

4π

∫
d2x
√
g2R2 +

1

2π

∫
∂2

κ2, S0 = 2π
Φ0

4GN

= 2π

√
`3J

4GN

(4.126)

IJT = −1

2

∫
d2x
√
g2 φ

(
R2 +

2

`2
2

)
−
∫
∂2

φ(κ2 − 1
`2

) (4.127)

The leading order term is the two-dimensional Einstein-Hilbert action, which is topological,
proportional to the Euler characteristic χ of spacetime. The next term is the action for
Jackiw-Teitelboim (JT) gravity. Subsequent terms are suppressed in the limit φ� S0.

In writing the boundary terms here, we have implicitly introduced a new boundary,
denoted ∂2 (indicated by the blue line in figure 5), because the JT approximation is only
valid deep in the near-horizon region where Φ is close to Φ0. We choose to place this
new, artificial boundary ∂2 at a curve of constant dilaton φ = φ∂, where 1 � φ∂ � S0.
We have introduced boundary terms in the JT action so that this boundary condition is a
good variational problem, with an intrinsic counterterm so that the action has a finite limit
when we take φ∂ →∞; these boundary terms are not physical, so we must add equal and
opposite terms to the action for the exterior of the throat. For the metric, we would like
a boundary condition that fixes the proper length L2 of ∂2, but this is not freely chosen;
rather, it is determined by solving the theory classically outside the AdS2 throat region,
between ∂2 and ∂3 where the physical boundary conditions are imposed.

4.2.4 Solving the theory outside the throat

When we are far enough from the black hole so that φ is no longer much smaller than
S0, we must keep the full dilaton potential, but can solve the theory classically; we can
think of φ−1 as a running coupling, so quantum fluctuations are large in the throat region
where φ is of order one, but small outside the artificial boundary ∂2 where φ� 1. To good
approximation, we can therefore simply solve the equations of motion of the theory with
appropriate boundary conditions at the boundary of AdS3 ∂3, find the boundary conditions
induced at ∂2, and finally evaluate the on-shell action between ∂2 and ∂3.

The solution to our two-dimensional Einstein-dilaton theory (4.119) is simply the di-
mensional reduction of the extremal BTZ metric (4.105). In the coordinates of section 4.1,
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the dilaton is given by the radial coordinate Φ = r, with Φ0 = r+, and the boundary ∂2 is
in the region `3T � r − r+ � r+.

First, we can read off the boundary conditions at ∂2 from the metric (4.105), by eval-

uating the proper length of the Euclidean time circle L2 =
r2−r2

+

r
β ∼ 2(r − r+)β at fixed

r = r+ + 4GNφ∂. The physical content of this boundary condition, independent of our
choice of φ∂, is the ratio of the length L2 to the boundary dilaton:

L2

φ∂
= 8GNβ =

24

c
`2β (4.128)

Our second task is to evaluate the on-shell action between ∂2 and ∂3, where we include
boundary terms at ∂2 to cancel the terms we added to the JT action (4.127). We can
compute this from the extremal BTZ solution with ∂2 located at constant radius, even
though the configurations are perturbations of this classical solution. Outside the throat,
we can treat the deviations to linear order, since higher orders do not contribute finite
action. Because we are perturbing around a classical solution, the linearized deviation of
the bulk action is a total derivative. But the boundary actions at ∂3 and at ∂2 (to cancel
the boundary terms in the Euler characteristic and JT actions) have been chosen to make
the variational problem well-posed, which means that the variation of the boundary action
precisely cancels the variation of the bulk action after integrating by parts.

The terms contributing finite action in the limit of interest are the bulk action be-
tween ∂2 and ∂3, the boundary term at ∂3, and the boundary term at ∂2 from the Euler
characteristic topological action:

− 2π

16πGN

∫ ∞
∂2

d2x
√
g2 (ΦR2 − U(Φ)) ∼ 2Jβ − 8

√
`−1

3 GNJβφ∂ + · · ·

− 1

4GN

∫
∂3

dsΦ(κ2 − 1
`3

) ∼ −Jβ (4.129)

−S0

2π

∫
∂2

κ2 ∼ 8

√
`−1

3 GNJβφ∂

Adding these up, we find a total action from the outside of

Ioutside ∼ Jβ, (4.130)

which acts only to shift the zero of energy to the BTZ extremality bound. This is a concrete
example of a general result derived in Appendix A of [31].

4.2.5 The Schwarzian theory

In the previous section we argued that the dynamics of BTZ can be reduced to JT gravity
living in the throat. JT gravity is a very simple theory and can be completely reduced to
a boundary mode [1] with the Schwarzian action [3, 4, 5].
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To see this, we can first integrate out the dilaton, which acts as a Lagrange multi-
plier imposing R2 = − 2

`22
, so the metric is locally AdS2, which we can write in Poincaré

coordinates (u, z) as

ds2 = `2
2

du2 + dz2

z2
. (4.131)

The bulk action vanishes when the constraint R2 = − 2
`22

is imposed, leaving only the

boundary term. This nonetheless leaves nontrivial dynamics, arising from the location of
the boundary, which is determined by the reparameterization f relating the coordinate u
to the physical time tE, as u = tan π

β
f(tE). This is the pseudo-Goldstone mode referred

to earlier, taking values in the coset f ∈ Diff(S1)/SL(2,R), where the quotient removes
physically equivalent configurations obtained by the isometries of AdS2. The Euclidean
time tE is proportional to the proper length along ∂2, up to a factor of L2/β relating the
coordinate periodicity β with the proper length L2 of the curve. Since the length of the
boundary is large L2 � `2, we can choose it to lie at small z, and obtain the extrinsic
curvature in that approximation [4]:

κ2 − `−1
2 ∼ `2

β2

L2
2

{
tan

π

β
f(tE), tE

}
(4.132)

Integrating this, we recover the Schwarzian action

IJT = −C
∫ β

0

dtE

{
tan

π

β
f(tE), tE

}
, (4.133)

with coefficient C given by

C = `2β
φ∂
L2

=
c

24
, (4.134)

where we finally made use of (4.128), and the result is independent of the arbitrary choice
of L2 determining the location of the cutoff surface ∂2.

When JT gravity is coupled to free matter the boundary correlators are simply given by
Schwarzian expectation values of the Schwarzian bilocal as shown in [4]. This expectation
value is the quantity computed in [20]. The origin of the free matter approximation will
be explained below in the next section.

Finally, we note that, while we have obtained JT gravity from a near-extremal limit of
pure 3D gravity, this is not quite the end of the story once we consider nonperturbative
corrections (though these will not be relevant for this work). Additional topologies, beyond
those visible in pure JT gravity considered in [41], become relevant, and are particularly
important at very low temperature. This is the subject of work in progress [42].

4.3 Matter, correlation functions and Kaluza-Klein modes

To study correlation functions in the BTZ background for comparison to the results of
section 3, we now consider the effect of adding matter.
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4.3.1 The classical limit

First, we study the classical limit, where the temperature is high enough (β � c) that
backreaction is unimportant, so we are simply studying correlation functions in a fixed
BTZ background. Since this geometry is a quotient of pure AdS3, we can use the method
of images to construct the two-point function of a free field from the corresponding result
on the plane, which is determined by conformal symmetry. In the lightcone coordinates
(z, z̄), where we may choose 0 < z̄ < 2π, the retarded correlator GR (for z < 0, required
so that GR is nonzero) is given by

GR(z, z̄) = −2 sin(2πh)

b−z/2πc∑
n=0

(
βL
π

sinh

(
π

βL
(−z − 2nπ)

))−2h(
βR
π

sinh

(
π

βR
(z̄ + 2nπ)

))−2h̄

.

(4.135)
The image sum over n runs over the finite number of images lying in the future lightcone
z̄ > 0, z < 0 of the origin. The sin(2πh) appearing in the prefactor does not break the
left-right symmetry because the spin ` = h̄− h is an integer, so it may also be written as
sin(2πh̄) or (−1)` sin(π∆).

For small βR (and h̄ > 0), the n > 0 terms in the image sum are exponentially sup-
pressed relative to the n = 0 term. This dominant term precisely reproduces the retarded
correlator (3.73), where we evaluate the Schwarzian correlator in the semiclassical limit
(3.68). As already mentioned, the result (3.74), which would usually dominate for z̄ close
to 2π, is zero in the semiclassical limit.

If we were to extract the Fourier modes of this result, we would of course reproduce
the partial waves (3.78), which are given by a normalization factor times the Schwarzian
correlation function.

4.3.2 Dimensional reduction of matter

To explain the results in a more general context, we perform a dimensional reduction of
matter fields. Suppose our three-dimensional theory contains a massive scalar field χ, with
action

Iχ = −1

2

∫
d3x
√
g3 [gµν3 ∂µχ∂νχ+ V (χ)] (4.136)

for some potential V (χ) = m2χ2 + (interactions) (where we have ignored boundary terms).
This is dual to a CFT operator O with dimensions h = h̄ = ∆

2
, with m2`2

3 = ∆(∆− 2).
Given our Kaluza-Klein form (4.109) for the three dimensional metric g3, we can write

the inverse metric in terms of two-dimensional fields as follows:

gµν3 =

(
gab2 −gab2 Ab
−gab2 Ab Φ−2 + Aag

ab
2 Ab

)
(4.137)

We write the the matter field χ in terms of two-dimensional Kaluza-Klein modes, mirroring
the mode decomposition (3.75) of the operator O:

χ(t, r, ϕ) =
∑
l

e−ilϕχl(t, r) (4.138)
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The three-dimensional action for χ then becomes an action for the complex scalars χl (with
χ−l = χ∗l ), which have charge l under the Kaluza-Klein gauge field A:

Iχ = −1

2

∫
d2x
√
g2 2πΦ

[∑
l

(
gab2 DaχlDbχ−l + (m2 + l2Φ−2)χlχ−l

)
+ interactions

]
(4.139)

The covariant derivative is Da = ∂a − Aa∂ϕ = ∂a + ilAa, and the interactions involve
products of three or more χl fields with total charge adding to zero.

Deep in the AdS2 throat, we can replace the dilaton Φ by the constant value Φ0 = r+,
so the Kaluza-Klein modes have mass m2

l = m2 + l2Φ−2
0 in the AdS2 region. For Φ0 of

order `3, these shifts of the mass are important for finite values of l, as are interactions
if the field χ was originally strongly interacting in AdS3. However, in the limit of very
large black holes βR � 1 studied in section 3, so Φ0 is the largest parameter, we have many
simplifications. For any fixed l, the effective mass m2

l of χl in the AdS2 region becomes close
to the original mass m2. The charge of such Kaluza-Klein modes is also negligible, because
the electric field (4.123) in the AdS2 region is small at very large J , of order (JGN)−1/2

in AdS units. Most importantly, the action is multiplied by an overall factor Φ0, which
suppresses all interactions. For example, a cubic vertex λχ3 in the potential is suppressed
by a factor Φ

−1/2
0 λ in the AdS2 region. The same result should also hold for interactions

with Kaluza-Klein modes of the graviton, so their corrections are suppressed by a factor of
GN
Φ0

, or βR
c

in the CFT variables of section 3.
As a result, to leading order in the large Φ0 limit, we can treat the Kaluza-Klein modes

as independent free fields of equal mass, and neglect their charge. Note that this is entirely
different from the usual situations in Kaluza-Klein compactifications, where we can ignore
the KK modes because they are heavy; here, they are instead light, but decoupled.

The parametric suppression of interactions found from this gravitational calculations
reproduces the corrections to partial wave correlation functions found in section 3. First,
the corrections from graviton Kaluza-Klein modes arise from the slight smearing of the
Schwarzian time when we integrate over ϕ, as explained at the end of section 3.4. Our CFT
calculations give us a specific prediction of the full dependence on t and ϕ, which should
arise from these metric KK modes. For higher-point functions, we also have corrections
from interactions of bulk fields. As explained more fully in section 3.5, these are important
only in the limited regime of kinematics when four operators (identical in pairs) approach
within βR in the z̄ coordinate, so are suppressed by a factor of βR times the coupling when
we integrate over angles to compute partial waves. This is the same parametric suppression
deduced from the gravitational argument.

In conclusion, to describe matter in the AdS2 region, to leading order in the limit of
interest we can use correlation functions of free matter coupled to JT gravity. The only
ingredient left is to compute the effective ‘IR’ conformal dimension ∆S in this region,
determining the dimension of the dual operator appearing in the Schwarzian correlation
function. For this, we only need to know the relationship `3 = 2`2 between three- and
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two-dimensional AdS lengths:

m2`2
3 = ∆(∆− 2), m2`2

2 = ∆S(∆S − 1) =⇒ ∆S =
∆

2
= h (4.140)

We have written ∆S in terms of the left-moving dimension h, which is the result we expect
to generalise if we were to consider matter with spin.

4.3.3 Interpolating boundary conditions from AdS3 to AdS2

The dimensional reduction demonstrates that we can treat matter in the AdS2 throat as
free fields coupled to JT gravity. To compare with the 2d CFT results, we now need to
propagate these correlators from the boundary of the throat to the boundary of the AdS3

spacetime. We can neglect all interactions (including backreaction) in this region, so it
suffices to study matter wave equations on a fixed background.

From the usual AdS/CFT dictionary, CFT2 correlators can be read off from the ratio
between normalizable and non-normalizable modes of the field at the asymptotic bound-
ary ∂3 (at least for the correlators we consider with pairs of identical operators). The
Schwarzian correlators are similarly related to the modes at the boundary of the AdS2

region ∂2. The wave equation between ∂3 and ∂2 relates these modes, providing a map
from the Schwarzian correlators to the CFT2 correlators. Here, we will solve this mapping
between ∂2 and ∂3 in frequency space, and show that for the relevant frequencies (ω of
order c−1) the map is trivial, giving a rescaling independent of ω. This means that the
Schwarzian correlators are directly imprinted on the asymptotic boundary of AdS3. Phys-
ically, this occurs because the time to propagate from the edge of the AdS2 throat to the
asymptotic boundary is only of order `3, which is very short compared to the characteristic
timescale c of the interactions in the deep AdS2 region.

We consider a scalar field χ of mass m2, and write ∆± for the two roots of ∆(∆− 2) =
`2

3m
2, so ∆+ is the dimension of the dual CFT operator, and ∆− = d−∆+. The asymptotic

expansion of χ (in frequency space, so χ is a function of the radial coordinate r times
e−iωt−i`ϕ) is

χ|∂AdS3 = A`(ω)

(
r

`3

)−∆−

+B`(ω)

(
r

`3

)−∆+

+ · · · , (4.141)

and we can read off the correlation function from the ratio of B and A coefficients (in more
detail, this could be achieved by deriving an effective action, as done in a similar context
in [30]). For example, for a two-point function we have

G`(ω) =
π

∆− 1

B`(ω)

A`(ω)
, (4.142)

where the prefactor comes from applying the normalization standard in CFT2, rather than
the ‘natural’ normalization in AdS, which comes from taking AdS propagators with unit
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strength delta-function source to the boundary. Similarly, in the asymptotically AdS2

region the field will behave as

χ|∂AdS2 = Ã`(ω)

(
4

`3

(r − r+)

)−∆−
2

+ B̃`(ω)

(
4

`3

(r − r+)

)−∆+
2

+ · · · , (4.143)

where we have chosen the radial coordinate to give a canonical AdS2 metric in the region
r+ − r− � r − r+ � r. This means that for two-point functions we have

GAdS2
` (ω) =

√
πΓ
(

∆−1
2

)
Γ
(

∆
2

) B̃`(ω)

Ã`(ω)
. (4.144)

By solving the wave equation in the fixed BTZ background, we can express A,B in
terms of Ã, B̃. The details are given in Appendix B, and we find the trivial rescaling

Ã`(ω) =
( 2

π
βR

)1−∆
2
A`(ω), B̃`(ω) =

( 2

π
βR

)∆
2
B`(ω) (4.145)

This neither mixes normalizable and non-normalizable modes, nor adds any new frequency
dependence. The result is a simple ω- and `-independent rescaling factor between AdS3

and AdS2 correlators.
Putting this together with the ratio of the normalizing factors in (4.142) and (4.144),

we find

G`(ω) ∼
(

2π

βR

)∆−1 Γ
(

∆
2

)2

Γ(∆)
2−∆GAdS2

` (ω). (4.146)

This reproduces precisely the normalizing factor we found in (3.78), excepting the 2−∆,
which arises from the factor of 2 between the ‘lightcone’ time −z used to define the
Schwarzian correlators and the asymptotic time t used here.
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A Connection with Liouville

In sections 2 and 3 we show that when a state of large charge (in our case angular mo-
mentum) and low temperature is considered, correlators (and the partition function itself)
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are dominated by vacuum blocks. Using explicit formulas for fusion matrix elements we
computed the low temperature moving component of these blocks and got the Schwarzian
correlators on the nose. A natural question to ask then is why did this work?

To simplify the problem we can focus on the two point function. We can rewrite the
relation (3.49) in a suggestive way in terms of Liouville theory quantities. It is straightfor-
ward after some algebra to show that the fusion matrix element is equal to

FPs1
[
P1 P2
P1 P2

]
=

1

2π
C(α1, α2, αs)

ΨZZ(0)ΨZZ(α∗s)

ΨZZ(α1)ΨZZ(α2)
(A.147)

where the right hand side is written in terms of αi = Q
2

+ iPi. The first factor is the DOZZ
formula [87, 88] with the usual normalization

C(α1, α2, αs) =
(πµγ(b2)b2−2b2)

Q−α1+2+s
b Υ(2α1)Υ(2α2)Υ(2αs)

Υ(α1+2+s −Q)Υ(α1+2−s)Υ(α1−2+s)Υ(−α1−2−s)
. (A.148)

where to shorten the notation we used αi±j±k = αi±αj±αk, and the second is the ZZ-brane
boundary state wavefunction

ΨZZ

(
α =

Q

2
+ iP

)
=

2−1/42π 2iP (πµγ(b2))−iP/b

Γ(1− 2ibP )Γ(1− 2iP/b)
(A.149)

derived in [89] from a modular bootstrap analysis. The left hand side of (A.147) is a
Virasoro kinematical quantity (independent of the theory) while the right hand side is
written in terms of objects appearing in a specific theory, Liouville. As a check that this
relation makes sense, one can see that the only theory dependent quantity, the Liouville
cosmological constant µ, cancels completely in the right hand side. This formula was
proposed by analyzing the conformal bootstrap of Liouville theory with boundaries in [89]
(see their equations 6.4 and 6.5). Starting from the exact expression of the fusion matrix,
the identity (A.147) was derived by Teschner and Vartanov in Appendix D.2 of [60]. This
has also an interesting interpretation in the context of AGT [90].

Using (A.147) it is easy to see that the torus vacuum block for the two point function
used in (3.61) is equal to the one-point function of a primary operator of Liouville theory,
living in an annulus between ZZ-brane boundary states. This is required by the consistency
of the boundary CFT bootstrap of [89]. In the limit considered in this paper, Liouville
theory between ZZ-branes is equivalent to the Schwarzian theory and Liouville primary
operators are equivalent to inserting a Schwarzian bilocal field. This fact was used in [20]
to compute Schwarzian correlators using 2d Liouville CFT techniques. We will leave the
details of this relation for a future work, but this gives the underlying reason for the match
between the results of section 3 and the Schwarzian theory.

This is also consistent with the fact that Liouville between ZZ-branes in equivalent to
the Alekseev-Shatashvili coadjoint orbit action studied in [37, 34] which in the semiclassical
limit reduces to the Schwarzian action.
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Schwarzian Limit

The Schwarzian limit of the fusion matrix given in the form (A.147) was done in [20].
The relevant limit of the operator momentum is P1 = bk1, α2 = bh and Ps = bks. The

important relation here is Υ(bx) = b
1
2−x

Γ(x)
f(b), and Υ′(0) = b−1/2f(b), with f(b) some known

function that will cancel in the end. Then it is easy to see that

C(α1, α2, αs) ∼
1

b

∏
±± Γ(h± ik1 ± iks)

Γ(−2ik1)Γ(2h)Γ(−2iks)
,

ΨZZ(0)ΨZZ(α∗s)

ΨZZ(α1)ΨZZ(α2)
∼ b4hΓ(−2ik1)

Γ(2iks)

which gives the same expression for the fusion matrix element (3.53). This approximation
for the DOZZ formula can also be obtained by using the minisuperspace approximation of
Liouville theory without having to know the full expression involving special functions.

B Details on matching boundary conditions

In this appendix, we solve the wave equation for a free massive scalar field in the fixed
BTZ background and work out the proportionality factors between the sources on the
AdS3 boundary and the asymptotic AdS2 boundary, as stated in 4.145.

We can carry out a mode decomposition of the scalar field as

χ(t, r, ϕ) =
∑
`

∫ ∞
−∞

dω e−iωt−i`ϕχ`,ω(r), (B.150)

The frequency space wave equation, written in terms of a new variable z =
r2−r2

+

r2−r2
−

, for

near-extremal BTZ written in coordinates (4.97) is the following:[
z(1− z)

d2

dz2
+ (1− z)

d

dz
+

1

4

(
(ωr+ − `r−)2`2

3

z(r2
+ − r2

−)2
− (ωr− − `r+)2`2

3

(r2
+ − r2

−)2
− `2

3m
2

1− z

)]
χ`,ω(z) = 0,

(B.151)
See [91] for more details. In the following we will take the limit of small T ∼ r+ − r−
together with the low frequency limit ω ∼ T , which simplifies the equation considerably.
Moreover if we focus on the region between the nAdS2 and AdS3 boundaries we are in the
regime r − r+ � r+ − r−, for which

1− z ∼ 2r+(r+ − r−)

r2 − r2
+

. (B.152)

and from this we see that 1 − z is small in the entire region outside the throat. This
limit (low temperature, low frequency and (B.152)) makes both the frequency and angular
momentum dependent terms in (B.151) negligible, and simplifies the solution to a simple

power law proportional to (1− z)
∆±

2 . We can write these as

χ ∼ A

(
r2 − r2

+

`2
3

)−∆−
2

+B

(
r2 − r2

+

`2
3

)−∆+
2

, (B.153)
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with coefficients A,B depending on ω and `; because we reduce to the simple power law
solutions, this is the only dependence on those variables. For r → ∞, these coefficients
match those of the asymptotic expansion (4.141) near the AdS3 boundary.

To match to the AdS2 boundary, we now need only expand this solution for small r−r+,
and match coefficients of powers of the variable 4

`3
(r − r+) in the expansion (4.143):

Ã =

(
r+

2`3

)−∆−
2

A, B̃ =

(
r+

2`3

)−∆+
2

B (B.154)

Writing this in terms of the right-moving temperature βR ∼ π`3
r+

, and using ∆+ = ∆,
∆− = 2−∆, we finally have

Ã =

(
2

π
βR

)1−∆
2

A, B̃ =

(
2

π
βR

)∆
2

B (B.155)

as stated in (4.145). This relation is independent of where we put the cut-off between the
2d and 3d boundaries as expected.
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